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Introduction

There are basically three autonomous paths to quantization. The first one is the or-

dinary approach that involves operators in Hilbert space, developed by Schrödinger,

Heisenberg, Dirac and others. The second way relies on path integrals, was initiated

by Feynman and is today widely used in quantum field theory. The last one is the

deformation quantization conceived as a phase-space theory. Basic ideas of deformation

quantization were already given by the pioneers of quantum mechanics (Wigner, Weyl,

von Neumann) but the autonomous statute was acquired in 1970s when Groenewold to-

gether with Moyal pulled the entire formulation together. Since then many others have

contributed to the topic. Remarkable were in particular Kontsevich’s results from 1990s

that made it possible to set the whole concept in the framework of Poisson manifolds.

As emphasized by Dirac, crucial point of quantization process lies in noncommu-

tativity of observables. This feature is in conventional quantum mechanical approach

established by operators in Hilbert space. A physical system is thus described using

completely new formalism introducing a severe conceptual break with classical mechan-

ics. Consequently, precise formulation of correspondence principle that was the guid-

ance principle throughout the whole history of physics still remains unclear. Rather by

changing observables representation in order to introduce noncommutativity, deforma-

tion quantization modifies the multiplication of observables. More precisely, considering

a Poisson manifold with a given Poisson algebra, deformation quantization alters point-

wise multiplication of phase space functions. This is done in a continuous way without

changing the nature of observables still being described by phase space functions. It

turns out that this process called deformation gives the correct formulation of the cor-

respondence principle.

In this work we make an attempt to emphasize the autonomous status of deforma-

tion quantization and provide an introductory description of structures and techniques

involved without referring to ordinary quantum mechanical treatment. The second aim
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is to present solutions of simple physical systems like harmonic oscillator, infinite wall

and infinite square well as these are not usually mentioned in papers dealing with the

subject. As we will explain in the last chapter, quantization of systems with such sim-

ple potentials is not straightforward in the framework of deformation quantization and

requires further study.
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Chapter 1

Motivating Deformation

Quantization

In this chapter we begin by presenting some of the basic features of classical mechanics.

This part was inspired by [6]. Then we shall try to motivate the deformation of an

algebra and sketch the deformation-contraction relationship. Finally we outline the

basic idea of deformation quantization.

1.1 Classical Mechanics

There are three principal things that every theory has to deal with: state representation,

observables and time evolution of the system. Let us consider a dynamical system with

a finite number of degrees of freedom, for example a system consisting of n particles. In

Hamiltonian formulation of classical mechanics every particle is described at any time by

its position and momentum. The state of whole system of n particles is thus represented

by a point in 2n-dimensional space M . M has a structure of a smooth manifold and a

point x in M is written as x = (q, p) = (q1, . . . , qn, p1, . . . , pn) (in canonical coordinates).

The observables of the system are smooth realvalued functions on the space M whereas
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physical quantities at some time are given by evaluating these functions at the point

in phase space x0 = (q0, p0) (one particle system). In general the states of the system

are positive functionals on the observables. This is in the case of Hamiltonian function

mathematically summarized by expression

E =

∫
H(q, p)δ(2)(q − q0, p− p0)dqdp, (1.1)

where δ(2) is the two-dimensional Dirac delta function representing the definite state

x0 = (q0, p0).

Apart from being a manifold, M possesses structures of commutative algebra and Lie

algebra. Commutative algebra is realized by ordinary pointwise function multiplication

(fg)(x) = f(x)g(x)

while Poisson bracket

{f, g}(q, p) =
n∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)∣∣∣∣
q,p

(1.2)

leads to Lie algebra structure. This means that function space C∞(M) of the manifold

M is a Poisson algebra as we can see from the following definition,

Definition 1.1.1. A Poisson algebra is a complex vector space V equipped with a

commutative associative algebra structure

(f, g) −→ fg

and Lie algebra structure

(f, g) −→ {f, g}

which satisfy the compatibility condition

{fg, h} = f{g, h}+ {f, h}g.
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Finally the time development of the system is given by Hamilton’s equations, which are

expressed in terms of Poisson brackets as

q̇i =
∂H

∂pi

= {qi, H}, ṗi = −∂H

∂qi

= {pi, H}.

For a general observable one has

ḟ = {f, H}.

In order to simplify notation we provide the derivatives with vector symbols, which

indicate the action as follows

f
←−
∂qi

g =
∂f

∂qi

g, f
−→
∂qi

g = f
∂g

∂qi

.

Using this notation Poisson bracket (1.2) can be written as

{f, g}(q, p) =
∑

i

f
(←−
∂qi

−→
∂pi
−←−∂pi

−→
∂qi

)
g.

This notation may be further abbreviated using the Poisson tensor αij and the Einstein

convention of summing over repeated indices. In canonical coordinates αij is represented

by matrix

α =


 0 −In

In 0


 ,

where In is the n× n unit matrix. Let x = (x1, . . . , x2n), then (1.2) has the form

{f, g}(x) = αij∂if(x)∂jg(x). (1.3)

As the name says, Poisson tensor is a tensor and therefore transforms whenever changing

coordinate system. In general coordinates components of α depend on the point of the

manifold and thus need not to be constant. In Hamiltonian mechanics we assume α

to be invertible and in general a manifold equipped with an invertible Poisson tensor

is called symplectic. We can further generalize this concept by leaving the invertibility

condition and focus on the Lie algebra structure only.

5



Definition 1.1.2. A Poisson manifold is a manifold M whose function space C∞(M)

is a Poisson algebra with respect to the usual pointwise multiplication of functions and

a prescribed Lie algebra structure.

It turns out that such manifolds provide a better context for treating dynamical systems

with symmetries. From now on we consider Poisson manifolds only.

1.2 Contractions and Deformations

The idea of symmetry of a physical system being expressed by a corresponding Lie group

(Lie algebra) brought a branch of study dealing with relations and connections between

Lie groups and Lie algebras. If two physical theories are related by a limiting process

(for example relativistic and non-relativistic mechanics), then similar relation between

associated invariance groups (Poincaré and Galilean groups in this case) was expected.

Such a limiting process for Lie algebras was introduced by Segal and studied further by

Inönü, Wigner and Evelyn Weimar-Woods [4]. Work on this subject lead to what we

today call generalized Inönü-Wigner contraction, and contraction of Poincaré algebra

into Galilei algebra is a classic example.

The idea of Lie algebra contraction thus naturally arises while working with sym-

metry Lie groups (Lie algebras). As there is a connection between contractions and

deformations we can get a vivid image what deformations are about by pointing out

this connection. This is done in the following text without any further detail.

A contraction is a limiting process that gives rise to a new Lie algebra that is not

isomorphic to the original one whereas throughout the whole process the output algebra

and original algebra are isomorphic. This means that we do not get a new nonisomorphic

algebra until the limit point is reached. In [1] Gerstenhaber introduced an operation

called deformation that is in this perspective inverse to contraction as we can schemat-

ically see in Figure 1.1. Using deformations that are in a sense inverse to contractions
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New algebra

Initial algebra

Contraction

Deformation

New algebra

Initial algebra

Figure 1.1: A contraction is a limiting process that gives rise to a new Lie algebra

that is not isomorphic to the original one whereas throughout the whole process the

output algebra and original algebra are isomorphic. This means that we do not get a

new nonisomorphic algebra until the limit point is reached. Deformations are in this

perspective inverse to contractions. Algebras are represented by dots. Lines represent

isomorphic algebras.

we can deform the Galilei algebra into the Poincaré algebra. Moreover, Levy-Nahas [2]

was able to show that the only Lie algebras which can give the Poincaré algebra by con-

traction are the semisimple Lie algebras of the de Sitter groups SO(4, 1) and SO(3, 2).

Deformations work with whole class of algebras which are not necessarily of finite

dimension. Generalized Inönü-Wigner contractions work with finite-dimensional Lie al-

gebras only, which might be the first hint that deformation-contraction relation is not

trivial. Weimar-Woods showed in [4] that for every generalized Inönü-Wigner contrac-

tion there exists an inverse deformation of certain type and vice versa. In this work we

will deal with deformations of infinite-dimensional associative algebras and Lie algebras

and thus we cannot use generalized Inönü-Wigner contractions to construct inverse op-

erations. There is however another approach to contract Lie algebras that even works

with infinite dimensional algebras. It is called graded contraction and was introduced

by de Montigny and Patera in [5] but in general connection between deformations and

graded contractions has not been established yet.
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1.3 Deformation Quantization

In the conventional formulation of quantum mechanics quantization means a radical

change in the nature of observables. It implies that state representation and time evolu-

tion are treated in a completely different way in comparison with classical mechanics as

well. Observables are represented by linear operators in Hilbert space whereas physical

quantities are represented by eigenvalues of these operators and state representations are

related to operator eigenfunctions. All this machinery is involved in order to introduce

two principal features. Non-commutativity of the quantum mechanical observables and

state representation in terms of probabilities which leads to situation where uncertainty

is not an effect of approximative treatment (like in statistical physics) but a fundamental

principle.

