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Notation

We replace the ordinary equal sign by := in defining equalities.

A denotes a complex conjugation, if A is a number or a function, and a closure, if A is a
set or an operator. To label the set of all complex conjugated elements to the elements of a
set A we use a star: A*.

By operator we mean a linear mapping with a domain of definition Dom(.) being a subspace
of some Hilbert space . The standard inner product on the space of all quadratically
integrable (with a non-negative measure du) functions defined on M: # = L?(M,du) and
the associated norm we denote by (.,.) and ||.||.

>=/f9du, Vf,g € H

To prevent from a misunderstanding, we will sometimes add a lower index of a Hilbert space
to the inner product and the norm signs: (.,.) .z, ||.|| . By inner product of vector functions
we mean the sum of inner products of partial components.

C (R) denotes the complex (real) numbers, the inner product on C" (R") we define as
usual: (a,b) := """ | a;b;.

We denote a quadratic form associated to a sesquilinear form u(.,.) by the same letter u[.].

Let A C R", then D(A) stands for the vector space of smooth functions with a bounded
support lying in A. Next we denote the space of all continuous linear functionals on D(A) by
D'(A). The elements of D(A) we call test functions, the elements of D'(A) we call generalized
functions. (f,¢) := f(p) for arbitrary f € D'(A) and ¢ € D(A). If a function f is locally
integrable on J (regular generalized function),we set

/f

For an arbitrary ¢ € C we consider J(c) > 0.
For the convenience of a reader the list of symbols is submitted.
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NOTATION

Symbol Meaning
complex conjugation or closure

* set of complex conjugated elements

' derivative with respect to the argument

f hermitian conjugation

i restriction

= defining equality

(o) r inner product on 7

|| 22 norm on ¢’

[, e Lagrange bracket (see (A.3))

AC™(J) space of functions that their derivatives up to n'" order are absolutely
continuous on a set J, AC = AC?

arc mapping R? — (0,27), x = r(cos p,sing) — ¢

B(A) space of bounded operators on .7’

C the complex numbers

Cc> space of all functions having all the derivatives continuous

o Dirac delta function on R"

D(A) space of all test functions with a support in A

D'(A) space of all generalized functions (continuous functionals on D(A))

Dom(.) domain of definition

(1)

HY Hankel functions (see appendix A.2)

Hm m'™ Sobolev space (see appendix A.5)

F Fourier transform or Fourier—Plancherel operator, for f € L'(R", d"z)
we set (Ff)(€) : f]R" x)d"x, £e€R”

flax) limit of the functlon f in the pomt a from the right (from the left
respectively)

R imaginary part

Id 4 identity operator on A

Ker(.) kernel of an operator

LY (M, dp) space of (quadratically) integrable functions on the set M with the mea-
sure [

L, éc)(M dp) space of locally (quadratically) integrable functions on the set M with
the measure p

Mgy Whittaker functions (see appendix A.3.2)

M(a,b) Kummer functions (see appendix A.3.1)

max maximum

min minimum

N the natural numbers

Ny No :=NU {0}

v digamma function

o(.) resolvent set of an operator: g(.) =C\ o(.)

rs < the smaller and the greater of 7,7’ respectively

iv



NOTATION

Symbol Meaning

R real part

R the real numbers

R* positive (negative) half-axis: RT := (0,00), R™ := (—00,0)

Rp(2) resolvent of H in z

Ran(.) rank

Cac,c,es8,ppp,r absolutely continuous, continuous, essencial, point, pure point and resid-
ual spectrum

St unit circle

S (R™) Schwartz space

S (R™) space of all tempered distributions (continuous functionals on .7 (R"))

span {.} vector space span

sup supremum

supp support

Tr(.) trace of an operator: Tr(A) := > (¢n, Apyn), where {¢,} is an or-
thonormal base of a seperable Hilbert space

Wa b Whittaker functions (see appendix A.3.2)

W (a,b) Kummer functions (see appendix A.3.1)

Z the integers



Introduction

Schrodinger operators with potentials supported by sets of zero Lebesgue measure are of great
interest from both physical and mathematical viewpoint.

Such operators provide a reasonable description in the physical situations when the real
interaction is of a very small range comparing to the other characteristic lengths. For example
studying the interaction of a quantum particle with a polymer, the Schréodinger operator with
a potential supported by a curve may be employed. For some references see [1], [2] or [3].

It should be mentioned that the operator —A in L?(R"), n = 1,2, 3, with point interactions,
i.e. interactions supported by points, represents one of rare solvable models [1].

The main goal of the thesis is to review two different rigorous methods introducing those
Schrodinger operators and then to apply them to some concrete two-dimensional models.

Namely, in the first chapter we will study the hamiltonian formally given by —A, 4+ ad ()
in detail. We will use a selfadjoint extension method and then a quadratic form technique to
define this hamiltonian properly. At last all scattering quantities are calculated.

In the second chapter we will introduce a quadratic form, which gives a mathematical
meaning to the formal hamiltonian —A, + a(y(s))d(x — y(s)), where {y(s)| s€ [} =: T is a
closed curve and « is a real continuous non-zero function. We will make use of the techniques
developed in [4] and [3]. For I' being a circle and o = const., the partial wave decomposition
of the scattering amplitude is given.

The third chapter is devoted to the isotropic harmonic oscillator hamiltonian with the
one-center point interaction. This hamiltonian can be used to approximate so-called quantum
dot with a short-range impurity [5]. We will analyze the hamiltonian spectrum and we will
show that, breaking the rotational symmetry, its structure changes.



The one-center point interaction in
two dimensions

At first we introduce the one-center point interaction by the method of selfadjoint extensions
[1], then we show, that finding a selfadjoint operator associated to a appropriately chosen
quadratic form we come to the same result [4]. Both of the methods can be generalized to
the case of finitely many centers. In the case of the one-center point interaction we solve the
scattering problem.

1 Method of selfadjoint extensions
Let’s start with a densely defined operator H on 5 = L?*(R?, d?z)

2 o ,
1 2

At first we transform H to the polar coordinates and we use the partial wave decomposition.
Since the following spaces are isometric [6]

A = L*(R?,d%z) g L*(RT x (0,27),rdrde) = L*(RT, rdr) @ L?((0,27),dyp)
1, (2)

o0
= L2 R, rdr)®Y, = ', whereY, = ——e"?,
D rEran A9 = =

n=-—oo
to each g € J# we can assign exactly one f € 7’ such that

(U(9)(r,p) = glreosp,rsing) = f(r,p) = Y falr)Yulp),

n=—oo

where f (1) = (Yo, f) 12((0,21),d0)>

whereas ||g||.z = || ||



THE ONE-CENTER POINT INTERACTION IN TWO DIMENSIONS

The following operator decomposition corresponds to isometry (2)

H = U_alOlarU =yt < Z H, ®Idspan{Yn}> U, where

n=—oo

0 19 1 92

_ _ +

Hpolar = _W — ;E — ﬁ@, Dom(Hpolm«) = D(R X (0,271'))
0? 10 n?

H,=—-—=s—~-—+—, Dom(H,)=D[R"
or?2  ror + 72 om(Hx) (R™)

The differential expression for the action of H,, can be simplified by another isometry
Ve LR rdr) — LA(RY,dr), f(r) & V/Pf(r)

-1 e n’—g +
hp :=VH, V" = 32 + R Dom(h,) = D(R™)

Now the problem of finding all selfadjoit extensions of H can be formulated as follows.

Proposition 1 All rotationally symmetric' selfadjoint extensions of the operator H can be
constructed using the family of all selfadjoint extensions of the operators hy,, n € Z, in the
following way. Let h,, be an arbitrary fixed selfadjoint extension of h, for alln € Z, then

_FN[ = Uv_1 ( @ V_lilnv(g)ldspan{Yn}) U

s a selfadjoint extension of H.

Proof Unitary equivalent operators are simultaneously selfadjoint. So the proposition is a
consequence of the treatment above.

Proposition 2 The operator hl, hermitian conjugated to the operator hy is of the form

2 2_ 1
d n 7
dr? r2

2_ 1
Dom(hl) = {f e LA(RT,dr)| f € ACY(RT), <f” + nr24f> € LQ(RJF,dr)} .

hl = —

Thus hy, is symmetric for alln € Z.

Proof The operator h,, is densely defined. The definition of a selfadjoint operator says that

f € Dom(h) & 3g € L*(RT,dr)| Vo € Dom(hy) = D(R) (f,hne) = (g,9),  (3)

!j.e. the extensions commuting with the projection operator Idp2 g+ rary ® Pn, where P, i= (Y, VYo, neZ
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which is equivalent to the condition

n?—1
f € Dom(h)) < 3g € L*(R*,dr)| Yo € D(R") (f, hnp) = (—f” +—3 L, w) = (9, %)
n?—1
& Jge LR, dr)| - f'+ —5*f =g v D[R,

since f,g € L>(RT,dr) C L} (R*,dr). Soif f € Dom(hil), then by corollary A.4, f must be
in AC*(RT). All in all we have the following implication

f € Dom(hl) =

r

2_ 1
feM, = {feL2<R+,dr>| fe AC'RY), (f”+”24 ) eL2<R+,dr>}.

Using the Lagrange formula (A.4) for an arbitrary fixed f € M,, and each ¢ € D(R™) we

obtain 2

n2

_1
2 4f780>:[f,@]oo_[f790]():0—0:0

r

(f, hn) = (=" +

n

2_1
Thus we have found g := —f” + —* f € L*(R",dr) such that the rhs of (3) is fulfilled.
Dom(hL) =M,, h, C hIL for n € Z.

Proposition 3 For n € Z\ {0}, h, is essentially selfadjoint h, = hlb. ho has deficiency
indices (1,1), its closure is of the form

_ d? 1
fo="42"152

Dom (ho) :{f € L*(R*,dr)| f € AC*(RT), <—f” - 4712f> € L*(RT,dr),
9.1 =15 =0},

where g(r) := \/FHél)(ﬂr).

Proof At first we will find the defect subspace K er(hil — 1), i.e. we will solve the following
differential equation on Dom(h,tb)
n?—1 ,
—¢"+ —5"tg=1g.
r
A pair of linearly independent solutions is \/?HT(LI)(\@T) and \/?Hr(f)(\ﬁr) (see appendix
A.2). Moreover a solution g has to be in Dom(h;rl)7 then in accordance with corollary

2alternatively we integrate twice by parts
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A9 lim, . g(r) = 0 necessarily. Due to (A.12) and (A.13) we consider the solution g =
\/FHS) (v/ir), however it is quadratically integrable only for |n| < 1 [7], which means

Ker(hl — i) = {{O} forn € Z\ {0}

span {\/?Hél)(\/ir)} forn=20

The operator &, is real and so Ker(h), + i) = (Ker(h:r1 — z)>*

The deficiency indices of hg are really (1,1). For n € Z \ {0} we have Ker(h}, 1) = {0},
hence h,, is essentially selfadjoint h, = h,T1 by the selfadjointness criterion [6].

At last we find the closure of hy. Substituting the Lagrange formula (A.4) to lemma A.10
we have

Dom(ho) = {1 € Dom(h})| 1, floc = 19, flo = 3. f1oc — 3. /1o = 0} .
Moreover with regard to corollary A.9, [h, flec = 0 for all f, h € Dom(hzr)) (and so for g and g
t00).

