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republiky, chyla@fzu.cz

Konzultant: Prof. RNDr. Jan Fischer, DrSc., Fyzikálńı ústav Akademie věd České
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Abstrakt: Fyzikálńı veličiny popisuj́ıćı tvrdé srážkové procesy ovlivněné silnou in-

terakćı jsou v rámci poruchové QCD vyjádřeny poruchovými rozvoji v mocninách

vazbového parametru αs. Aplikace této metody je však komplikována divergenćı

těchto rozvoj̊u, které mohou představovat v nejlepš́ım př́ıpadě pouze asymptotické

rozvoje zkoumaných pozorovatelných. Vzhledem k těmto skutečnostem jsou nejprve

představeny základńı fakta o sumaci obecných mocninných řad a následně je po-

drobně rozebrána alternativńı sumačńı metoda, navrhnuta Irinel Caprini a Janem Fis-

cherem, využ́ıvaj́ıćı analytického pokračováńı v Borelově rovině pomoćı konformńıho

zobrazeńı oblasti holomorfnosti př́ıslušné Borelovy transformace do jednotkového

kruhu. Základńı vlastnosti této metody jsou demonstrovány na modelových př́ıkla-

dech. Zároveň je tento př́ıstup diskutován v př́ıpadě fenomenologicky d̊uležitých

proces̊u rozpadu τ -leptonu a e+e− anihilace. Dále je studována závislost konečných

aproximant̊u na renormalizačńı škále pro veličiny studované v rámci těchto děj̊u a

konstruovaných na základě př́ıstupu Caprini - Fischer. Źıskané výsledky jsou kon-

frontovány s výsledky, které plynou ze standardńı poruchové teorie, kde jsou renor-

malizačńı škála a schéma voleny na základě př́ıstupu PMS.
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Preface

Perturbative methods are one of the most commonly used frameworks in quantum

theory calculations. This approximative technique provides the opportunity to search

for solutions of certain problems by means of perturbative series in powers of the

coupling constant1.

Perturbative expansions in quantum theory, especially in the quantum theory of

fields, are widely believed to be divergent. This observation was pointed out for the

first time by F. J. Dyson in his pioneer work [1] in early fifties. Despite the fact that

his conjecture has not yet been proven rigorously, we shall in the following assume

the divergent nature of perturbative series, because perturbative expansions in quan-

tum electrodynamics (QED) and quantum chromodynamics (QCD), the field theories

which are of interest in the case of the phenomenologically important Standard model,

are most likely to be of the divergent nature.

Dyson’s arguments were later critically analyzed by many authors, e.g. [2, 3]. It

was argued that Dyson’s results in fact do not analyze the possible convergence or di-

vergence of perturbative expansions but the possibility of recovering the exact results

from these expansions. However, in QCD there are, unfortunately, no mathematically

well-defined equations such as Schrödinger equation in quantum mechanics. There-

fore, it is impossible to find an exact solution of any given QCD problem and then to

compare it with the approximants obtained, e.g. from the perturbation theory. Nev-

ertheless, the perturbative expansions are generally considered to be the asymptotic

expansions of the exact results2. However, one has to bear in mind that an asymp-

1In the following sections, we shall use the word couplant instead of coupling constant.
2More extensive information concerning the clues indicating the divergent nature of perturbative

expansions in QCD also with the mathematical comments on asymptotic series can be found in
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totic series does not determine the expanded function uniquely, unless additional

conditions are specified.

One of the attempts to give perturbative expansions in QCD a good meaning was

invented by I. Caprini and J. Fischer [8–10] which is to be presented in Section 1.5.

In this approach, the standard perturbative expansion in powers of the renormalized

couplant a is replaced by a certain type of non-power series. The expansion functions

are defined by the analytic continuation in the double cut Borel plane.

The essence of this thesis is to investigate the properties of these novel non-power

expansions and to compare the results obtained by this method with the results given

by the standard perturbative expansions in quantum chromodynamics.

The thesis is divided into three main parts. The first part entitled ”The Mathe-

matical Background” presents a brief overview on the mathematical aspects of general

power expansions. The novel Caprini-Fischer method is presented and demonstrated

on various model examples.

The second part of this work is carrying the name ”Perturbative QCD”. It sum-

marizes the basic principles of QCD and reviews the renormalization scale and scheme

dependence of finite order approximants of perturbative expansions of observables.

Moreover, the application of the Caprini-Fischer method is demonstrated on the per-

turbative expansion of the Adler function.