In deformation quantization, non-commutativity of observables is not realized by

changing the nature of observables themselves but by introducing new algebra multipli-

cation while the nature of observables remains the same. Uncertainty is implemented by

describing physical states as distributions on phase space that are not sharply localized,

in contrast to Dirac delta functions in classical approach (1.1).

Conventional classical pointwise multiplication of functions in a Poisson algebra of a

Poisson manifold is modified in a continuous way using deformation. Thus deformation

gives a one-parameter family of algebras where for an initial value of the parameter we

get Poisson algebra that we have started with. As a result conversion from deformed

structure back to the starting algebra is realized by straightforward limit in contrast

to conventional formulation of quantum mechanics, where precise relationship between

quantum and classical mechanics has remained obscure.
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Chapter 2

Introduction to Deformation Theory

We introduce basic concepts concerning associative and Lie algebras cohomology. Then

we follow the paper by Sternheimer and Dito [7] while our aim is to give more detailed

discussion on the subject of algebra deformation.

2.1 Associative and Lie Algebras Cohomologies

Let A be an associative algebra over a field k. By the field k we mean the field of

complex numbers C or that of the real numbers R. Let Cp(A) = Hom(Ap,A) be the

space of p-multilinear maps from A to A. The space Cp(A) is called the module of

cochains of degree p on A with values in A. We define a coboundary operator

b : Cp(A) → Cp+1(A)

by

bf(u1, . . . , up+1) = u1f(u2, . . . , up+1) +

p∑
i=1

(−1)iu(x1, . . . , uixi+1, . . . , up+1)+

+(−1)p+1f(u1, . . . , up)up+1.
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Appropriate cohomology complex (bb = 0) is given by

A
b→ C(A)

b→ C2(A)
b→ · · · b→ Cp(A).

We say that p-cochain f is a p-cocycle if bf = 0. We denote by Zp(A,A) the space of

p-cocycles and by Bp(A,A) the space of those p-cocycles which are coboundaries (of a

(p− 1)-cochain). Then

Hp(A,A) := Zp(A,A)/Bp(A,A) ≡ Kerbp/Imbp−1

is the p-th Hochschild cohomology group of A with coeficients in A. Considering dimen-

sions one, two and three, for u, v, w ∈ A we get:

bu(v) = vu− uv

bf(u, v) = uf(v)− f(uv) + f(u)v

bg(u, v, w) = ug(v, w)− g(uv, w) + g(u, vw)− g(u, v)w. (2.1)

Now let A be a Lie Algebra and ρ it’s representation on the vector space V over a

field k. Let Λp(A∗, V ) denote the space of multilinear skewsymmetric p-forms:

α : A× · · · ×A︸ ︷︷ ︸
p

→ (V, ρ) (v, . . . , w)︸ ︷︷ ︸
p

→ α(v, . . . , w) ∈ (V, ρ).

Now we introduce the coboundary operator

δ : Λp(A∗, V ) → Λp+1(A∗, V ) α → δα

as follows:

δα(u1, . . . , up+1) =

p+1∑
j=1

(−1)j+1ρ(uj)α(u1, . . . , ûj, . . . , up+1)+

+
∑
i<j

(−1)i+jα({ui, uj}, . . . , ûi, . . . , ûj, . . . , up+1) uj ∈ A
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In [3] Chevalley and Eilenberg showed that diagram

Λ0(A∗, V )
δ→ Λ1(A∗, V )

δ→ Λ2(A∗, V )
δ→ · · · δ→ Λn(A∗, V )

describes a cohomology complex (δδ = 0) with cohomology groups

Hp
C(A, V ) := Zp

C(A, V )/Bp
C(A, V ) ≡ Kerδp/Imδp−1

called Lie algebra cohomology or Chevalley cohomology of A with respect to representa-

tion (ρ, V ).

Thus by definition of cohomology, a represenation of Lie algebra must be provided

apart from Lie algebra itself. Let us consider adjoint representation ρ(x) = adx = {x, .}
of A. Then appropriate complex is:

A
δ→ L(A, A)

δ→ Λ2(A∗, A)
δ→ · · · δ→ Λn(A∗, A),

where operator δ takes the form:

δα(u1, . . . , up+1) =

p+1∑
j=1

(−1)j+1{uj, α(u1, . . . , ûj, . . . , up+1)}+

+
∑
i<j

(−1)i+jα({ui, uj}, . . . , ûi, . . . , ûj, . . . , up+1) uj ∈ A.

In the case of dimension one, two and three for u, v, w ∈ A one has:

δu(v) = {u, v}
δα(u, v) = {u, α(v)} − {v, α(u)} − α({u, v})

δβ(u, v, w) = {u, β(v, w)} − {v, β(u,w)}+ {w, β(u, v)}
− β({u, v}, w) + β({u,w}, v)− β({v, w}, u)

≡
∑

P(u,v,w)

{u, β(v, w)}+ β(u, {v, w}). (2.2)
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2.2 Deformations and Cohomology

Let A be an algebra. Only associative or Lie algebra are considered throughout this

work. We will now introduce the definition of deformation and the way how cohomologies

naturally arise in deformation theory.

Having a field k we will need to extend it to the ring k[[λ]] of formal series in some

parameter λ which gives the module Ã = A[[λ]]. On this module we can consider both

structures of associative and Lie algebras.

Definition 2.2.1. A deformation of an algebra A is a k[[λ]]-algebra Ã such that Ã/λÃ ≈
A. Two deformations Ã and Ã′ are called equivalent if they are isomorphic over k[[λ]],

and Ã is called trivial if it is isomorphic to the original algebra A considered by base

field extension as a k[[λ]]-algebra.

Definition 2.2.1 tells us that there exists a new product ? (resp. bracket [., .]) such

that the new (deformed) algebra is again associative (resp. Lie). Denoting the original

composition laws by ordinary product (resp. {., .}) this means that, for u, v ∈ A we

have:

u ? v = uv +
∞∑

r=1

λrCr(u, v) (2.3)

[u, v]? = {u, v}+
∞∑

r=1

λrBr(u, v) (2.4)

where the Cr are the Hochschild 2-cochains and the Br (skew-symmetric) Chevalley

2-cochains, such that for u, v, w ∈ A we have

(u ? v) ? w = u ? (v ? w) (2.5)

and

P[[u, v]?, w]? = 0, (2.6)

where P denotes summation over cyclic permutations. We will look in detail what

conditions (2.5) and (2.6) mean.
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We treat the associative case first. Let C0(u, v) = uv then substituting (2.3) into

(2.5) gives
∑

µ + ν = n

µ, ν ≥ 0

(Cµ(Cν(u, v), w)− Cν(Cµ(u, v), w)) = 0, (2.7)

The condition (2.7) for n = 0 is always satisfied as the algebra A is associative in this

case. For n = 1 one has:

uC1(v, w)− C1(uv, w) + C1(u, vw)− C1(u, v)w = 0,

and from (2.1) it is clear that:

uC1(v, w)− C1(uv, w) + C1(u, vw)− C1(u, v)w = 0 = bC1(u, v, w). (2.8)

Thus C1 is a Hochschild 2-cocycle:

C1 ∈ Z2(A,A).

C1 is called the infinitesimal deformation of (2.3). Conversely an element of Z2(A,A)

need not to be an infinitesimal deformation of a deformation of A. If it is such, then we

shall say that C1 is integrable i.e. a 2-cochain is integrable if it is the first element C1

of sequence {Ci}, which fulfills conditions (2.7).

By rewriting (2.7) in the form:

∑

µ + ν = n

µ, ν > 0

(Cµ(Cν(u, v), w)− Cν(Cµ(u, v), w)) = bCn(u, v, w), (2.9)

and setting n = 2 gives

C1(C1(u, v), w)− C1(C1(u, v), w)) = bC2(u, v, w). (2.10)

13



Whenever C1 ∈ Z2(A, A), then function of three variables on the left is an element of

Z3(A,A). From the preceding condition it follows that function on the lefthand side

is in addition an element of B3(A,A). The cohomology class of this element is thus

the first obstruction to the integration of C1; if C1 is integrable, then H3(A, A) has to

be the zero class. Conversely if H3(A,A) = 0 then all obstructions vanish and every

C1 ∈ Z2(A,A) is integrable.