Proposition 4 Every selfadjoint extension of the operator hy can be described by the para-
meter a € (—00,00):

d? 1
ho = —— — —
O, dr2  4r2

Dom(ho,a) = {f € L*(RT,dr) N ACY(RT))| <— - %2 > c L*(RT,dr), 2rafo+ f1 = 0},

where
fo = Tli%gr(\/;ln(r))_lf(r), f1:= lim 1 (f(r) = fov/rinr).

r—0+ /T

Proof Regarding the second von Neumann formula [6], all selfadjoint extensions of hg are
of the form

hosf =hof +i€ (g+¢7g), 8 €(0,27)
Domfhog) = { f € L(R*,dr)| f = f+¢(9-¢9), f e Dom(ho), €€ C},

where g(r) := \/?H(()I)(\ﬁr). o . )
At first we will show that the limits fy, f; are zero for all f € Dom(hg). The conditions

9. f] = [3. f] = 0 imply
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For g(0+) and ¢’(0+) we substitute their asymptotic expansions (see note A.11) and after
some elementary rearrangement we have

Fo4) (2 + 0 "o

f(0+) (\/; + O(rg In r)) r<ani}

which means

: (T) _ : g _
i e =0l v =0.

Hence fo = fl =0.
The remaining part of f € Dom(hg ) may be expanded:

£ (9tr) —%3r)) "2 €2 (14-6) Ve +£ (A— P A) Vi = fovFinr + iV,

where A :=1 — 2(In2+ ¥(1)). For the ratio JL we obtain a relation

fo
h 7 (. 1—¢f B T I6]
o 2 Z\SA+§RA1+ei5 =—In2—- V(1) 4tan2,
which introducing a notion
= oo <1n2 + (1) + %tan g) (4)

takes the form 2rafy + fi = 0, a € (—o0,00). We have verified the inclusion hyg C hoq,
where « is related to § through formula (4).

Now let f € Dom(ho,.) C Dom(h:g). Decomposing f by the first von Neumann formula
(A.8), the only thing left is to show that there is exactly the same linear combination of g and
g in Dom(hg ) that lies in Dom(hg ).

Consider a general element (up to a multiple) of the subspace K er(h:g -+ K er(hg —1):
g+ g, v € C. Its asymptotic expansion gives

_ 21 _ 1 21
9+79)0=—(0-9), (g9+791=501+7)~—(n2+¥1D))1A-7),
whereas we require that
g 1
o= WOy gy RLEY
(9+79)o 4il—vy
which regarding (4) means
14y _ B 1-c”
7 =tan— =i—
1—7 2 1+ e’

and so v = —e'?,
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Note 5 Let us denote the operator introduced in proposition 1 by a lower indexr o in accor-
dance with the partial hamiltonian ho.q, which is the only partial hamiltonian that differs in
dependence on a selfadjoint extension of (1).

For a = 0o we obtain the free particle hamiltonian with the mass m = %

H,, = —A, Dom(H,)= H*R?). (5)
Proposition 6 Let z € C\ R. The Green function of the operator H, is of the form
G2 (2,y) = Gz(z — y) + Aa(2)G:(2)G:(y), where
G-(x — y) = {H (Valz ) (©

-1
Aa(2) = 27 <2m —U(1) +In \2/5)
i
Proof Selfadjoint extensions of H differ only on the subspace %, := L*(R*, rdr)®span {Yy}
of decomposition (2), so searching the subspaces Ker(H' — z) and Ker(HT — 2) , 2 € C\ R,
we can restrict ourselves to it.
The operator H' acts on the non-trivial part of /% as follows

0 10
[[T—_i_,i
O 9r2 ror
af? 10f
ty _ 2+ ey (977 1 2+
Dom(HO)—{fEL (R7,rdr)| f € ACH(RT), < 52 7"87’) e L*(R ,rdr)},
hence

Ker(H' — 2) = span {Hél)(\/gr)} , Ker(H' — z) = span {m} .
Using the Krein formula (see theorem A.12), for the resolvent of H, we conclude
(Ha — 27" = (Hoo = 27 4 Ma(2)(G2 )02 Aalz) €C (7)
and for the corresponding Green function we have
G2 (2, y) = G=(x — y) + Xa(2)92(2)G=(v),

because the Green function of H, is just G, (see appendix A.7).
The Green function G¥(x,y) obeys the boundary condition of the selfadjoint extension H,,
for an arbitrary fixed y # 0.

2rafo + fi =0, where
fo= lim (nr) 7 f(r), i = Tim (7(r) ~ folnr). (®)

Regarding expansion (A.15) the following relation holds

G2(2.0) "% 6.0 + a2 (142 (w57 v ) ) 0.
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which according to condition (8) gives

Nal2) = 27 <2m _0(1) +1In f)l .

1)

Proposition 7 Every f € Dom(H,) can be uniquely decomposed as follows
f(@) = (@) + Xa(2) [(0)G:(2),  x#0, (9)
where z € C\ R and f, € Dom(Hy) = H*(R?).
(Ha = 2)f = (Hoo — 2) [2. (10)
Proof Let as consider an arbitrary fixed z € C \ R. Using relation (7) we obtain
Dom(Hpy) = (Hy — 2) ' = (Hy — 2) " (Hoo — 2) Dom(Ho)
— [(Hoo — 2)™" + Aa(2)(Cz, G2 (Hao — 2) Dom(Hoo).

For an arbitrary f, € Dom(Hs,) we have

(. (Hoo — 2)-) = {int. by parts} = / Fo(@)(—A — 2)G. (x)da? = / fo(2)62(x)da? = £.(0),
R2 R2

which together with (11) give decomposition (9). Moreover
f=(Ha—2) " (Ho — 2)f. € Dom(H,),

and so relation (10) holds too.
At last we verify the uniqueness of the decomposition. Let f1, fo € Dom(Hy,) such that

f(x) = fra(x) + Aa(2) f12(0)Gz(2), = #0,

thus

(fi = f2)(@) = Aa(2)(f2 = f1)(0)G:(z), x#0.
Since the function (f; — fo) is continuous on R?, whereas the function G, is discontinuous in
the point = = 0, f1(0) = f2(0) and consequently f; = fo.

Proposition 8 The spectrum of H, is of the form

Uess(Ha) = U(zc(Ha) = <0, OO) fO’/’ (A (—O0,00>
op(Hy) = {—4e2[_2m+\1’(1)]} foraeR
op(Hoo) = 0.
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Proof The energy levels of the point spectrum corresponds to the singularities of the
resolvent. The equation

1
@
has exactly one solution in R: 2z = —4e22mat¥ ()] (.

It is well known that 0(Heo) = Oess(Hoo) = 0ac(Hoo) = (0,00). According to relation (7),
the difference of the resolvents Ry (z) and Ry, (z) is an onedimensional (and so necessarily
trace class®) operator. Absolutely continuous and essential parts of a spectrum are invariant
under a trace class perturbation [8]%, i.e. 0acess(RH, (2)) = Tac,ess(Ru.. (2)).

Since the resolvent of an arbitrary selfadjoint operator H can be written in the following
form [6],

/ 7dEH for z € p(H)
where Ep(.) is the projectlon—valued measure of the operator H, and thus

€SS

Oac(H) = {/\ € R %Z € aeascs(RH(z))},

Uess(Ha) = Uac(Ha) = <O7OO)
The spectrum of an arbitrary closed operator can be decomposed to the not necessarily
disjoint parts
0 = 0css Uop U oy
Moreover for selfadjoint (and so necessarily normal) operators o, = (). Thus we have found
the whole spectrum of the operator H,.

Note 9 The point interaction in an arbitrary point y € R? can be introduced in the same way
as in the origin, but at first we have to translate the reference frame y — 0.

2 Quadratic form for the one-centered point interaction

Motivated by the results of section 1, we introduce a sesquilinear form F,, on L?(R? d%z) as
follows:

Dom(Fy,) = {u e L*(R*,d*z)| 3Q, € C: (u— Q.G.) € H'(R?)} 12)
Fo(u, ) = fz(u, v) + 5 (Qu, Qu)
F#(u,v) :=(V(u— QuG.), V(v — QvG.)) — 2(u — QuG.,v — QuG.) + z(u,v)

B Q) = 5 (2r0 = W) + 107 ) QuQ = eI

3 An operator A is called trace class iff Tr(A) < oco.
4Essential spectrum is invariant even under a compact perturbation.
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where z < 0, @ € R and G, denotes the Green function of the operator Ho, = —A, Dom(Hy) =
H?(R?) (the free hamiltonian Green function-see appendix A.7):

i
G.(z —y) = ZHé”(\/zpc —y[)eR for z < 0. (13)
Note 10 The form F, is independent of the parameter z < 0.

Proof Since for arbitrary z, 2’ < 0: G,—G., € H'(R?), Dom(F,) is z independent. Moreover
for an arbitrary u € Dom(F,) we have

FZu] - FZI[U] = / {V(gz —G.)V [|Qu|2gz + ’Qu|2gz’ — (Quu + Quu)]}

RQ

+ / {2(Qut + Quu)G: — 2|Qu*GZ — 2 (Qu + Quu)G.r + 2'|Qu[*G2 }
R2

= {int. by parts} = — / {A(G: — G2) [|Qul*G: + |Qul*Go — (Quii + Quu)] }

R2

+ / {2(Qui + Quu)G: — 2|Qul*G? — 2 (Qutt + Quu)Gyr + 2'|Qu*G2 }

R2

— {—AG, = 26, + 6} = (+ — z’)\QuP/gzgz,
]RQ

= {the resolvent formula: R(z) — R(2') = (2 — 2')R(2)R(%') }
= [QuP lim (6. — G.)(x) = {(A.14)} = 5 (n V& ~ V) Quf =
= [La(2') = Ta(2)]|Qul* = ‘I)il [Qu] = P5[Qu].

Proposition 11 The quadratic form F, is symmetric, closed and bounded from below.

Proof For an arbitrary fixed o € R we can choose z(a) < 0 such that I'y(z(a)) > 0.
Estimating

Falu] = |V (u=QuGao))|I” = 2(@)[lu= Qub(a) > +2() [u]* +Ta(2()) |Qul* = 2(a)ull* (14)

we verify, that F, is bounded from below.
F,, is closed iff the form

FA) = Fy — z(a)||ul|?, Dom(F# ) := Dom(F,)
is closed. Let {u,} C Dom(FaZ(a)) be a sequence such that
lim  FXu, — ] =0 (15)

m,n—00

10



THE ONE-CENTER POINT INTERACTION IN TWO DIMENSIONS

Set wy, := up — Qu,G:(n)- Assumption (15) implies
m,n— oo m,n— 00
lim ||V(w, —wp)|]| =0, lUm |w,—wy| =0. (16)
m,n— o0 m,n—o0
So limy, p—oo [Jwn — mengRz) = 0 by (16). C and H'(R?) are complete (see note A.16),
hence @ € C and w € H'(R?) exist such that

lim |Q — Qu,| =0
n—oo
lim ||[V(w—wy)|| =0, lim |w—w,| =0.

For u 1= w + QG () We have u € Dom(Fj(a)) and limy oo £ [u—uy,] = 0, hence F2®
is closed.
The symmetry of the form is a direct consequence of the inner product symmetry.

|
Proposition 12 The quadratic form F, associates a selfadjoint operator —Ag:

Dom(—A,) = {u € L*(R?)| 3Qu € C: (u— QuG:) € H*(R?), (u— QuG.)(0) = 'a(2)Qu}
(—Ag —2)u = (—A = 2)(u—QuG,), =z<0.

Proof As has been shown, the form F, is symmetric, closed and bounded from below.
So we can apply the representation theorem A.20, which states the existence of a selfadjoint
operator A, such that for an arbitrary fixed v € Dom(A,) C Dom(F,), g € L*(R? d?z) with
the following property exists

Fy(u,v) = (u,g) for ¥V u € Dom(Fy,) (17)

We set Aqv =g.
Now let u € H'(R?), then Q, = 0 and

Fy(u,v) = (Vu, V(v — QuG.)) — z(u,v — Q,G.) + z{u,v) = (u, g), (18)

which means
(Vu, V(v — QuG.)) = (u, g — 2Q,G.) Yu € H'(R?).