We proceed in a complete analogy in the Lie case. Let B0(u, v) = {u, v}. Substituting

(2.4) into (2.6) gives:

∑

P(u,v,w)

∑

µ + ν = n

µ, ν ≥ 0

Bµ(Bν(u, v), w) = 0, (2.11)

We can rewrite (2.11):

∑

P(u,v,w)

∑

µ + ν = n

µ, ν ≥ 0

Bµ(Bν(u, v), w) + Bν(Bµ(u, v), w) = 0. (2.12)

The condition (2.12) for n = 0 is the Jacobi identity and therefore is always satisfied as

the algebra A is a Lie algebra in this case. Setting n = 1 gives:

∑

P(u,v,w)

B1({u, v}, w) + {B1(u, v), w} = 0,

and from (2.2) it follows that:

∑

P(u,v,w)

B1({a, b}, c) + {F1(a, b), c} = 0 = δB1(u, v, w). (2.13)

Last equation tells that B1 is a Chevalley 2-cocycle:

B1 ∈ Z2
C(A, A).
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By rewriting (2.11) in the form:

∑

P(u,v,w)

∑

µ + ν = n

µ, ν > 0

Bµ(Bν(u, v), w) = δBn(u, v, w),

setting n = 2, one has

∑

P(u,v,w)

B1(B1(u, v), w) = −δB2(u, v, w). (2.14)

And again, whenever is C1 ∈ Z2
C(A,A), then function of three variables on the left

is an element of Z3
C(A,A). From the preceding condition it follows that function on

the lefthand side is in addition an element of B3
C(A,A). The cohomology class of this

element is thus the first obstruction to the integration of B1; if B1 is integrable then

H3
C(A,A) has to be the zero class. Conversely if H3

C(A,A) = 0, then all obstructions

vanish and every B1 ∈ Z2
C(A,A) is integrable.

Furthermore, assuming one has shown that (2.9) or (2.14) are satisfied to some order

n = t, then it folows from preceding calculations that the left-hand sides for n = t + 1

are then 3-cocycles, depending only on the cochains Cµ (resp. Bµ) of order µ ≤ t. If

we want to extend the deformation up to order n = t + 1 (i.e. to find the required

2-cochains Ct+1 or Bt+1), this cocycle has to be a coboundary (the coboundary of the

required cochain): The obstructions to extend a deformation from one step to the next

lie in the 3-cohomology. In particular if one can manage to pass always through the null

class in the 3-cohomology, a cocycle can be the infinitesimal deformation of a full-fledged

deformation.

Equivalence in the definition 2.2.1 means that there is an isomorphism

Tτ = I +
∞∑

µ=1

τµTµ, Tµ ∈ L(A,A)

so that in the associative case

Tτ (u ?′ v) = (Tτu ? Tτv),

15



denoting by ? (resp. ?′) the deformed laws in Ã (resp. Ã′). Similarly in the Lie case:

Tτ [u, v]′? = [Tτu, Tτv]?,

where [., .]? (resp. [., .]′?) are the deformed laws in Ã (resp. Ã′). In this sense a deforma-

tion of an associative algebra (resp. Lie algebra) is trivial if the deformed multiplication

has the form

Tτ (u ? v) = Tτ (u)Tτ (v) (resp. Tτ [u, v]? = {Tτ (u), Tτ (v)}) (2.15)

Consider a trivial deformation of an associative algebra to the first order ie. Tτ = I+τT1.

Substituting into (2.15) gives:

u ? v = uv + τ(uT1(v)− T1(uv) + T1(u)v + · · · )
= uv + τbT1(u, v).

It follows that in the case of trivial deformation C1 ∈ B2(A, A). Conversely an element

of B2(A,A) is integrable and hence defines a deformation.

Let Ã and Ã′ be equivalent deformations and again Tτ = I + τT1. To the first order

in τ one has:

u ?′ v − u ? v = τ(u ? T1(v)− T1(u ? v) + T1(u) ? v).

This equation gives conditions for components Ci resp. C ′
i corresponding to deformations

Ã resp. Ã′. First components thus satisfy:

C ′
1(u, v)− C1(u, v) = uT1(v)− T1(uv) + T1(u)v = bT1(u, v).

The difference between components C1, C ′
1 of two equivalent deformations is hence given

by a coboundary from B2(A, A).

The Lie case is analogous to the associative one. Considering Tτ = I + τT1 and

substituting into (2.15) gives:

[u, v]? = {u, v}+ τ({u, T1(v)} − T1({u, v})− {T1(u), v}+ · · · )
= {u, v}+ τδT1(u, v),

16



ie. B1 ∈ B2
C(A,A).

Let Ã and Ã′ be equivalent deformations and again Tτ = I + τT1. To the first order

in τ one has:

[u, v]′? − [u, v]? = τ([u, T1(v)]? − T1([u, v]?)− [T1(u), v]?).

This equation gives conditions for components Bi resp. B′
i corresponding to deforma-

tions Ã resp. Ã′. First components thus satisfy:

B′
1(u, v)−B1(u, v) = {u, T1(v)} − T1({u, v})− {T1(u), v} = δT1(u, v).

The difference between components B1, B′
1 of two equivalent deformations is hence given

by a coboundary from B2
C(A,A).

More generally, we can show that if two deformations are equivalent up to some

order t, the condition to extend the equivalence one step further is that a 2-cocycle

(defined using the Tk k ≤ t) is the coboundary of the required Tt+1 and therefore the

obstructions to equivalence lie in the 2-cohomology. In particular, if that space is null,

all deformations are trivial.

We have seen that a deformation by definition preserves associativity of an algebra

as well as Lie algebra will again be a Lie algebra. Some other basic algebraic proper-

ties remain unchanged under deformation, for example a unital algebra will continue

to be unital. However, a deformation of a commutative algebra need not to remain

commutative.
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Chapter 3

Deformation Quantization Overview

Three papers [7], [12] and [6] are followed in this chapter with some notes taken from

[17]. We establish the star-product on a Poisson manifold as a special case of algebra

deformation. Then basic ideas of deformation quantization are sketched. The last

two sections deal with relationship between deformation quantization and conventional

quantum mechanics. Part concerning Heisenberg uncertainty relations analogue follows

the discussion in [13].

3.1 Star Product

The construction of deformations in a step-by-step manner by solving (2.9) requires

knowledge of Hochschild cohomology of A and it is evident that this is not a simple task

to deal with. In one particular case, however, all integration obstructions vanish.

Definition 3.1.1. A derivation D of A is a linear mapping of A into itself such that

D(ab) = (Da)b + a(Db).

It follows that elements of Z1(A,A) are derivations. Let D′, D′′ ∈ Z1(A, A) and

let Cn(u, v) = 1
n!

D′nuD′′nv. Assuming in addition that D′ and D′′ are commuting
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derivations then one has

bCn(u, v, w) =
1

n!
[uD′nvD′′nw −D′n(uv)D′′nw + D′nuD′′nvw − (D′nuD′′nv)w] =

=
1

n!
[uD′nvD′′nw − (D′nu)vD′′nw − uD′nvD′′nw+

+D′nu(D′′nv)w + (D′nu)vD′′nw −D′nu(D′′nv)w] = 0,

ie. Cn ∈ Z2(A,A). Similarly it is easy to show that

∑

µ + ν = n

µ, ν > 0

[
1

µ!
D′µ

(
1

ν!
D′νuD′′νv

)
D′′µw − 1

ν!
D′ν

(
1

µ!
D′µuD′′µv

)
D′′νw

]
=

=
∑

µ + ν = n

µ, ν > 0

1

µ!

1

ν!

[
D′µD′νuD′′νvD′′µw + D′νuD′µD′′νvD′′µw −

−D′µD′νuD′′µvD′′νw −D′νuD′µD′′µvD′′νw
]

= 0.

This means that our choice of Cn satisfies (2.9) and deformed multiplication

u ? v = uv + λD′uD′′v +
λ2

2!
D′2uD′′2v +

λ3

3!
D′3uD′′3v + · · ·

yields a deformation as it preserves associativity. Preceding form of multiplication can

be written as:

u ? v = ueλ
←−
D′
−→
D′′v. (3.1)

More generally, if D′
1, . . . , D

′
r, D′′

1 , . . . , D
′′
r are all mutually commuting derivations then

u ? v = ueλ
Pr

i=1

←−
D′i
−→
D′′i v

is again an associative multiplication.