Lemma A.18 then implies (v — Q,G.) € H*(R?). Thus in (18) we may integrate by parts:
(u, (A = 2)(v = QuG:)) = (u,g — zv) pro Vu € H'(R?),
which regarding that H'(R?) is dense in L?(R?, d%r), means

(—A = 2)(v—QuG.) =g —2v = (Aa — 2)v.

11



THE ONE-CENTER POINT INTERACTION IN TWO DIMENSIONS

Next we consider an arbitrary u € D(F,), then (u — Q,G.) € H*(R?) and condition (18)
takes form

<V(’U, - ngz)7 V(U - Qvgz)> - Z<U — QuGz,v — Qvgz> = <u - ng27g - ZU>7

which can be further rearranged with the help of (17):

<uag> - Z<uvv> - q)z(Qu»Qv) = <u — QuGz, 9 — ZU))

and so

(I)E(QU7 Qv) = <ngz'7g - ZU> = Qu/gz(_A - Z)(U - Qvgz) = Qu(v - Qvgz)(o)v
R2

since G, is the Green function of H,. Hence (v — Q,G.)(0) = 'y (2)Qy.
All in all we have shown that A, C —A,.

The reverse inclusion, i.e. for an arbitrary v € Dom(—A,) an element g € L?(R?) exists
such that (17) holds and

(—A — 2)(v— QuG,) = (—An — 2)v,
can be proved following the same line of reasoning, considering v € H'(R?) at first.

Note 13 We have come to the same family of operators as by applying the method of selfad-

joint extensions (see proposition 7). The corresponding operators are related by the equation

Fa(2) = /\al(z) .

3 Scattering

Proposition 14 The generalized eigenfunctions of the operator H,, with the eigenvalue k%, k €
R? are of the form

. ] +7\ !
Ff(z) = Mo % (27ra ~T(1) +In 2;) HY (1r)?,

where k is decomposed as k = lw, | = |k| and r = |x|.
Proof We are looking for solutions to the equation
+ 2t
—AF; = k°F,

for which boundary condition (8) together with asymptotic condition (A.34) are fulfilled.

5We consider the Hankel function Hél) of a negative argument in the sense of definition (A.29).

12



THE ONE-CENTER POINT INTERACTION IN TWO DIMENSIONS

The asymptotic condition gives
Ff(z) = M@0 4 LX) HSY (+1r).
Using the boundary condition we find the constants L*:

=) =" <27ra _wa )—i—ln:;:l)

1

Note 15 The functions Fki(ac) = F,;t('I“Q) = F*(l,w;z) are in fact functions only of those
variables: 1,7, |Q — arcw|.

) ) =+l
FE(l,w;r, Q) = gilr cos(Q—arcw) 4 %T (27ra —U(1)+1In z) él)(:tlr).

Note 16 Since

ro00 illwe e +1 -1 :tzlr o e:l:ilr
F,f(a:) 50 el +e4\/\%<27ra—\11( )+ In 21) 7 = 0)) \/776’

the scattering amplitude (see formula (A.34)) is independent of the angular variables (the
directions of an incoming and an outgoing particle) and the relation

-1
— ) =5 T (9 — W(1) 41 2
Proposition 17 For g of the form

— / / @) (1, w)dwldl,

0 st

holds.

the scattering operator S, of the point interaction is given be the following prescription

= / / i) / SW(w,wp(l,w)dw | dw'ldl,
1
1

0 st

: -1
where S&l)(w,w/) = dg1(w,w') + 5 (27Ta —¥(1)+1In 21)

SEvidently £+ (1) = £~ (I).

13



THE ONE-CENTER POINT INTERACTION IN TWO DIMENSIONS

Proof

To ease the notation we will omit the index « in this proof.

The generalized eigenfunctions F* of H, fulfil the assumptions of lemma A.23 7. If we
verify (A.40) (we even compute S?), the proposition is a direct consequence of lemma A.25

Let’s find the integral kernel SO (w, o’ ). Considering the rotational symmetry of the model,
we may choose it of the form

S(l)(w,w’): Z Sr(’ll)eim(arcw—arcw’)‘

m=—0Q0

Using (A.36) we write down defining equality (A.40) for r — oo

m=oo maZ T +
Z [(—)2 j 4 efilr i < 62 ‘Z + fm(l)> eilr] eim(ﬂfarcw) _
e | V2mlr V2mlr

Jr
" ()t O e 'ty 1) im(Q—

2 4 am e U L~ our S’En)elm( arcw)’
m;w [( vV 2wlr VT \V 2mlr

where f(1) denotes the m'" Fourier coefficient of f*(I) (regarding the angular variable inde-
pendence, fi=(1) = 0 for m # 0 and fi (1) = f*(1).).

One can easily verify that for all m € Z:

()me'd | (0)me'd
V2l + [ (D) _ ol
i ¥

V2l
and thus for an arbitrary m € Z we have

1 .
W =5 (14 FVamifh) .

For SO (w,w’) we may conclude

1 ; /
) N _ im(arcw—arcw’)
SY(w,w’) o Z e +27r
meZ\{0}

l 71
1+im <27ra—\11(1)+1n2,> ]
i

. 1\ L
:531(w,w/)+;<27roz—\ll(1)+ln2i> .

Note 18 The result is in agreement with general formula (A.41). Alternatively the proposition
can be directly proved verifying (A.40) for SC(,Z).

"Verifying the conditions, we make use of the relation %Hé”(lr) = —rH{l)(lr).
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Perturbation supported by a curve

At the beginning let us summarize some basic facts about the restriction to a submanifold
problem. The results will be formulated for our two-dimensional case.

Let y :< 0,L >= I — R? be a regular loop (a closed path), that is y/(s) # 0 for all
s € T and y(0) = y(L), additionally we suppose y’ to be continuous. We call the image
I' := {y(s)| s € I} a curve. We introduce a natural length measure on I" and we denote the
space of square integrable functions with this measure by L?(I'):

feA(r @/W /!f DIl ()]ds < oo,

Finally let Tt f be the restriction of f to I for every f € .7 (R?).

Theorem 19 There is a constant C' such that [|Tr f|| 2y < C| f|| g1 (w2) for all f € S (R?).
Since ./ (R?) is a dense subspace of H*(R?), Tr can be umquely extended to a bounded map
of H'(R?) into L*(T).

Proof A proof even for more general case can be found for example in [9].

Let y be a loop with the properties mentioned above such that the free hamiltonian Green
function G.(. —.) (13) belongs to L?(I') ® L?(T"), and « be a real continuous nonzero function
defined on I (and so « is bounded). For each pair y and a we introduce the following quadratic
form:

Dom(F,r) = H'(R?)
Forlu /|Vu|2d2x+/a|uﬂ2 (19)

T

For u € H'(R?) we denote its restriction to I' by ur := Tru and the restriction’s —a—multi-

ple by o, := —aur. With this notation in hand we define
L
[Grul(x) = /ugz xT—.)= /u NG.(x —y(s)|y(s)|ds, ue L*T), x € R? 2 <0.
r 0

15



PERTURBATION SUPPORTED BY A CURVE

Proposition 20 The mapping G : L*(T') — H'(R?) given by prescription (19) is bounded.
Proof  Since £ gs) = fo (1 €T FUEPAE = [1£1200) & I £ gas it is enough
to find constants K7, K5 such that

a) |Giullp2re) < Killullz2ry

b) [[VGiull 2@y < Kallul p2(ry

a) With the help of the Green function integral representation we make the following
estimates

Jowten ] [

R2 IxI R2xR2

1 i(k,x—y(s 1 i s')—x
U(y(s/))kg — Ze (k,z—y( )>me (Ly(s")—=)

1 1 (s’
/ 10 INA2 12 192 _ 7 i(ky(s)—y(s))
(Il () kPIdsds @ = oo / / (o) uly ) e
Ix
1 1
W latkasds < i [t [l 6l )
R? IxI
dsds’ < const.|lu @ 1d|| L2myer2m 11d @ ul| L2(ryer2r) = const.( /Id Hu||%2(r)
r

< K22y

b)Using the integration by parts we come to the following estimates

/ VGEul?d2 = / u(y(s))uly(&)) (@/ V.G — y(s))Valilz y(s'))d%) W )]
R2 2

IxI

dsds’ = /u(y( ( /gz x—y I,C’/Z(())de)

IxI

1/ (5) Iy () dsds’ = {~AsG(x — y) = 2G(x — ) + 6(z — )}
2 / Gaul2d% + / w(y(s))ug &G (w(s) — y( Dy ()l ()| dsds’

R? IxI
< ‘Z|K1HUH%2(F) + HUH%Q(F)HgZHLZ(F)(X)LQ(F) < K2||U”%2(F)

Proposition 21 There is an alternative prescription for quadratic form (19):

Forlu] = Filu] + @ rlou]

Filul = [ [V(u— Giow) 2% /|u— §0u2d2x+2/|ul2d2x

RQ

2
o
ar [ou] = /’ ul /O’u Gioy).

16




PERTURBATION SUPPORTED BY A CURVE

Proof

Foru] — /aquP :/\V(u—GfUU)|2 —/|VG§au|2 +/VUV(G§UU) +/VW(G§%)

r R2 R2 R2 R2
= {int. by parts} = / IV(u— Gioy) | — z/\GfUU\Q - /Jquau —|—z/uG§au
R2 R2 r R2
o ’UU,Q 1z _ Al 2 ar 2 2 ’UU|2
2 o T uGtoy, = | |V(u—Giou)|* —z | lu—Giou|*+ 2 [ |ul*—2 "
r R2 R2 R2 R2 r

— /O'uG%O'u

r

Proposition 22 Let 0 # u € C(T), then Giu € H™(R?\T'),Vm € N, Giu ¢ H*(R?) and

0G7u . .
[ 85 }F = Op,,,Gru — O, Gtu = —u,

where Oy and Oiy, stand for the derivatives in the direction of the unit normal vector to the
loop T' from outside and inside respectively.

Proof By proposition 20 Giu € H'(R?). Moreover due to the smoothness of G.(. — y(s))
on R2\ T, Giu € C®(R?\ ).
Let p € D(R*\T). Since pGiu € D(R?*\T') ¢ H™(R?), Giu € H™(R*\T'), Vm € N.
Now let ¢ € D(R?). Then

(-2 — 2)(Gru), ) = / / 5(z — y(s))u(y(s) |y (5)|dsp(z)d2z
R2 T

— [ uw eIy (s)lds = (i o)

T
and thus (—A — 2)(Giu) = udr in D'(R?). Alternatively

0G?u
on

L5F - ai([Gfﬂu]MF)
={Giue H'(R?*) c C(R})} = - [8512“] or.
nolr

(CA — 2)(Ghu) = {(—A — 2)(Gfu)} — [

Comparing those two expressions for (—A — z)(Gju), we have [ag:rluh = —u. Ifu #0,

Gtu can not be in H 2(R?), because every element of this space has absolutely continuous
derivatives.

17



PERTURBATION SUPPORTED BY A CURVE

Proposition 23 q)271“ 18 a symmetric bounded quadratic form.

Proof The symmetry is a direct consequence of the Green function symmetry G,(z,y) =

G.(y,z). To prove the boundedness we make the following estimates

1
)|y e} lowllZary + lowll 2y | Groull 2y

o2 <
| a,F[UU]| — min{\a(y

1
< |\ ——= + |13 I ullZ2 (-
< (g +HITENIGE) ol

min {|a(y)|| y € I'} is nonzero, since « is a nonzero and continuous function and I' is a compact
set as an image of the compact interval I.

Note 24 A hermitian operator, which we denote BZ ., is associated to the form ®Z :
1
Dom(BZp)=L*(T), B:p=——1Id—TrGf.
’ ’ o

Proposition 25 Let (1 + min{a(y)| y € T'}||T7]|?) > 0, then F,r is symmetric, closed and
bounded from below.

Proof We make use of former prescription (19) for the form F, 1
For(u,v) = (Vu, Vv) + (qur, vr) r2(r)-

The symmetry of the form then follows from the symmetry of inner products.
For @ > 0 we immediately find a lower bound: F,r[u] > 0 for all u € H'(R?), moreover
the form is positive. For a < 0 satisfying the condition of the proposition we obtain

For[u] > [|[Vul* + min {a} [|ur|| 72y > [Vull® + min {a} | Tr]? ([Ju]? + |Vu]?)

> (14 min {a} | Te)2) [ Va2 + min {a} |72 ful > min {a} |Tr)]u)?
Finally we show that the form F,r is closed. Let {un},cy C H'(R?) be a sequence
converging in L?(R?) to u such that limy, ;00 Fa 1 [tn — um] = 0. The sequence u,, converges,

so it must be Cauchy: limy, y—oo [|un — um|| = 0. For o > 0 we conclude limy, y,—o0 ||un —
U || 1 (r2y = 0. For a < 0 we take use of the estimate above

For[un = um] > (1+min {a} |T0|*) IV (un — wm)||* + min {a} | 7o)l (un — wn
[ —

| |
0 0
as m,n — oo. Hence limy, p—oo [|V(Un — um)|| = 0 too and consequently limy, »—oo ||tn, —

Ul 1 (r2)y = 0. Due to the completeness of the Sobolev space H'(R?), there exists v € H'(R?)
such that limy, e [|un — ul|g1Rzy = 0. The limit uniqueness and the prescription for the
H'(R?) norm implies v = u.

lim,, — oo fra|un —ul? = 0 iff limy, oo |Jupn — u||L2(F) = 0, so the first limit is really zero,
since the restriction mapping Tt is continuous and lim, oo [|un — ullg1r2)y = 0. Hence
limy, 00 Fio r[tt, — u] = 0 in all.

18
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Proposition 26 A selfadjoint operator —A,r is associated to the quadratic form F,r:

Dom(—Aqr) = {u € H' (R?)| (u — Gfoy,) € H*(R?)}
(—Aqr — 2)u = (—A — z)(u — Gfoy)

Proof With regard to proposition 25, we can apply the form representation theorem A.20,
which states the existence of a selfadjoint operator A,r such that Yo € Dom(A.r) C
Dom(F,r) fixed, there is g in L?(R?) with the following property:

For(u,v) = (u,g) Yu € Dom(Fyr). (20)

We set Ay rv =g.
Let us take u € H'(R?) such that ur = 0. Then

For(u,v) = (Vu, V(v — Gioy)) — 2(u,v — Gioy) + 2(u,v) = (u,g) for Yu € H(R?), (21)

which means

(Vu, V(v — Gi0y)) = (u, g — 2G3o,)  for Yu € H'(R?).
Lemma A.18 then implies (v — G&o,,) € H*(R?). Hence in (21) we may integrate by parts :
(u, (A = 2)(v — Gfow)) = (u, g — 2v)
which considering that H'(R?) is dense in L2(R?) implies
(—A —2)(v—Gfoy) =g — zv = (Ao — 2)0.

We have proved A,r C —A, 1.

The inverse inclusion, i.e. for arbitrary v € Dom(—A,r) such g € L?(R?) exists that (20)
is fulfilled and (—=A — 2)(v — Gfoy) = (—Aqa,r — 2)v, can be immediately obtained considering
u € H'(R?) such that ur = 0 and integrating by parts.

Corollary 27 For u € HY(R?), o, € C(T), and hence by proposition 22, Gio, ¢ H*(R?).
Thus each uw € Dom(—Aq ) can be decomposed as follows: u = v+ Gfoy,, where v € H?(R?).
In accordance with proposition 22 we have

[8Gfau

—— — . 22
o ] ur = qur (22)

Proposition 28 For z < 0 and g € L*(R?) we have

(—Aar —2) g = (A~ 2)"'g + GH(Bir) T (-A - 2)"g

19
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Proof Let g € L?(R?), then (—A,r — 2) g =u € Dom(—A,r) and we have
9= (—Aar —2)u=(-A = 2)(u—Gfoy) = (A = 2) [(~Aar —2) 79 — Gfou]

and hence (—A — 2)7lg = (=Anr — 2) 7 lg — Gioy.
At last we show that o, = (Bé’r)_lTF(—A —2)71g:

Bé’pau =Tr(u— Gioy) =Tr(—A — z)fl(—Aayp —2)u=Tr(—A — z)flg.

Note 29 For the Green function of the operator —A,r we have:

Gar(@,y) = Go(z,y) + [GH(BL ) TrG: (. — )] (2),

where G, is the free hamiltonian Green function (13).

4 Time-independent scattering theory

It is convenient to express the spectral parameter z by the impulse k € R?: z = k? = [2, where

L= k|, k=lw.
Proposition 30 The generalized eigenfunctions of the operator —A,r are
Yr(x) = 1 1 GR[(BE p) e (x). (23)

Proof
At first we show that (—A,p — k)¢, = 0 in the distributional sense. With the help of
the asymptotic expansions of G y;-)2(@,y) and |z — y| for fixed z and |y| — oo:

) wizoe L iz iriolyl gitiio)zw) 1 where w — — 2

g ie)2\T, Y ) s
(i) NG (+io)yl |

one can easily verify that

Yp(z) = Pro(z) = lim  lim 2v2re " 04/(1 + ia)\y[e_"(lJr"E)'y‘gg;ia)z(ac, Y).

€0+ |y|—o0
Since we assume fixed z and |y| — oo, we may set §(x — y) = 0 on D(R?), so
)2
(=Bar = (1 +i2))Gy ™ (2.) = 0

and hence (—A,r — k?)Y = 0 in D'(R?).
(Bglr)*le)”("“’> € C(I'), so boundary condition (22) of Dom(—Aq ) is fulfilled.
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Proposition 31 For the scattering amplitude we have

;T
e's

f(k7 k/) =
2v/2nl /

Q,

e W) [(BE 1)1 | (y(s)ly/(s)|ds,  where x| =, K =1 (24)
:

Proof Knowing generalized eigenfunctions (23) we extract the scattering amplitude from

the general asymptotic expansion
eilr

%Z)k(ﬁﬂ) 200 eil(:ﬂ,w) + f(ki, k/) \/;’

where k' = 1%
T
Hence

r—00

f(k, k') = lim \/Fe"”/gz(fv—y(S)) (Bar) e R (y(s)ly/(5)]ds,
1

which gives (24) after substituting the asymptotic expansion

rooo b m g e y(s)
L —y(s)) ~ ———e'1e"e
Gz(z —y(s)) Ner

5
ﬁ

5 Constant é-like interaction supported by a circle

We will discuss the special case of I' being a circle y(w) = R(cosw, sinw), w €< 0,27) and of
a being a positive constant. Due to the rotational symmetry it is convenient to pass to the
polar coordinates: x = r(cos ¢, sin ¢). Using the Fourier expansion, o,,| v € Dom(—A, ) can
be written as follows

50 21
n _ a —1in
Oy = Z un(R)e™?,  where un(r)——% u(r, @)e” ""Pdep.
n=-—o00 0
Relevant operators are then diagonalized
2w 00
[GfUu](T;SO):/ Z Un(R)e™ G, (1/r2 + R? — 2rR cos (¢ — w))Rdw
0 n=-—oo
=27R Z GZ (1) un (R)e™?
[TrGiou)(p) =2nR Y Gr(R)un(R)e™?
o, 1 , s ,
B* u = —97RG*(R) — = o (R)e™¥ =: Bhun(R zmp’
Bird(9)= 3 (2GR (e = 3 B (e
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where

1 .
G:(r) = %/gz(\/ﬂ + R? —2rRcosa)e”""“da

0
_ %Hr(Ll)(\/ET)Jn(ﬁR) forr > R
ig(JZR)Ju(Vor)  forr <R

by the Graf addition theorem A.20.
The inverse operator (JBj[,F)*1 is of the diagonal form too: [(B;yr)*l]m = B, ! for B, # 0.

5.1 Stationary scattering theory

Thanks to the rotational symmetry we may restrict ourselves to the case of a particle coming
in the z; axis direction, i.e. w = (1,0). In order to find the Fourier decomposition of the
generalized eigenfunctions 1y, we expand €% (see formula (A.35)):

eichostp — Z ,ann(lR)e'me
Then we have
zlr cos — v ‘] ( ) z inp
wl(ﬁ Qp) +27R Z g ( ) :

The scattering amplitude can be explicitly computed too:

N — - : —lr . i J ( ) z inp __ \/%Rei% - J%(ZR) inp
f(k7 k ) — f(lv 30) - 271'er1)1£10 \/’FG n:ZOO Bn g ( ) - \/27l e Bn € )

where we take use of the asymptotic expansion GZ(r) "~ eif (=) /2 Z e J,(IR).
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Quantum dot with the point
interaction

Some basic facts about the point perturbation of Schrédinger operators are summarized and
developed further in [5], especially the case of the threedimensional harmonic oscillator is
investigated in detail. Here we at first recapitulate some general results included in the men-
tioned article and then apply them to examine the spectral properties of the point perturbed
two-dimensional harmonic oscillator.

Similarly to the case of the free hamiltonian, we introduce the point interaction in ¢ € R?
as a self-adjoint extension of some suitable restriction of the unperturbed hamiltonian. Let us
denote this restriction H(q) and define it as follows:

Dom(H(q)) :={f € Dom(H)| f(q) =0}, Hg:=H [pom(ti(q)):

where H is the hamiltonian of the two-dimensional isotropic harmonic oscillator (A.42). H(q)
is a closed symmetric operator with the deficiency indices (1,1).

All self-adjoint extensions of H(q) form a one-parametric family {H,(¢)| « € R}. The
Green function of H,(q) is in accordance with Krein formula given by

G9(z,y) = G2°(x,y) — [Q(2,9) — o] 7' G2°(2,0)G2° (4. y), (25)

where GI° is the Green function of H and Q(z,q) = gfgeg(q, q) is the regularized Green
function of H evaluated in z = y = ¢ (so-called Krein Q-function).

The unperturbed operator H corresponds formally to o = oo.

The function z — Q(z,q) is analytic in the domain C \ o(H) and % > 0 for z €
R\ o(H). The set of all poles of the function z — @Q(z, q) coincides with the set p(q) defined
as follows:

p(q) :=={An € o(H): 3f € La| f(q) # 0},

where L,, denotes the eigenspace associated with the n'® eigenvalue \,,.

6 Spectral properties of H,(q)

H,(q) is a rank one perturbation® of H, so the spectrum of H, is discrete too. An eigenvalue
An of H of the multiplicity k,, is an eigenvalue of H, of the multiplicity k,, + 1, k,, or k,, —1 (if

8That is dim Ran(Ru,(2) — Ru(z)) = 1.

23
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kn, = 1, then A, does not belong to o(H,)). There are additional eigenvalues different from
An, which can be found as solutions to the equation

Q(z,q) = a. (26)
Since % > 0 equation (26) has exactly one solution on each interval (—oo,€q(q)),
(e0(q),€1(q)), ..., where {en(q)| n € No} is the sequence of strictly increasing poles of the

function z — Q(z, ¢). Denote those solutions &y(q), £1(q),. . ..