Assuming composition of two derivations D′D′′ it can be shown in a similar way that

T = Tτ = eτλD′D′′
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is an equivalence between deformations. Resulting deformation is then given by

T−1
τ (Tτ (u) ? Tτ (v)) = u ?τ v = ueλ

←−
D′
−→
D′′−τλ(

←−
D′
−→
D′′−←−D′′

−→
D′)v (3.2)

Now that we have constructed a deformation which is exactly the relevant one as we

shall see shortly we may return to a Poisson manifold M . In a Poisson algebra of

such a Poisson manifold there are two structures as we already know. Associative

(commutative) pointwise multiplication of functions and Poisson structure which is a

Lie algebra of functions. We want to define a special type of deformation that would

anchor the new product to the given structure of the Poisson manifold. In other words

having a new product ? which is a deformation of associative algebra of functions we

require the commutator

[f, g]? = f ? g − g ? f f, g ∈ C∞(M) (3.3)

to be a deformation of initial Poisson structure. Appropriate definition is as follows

Definition 3.1.2. Let M be a Poisson manifold with a Poisson structure {., .}. A star-

product on M is a deformation of the associative algebra of functions C∞(M) of the

form

? =
∞∑

n=0

λnCn,

where the Cn are bidifferential operators such that for u, v ∈ C∞(M)

(i) C0(u, v) = uv

(ii) C1(u, v)− C1(v, u) = {u, v}

Here we take the parameter λ of the deformation to be λ = i}. Property (i) means

that

lim
}→0

f ? g = fg
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whereas considering (3.3), property (ii) gives

lim
}→0

1

i}
[f, g]? = {f, g}.

This is the correct form of correspondence principle. In classical limit deformed Poisson

structure reduces to the Poisson bracket.

An extensive effort has been put on the question of existence of star product for

a priori we do not know if a star product exists for a given Poisson manifold. First

the existence of star product for symplectic manifolds whose third cohomology group is

trivial was proved. Then for larger and larger class of symplectic manifolds existence

was showed until Fedosov [8] proved existence of star-product for every symplectic man-

ifold i.e. for every regular Poisson manifold. Further generalization was needed as we

work with Poisson manifolds in general. Finally solution came from Kontsevich [9] who

proved that classes of star-products correspond to classes of deformations of the Poisson

manifold. This means that every Poisson manifold admits a deformation quantization.

From now on let M = R2n. Then ordinary differentiation in the algebra of infinitely

differentiable functions on R is a derivation. Setting D′ = ∂q, D′′ = ∂p and λ = i} then

(3.1) becomes

f ?S g = fei}←−∂ q
−→
∂ pg (3.4)

and is called the standard star-product. It follows that q ? p = qp + i} and p ? q = pq, so

[p, q]? = q ? p− p ? q = i}. (3.5)

For τ = 1 we get from (3.2) antistandard star-product

f ?N g = fei}←−∂ p
−→
∂ qg (3.6)

and finally setting τ = 1
2

we get the Groenewold-Moyal star-product

f ?M g = fe
i}
2

(
←−
∂ q
−→
∂ p−←−∂ p

−→
∂ q)g. (3.7)
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Indeed all the forms (3.4), (3.6) and (3.7) are equivalent in the sense of cohomology. In

order to stress the fact that such an equivalence does not imply any kind of physical

equivalence, from now on we shall call this equivalence the c-equivalence.

Tλ(p) = p as well as Tλ(q) = q imply that commutation relations (3.5) will not

change while passing between two c-equivalent star-products. In fact commutator of

two phase space variables is fixed by the property (ii) in the star-product definition.

3.2 Deformation Quantization on R2n

Noncomutativity is now well settled up by star-product as we can see from (3.5). So it

seems that it remains to incorporate the non-locality feature of quantum mechanics. If

we rewrite the Groenewold-Moyal product

f ?M g = fe
i}
2

(
←−
∂ q
−→
∂ p−←−∂ p

−→
∂ q)g

=
∞∑

m,n=0

(
i}
2

)m+n
(−1)m

m!n!
(∂m

p ∂n
q f)(∂n

p ∂m
q g) (3.8)

then we observe that star product of the functions f and g at the point x involves higher

derivatives at this point. But for a smooth function, knowledge of all higher derivatives

at a given point is equivalent to knowledge of the function on entire space. Non-locality

is thus already established by star-product. This might be argued even better using

integral representation of star product which is used widely since Baker’s work [10].

It can be derived by utilizing Fourier convolution theorem and by writing the Fourier
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transforms of the functions f and g explicitly that

(f ?M g)(q, p) =
1

4π2

∫
dτdσdξdηdq1dp1dq2dp2e

iσqeiτp

× e
i}
2

(η(σ−ξ)−ξ(τ−η))e−iξq1−iηp1f(q1, p1)e
−i(σ−ξ)q2−i(τ−η)p2g(q2, p2)

=
1

4π2

∫
dτdσdξdηdq1dp1dq2dp2f(q1, p1)g(q2, p2)

×
(

iσ(q +
}
2
η − q2) + iτ(p− }

2
ξ − p2)− iξq1 − iηp1 + iξq2 + iηp2

)

=
1

4π2

∫
dξdηdq1dp1dq2dp2f(q1, p1)g(q2, p2)

× δ(−q − }
2
η + q2)δ(p− }

2
ξ − p2)exp[−iξq1 − iηp1 + iξq2 + iηp2].

Considering δ(−q − }
2
η + q2) =

(
2
}
)
δ(η + 2

}q − 2
}q2) and similarly for the second delta

function we can now perform the ξ and η integrations which finally lead to

(f ?M g)(q, p) =
1

}2π2

∫
dq1dp1dq2dp2f(q1, p1)g(q2, p2)

× exp

(
2

i}
(p(q1 − q2) + q(p2 − p1) + (q2p1 − q1p2))

)
. (3.9)

From this equation it is clear that knowledge of the functions f and g on the whole space

is necessary to determine the value of the star product at the point (q, p). We shall now

sketch an idea introduced in [11] that allows to establish spectrality and non-local state

representation in deformation quantization.

Consider a Hamiltonian function H then the key is the star exponential

Exp(Ht) ≡
∞∑

n=0

1

n!

(
t

i}

)
(H)?n, (3.10)

where (H)?n = H ? H ? · · · ? H︸ ︷︷ ︸
n×

. We have always considered star-products as formal

series and looked for convergence only in specific examples, generally in the sense of

distributions. The same applies to star exponentials, as long as each coefficient in the

formal series is well defined. Star exponential is the solution of

i}
d

dt
Exp(Ht) = H ? Exp(Ht), (3.11)
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which is the equation that corresponds to Schrödinger equation. This expresses that the

star exponential of Hamiltonian function is the generator of the time-evolution of the

system. We can now write the Fourier-Stieltjes transform dµ (in the distribution sense)

as

Exp(Ht) =

∫
e−

iEt
} dµ(E),

which defines the spectrum of (H
} ) as the support of the measure µ. More precisely,

suppose for simplicity that the Hamiltonian is such that the series in (3.10) defines

a periodic distribution in t, then the measure µ is atomic and the Fourier-Stieltjes

transform reduces to the expression called Fourier-Dirichlet expansion

Exp(Ht) =
∑
E

πEe−
iEt
} . (3.12)

Functions πE are distributions on the phase space that are normalized

1

2π}

∫
πE(q, p)dqdp = 1 (3.13)

and idempotent in the sense that

(πE ? πE′)(q, p) = δE,E′πE(q, p). (3.14)

Distributions πE called projectors thus represent the orthonormal eigenstates and E are

the eigenvalues of H

(H ? πE)(q, p) = EπE(q, p). (3.15)

This equation corresponds to the time-independent Schrödinger equation and is some-

times called ?-genvalue equation. As discussed in [11] we should consider

π∗E = πE

in order to get solutions of physical interest from the equation (3.15).

The spectral decomposition of the Hamiltonian function is given by

H(q, p) =
∑
E

EπE(q, p), (3.16)
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where the summation sign may indicate an integration if the spectrum is continuous.

Let H be a general observable. Then it follows from (3.10) that in general for

different star-products different eigenstates and eigenvalues will be obtained although

all the star-products are c-equivalent in the case M = R2n. Ambiguity in choosing

a specific c-equivalent product corresponds to similar problem with operator ordering

in ordinary quantum mechanical approach. The c-equivalent star products determine

different quantization schemes that lead to slightly different spectra for the observables.

For M = R2n the Groenewold-Moyal product is preferred due to symmetry and coholo-

mogical uniqueness. In general, however, it turns out that choice of specific quantization

scheme can only be motivated by further physical requirements. A recent attempt to

generalize these requirements and to introduce a selection principle was developed by

Gerstenhaber in [12].

Quantum mechanical version of (1.1) is obtained by integrating (3.15)

E =
1

2π}

∫
(H ? πE)(q, p)dqdp =

1

2π}

∫
H(q, p)πE(q, p)dqdp.

3.3 Connection with Conventional Quantum Mechan-

ics Formulation

In conventional quantization the process of assigning appropriate quantum mechani-

cal observables to the classical ones is in general a difficult task as it cannot be done

in a systematic way. The only guiding principle is the corresponding principle: we

want the quantum mechanical relations to reduce somehow to the classical relations in

an appropriate limit. However, several attempts to find a unique assignment between

quantum and classical quantities were made. This effort could not be successful due

to operator-ordering ambiguity in conventional approach to quantum mechanics. This

problem comes from the fact that we a priori don’t know what to assign to for example

qp2. Should we consider Q̂2P or Q̂P̂ Q̂? So if there would exist an assignment process
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then it cannot be unique because different orderings of operators Q̂ and P̂ all reduce to

the original phase space function.

But a general scheme for associating phase space functions and Hilbert space op-

erators called Weyl map and denoted here by ϑ is of a great importance as it shows

equivalence between conventional quantization and deformation quantization. Let us

consider the so-called Weyl ordering

ϑ(q2p) =
1

3

(
Q̂2P̂ + Q̂P̂ Q̂ + P̂ Q̂2

)
.

It can be shown that this generalizes to

ϑ(eaq+bp) = eaQ̂+bP̂ .

By using this expression in usual Fourier formula we get

ϑ(f) =

∫
f̃(ξ, η)e−i(ξQ̂+ηP̂)dξdη, (3.17)

where f̃ is the Fourier transform of f and the integral is taken in the weak operator

topology.

The inverse W of the Weyl map ϑ is known as the Weyl transform. It is a process of

finding the phase space function that corresponds to a given operator f̂ , for the special

case of Weyl ordering given by

W(f̂) = f(q, p) = }
∫ 〈

q +
}
2
ξ

∣∣∣∣ f̂

∣∣∣∣q −
}
2
ξ

〉
e−iξpdξ. (3.18)

Whenever considering conventional quantization we will restrict ourselves to the case of

pure states only. Then the density matrix ρ̂ has the form

ρ̂ = |ψ〉 〈ψ| .

Substituting this expression into the Weyl transform (3.18) gives

W(ρ̂) = }
∫

ψ∗
(

q − }
2
ξ

)
e−ipξψ

(
q +

}
2
ξ

)
dξ.
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After normalization we get the so called Wigner function

ρ =
W(ρ̂)

2π}
. (3.19)

Assuming we are working with Groenewold-Moyal product, from now on we will denote

a Wigner function calculated from a known Schrödinger wave function by ρ(W ) with W

for Weyl ordering.

We will now show that

ϑ(f)ϑ(g) = ϑ(f ?M g). (3.20)

Using equation (3.17) one has

ϑ(f)ϑ(g) =

∫
dξ1dη1dξ2dη2f̃(ξ1, η1)g̃(ξ2, η2)

× exp
[
−i

(
ξ1Q̂ + η1P̂

)]
exp

[
−i

(
ξ2Q̂ + η2P̂

)]

=

∫
dξ1dη1dξ2dη2f̃(ξ1, η1)g̃(ξ2, η2)

×
[
−i

(
(ξ1 + ξ2)Q̂ + (η1 + η2)P̂

)]
exp

[−i}
2

(ξ1η2 − ν1ξ2)

]
, (3.21)

where the truncated Campbell-Baker-Hausdorff formula

eÂeB̂ = e(Â+B̂)e
1
2 [Â,B̂]

was used. We expand the last exponential in (3.21), make the substitution of variables

ξ = ξ1 + ξ2, η = η1 + η2, and obtain

ϑ(f)ϑ(g) =

∫
dξdηe−i(ξQ̂+ηP̂)

∫
dξ1dη1

∞∑
m,n=0

[
(−1)m

m!n!

(
i}
2

)m+n

× ξm
1 ηn

1 f̃(ξ1, η1)(ξ − ξ1)
n(η − η1)

mg̃(ξ − ξ1, η − η1)

]

The integral with respect to ξ1 and η1 is by Fourier convolution theorem just the Fourier

transform of the expression for the Groenwold-Moyal product in equation (3.8). Hence

ϑ(f)ϑ(g) =

∫
dξdη ˜(f ?M g)e−i(ξQ̂+ηP̂) = ϑ(f ?M g).
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We can now see more precisely from preceding derivations that there is a connection

between freedom in choosing operator ordering and the problem of picking out a star-

product from a class of c-equivalent star-products. Although we have shown the equation

(3.20) for the Groenewold-Moyal product and Weyl ordering it holds for any other

possible ordering and was proved by Groenewold. Therefore we can write

θ(f)θ(g) = θ(f ? g),

where θ is a linear assignment between operator algebras and star-product algebras of

the same kind as Weyl map. This crucial formula tells as that the quantum mechan-

ical algebra of observables is a representation of the star product algebra. Because in

the algebraic approach to quantum theory all the information concerning the quantum

system may be extracted from the algebra of observables, specifying the star-product

completely determines the quantum system.

3.4 Wigner Functions and Uncertainty Principle

Considering Groenewold-Moyal product then every distribution from section (3.2) has

to be a Wigner function. Phase-space distributions are, however, normalized in the

sense that (3.13) while for Wigner functions it obviously follows
∫

ρ(q, p)dqdp = 1.

When working with distributions normalized according to equation (3.2) then idem-

potency is expressed in the elegant form by equation (3.14). For Wigner functions

representing pure states we similarly get

(ρa ?M ρb)(q, p) =
1

2π}
δa,bρa(q, p). (3.22)

Definition (3.19) leads to the following equations for probability densities

〈q〉 = |ψ(q)|2 =

∫
ρ(q, p)dp 〈p〉 = |ψ(p)|2 =

∫
ρ(q, p)dq.
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Using (3.9) it follows that

∫
(f ?M g)(q, p)dqdp =

∫
(g ?M f)(q, p)dqdp =

∫
f(q, p)g(q, p)dqdp. (3.23)

Then operator’s expectation value is given by

〈
F̂

〉
=

∫
(ρ ?M f)(q, p)dqdp =

∫
ρ(q, p)f(q, p)dqdp,

where f = W(F̂ ).

It is straightforward to show that for Wigner functions which go negative for an

arbitrary function g, 〈| g |2〉 need not to be non-negative. This is in fundamental contra-

diction with classical probability distribution theory. It turns out, however, that 〈| g |2〉
should be replaced by 〈g∗ ?M g〉. Using (3.22) and (3.23) we can write

〈g∗ ?M g〉 =

∫
dqdp(g? ?M g)(q, p)ρ(q, p)

=
1

2π}

∫
dqdp(g? ?M g)(q, p)(ρ ?M ρ)(q, p)

=
1

2π}

∫
dqdp [(ρ ?M g∗) ?M (g ?M ρ)] (q, p)

=
1

2π}

∫
dqdp |g ?M ρ|2 (q, p)

This means that

〈g∗ ?M g〉 ≥ 0. (3.24)

Now let us consider

g = a + bq + cp,

where a, b, c are arbitrary complex coefficients. Substituting into (3.24) gives semi-

definite positive quadratic form

0 ≤ a∗a + b∗b 〈q ?M q〉+ c∗c 〈p ?M p〉+ (a∗b + b∗a) 〈q〉
+ (a∗c + c∗a) 〈p〉+ c∗b 〈p ?M q〉+ b∗c 〈q ?M p〉 .
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The eigenvalues of the corresponding matrix are then non-negative and thus the same

holds for its determinant. Groenewold-Moyal product gives

q ?M q = q2 p ?M p = p2

p ?M q = pq − i}
2

q ?M p = pq +
i}
2

.

Considering

(∆q)2 ≡ 〈
(q − 〈q〉)2

〉
, (∆p)2 ≡ 〈

(p− 〈p〉)2
〉
,

then positivity condition on the 3× 3 matrix determinant leads to

(∆q)2(∆p)2 ≥ }2
4

+
( 〈(q − 〈q〉)(p− 〈p〉)〉 )2

and hence

∆q∆p ≥ }
2
.
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Chapter 4

Basic Deformation Quantization

Applications

Typically, deformation quantization is demonstrated by solving harmonic oscillator.

Here we present calculation techniques as they appear in [6] considering the time-

dependent case. Quantization of a free-particle moving in one dimension is omitted

in most papers. This might be caused by the fact that we have to deal with continuous

energy spectrum, which requires treatment in terms of distributions. Results from [15]

are provided here for time-independent case only.

4.1 Harmonic Oscillator

The simple one-dimensional harmonic oscillator is characterized by the classical Hamil-

tonian function

H(q, p) =
p2

2m
+

mω2

2
q2.