Theorem 32 ([5]) The spectrum of H,(q) is discrete and consists of four nonintersecting
parts 01,09, 03,04 described as follows:

i. o1 is the set of all solutions &, to equation (26), which do not belong to o(H). The
multiplicity of &, in the spectrum of Hy(q) equals 1.

ii. o9 is the set of all A, € p(q) that are multiple eigenvalues of H. The multiplicity of the
eigenvalue A, € og in the spectrum of Hy(q) equals ky — 1.

iii. o3 consists of all A, € o(H) \ p(q), that are not solutions to equation (26). The multi-
plicity of the eigenvalue A\, in the spectrum of Hy equals ki, .

iv. oy consists of all \p, € o(H) \ p(q), that are solutions to equation (26). The multiplicity
of the eigenvalue A, in the spectrum of H, equals k, + 1.

Proposition 33 p(q) = {\an| n € No}, if ¢ =0, and p(q) = o(H) otherwise.

Proof At first we investigate the case ¢ = 0. A\, = A\, ny, 71 +n2 = n (see appendix A.9),
so if n is odd, then n; is odd and ng is even or vice versa. Since Hp,(0) = 0 for n; odd and
H,,(0) # 0 for n; even, ¥y, n,(0) = 0. On the other hand, if n is even, then 1), ¢(0) # 0.

Now suppose that ¢ # 0. Since Hi(q) = 2¢ = 0 only for ¢ = 0 and Hy = 1, we have
Ao, A1 € p(q). Let n > 0. Suppose that ¢,_11(q) = 0, then according to lemma A.27,
Uno(q) # 0, ie. Ay € p(q).

7 Derivation of the Krein Q-function

Thanks to theorem 32, only a rather computation work is left to fully describe the spectrum
of H,(gq) in dependence on « and gq.

Consider the Green function of the two-dimensional isotropic harmonic oscillator in the
polar coordinates [10]

o0

Go(rg.1'3) = o 30 o)) Z )cosln(p — )] + 5-Gi(r ') (27)

n——OO n
F(l(\n|+1—5)) 1 w w
20 2 w 2\ w 2
Gn(r) wl(n|+1) 2,12\ "< =12l ">

(H — z)ggo(a:,y) =d(z—vy), forzeC\o(H),
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where I' denotes the Gamma function, M,; and W,; denote the Whittaker functions and
r-,r~ are smaller and the greater of  and r’, respectively. The singularities of G come from
the singularities of T' (3(|n| +1— 2)) in £ € N.

w

Proposition 34 The divergent part of G'°(z,y) as z,y — q is —% In(z —vy).

Proof This proof is a little heuristic, however its purpose is to give a guess.

Consider equation (A.25) for fixed a and for b much greater than a, then its solutions are
close to My, and Wy ;. Those functions can be expressed in terms of the cylindrical functions
(see formulas (A.27)). With the help of the asymptotic expansions

16

V—00 2 sez\V
N (5)

we obtain

and so for Qg we have

GO (r, ') "R \F((ib)l) <2”> : (“)n ~ {stirling formula for r(g)}

I ()

Now suppose that 2,y — ¢ in such a way that ¢ = ¢'. For the divergent part of GI°(x —y)
we have

~

r>

s r>

1 1 r 1 1
ﬂ_;gg(r,r') = —2—111 (1 - <) = —ﬂln(r> —re)+ %lnr>.

The term lim,__, % Inrs is finite for ¢ # 0. For ¢ = 0 we should consider the summand

G¢(r,r") too. Using the asymptotic expansions M o(z) =20 vz, Wao(z) 20 —m\/ﬂnz
we conclude

i.e. exactly the unwanted part with the opposite sign.
|

The following lemma enables us to simplify the further analysis by setting w = 1 without
the loss of generality.
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Lemma 35 Let G" be the Green function of H := —A + 122 (w=1), then Gho(\Jwz, Jay)
is the Green function of H.

Proof

(H — 2)G2(aw, Voy) = (~ Ay + (o — 2)02 (5w, Vo)

— (-85 + VP = 2) G, ) = w(vn — Vi) = 8z 1)

|
Consequently Q(z,q) = Q(f, Vwq), where Q is the Krein Q-function for H, and equation (26)

takes the form .
Q(;7 \/5(]) = Q.

Hence a change of the frequency w does not change the numerical values of energy levels in
o(H) if % is used as the unit of length and w as the unit of energy.

So we restrict ourselves to the case w = 1 and we keep notation H for H and Q for Q.

Proposition 36 Let |z —y| — 0 in such a way that ¢ — ¢’ =0, then

—4 3 V(YA Tu(Ere) = (B a(VEr)

@(ln% ~U(1) +O(fe — yPlnfe —y)) forz>0

5 3 (/=2 nliv/=2r<) + §HG (iv/=2rs) Jo(iv/=3r<)
[+ (0 Y52 — (1) + O(fe — gl e —y)) for = <0.

1
e nlp —yl =
o nlr —y|

Proof a) Let G, be the free hamiltonian Green function G,(x —y) = iHél)(ﬁ|x —y|) and
z > 0. For the real part of G, we have

vz

le—y|l—0 1
)T (e — y|+ 10 37— ¥(1) + O(]z — y Infw - y)).

RG.(x —y

By the Graf formula (A.20):

[e.9]

RG.(rop —1'¢") = _% Z Yo (Vzrs)Jn(Vzr<) cosln(e — ¢')]

n=—oo

= —% > Vu(Vers)Jn(Vare) cosn(p — )] - iYo(\/ET>)J0(\/5"”<)-
n=1

Setting ¢ — ¢/ = 0 and comparing those two expressions, we come to the statement of the
proposition.
b) For z < 0, the Green function G, is real and its asymptotic expansion is

N
2

|z—y|—0 1
) R ——(lnfz —y[+1n —U(1)) + Oz — y* In |z — y]).

Ge(x - 2
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The Graf formula then states that

G:(x =) :i Z HV (iv/=2rs) T (iv/—2r<) cosn(p — ¢')]
:%ZH N(iv/=2r>)Jn(iv/=2r<) cosln( — )] + (szr>)Jo(lezr<)

Again comparing those expressions one obtains the proposition.
|

For the Krein Q-function of the two-dimensional isotropic harmonic oscillator we conclude:

> (L62(0,0) + LY (vVZ0) Jn(V20)) + LG5 (4, q)

Yo(v/zq >Jo<fq>——<lnf U(1)) for z>0
(26:(a.0) = $ B (1V=20) Juliv=2q) )

\ —1—%9 (¢,9) — iHO (i\/jZQ)JO(i\/TZQ) — 5:(In ‘/;7 — (1)) for z<O0.

Q(Z7Q) =

mmim

(28)
where ¢ stands for |¢|. Thus for fixed z, Q(z, q) is only a function of the perturbation distance
from the origin. It is a direct consequence of the rotational symmetry of the hamiltonian H.

7.1 Perturbation in the origin

If ¢ = 0, we get a rotational symmetric model. In this case the Krein Q-function takes much
simpler form than the general one (28). Let z > 0 and A, := 1GZ(q,q) + Y, (v/2q) Jn(V/2q).
Substituting asymptotic expansions of the cylindric and the Whittaker functlons as ¢ — 0 we
obtain A, = O(¢*Ingq) for n > 2, A; = O(¢?) (to the order I chose to compute) and finally

%Z%g (¢,9) + Yo(fq)Jo(ffJ) —% (‘I’(lgz)—anx/EJrln?)-
All in all we have . .
Qz0) =~ (-xp( ; ) +1In2 4 20(1 )) (29)

For z < 0 the similar steps lead to the same conclusion.

There is another way how to come to (29). The Green function (25) have to satisfy the
boundary condition of the point interaction (8) in every 0 # y € R2. Let us take such fixed y
and define

Fralz) = G20(x,y) = G°(z,y) — [Q(2,0) — ] 'G2°(x,0)GE°(0, y).

Suppose that f.q(z) “~° do(z, o) In|z] + ¢1(z,a) and G2°(z,0) "<’ ¢o(z)In[z| + ¢1(2). The
boundary condition takes form 2wagg + ¢1 = 0, that is

Q(z,0) — a =2madpy(2) + ¢1(2), (30)
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since go(z, @) = — FEOU 4 (2) and ¢y (2, @) = GIo(0,y) — FAOL 4, (5).
Q(z,0) Q(z,0)

Now the only thing left is to find G2°(x,0) = GM°(r). It is a solution to the differential
equation

1 1 1
~(GI°)" — (G + 1rGh — Gh = 6(x) = 5(r).
For r # 0, the general solution is G1°(r) = %M;g(%)—i—%wéo(%), where C', Cy are complex
constants. If we assume z > 0, we set C] = 0, because the first term diverges as r — oo:

142

z—1
1 2 e 1 2\ 2 1 2 e 1 (12 2 2
“Mzog(—) ~ ——m— [ — T, Wig(=) ~ —|— T,
r 2,0(2) \/51_‘(152) e 2,0(2) \/§ 9 e

as one can verify using asymptotic expansions (A.22), (A.23) and relations (A.26). The con-
stant Cy can be for example derived by comparing the expression for G°(r) with the general

one (27). Finally we have
r(45%) 1 r
ho 2 %%
— - z .
G:°(r) o0v/2r v 27 ( 2 )

Using (A.24) together with (A.26) we obtain ¢g = —5- and ¢y = ;= (—¥(152) + In2 + 2¥(1)),
substituting those expressions to (30) we come just to (29).

[

8 Some concrete results

With theorem 32, proposition 33 and formula (28) in hand we are able to find the spectrum
of H,(q). The eigenvalues, which do not belong to o(H), must be computed numerically by
solving (26) with respect to z for fixed ¢ and .. The sum in the Krein Q-function prescription
(28) converges very fast especially for ¢ not too large (see figure 1).

Figure 3 shows @) as a function of the spectral parameter g. Note that the graph of Q(z,0)
differs from the graphs of Q(z,q), ¢ # 0 qualitatively. If the perturbation is decentralized and
so the rotational symmetry is broken, the structure of the spectrum changes. Equation (26)
has exactly one solution on each interval (A, Ant1),n € Ny instead of the interval (Aop, A2pn12)
as for ¢ = 0.

For an arbitrary fixed « let us define

q for g #0
continuous extension for ¢ = 0.
Graphs of several first functions E, for o = 2, o = 0 and @ = —2 are displayed in figure 4. One

can see that for & = 0: Fs,-1(0) = Agp—1,n € N, however in contrast to the threedimensional
case [5] F2,(0) > Aap—1,m € N.

Finally let us summarize what we know about the structure of o(H,(q)) from the viewpoint
of theorem 32. If ¢ # 0, then: o1 = {E,(¢)| n € No}, 02 = {\|n € N} and 03 = 04 = . The
case ¢ = 0 is little more complicated.
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h

Figure 1: P, denotes the Krein Q-function evaluated up to its m'™" summand.

P20 (z, 2) -P100(z, 2) P20 (z, 1) -P100(z, 1)

0. 000376
0. 000374
0. 000372

0. 000368
0. 000366
0. 000364

P20 (z, 0. 2) -P100 (z, 0. 2) P20(z, 0) -P100(z, 0)

3.6468. 1078 i 2 : 4 z
3. 6466- 108 .2.10°16
3.6464-10°° 6
3.6462. 1078 -4-10
e 1 3 4 57 -6-1071°
3. 6458- 10 6
3. 6456-10'2 -8-10
3. 6454 10 11018

We define M := {Q(2n,0), n € N}. {Q(2n,0)}, oy is a negative decreasing sequence (see
figure 2), so if @ € M, then there is just one n with the property Q(2n,0) = a. Moreover
lim,, o0 @(2n,0) = —oo. The spectrum structure differs in dependence on the parameter «.
For the convenience of a reader a transparent summary is given (see table 1).