In terms of holomorphic variables

a =

√
mω

2

(
q + i

p

mω

)
, ā =

√
mω

2

(
q − i

p

mω

)
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the Hamiltonian function becomes

H = ωaā.

Our aim is to calculate the time-evolution function. We first choose a quantization

scheme characterized by the standard star-product

f ?N g = fe}
←−
∂a
−→
∂āg.

We then have

ā ?N a = aā, a ?N ā = aā + }

so that

[a, ā]?N
= },

which is equivalent to [q, p]?N
= i}. Equation (3.11) for this case is

i}
d

dt
ExpN(Ht) = (H + }ωā∂ā)ExpN(Ht). (4.1)

This is a simple first order partial differential equation. Let s = aā then (4.1) becomes

i}
d

dt
F (s, t) = (ωs + }ωs∂s)F (s, t)

with the solution (that must have the value 1 at t = 0)

F (s, t) = e
−s
} exp

(
e−iωt s

}

)
,

so we have

ExpN(Ht) = e
−aā
} exp

(
e−iωt aā

}

)
. (4.2)

By expanding the last exponential in equation (4.2), we obtain the Fourier-Dirichlet

expansion

ExpN(Ht) = e
−aā
}

∞∑
n=0

1

}nn!
ānane−inωt. (4.3)
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If we compare coefficients in equations (3.12) and (4.3), we find

π
(N)
0 = e−

aā
}

π(N)
n =

1

}nn!
πN

0 ānan =
1

}nn!
ān ?N π

(N)
0 ?N an

En = n}ω. (4.4)

Note that the spectrum obtained in equation (4.4) does not include the zero point energy.

The projector onto the ground state π
(N)
0 satisfies

a ?N π
(N)
0 = 0.

The spectral decomposition of the Hamiltonian function is according to equation (3.16)

H =
∞∑

n=0

n}ω
(

1

}nn!
e−

aā
} ānan

)
= ωaā.

The factor } in the spectrum comes from the deformation parameter in the star-product

and Hamiltonian of course remains a classic quantity.

We now consider the Groenewold-Moyal quantization scheme. Expression (3.7)

rewritten in terms of holomorphic coordinates has the form

f ?M g = fe
}
2
(
←−
∂a
−→
∂ā−←−∂ā

−→
∂a)g.

Here we have

ā ?M a = aā +
}
2
, a ?M ā = aā− }

2

and again

[a, ā]?M
= }.

This is an expected result according to the note at the end of section 3.1. The standard

star-product is c-equivalent to the Groenewold-Moyal star product with the transition

operator

T = e
}
2

−→
∂a
−→
∂ā .
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We can use this operator to transform the standard product version of the ?-genvalue

equation (3.15) into the corresponding Groenewold-Moyal product according to (3.2).

The result is

H ?M π(M)
n = ω

(
ā ?M a +

}
2

)
?M π(M)

n = }ω
(

n +
1

2

)
π(M)

n ,

with

π
(M)
0 = Tπ

(N)
0 = 2e−

2aā
} (4.5)

π(M)
n = Tπ(N)

n =
1

}nn!
ān ?M π

(M)
0 ?M an. (4.6)

The projector onto the ground state π
(M)
0 satisifies

a ?M π
(M)
0 = 0.

The spectrum is now

En =

(
n +

1

2

)
}ω, (4.7)

which is the text book result. We conclude that for this problem the Groenewold-Moyal

quantization scheme is the correct one.

We can now follow two different paths in order to get explicit formula for πM
n . First

possibility is direct computation of (4.6) whereas the same result should be achieved

by solving equation (3.11) considering Groenewold-Moyal product. Let us calculate

π
(M)
n = Tπ

(N)
n .

Tπ(N)
n = exp

(
−}

2
∂a∂ā

)
1

}nn!
ānane−

aā
}

=
1

}nn!
ānan exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā +

←−
∂ ā

−→
∂ a +

−→
∂ a

−→
∂ ā

))
e−

aā
}

When using the Campbell-Baker-Hausdorff formula one has to include appropriate ex-

ponential with commutator. In this case, however, commutator vanishes. Hence, we
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can factor out the last term in the exponent and apply equation (4.5) to get

2

}nn!
ānan exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā +

←−
∂ ā

−→
∂ a

))
e−2aā

}

=
2

}nn!
ānan exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā+

))
exp

(
−}

2

(←−
∂ ā

−→
∂ a

))
e−2aā

}

=
2

}nn!
ānan exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā+

))
exp

(←−
∂ āā

)
e−2aā

}

Commutator
[
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā

)
,
←−
∂ āā

]
vanishes so we can exchange the order of

the two exponentials in the last equation and then carry out the operations indicated

by the first exponential

2

}nn!
ānan

(←−
∂ āā

)
exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā

))
e−2aā

}

=
2

}nn!
(ā + ā)nan exp

(
−}

2

(←−
∂ a

←−
∂ ā +

←−
∂ a

−→
∂ ā

))
e−2aā

}

=
2

}nn!
2nānan exp

(
−}

2

(←−
∂ a

←−
∂ ā

))
exp

(←−
∂ aa

)
e−2aā

} .

Here we have used the Taylor formula in the form

f(x + a) = ea∂xf(x). (4.8)

The first exponential can now be expanded

2

}nn!
22

( ∞∑

k=0

1

k!

(
−}

2

) (
∂k

aan
) (

∂k
ā ān

)
)

exp
(←−

∂ aa
)

e−2aā
}

= 2

(
n∑

k=0

(−1)k

k!

(
2

}

)n−k
n!

(n− k)!(n− k)!
an−kān−k

)
exp

(←−
∂ aa

)
e−2aā

}

= (−1)n2Ln

(
2aā

}

)
exp

(←−
∂ aa

)
e−2aā

}

= (−1)n2Ln

(
4aā

}

)
e−2aā

} (4.9)

where we have used the definition of the Laguerre polynomials

Ln(x) =
n∑

m=0

(−1)m n!

(n−m)!m!m!
xm.
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Figure 4.1: WF for the harmonic oscillator, 2nd excited state.

q

p

Ρ2

q

Expression (4.9) is usually written in the form

π(M)
n = 2(−1)ne−

2H
}ω Ln

(
4H

}ω

)
. (4.10)

Corresponding Wigner function charts for 2st resp. 3rd excited state are given in figures

4.1 resp. 4.2.

As mentioned already π
(M)
n can be again obtained by solving (3.11). Applying the

Groenewold-Moyal product gives

i}
d

dt
ExpN(Ht) =

(
H +

}
2
ω(ā∂ā − a∂a)− }

2

4
ω∂2

āa

)
ExpN(Ht).

Following the case of standard product we will again use substitution s = āa

i}
d

dt
F (s, t) = ω

(
s− }

2

4
∂s − }

2

4
s∂2

s

)
F (s, t).

The solution is

F (s, t) =
1

cos ωt
2

exp

[(
2s

i}

)
tan

ωt

2

]
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ie.

ExpN(Ht) =
1

cos ωt
2

exp

[(
2H

i}ω

)
tan

ωt

2

]
.

We can rewrite this solution in the following way

2e−
iωt
2

1 + e−iωt
exp

[(
4H

i}ω

)
e−iωt2 − 1

2 (1 + e−iωt2)

]

= 2e−
iωt
2 e−

2H
}ω

1

1 + e−iωt
exp

[(
4H

}ω

)
e−iωt

1 + e−iωt

]
.

The last expression can be brought in the form of the Fourier-Dirichlet expansion by

using the generating function for the Laguerre polynomials

1

1 + z
exp

[
xz

1 + z

]
=

∞∑
n=0

zn(−1)nLn(x).

Figure 4.2: WF for the harmonic oscillator, 3rd excited state.

q

p
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q
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By substituting s = e−iωt and x = 4H
}ω we get

ExpN(Ht) =
∞∑

n=0

2(−1)ne−
2H
}ω Ln

(
4H

}ω

)
e−

iω}(n+1
2)

} .

Comparing with (3.12) we can see that projectors have exactly the form (4.10) and the

spectrum is the same as in the equation (4.7).

4.2 Free Particle

We shall take units such that } = 2m = 1. Let us present solution of ?-genvalue equation

(3.15) for the Hamiltonian function

H = p2.

Carrying out the Groenewold-Moyal product gives
(

p− i

2
∂q

)2

ρ(q, p) = Eρ(q, p). (4.11)

Here we have used the shift formula

(f ?M g)(q, p) = f

(
q +

i}
2

−→
∂ p, p− i}

2

−→
∂ q

)
g(q, p).

This expression is used very often in deformation quantization and can be obtained from

the definition (3.8), by repeated applications of the Taylor formula in the form given in

expression (4.8). It follows that the imaginary part of this equation is

p∂qρ(q, p) = 0, (4.12)

while (
p2 − 1

4
∂2

q

)
ρ(q, p) = Eρ(q, p) (4.13)

is the real part.

It can be seen from equation (4.12) that we can conclude when p 6= 0 and ∂qρ(q, p) =

0. The case p = 0 requires further treatment. Substituting the ansatz

ρ(q, p) = f(p) + δ(p)g(q)
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into equation (4.13) leads to

(
p2 − E

)
f(p)− δ(p)

(
E +

1

4
∂2

q

)
g(q) = 0. (4.14)

Imposing ρ = ρ∗ and considering p = 0, then one has

g(q) = be2i
√

Eq + b∗e−2i
√

Eq. (4.15)

Equation (4.14) then reduces to

(p2 − E)f(p) = 0

with solution

f(p) = a+δ(p−
√

(E)) + a−δ(p +
√

E), (4.16)

where a± ar arbitrary real constants.

The terms of (4.16) correspond to plane waves of momentum
√

E, as this can be

verified by solving

p ?M ρ =
√

Eρ.

The expression

ρ = a+δ(p−
√

E) + a−δ(p +
√

E)

is the Wigner function of a mixed state of two momentum eigenstates. The terms from

the right side of (4.15) are necessary for coherent superpositions of two momentum

eigenstates, and they represent interference between them.

The general result is

ρ(q, p) = δ(p)
(
be2i

√
Eq + b∗e−2i

√
Eq

)
+ a+δ(p−

√
E) + a−δ(p +

√
E)

In order to get a pure-state Wigner function we shall request

(ρ ?M ρ)(q, p) ∝ δ(0)ρ(q, p). (4.17)
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This is the requirement valid for Wigner functions corresponding to non-normalizable

pure states. Groenewold-Moyal product gives

(ρ ?M ρ)(q, p) = δ(0)

(
(a2

+ + |b|2)δ(p−
√

E) + (a2
− + |b|2)δ(p +

√
E)

+ (a+ + a−)δ(p)
[
be2i

√
Eq + b∗e−2i

√
Eq

] )
.

In (4.17), this result gives rise to condition

|b|2 = a+a− ⇒ b =
√

a+a−eiφ, φ ∈ R.

Finally we can write the general pure-state solution to the free-particle ?-genvalue equa-

tion (4.11) in the form

ρ(q, p) = a+δ(p−
√

E) + a−δ(p +
√

E) + 2
√

a+a−δ(p) cos(2
√

Eq + φ) (4.18)

Considering the pure-state wave function

ψ = α+ei
√

Eq + α−e−i
√

Eq (4.19)

and substituting into (3.19) yields

ρ(W )(q, p) = |α+|2δ(p−
√

E) + |α−|2δ(p +
√

E) + δ(p)
(
α∗+α−e−2i

√
Eq + α+α∗−e2i

√
Eq

)
.

By comparing this expression with (4.18) we obtain following relations

α± =
√

a±eiφ± , φ− φ+ + φ− = 0.

This is an expected result since only relative phase φ+ − φ− of (4.19) is relevant to the

Wigner function.
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Chapter 5

Infinite Walls and Wells

Infinite wall and infinite square well are represented by potentials that are solved easily

in conventional quantum mechanical approach. It turns out, however, that treatment of

these potentials in deformation quantization is far from being straightforward. In this

chapter we present computation methods introduced in [15] for the time-independent

case.

5.1 Introduction

Treating systems with simple potentials like infinite wall or well in deformation quanti-

zation is not s simple task as it is in conventional quantum mechanics. Let us consider

equation (3.15) more carefully in the case of infinite wall for example, i.e. the potential

is given by

V (q) =





0, q < 0

∞, q > 0

Following the Schrödinger approach one would restrict to q < 0, and impose the bound-

ary condition π(0, p) = 0. It is the ?-genvalue equation for a free particle in the case of

q < 0 with its real (4.13) and imaginary (4.12) parts that should be solved considering
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this boundary condition. However, this procedure doesn’t give any sensible results. The

expected result is given by Weyl transform of the following Schrödinger wave function

ψ(q) = H(−q)
(
ei
√

Eq − e−i
√

Eq
)

,

where H(q) is the Heaviside step function. So using (3.19) one has

ρ(W ) = H(−q)ρ̄(q, p),

with

ρ̄(q, p) =
2 sin

(
2q(p +

√
E)

)

p +
√

E
+

2 sin
(
2q(p−√E)

)

p−√E
+

+2 cos(2q
√

E)
2 sin(2qp)

p
. (5.1)

But this ρ̄(q, p) does not satisfy the imaginary part of free particle ?-genvalue equation

given by (4.12).

Recently several attempts were made to solve this problem. In [14] it was shown

that (5.1) is the solution of the modified ?-genvalue equation

((
p2 + δ′q

)
?M ρ

)
(q, p) = Eρ(q, p),

where the generalized distribution δ−(q) is defined by
∫

dqδ−(q)t̃(q) = lim
ε→0+

∫
dqδ(q)t̃(q − ε).

Kryukov and Walton [15] were able to introduce a computing procedure which makes

it possible to derive the differential equation that is solved by (5.1) from the unchanged

?-genvalue equation. This approach seems to treat the problem in a more systematic

way and therefore we will present their results here. We want to stress the fact that

Kryukov and Walton treated the time-independent case only and application of their

method for time-dependent cases may not be straightforward.

In order to be able to work with simple potentials like infinite wall or well, in a

systematic and consistent way further study will be needed.

In the whole chapter units are taken so that } = 2m = 1.
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5.2 Infinite Wall

We shall consider the Liouville Hamiltonian

Hα = p2 + e2αq. (5.2)

Taking the α →∞ limit of V (q) = e2αq gives an infinite wall with

V (q) =





0, q < 0

∞, q > 0

Pure deformation has already been carried out in [16] and performing the preceding

limit yields correct Wigner function. Our effort here is, however, to find a differential

equation from the ?-genvalue equation that would lead to the physical Wigner function.

Using the shift formula for the Groenewold-Moyal product gives

(Hα ?M ρ) (q, p) =

[(
p− i

2
∂q

)2

+ e2α(q+ i
2
∂p)

]
ρ(q, p) = Eρ(q, p).

The imaginary part is
(−p∂q + e2αq sin(α∂p)

)
ρ(q, p) = 0

while the real part read

(
p2 − E − 1

4
∂2

x + e2αq cos(α∂p)

)
ρ(q, p) = 0.

Formally, these equations can be rewritten as

e−2αq∂qρ(q, p) = − i

2p
(ρ(q, p + iα)− ρ(q, p− iα)) (5.3)

and

e−2αq

(
p2 − E − 1

4
∂2

q

)
ρ(q, p) +

1

2
(ρ(q, p + iα) + ρ(q, p− iα)) = 0. (5.4)
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Using equation (5.3) to find ∂2
qρ(q, p), and substituting the result into the equation (5.4)

leads to an expression without derivatives

0 = (p2 − E)ρ(q, p) +
1

p

(
e2αq

4

)2

×
(

ρ(q, p + 2iα)− ρ(q, p)

p + iα
+

ρ(q,−2iα)− ρ(q, p)

p− iα

)

− ie2αq

4p
(ρ(q, p + iα)− ρ(q, p− iα))

+
e2αq

2
(ρ(q, p + iα) + ρ(q, p− iα)) . (5.5)

We can consider this result as a difference equation in the momentum variable whereas

only imaginary shifts of the momentum arguments are involved. This means that besides

ρ(q, p), equation (5.5) involves the four quantities

ρ(q, p± iα), ρ(q, p± 2iα). (5.6)

The limit α →∞ of (5.5) fishy. We can trade, however, the four quantities of (5.6) for

the derivatives

∂m
q ρ(q, p), m = 1, 2, 3, 4. (5.7)

The resulting differential equation will possess a well-defined limit α → ∞ as we will

see.

Four equations relating the ”variables” of (5.6) to those of (5.7) are required. Two of

them are already provided by equations (5.3) and (5.4). The other two can be obtained

by taking derivatives of equation (5.4). The resulting expressions have the form

0 = ∂3
qρ− 4(p2 − E)∂qρ(q, p)

+ 4αe2αq (ρ(q, p + iα) + ρ(q, p− iα))

− 2e2αq (∂qρ(q, p + iα) + ∂qρ(q, p− iα))
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and

0 = ∂4
qρ(q, p)− 4(p2 − E)∂2

qρ(q, p)

− 8α2e2αq (ρ(q, p + iα) + ρ(q, p− iα))

− 4αie4αq

(
ρ(q, p + 2iα)− ρ(q, p)

p + iα
+

ρ(q,−2iα)− ρ(q, p)

p− iα

)

+ 2e2αq

[ (
4(p + iα)2 − E

)
ρ(q, p + iα)

+ 2e2αq (ρ(q, p + 2iα) + ρ(q, p))

+
(
4(p− iα)2 − E

)
ρ(q, p− iα)

+ 2e2αq (ρ(q, p− 2iα) + ρ(q, p))

]
.