Table 1: The spectrum of H,/(0)

a>Q(2,0) a€(Q(2n,0),Q(2n+2,0)) a=Q(2n,0)
Eo(0)U{E2pm—1(0),meN,m<n} Eo(0)U{E2m—1(0),meN,m<n}
o1 | {E2m(0),meNo}
U{E2m (0),meN,m>n} U{FE2m (0),meN,m>n}
g2 {)\27n7m€N} {)\Z'NL»mEN} {)\27n7m€N}
o3 | {X2m+1,meNp} {A2m+1,mENg} {A2m+1,mENg P\ A2pn—1
o4 0 0 A2n—1
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Figure 2: Points of the sequence {Q(2n,0)}, cx

Q(2n, 0)

10 20 30 40
-0.05} °

-0.1
-0.15
-0.2
-0.25

Figure 3: Krein @-function for several values of ¢

Q(z, 2) Q(z, 1)
1 1
0.75 0.75
0.5 0.5
0. 25 0.25
e

- 1 2 4/°5 -1

-0.25 -0.25
-0.5 -0.5
-0.75 -0.75
-1 -1

Q(z, 0. 2) Q(z, 0)
1 1
0.75 0.75
0.5 0.5
0. 25 0.25
/ /

-7 1 1 ( 4/ 5 -7 -1

-0.25 -0.25
-0.5 -0.5
-0.75 -0.75
-1 -1
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o
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Figure 4: Energy levels E, for « =2, a =0, o = —2 (in the order of columns)
E3(q) E3(q) E3(q)
o\ 1 2 3 4759 N1 2 3 4 594 3.08
98 3.8 3. 06
97 3.6 3.04
gg 34 3.02
94 3.2 1 2 3 4 50
E2(q) E2(q) z%gm
1 23 5 d 123 4759 3 05
o 2 8
96 2.6 2.02
94 2.4 2.01
2.2 1 23 4 54
E1(q)
Euqn , " E”qﬁ - q L By
gg 1.8 1. 06
gg 1.6 1.04
1.02
92 1.4
94 1.2 T 23 4 54
Eo(q) Eo (q)
1 754 1
98 a5}
96 1 3 4 54
94 -0.5
92 -1

31



Appendices

A.1 Some useful lemmas

Lemma A.1 (Du Bois-Reymond) ° Let f € L} (J, dz), where J is an open interval of R,

loc

and let (f,¢) =0 for all ¢ € D(J). Then f =0 as an element of L} (J,dz).

loc

Proof For the proof see for example [11].

Lemma A.2 Let f € D'(J), where J is an interval of R, and let f' = 0 in D'(J). Then
f = const. in D'(J).

Proof Let us take € D(J) such that (1,7) = [;7 =1 and supp(n) C (a,b) C J. For an
arbitrary ¢ € D(J) define ¢ := ¢ — (1,)n. ¥ can be expressed as a derivative of the function

.

— 00

1 is evidently a smooth function and regarding that supp(¢) C (¢,d) C J and the prescription
for 1, the support of ¢ is bounded too: supp(1/~1) C (m, M), where m := min{a,c} and
M := max {b,d}. Thus ¢ € D(J).

Since we suppose that (f/,¢) = —(f,¢’) = 0 for an arbitrary ¢ € D(J),

0=(f,¢)=(f,¥) = (f.o— (L),

has to hold. So we have

(fs0) = (£im) (1, ¢) = const. (1, ¢) = (const., p).

Lemma A.3 Let f,g € L} (J,dx), where J is an interval of R, and let f' = g in D'(J).

loc

Then f € AC(J) and f'(z) = g(z) a.e. on J.

9The lemma generally holds for f € Li,.(M,d"x), where M is an open subset of R™.

32



APPENDICES

Proof Consider an arbitrary fixed point a € J and for « € J define

The function h is absolutely continuous on J as a function of the integral limit and h'(z) = g(x)
a.e. on J.
For all ¢ € D(J) we have

/ /!7@ = /ﬁ’so = {int. by parts} = _/W’ = (W, 9),
J

J J J

and so (f —h)’ = 0 in D'(J). According to lemma A.2, f = h + const. in D'(J). Lemma
A.1 then says, that f(z) = h(x) + const. a.e. on J. Thus the function f as an element of

L} (J,dz) can be represented by the element h + const., from which follows the propositions
of the lemma.

Corollary A4 Let f,V € L} (J.dz) C L} (J,dz) and g € L}, (J,dz). If f"+Vf =g in
D'(J), then f € AC*(J).

Proof (g—Vf) € L} (J,dz). Following the same line of reasoning as in the proof of lemma
A.3, we show, that f’ is absolutely continuous on J: f € AC*(J).

Lemma A.5 (Lagrange formula) Let J = (a,b) be an interval of R and | a differential
expression of the form
d2
li= =gz + V(e ), whereV € L}, .(J), V(z)€R. (A.2)
We call the point a (b) a regular end, iff a > —oo (b < o00) and V is integrable on some right
(left) neighbourhood of a (b). J; denotes the union of J and the set of reqular ends. For each
x € J; we define

[/, 9lz = F(2)g'(z) — F'(x)g(z). (A.3)
Then for an arbitrary closed interval (c,d) C J; and functions f,g € ACY(J;) we have
d
[ g~ fitg)) de = 11.9la - 1£.9le. (A4)

C

Relation (A.4) is called the Lagrange formula [6].
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Proof For f,g € AC'(J;) the mapping = — [f, g, is absolutely continuous on .J;, and so it
is differentiable a.e. on J;:

[f.9]' = fg" — "9 =UFf)g — filg).
Integrating from c to d we obtain the Lagrange formula.

Note A.6 An operator H on L?(J,dx) with the mazimal domain of definition is introduced
by differential expression (A.2):

Dom(H) = {f € L*(J,dx)| f € AC'(J)), I(f) € L*(J.dz)}.
For f,g € Dom(H), the limits limy_q+[f, gle and im,_,_[f, gl exist and are finite.

Proof The proof will be carried out for example for the left end point a. B B
Let us take an arbitrary closed interval (¢, d) C J; and f, g € Dom(H). Then (I(f)g — fl(g)) €
L(J,dz) and so the finite limit

d

lim (l( )g — fl(g)) dx

c—a+
c

exists. By the Lagrange formula (A.4) the integral above equals to [f, glq — lime—a+[f, 9lc,
and since [f, g]q is finite, the limit lim, 4+ [f, g]s is finite too.

Lemma A.7 Let a € R. Let f € L?((a,00),dr) N AC(a,0) such that f' € L?((a,o0),dr).
Then lim, .~ f(r) = 0.

Proof Define g := f'f+ ff {= (|f|*)'}. Since g € L'((a, ), dr), the following has to hold

1
Ve > 03K € R| Vri,rg > K |/g(r)|<<€. (A.5)

T2

Since f:; g(r)dr = |f(r1)|?>—|f(r2)|?, condition (A.5) says, that the limit lim, . | f(r)|? exists.
If we require f to be in L?((a,00),d,r), this limit is necessarily zero.

Lemma A.8 Let a € R. Let f € L*((a,00),dr) N AC*(a,o0) such that f" € L?((a,0),dr).
Then f' € L*((a, 00),dr) too.
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Proof Suppose that f’ ¢ L?((a,00),dr). For an arbitrary r € (a, 00) the following identity

holds . . .
m—;/WP+/f7+/fﬂ+mw, (A.6)

where g := f'f + ff'. g(a) is finite as a consequence of the absolute continuity of f and f’.
The second and the third integral on the rhs of (A.6) are finite as r — oo, whereas the first
one goes to the infinity as r — oo. Thus lim,_, g(r) exists and

lim g(r) = Tllrgo (|f]2)/ —

T—00
which is a contradiction of the assumption f € L?((a, 00),dr).

Corollary A.9 Let V be bounded on (a,00) for some a € RT, next let f € L*(R*,dr) N
ACY(RT) such that (f" +V f) € L>(RT,dr). Then lim, oo f(r) = lim, o f/(r) =0

Proof Using the estimates

/U“HWP /U“Hﬁﬁ<w

/\Vf]2<const /]f\2<oo

we conclude (f" +V f),Vf € L?((a,0),dr) and so f” € L?((a,0),dr) too. Lemmas A.7 and
A.8 imply the propositions.

Lemma A.10 (about a closure) 'V Let H be a symmetric operator H C HT. Let us define
a set

M(H) = { f € Dom(H")| Vg € Ker(H" 1) (H'g, f) = (9. H'}) } .
Then H = HY | M(H).
Proof Having H = H'T in mind, the proof is rather simple.
f € Dom(H') & 3h € 2| Vg € Dom(H') (H'g, f) = (g, h)
H c HY implies H'T ¢ HT, so we set h = H f:

<g>h> = <g7Hﬁf> = <g>erf>v

19The name of the lemma is only internal.
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which gives

Dom(H) = {f e Dom(HY| ¥g € Dom(H') (H'g, f) = (g, HTf>} . (A7)

Since H is a symmetric operator, the first von Neumann formula [6] can be used. Hence
an arbitrary f € Dom(HT) can be uniquely decomposed as

f=f+gs+g_, where f € Dom(H), g+ € Ker(H' +1). (A.8)

For g € Dom(H ) domain condition (A.7) is always fulfilled and it should be verified only for
g € Ker(H £1).

|
A.2 Cylindric functions
We call the solutions to the linear second order differential equation
1 2
o+ =+ (1—V2>u:() (A.9)
z z

the cylindric functions. z is a complex variable and v is a complex parameter. A pair of
linearly independent solutions consists for example of the Bessel functions of the first and the
second kind: J, and Y,,, which are holomorphic on C\R~. The next important pair consists of

the Hankel functions Hﬁl) and H£2), which are the following linear combinations of the Bessel
functions

HY = J,+iv,, H®=J,-iY,
The Hankel functions are related by the formula [12]

HV(=2) = —e "™ HP)(2). (A.10)

The solutions to the slightly modified differential equation (A.9):

" 1/ V2
u + —-u — 1—|——2 u=20
z z

are so-called modified Bessel functions I, a K,,.

A.2.1 Wronskians [12]

W), Yol)} = —
w {0 ), HP ()} = -2
WKL), 1)} = -
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A.2.2 Asymptotic expansions for large arguments |z| — oo [12]

1 1
~— — {cos <z -GV 47r> +el¥0(|2|~ 1)} for |argz| <=
2 1 1
\/ {sm (z - VT - 47r> +el¥0(|2|~ 1)} for |argz| <=
\/ —i7)  for —nm<argz < 2w
Tz
2
H(2) \/ —i(z=3vm=37)  for — o < argz < m

- 1
I,(2) ~ \/% {1 +O0(]2|™H}  for |arg 2| < o

3
K,(z) ~ ,/%e_z {1+ O(|z\_1)} for |arg z| < o

A.2.3 Asymptotic expansions for small arguments z — 0 [12]

(32)°
JV(Z) ~ m for v 7é —1, —2, —3, e

Yo(z) ~ —iHO (2) ~ iHD (2) ~ 210 2
i
Y, (2) ~ —iHW (2) ~ iHP (2) ~ —lI’(y) (;z> for Rv > 0
T
(32)”
IV(Z) ~ m for v # —1, —2, —3, e
Ko(z) ~—1Inz

K (2) ~ 10 () <1z> U e >0

Note A.11 Using the software Maple 9 we obtain next terms of the expansions

(1), 220 2i z 9
Hy ' (2) 1+ - <1n 5 U(1 )) +O0(2°1Inz2)
(1), 2=0 I 2 3
H” () — to- <7T i—2i0(1)+ 2iln 2) z+ O(z°Inz)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

where ¥(z) := % InT'(2) denotes the digamma function. (—V(1)) equals to the Euler constant

v = 0.5772.
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A.2.4 Relations between solutions [12]

1 ; 1
K,(z)= ime%”mHl(,l)(iz) for —m <argz < 37 (A.16)
1 ; 1
K,(z)= —§7Tie*%l’mH,52)(—iz) for — ST <argz < (A.17)

A.2.5 Integral representations [12]

™

Im(z) = 1 /cos(z sina — ma)da  for Rz >0, m € Z (A.18)
7r
0
_ [ thltiz)
Ko(Z|x|) —/ 27 dt for RZ >0 (A.19)
0
A.2.6 Graf formula [12]
cos - Cos et
G0 = Y Gorn) 1) (ma), o] < (A.20)

where %, denotes J,,Y, or any linear combinations of these functions, and where

w = \/u2+v2 —2uvcosa, U —VCOSQ = wWCos Y, VSina = wsin .