Kryukov-Walton were able to find a simple differential equation

0 =
1

16
∂4

qρ(q, p) +
1

2
(p2 + E)∂2

qρ(q, p)

+ (p4 − 2Ep2 + E2)ρ(q, p)− e4αqρ(q, p).

The limit α →∞ leads to the new equation

(
1

16
∂4

q +
1

2
(p2 + E)∂2

q + (p4 − 2Ep2 + E2)

)
ρ(q, p) = 0, (5.8)

which is valid for q < 0. The Wigner function (5.1) satisfies equation (5.8) so we

conclude that we have found what we were looking for.

5.3 Infinite Square Well

Once we have solved the infinite wall case, infinite square well should be straightforward

as it can be constructed form two infinite walls. More precisely we will consider the

α →∞ limit of the ?-genvalue equation following from the sinh-Gordon Hamiltonian

Hα = p2 + e−2α(x+1) + e2α(x−1).
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The limit gives rise to potential

V (q) =





∞ q < −1

0, q ∈]− 1, 1[

∞, q > 1

Again we start with ?-genvalue equation and use the shift formula

(Hα?M) ρ(q, p) =

[(
p− i

2
∂q

)2

+ 2e−2α cosh

(
2α

(
x +

i

2
∂p

))]
ρ(q, p)

= Eρ(q, p).

The imaginary part read

∂qρ(q, p) = −ie−2α

p
(ρ(q, p + iα)− ρ(q, p− iα)) sinh(2αq)

whereas the real part is

0 =

(
p2 − E − 1

4
∂2

q

)
ρ(q, p)

+ e−2α (ρ(q, p + iα) + ρ(q, p− iα)) cosh(2αq).

By combining the two preceding equations we get

0 = (p2 − E)ρ(q, p)

+
e−4α

4p
cosh2(2αq)

(
ρ(q, p + 2iα)− ρ(q, p)

p + iα
+

ρ(q, p)− ρ(q, p− 2iα)

p− iα

)

− iαe−2α

2p
cosh(2αq) (ρ(q, p + iα)− ρ(q, p− iα))

− e−2α cosh(2αq) (ρ(q, p + iα) + ρ(q, p− iα))

This equations involves no derivatives, but only ρ(q, p) and the quantities

ρ(q, p± iα), ρ(q, p± 2iα).

We again wish to replace these quantities by derivatives

∂m
q ρ(q, p), m = 1, 2, 3, 4.
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For this purpose we need to compute additional two derivatives similarly to the infinite

wall case. Resulting expressions are as follows

∂3
qρ(q, p) = 4(p2 − E)∂qρ(q, p)

+ 2αe−2α sinh(2αq) (ρ(q, p + iα) + ρ(q, p− iα))

− 4ie−4α cosh(2αq) sinh(2αq)×
×

(
ρ(q, p + 2iα)− ρ(q, p)

p + iα
+

ρ(q, p)− ρ(q, p− 2iα)

p− iα

)

and

∂4
qρ(q, p) = 4(p2 − E)∂2

qρ(q, p)

+ 16α2e−2α cosh(2αq) (ρ(q, p + iα) + ρ(q, p− iα))

+ 16iαe−4α sinh2(2αq)×
×

(
ρ(q, p + 2iα)− ρ(q, p)

p + iα
+

ρ(q, p)− ρ(q, p− 2iα)

p− iα

)

+ e−2α cosh(2αq)

[ (
4(p + iα)2 − E

)
ρ(q, p + iα)

− e−2α cosh(2αq) (ρ(q, p + 2iα) + ρ(q, p))

+
(
4(p− iα)2 − E

)
ρ(q, p− iα)

− e−2α cosh(2αq) (ρ(q, p) + ρ(q, p− 2iα))

]
.

From these expressions we get a quite complicated new equation. This equation is well

defined with respect to the limiting process α →∞ for x ∈]− 1, 1[. The limit gives
(

1

16
∂4

q +
1

2
(p2 + E)∂2

q + (p4 − 2Ep2 + E2)

)
ρ = 0. (5.9)

We conclude that we have acquired the same equation as in the one-wall case.

Let us consider Schrödinger wave function for the infinite square well

ψ(q) = H(−q + 1)H(q + 1) cos(
√

Enq), En =
n2π2

4

Applying the Weyl transform and using (3.19) gives

ρ(W )(q, p) = H(−x + 1)H(x + 1)ρ̄(q, p),
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where

ρ̄(q, p) =
sin ((2p + nπ)(1− |q|))

2p + nπ
+

sin ((2p− nπ)(1− |q|))
2p− nπ

+
cos(nπq) sin (2p(1− |x|))

q
,

or equivalently

ρ̄(q, p) =
sin

(
2(p +

√
En)(1− |q|))

2(p +
√

En)
+

sin
(
2(p−√En)(1− |q|))

2(p−√En)

+
cos

(
2
√

Eq
)

sin (2p(1− |q|))
p

.

This Wigner function is the solution of (5.9) valid for V = 0.

Another Schrödinger wave function for the infinite square well

ψ(q) = H(−q + 1)H(q + 1) sin(
√

En(q − 1)), En =
n2π2

4

that by means of the Weyl transform (3.19) leads to the Wigner function

ρ(W )(q, p) = H(−x + 1)H(x + 1)ρ̄(q, p),

where

ρ̄(q, p) =
n

−8p3 + 2n2pπ2

[
nπ cos (nπ(|q| − 1)) sin (2p(|q| − 1))

− 2p cos (2p(|q| − 1)) sin (nπ(|q| − 1))

]

solves (5.9) for V = 0. Figures 5.1, 5.2, 5.3 and 5.4 correspond to Wigner function

charts for 1st, 2nd, 3rd and 4th excited state respectively.
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Figure 5.1: WF for the infinite square well, 1st excited state.
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Figure 5.2: WF for the infinite square well, 2nd excited state.
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Figure 5.3: WF for the infinite square well, 3rd excited state.
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Figure 5.4: WF for the infinite square well, 4th excited state.
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Conclusion

Deformations of associative algebras and Lie algebras were introduced. The aim was, in

the case of a Poisson algebra of phase-space functions, to construct the ?-product as a

special type of deformation. From mathematical point of view equivalence classes of ?-

product were established whereas two equivalent ?-products were called c-equivalent,

where ”c” stands for cohomology. This is supposed to emphasize the fact that c-

equivalent ?-products need not to be physically equivalent.

Considering phase space R2n, then all ?-products are c-equivalent but lead to slightly

different spectra. Equivalence of deformation quantization to the conventional formula-

tion of quantum mechanics is given by Weyl correspondence and in this case is expressed

by the fact that distinct ?-products are related to different operator orderings in con-

ventional quantum mechanical approach.

Basic deformation quantization principles were then given without further detail.

We would like to stress out that objects considered in this phase-space theory require

careful mathematical analysis. But likewise in any other physical theory, the existence of

a quantity is often determined by calculating it, which is the case of examples provided

here.

It turns out that deformation quantization and ordinary quantum mechanical for-

mulation are not only equivalent but moreover the quantum mechanical algebra of ob-

servables is a representation of the ?-product algebra. It follows that specifying the

?-product completely determines the quantum system because in the algebraic approach

to quantum theory (C∗-algebra of bounded operators) all the information concerning

the quantum system may be extracted from the algebra of observables.

Complete time-dependent solution for harmonic oscillator is given using first prin-

ciples and is followed by time-independent solutions of one-dimensional free particle,

infinite wall and infinite square well. In particular in the case of two last named exam-

ples we have seen that solution in terms of deformation quantization is far from being
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straightforward which is in contrast with simple treatment in Schrödinger formalism. In

many other cases the situation might be opposite to this one which underlines the fact

that conventional quantum mechanical approach and deformation quantization rather

complement each other.

In the case of infinite wall and infinite square well a recent method introduced by

Krykov-Walton is presented and a new solution of their differential equation is pro-

posed.

This work as well as the study of extended literature lead us to the conclusion

that deformation quantization formulation of quantum mechanics is far from complete.

While the algebra of observables is established by the ?-product, quantum state space

as the space of normed linear functionals on the algebra, remains to be defined in a

mathematically rigorous way.
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