A.3 Confluent hypergeometric functions

A.3.1 Kummer functions

The Kummer functions M (a, b, z), W (a, b, z) are independent solutions to the equation

2w+ (b—2)w —aw=0:

2 n

(a)22 (a)nz

M(a,b,z) =1+ % e (A.21)
abo)— T M (a,b, z) _ZlfbM(lﬂ—a—b?Q—b?z)
Ula,b,2) sin(7b) (F(l +a—b)I'(b) I'(a)T'(2 —b) ) ’

where (a), :=ala+1)(a+2)...(a+n—1),(a)p := 1 are so-called Pochhammer symbols.
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Series (A.21) for M(a,b,z) is absolutely convergent for all values of a,b and z, real or

complex, excluding b = —n| n € Ny, however U(a, b, z) can be defined as a limit b — £n [13]:
Ula,1+n,z) = () i (@)= Iz+Ya+7r)—V(1+r)—¥(1+n+7)
’ ’ T(a —n) <= (1+ n),r!
N (n—1)! = (a —n)pz™™"
I'(a) —~ (1 —n),r!

U(a,1 —n,z) =2"U(a+n,1+n,z),

where n € Np.

Asymptotic expansions for |z| — oo [12]

L®) oz ,a=b[1 4+ O(|2| 7! for Rz >0
M(a,b,z) = {F}ag : ) (1 )]_1 for %Z (A.22)
0 (—2)" 1+ O(|z| )] or 'z <0
Ula,b,z) = 271+ 0(]z|™Y)] for Rz — oo (A.23)
Asymptotic expansions for |z| — 0 [12]
%zl_b + O(|2|"2) for Rb > 2,b # 2
%zl_b—FO(anD for b =2
%zl_b +0(1) for 1 < Rb < 2
Ula,b,2) = { —1a )[lnz + ¥(a)] + O(|z1n z|) forb=1 (A.24)
e N (ET) for 0 < Rb < 1
ﬁ—i—OﬂzlnzD for b=0
ey + O(l2)) for Rb < 0,b# 0
A.3.2 Whittaker functions
The Whittaker functions M, ;(2), Wy 4(2) are independent solutions to the equation
" _1 a 1/4 - b? -
W' = | w =0 (A.25)
M,p(z) =€ 2z2+bM( +b—a,1+2b,z)
z (A.26)

Wop(z) =€ 2z2+bU(2+b—a 1+2b,2)

for —m < argz < 7.
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Special cases [12]

Moy(z) = T(L+B)(40)" V()
(A.27)

4
—

5)

Wou(2) = YT () e D) aa ()

A.4 Krein formula

Theorem A.12 (Krein formula) Let H be a closed, symmetric and densely defined oper-
ator on a Hilbert space . For an arbitrary z € C\ R and a pair of selfadjoint extensions
H,, Ho, of the operator H, let us denote the isometry from Ker(HT — 2) on Ker(H' — %) de-
termining the extension H, (Hx) by Vo (2) (Voo(2)), the orthogonal projection operator onto
Ker(HT—z) by P(2) and the immersion mapping of the subspace Ker(HT —z) to 5 by P*(z).
Then the resolvents of H, and Hy in z are related as follows

Val2) = Vs 2)

(Hy — 2) ' = (Hoo — 2) 7' + P*(2) -

P(z)

Proof We prove the formula on each of the subspaces of the decomposition .7 = Ker(H'—
z) & (Ker(HT — 2))L separately.
At first let

fe (Ker(HT - Z))L = ((Ran(H - z))L>L = Ran(H — z) = Ran(H — 2).

The last equality holds, because H is a closed, symmetric operator and z € C \ R [6]. Thus
g € Dom(H) exists such that (H — z)g = f, and since H C H, o, we have

(Ha_z)g:(Hoo_Z)g:f~

Since z € C\ R C p(Huyo0o), we can invert this equality to the Krein formula for f €
1

(Ker(HT — 2))
(Ho —2)7'f = (Hoo —2)7'f
For f € Ker(HT — 2) we make use of the second von Neumann formula [6]
Hoa7oo(f + Va,oo(z)f) = Zf + Zva,oo(é)fa

which can be rearranged to

f+Vas(2)f

zZ—2z

(Ha,oo - Z)ilf =

Therefore for f € Ker(HT — Z) we have:

40



APPENDICES

Note A.13 If dim (Ker(HJr - z)) = dim (Ker(HT - Z)) = 1, the Krein formula may be
written as follows

(Ho —2)7" = (Hoo — 2) 71+ M2)(6(2), ) 0(2),
where 0 # ¢(z) € Ker(HT — 2) and \(z) € C.

A.5 Sobolev spaces

Let us introduce the standard multiindex notation. By multiindex o = (a1, ..., @) we mean
the ordered n-tuple of non-negative integers oy, as. .., a,. Symbols |a|, 2% a D* stand for:
n
la] = Z oy
i=1
¥ =ty for = (x1,...,2y)
Do ol

= (5] On *
Ox{' - Oxp™

Definition A.14 A tempered distribution f € .7'(R") lies in the m' Sobolev space H™(R™)
(m € No)!, iff Z f is measurable and

uﬂ%wmy:/u+mﬁwm@nawwg<w.

Rn

Note A.15 According to the Plancherel theorem [9](which says that the Fourier transform
can be uniquely extended to an unitary mapping from L?>(R",d"z) on L?*(R",d"¢)), H° =
L*(R™, d"z).

Note A.16 The spaces H™(R™) are complete.

Proof Let us consider an arbitrary Cauchy sequence { f;} ¢ H™(R") ¢ L*(R",dz). Accord-
ing to the unitarity of the Fourier-Plancherel operator {Z f;} C Z#(H™(R")) = L*(R"™, (1 +
|€]2)™d"¢) is Cauchy too. L2(R™, (1 + |¢[2)™d™¢) is complete [6], i.e. f € H™(R™) exists such
that

l—o00

Rn

iim [ (7~ F 0P+ IgPae =o.
Thus the sequence { f;} converges in H™(R").
|

Theorem A.17 f € H™(R"), iff D*f € L?>(R",d"z) for all multiindices o, |a| < m, where
D denotes a generalized derivative.

m € R in general
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Proof Let f € H™(R"), then by the definition ¢*(Z f) € L%(R",d"¢) for |a] < m. Since
F(DYf) = (—i&)*F f for f € ' (R"), D*f € L*(R",d"x) in accordance with the Plancherel
theorem.

Now let D*f € L*(R",d"z) for |a| < m. Inverting the previous part of the proof we show
that £*(.Z f) € L*(R",d™€), hence || f|| grm @) < 0.

u
Lemma A.18 Let f € HY(R") and g € L*(R*,d"x). If
(VI Vo) =(g.9)  forVpe H'(R"), (A.28)
then f € H*(R™).

Proof Using the unitarity of the Fourier-Plancherel operator %, condition (A.28) takes
form
(Z(V)),FZ (V) =(Fg, Fp)  forVpe H'(R")

thus
E(F1),(F) = (EPF [, Fo) = (Fg,Fp)  forVpe H'(R"),

Since .7 (HY(R")) = L?(R"™, (1 + [£]?)d"¢) is a dense subspace of L?(R",d"¢), |(2F f =
Z g, thus
1+ EP)Ff=Fg+ Ffe LP(R,d"),

and so f € H?(R").
|

Definition A.19 Let Q2 be an open subset of R™. The local Sobolev space H™(2) is the set
of tempered distributions f € D'(Q) so that of € H™(R™) for all ¢ € D(Q).

A.6 The form representation theorem

Theorem A.20 (representation theorem) Let s be a densely defined, closed and symmet-
ric sesquilinear form on € bounded from below. Then there exists a selfadjoint operator A
such that

i. Dom(A) C Dom(s), and for all f € Dom(s) and g € Dom(A)
s(f,9) = (1, Ag)
ii. Dom(A) is a core of s, i.e. s | Dom(A) = s
iii. if f € Dom(s) and h € F exist such that for all g € Dom(s):

s(f,9) = (b, 9),
then f € Dom(A) and h = Af.
The selfadjoint operator A is uniquely determined by condition (i).
Proof For the proof see [6], [8] or [14].
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A.7 The free hamiltonian Green function
The hamiltonian of a free particle with the mass m = % in the plane is
H,, = —A, Dom(Hy)= H?*R?).

The integral kernel of (Hy, — 2)~! (i.e. the Green function of Hy,) can be found using the
Fourier transformation .%. The Green function has to read a generalized equation

(—A—2)G.(x—y)=6(x—y) fora fixed y € R?
thus applying the inverse Fourier transform:
1
F A= 2)FF NGz —y)) = (k* = 2)F H(Ga(x —y)) = 7

Hence for G,(x — y) we have

G.(x—y) = ! / ! etke=v) q2f = {sub.: k= (Vvcosp,Vusiny)}

(2m)2 ) k2 —=2
R2
00 27 ' . ) 00 ™
d iv/v((cos @,sin ), x—y) _ /d / z\f\x y|sina
)2 / v/ LT ze 2(2m)? v
0 -7
0o ™ ) 00
2/dv Z/dacos(f]w—y[sma)—{AlS 4/ Volz — y|)dv
0 0 0

17t
= {sub.: o=t} = 27r/752_2(&70(t|ac —y|)dt
0

For z € C\R the last integral can be evaluated using formula (A.19), in which we substitute
Z = —i\/z (3yz >0, and so RZ > 0):

Golw—y) = {H(Valo —yl), SVE>0.

For z > 0 the last integral diverges, (Ho —2)~! & %B(¢), i.e. the resolvent does not exist.
However this integral can be regularized adding (or subtracting) a small imaginary number
ie| € > 0 to the denominator:

17 1
G.(x —y)*: i1_r)r(1] 27r/t2—z$i€J0(t|x y|)dt = {(A.19)} 27rl(()( ivz ticlw y|)
0
(D)
= {(A16), (A1T)} =+ HP (Vale —yl) = T (/2 — ),
where
HY(=2) = hm+H()(—z—i—i€) for z > 0. (A.29)
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A.8 Review of scattering theory

In this section we summarize some basic notions of the time-independent and the time-
dependent scattering theory. The most of the results are formulated for the two-dimensional
case. For more detailed treatment see [15], [16], [17] or [6].

A.8.1 Time-independent scattering theory

Consider a potential V' of a finite range, i.e. V(z) =0 for |z| > a € R*. The wave function of
an incoming particle, which is localized out of the potential range in a fixed time ¢y, denote
by 1. Long before the particle comes near the region |z| < a, it is essentially governed by
the free hamiltonian H..:

iho(t) = Hootho(t),  to(to) = %o, (A.30)
where ’ stands for the time derivative in the strong sense:
, 1
Jim HE (Yo(t +h) —4o(t)) — o) = 0.

In this region the solution to (A.30) may be decomposed as follows
1

¢O(x7t) _ /(p(k,)ei</€,96)ikQ(tto)d?k7 where 90(]{;) _ (271-)2 /ei<k’x>w0($)d2$.
R2 R2

Within the range of the potential, the generalized eigenfunctions e!***) of the hamiltonian

H,, must be replaced by the generalized eigenfunctions Fj, of the hamiltonian —A + V:
(~A+V)FF = K2 FF12, (A.31)
Then the time evolution of our particle is given by
z,t) = k)t (a)eF (=t g2
Vi (2, 1) o+ (k) Fy,

R2

b (a,1) = / o (k) (z)e #2010 @2,
RQ

where the continuous coefficients ¢4 are determined by the initial condition.
The Schrodinger equation (A.31) can be written down in the integral form (the Lippmann-
Schwinger equation)

Ff(z) = e'ha) 4 /g;f(x — YV () FE(y)d%y = ' ®2) 4 Gy(k; ), (A.32)
RQ

12The solutions F* have specified asymptotic expansions (A.34), which will be determined below.
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where Q,f is so-called retarded (advanced respectively) Green function of the Schrodinger
equation.

?
Gi(a —y) = JH (k| — y))

For a fixed y and |z| =: 7 — oo, the functions G can be expanded using (A.12):
r—oo 1 1 1
G —y) " —=e etiklle—yl __— L0 ——— |, (A.33)
2v/21 VEK]z =yl (k||z — y|)?
and since |z —y| "~ r — (n,y), where n = ¥, we have
" NIV N etilklr
FE(x) "7 ekl 4 f (k’,k)7, where (A.34)
1 L ) x
+1/ i i(k + 2 /
k)= ————¢&'i [ eP 0V (y)FE(y)dy, K = |k|= = |k|n.
f (K K) oy () Ey (y)dy k[ = ||

Setting k = lw, [ = |k| and = = r(cos ,sin (), one can see that f* are in fact functions only
of those variables: I,w, Q. fX(k',k) = f*(l,w, Q).

For a rotationally symmetric potential, we may consider k = (I, 0) without loss of general-
ity. Expansion (A.34) is of the form

eiilr

N

The function f(k', k) = fT(k', k) (so-called scattering amplitude) is of the big importance,
since the differential scattering cross-section can be computed as follows

Ff(r, Q) "% e 4 f5(1, )

do
TR
Note A.21 In the two-dimensional scattering theory we take use of the following expansion:
eireosst — Z i T (1)€Y for v > 0. (A.35)

Proof Using (A.18) we obtain

7,7" sin Q § : J zmQ

m=—oo
and hence
o
eircosQ — eir sin(Q+3) _ Z ime(T)eimQ.
m=—0oQ
|
Note A.22 Using the asymptotic expansions of the Bessel functions (A.11) we have
1 [e.e]
eircosQ r—00 (e—igeir + (= meige—ir> eimQ‘ A.36
=2 ) (4.30)
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A.8.2 Time-dependent scattering theory

Again consider a potential of a finite range. The time evolution of an incoming particle 1) is
governed by a total hamiltonian H:

P(t) = e e 0).

Before reaching the interaction region the particle acts like a free particle, thus there should
be a state g_ governed by the free hamiltonian H., satisfying

Jim[[6(5) — g (0)] = Tim_[le ™ 5(0) — e =g (0)] = 0. (A.37)

If it exists, we call it the incoming asymptotic state for ¢. Similarly, the outgoing asymptotic
state g+ may be introduced:

Jim [[(t) — g (0)] = lim [l 45(0) — "=, (0)]| = 0. (A.38)

If ¢ possesses both incoming and outgoing asymptotic states, we call it a scattering state.
Conditions (A.37) and (A.38) may be formulated using so-called wave operators Wy
= Wigs, where WL = s-lim gitH g —itHoo

t—+o0

Asymptotic states g+ of a scattering state ¢ are related by a scattering operator S:
9+(0) = W 'W_g_(0) =: Sg_(0).

A.8.3 Relationship between time-independent and time-dependent scatter-
ing theory

Lemma A.23 Let ¢ € D(R' x S'). Let us define a closed ball Bg := {z € R?| |z| < K}.
If for the functions G+ (see (A.32)) holds G+, %Gi € L} (Rt x St dldw) for all z € R?,

loc
if VrGy, \/F%Gi are continuous as functions of x on R? for k € By \ Ba, and moreover if
the functions (fi, %fi, g—;fi> (I,w, Q) are essentially bounded on (By \ B,) x (0,27), where
0o >b>a >0, then the wave function

o0

g(x) :://eﬂ<“”x><p(l,w)dwldl (A.39)
0 st
describes the incoming (outgoing) asymptotic state of the state 1~ (W™, respectively):
¢H@://@wwmmmw.
0 st
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Proof We have to prove that

lim [e” g — o7 yE| = 0.
t—=o0
The proof will be carried out for the limit in —oco. A proof for the other limit is similar.

On an arbitrary closed ball Bx we estimate the function

A(x) = (e_itH‘x’g - e_itHz/)_) (z) = /e_m2 /gp(l,w)G+(l,w;x)dwldl = {int. by parts}
0 St

—zt12 6G+ .
2zt /( Gi+o a0 >(l,w,x)dwdl

by a continuous non-negative function Cg:

oG,
_Q\t//‘ Gr+ o

where supp [ [ ¢(I,w)G4 (I, w; z)dw] (1) C (a,b).

(l,w; x)dwdl < T

Ko 27 oo 27
AP =1+ I, = // (r, Q)|?dQrdr + //|A r, Q) [2dQrdr,
0 0 Ko 0
ilT t
where Ky > 0 such that sup Gi(k;x) — f+(k/’k)e7 < %
©€R2\B(Ko) VL ()2

The existence of Ky with the properties above is a consequence of the asymptotic expansion
(A.33).

Ck, is non-negative and continuous on the compact set Bg, (and hence it is bounded on
it), thus we can estimate:

Ko 27

1 ——00
<H//CKO(T,Q )2dQdr "==5° 0.
0 0

We substitute (A.34) for ¢~ to I, latter we will show that the residue of the order

O <(l 1)3 does not contribute to Iy as t — —oc.
r)2

Let’s estimate the function

~ . . 7 . il’r
A(r,Q) = (e*”HooQ—e*“H%%O)) (r,Q) = / it / o(l,w) f*(l,w,Q)erwldl.
r
0 St
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The function p(l,w)f*(l,w,Q) can be decomposed to the Fourier series

pLw) fT(Lw, Q) = s(l,w, Q) = Y sp(l, Q)™
Evaluating the angular integral we have
_ 7 ) ilr
A(r,Q) = 27r/e2”230(l, Q)ejldl = {s(1,) := 2wlsp(l,92), 2x int. by parts}
r
0

_ b i ﬂ'tl?ﬂ'wQ 1 ﬁ 1
- \/?/e al i —am o =2t ) |4
0

Regarding that supp(s) C By \ By, 0 < a < b < oo, and in accordance with the assumed
properties of f*, we make the following estimate (we consider ¢ < 0)

. 1 [ M 11 M
Ar Q)< — [ g-_11
At )|_ﬁ/(r—2tl)2dl Jr2tr — 2ta’

where 0 < M = const. Thus for a contribution to Is we have

oo 21 o0
~ 2 7TM2 1 . 7TM2 t——o00
//|A(T,Q)\ dQrdr < 572 /(r—2ta)2dr_ “aaE 0.
K 0 0
Let us denote the residue of A by 5
= 7 . 1
A(r) = /e_ZtIQ/gp(l,w) sdwldl = ¢ ¢(1) = /@(l,w)dw € D(R"1),int. by parts
4 4 Ir)z &
1 i _'tl2 a ~ 1
= — we— l dl.
2t | ¢ al <<P( )(lr)§>
0

Since we consider 7 > Ky and supp(¢) is bounded, we may estimate
z const.
|A(r)] < 3
[t]r2
and hence for a contribution to Iy we have

oo 27

[ [ 13pdarar < T e,
Ko O K0|t|
0

All in all lim;—,_ o ||A]| = 0.
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Note A.24 The generalized eigenfunctions F* are integral kernels of the wave operators W

in the "impulse space”:
Wi = Wj:y_l.

Lemma A.25 If generalized eigenfunctions F* of a total hamiltonian H fulfil the assump-
tions of lemma A.23, and if they are related by an integral operator on S* with a kernel SU :

Fr(lw;z) = /S(l)(w,w’)F(l,w’;x)dw’,
Sl

(A.40)

then for g of the form (A.39) the scattering operator S is given by the following prescription

(Sg)(a:)z//eil(w/’x> /S(l)(w,w')go(l,w)dw duw'ldl.
0 gt 1

Proof Using lemma A.23 we have

W-g)(w) = v~ (@) = [ [ F*@wiopptw)dotal

0 st
://F_(l,w/;x) /S(l)(w,w/)ga(l,w)dw dw'Idl
0 st 1
= W+//eil<“’/’x> /S(l)(w,w')go(l,w)dw dw'ldl,
0 gt 1

which gives the general form (A.25) of S, because S = WJ:lW_.

Note A.26 In the case of a rotationally symmetric potential, the integral kernel S© is of the

form [7]
SV (w,w') = g1 (w,w') + 4/ ;—lf(l,arcw —arcw’),
T

where §g1(w,w’) stands for the identity operator kernel on S*.

49

(A.41)



APPENDICES

A.9 Two-dimensional isotropic harmonic oscillator

We set the reduced Planck constant A = 1 and the particle’s mass m = % to simplify further
computation. In those units the isotropic harmonic oscillator hamiltonian is given as follows

1
H=-A+ 1w2x2, where w > 0
) (A.42)
Dom(H) = span {:c’flx;”e_4\ ni,ng € NO} = span {n, ny| n1,n2 € No},

where the functions 1y, », are introduced below. The operator H just defined is essentially

selfadjoint.
|| —o00

The harmonic oscillator potential V(z) = jw?a? fulfils V € L} .(R?) and V(z) " — oo,

loc
so H is an operator with compact resolvent [18], in particular it has purely discrete spectrum

and a complete set of eigenfunctions: o(H) = opp(H) = {n+ 1| n € Ny}

1/)711,712 (:L‘) = ¢n1 (‘Tl)wnz (I‘g), ni,n2 € Ny
Hwnhnz = (nl + no + 1)w¢n1,n27

where 1, stands for the n*® eigenfunction of the onedimensional harmonic oscillator H, 1 =

—92 + tw?2? [19]:
w 1 w wz?
wn(i): \4/%\/WH71 < 2$> e 4, neNy
1
H(l)wn =(n+ i)w’(ﬁn

The functions H,, n € Ny are called the Hermite polynomials. The eigenfunctions 1,, and
Yy ny are of the unit norm: [|¢h,[|r2m) = 1, [|¥ny s ll2(r2) = 1. The multiplicity ky, of the nth
eigenvalue A\, = (n1 + n2 + 1)| n1 + ne = n is equal to n + 1.

Lemma A.27 If H,(z¢) =0 for some xoy € R, then Hy4+1(xo) # 0.

Proof For all n € Ny the following relation takes place [12]: H), (x) = 2(n + 1)Hy(x), so

n

if Hy,(20) = 0, then H),(x9) = 0. Now assume that Hy,1(zg) =0, then H,;1 =0, because
y = Hp41 is a solution to the second order linear differential equation y” —2zy’ +2(n+1)y = 0.
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