The last part of the thesis ”τ -lepton Decay and e+e− Annihilation in QCD” covers

the most important results of the study. It presents the comparison of the pertur-

bative expansions resulting from the standard perturbation theory with the Caprini-

Fischer resummed perturbative expansion. This comparison is demonstrated on two

phenomenologically interesting cases of τ -lepton decay and e+e− annihilation. The

renormalization scale dependence of the approximants of ratio Rτ are shown together

with the Q-dependence of the approximants of ratio Re+e− . Moreover, in the case of

Re+e− , the Q-dependence of the Caprini-Fischer approximants compared with approx-

imants resulting from standard perturbation theory computed in the PMS scheme is

discussed.

Sections 1.4, 1.5 and in Chapter 2.
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Chapter 1

The Mathematical Background

In order to understand the crucial part of this thesis, the treatment of perturba-

tive expansions in quantum chromodynamics, let us briefly recall the mathematical

formalism of general power expansions1.

In the first place, it is necessary to define the meaning of the statement ”summa-

tion of a series”.

Definition 1.0.1 Let {an}, n = 0, 1, 2, . . . be a set of numbers. To find summation

of the series

∞∑
n=0

anzn (1.1)

means to determine the properties of the function

fN(z) =
N∑

n=0

anzn (1.2)

around the point z = 0 for N →∞.

Definition 1.0.2 Let S be a method of summation of the series (1.1). Then

1. S is said to be regular if

S

( ∞∑
n=0

anzn

)
=

∞∑
n=0

anzn (1.3)

whenever the righthand side of (1.3) converges,

1Definitions and theorems in this chapter are taken from [7].
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1.1. Borel Summation 1. The Mathematical Background

2. S is said to be analytic if

S

( ∞∑
n=0

anzn

)
= f(z) (1.4)

whenever S (
∑∞

n=0 anz
n) exists, where f(z) denotes the analytic continuation of

∑∞
n=0 anz

n out of its convergence disk.

1.1 Borel Summation

One of the intuitively clearest methods of summation of the series is the so called

Borel summation. It arises from the idea of suppressing the coefficients an of the series

(1.1) by dividing with n!. We shall start with the definition of the Borel transform

of the series (1.1).

Definition 1.1.1 Let (1.1) be an arbitrary power series assuming its convergence

inside the circle KR with radius R respecting the equation

1
R

= lim sup
n→∞

n
√
|an|. (1.5)

Then the series ∞∑
n=0

an

n!
zn (1.6)

is called the Borel transform of the series (1.1) and denoted by B[f ](z).

Secondly, let us then define the Borel summability and the Borel sum of the series

(1.1). Note that Γ(n + 1) =
∞∫
0

e−ttndt = n!.

Definition 1.1.2 Let (1.1) be an arbitrary power series satisfying the conditions

stated in Definition 1.1.1. Then the series (1.1) is said to be Borel summable iff

1. ∃ε > 0, ∀t ∈ C, |t| < ε, such that B[f ](t) converges,

2. B[f ](t) has analytic continuation to an infinite strip bisected by the positive real

semi-axis and nowhere shrinking to zero width,

4



1.1. Borel Summation 1. The Mathematical Background

3. ∃z ∈ C, z 6= 0, such that integral

f̃(z) =
1
z

∞∫

0

e−
t
z B[f ](t)dt (1.7)

converges.

The function f̃(z) is called Borel sum of the series (1.1).

Before specifying the concluding theorem [5] of this section let us define the so-called

Borel polygon.

Definition 1.1.3 Let zi be the position of the i-th singularity of f(z), i = 1, 2, . . . , N ,

where N is the number of singularities of f(z) and Ri is the ray connecting zi with

the origin and continuing beyond zi to infinity. Draw the perpendicular Pi to Ri at

z = zi for each i = 1, 2, . . . , N . The part of the complex plane that is closed up by the

Pi and contains the origin is called the Borel polygon.

Theorem 1.1.1 Let f(z) be the principal branch of an analytic function regular at

z = 0,

f(z) =
∞∑

n=0

anzn.

Then the integral of this series

∞∫

0

e−t

∞∑
n=0

an
(zt)n

n!
dt =

∞∫

0

e−tB[f ](zt)dt, (1.8)

exists in the Borel polygon and is there equal to the analytic function f(z).

We can now demonstrate benefits and shortcomings of the Borel method on the

following simple example. Take an = 1, ∀n ∈ N0 in (1.1) and set f(z) = 1
1−z

. This

yields

1
1− z

=
∞∑

n=0

zn. (1.9)

The sum on the righthand side of (1.9), which is the Taylor series of the function

f(z) = 1
1−z

, converges in the open unit disk where we can carry out the following

manipulations:

5



1.1. Borel Summation 1. The Mathematical Background

∞∑
n=0

zn =
∞∑

n=0

zn 1
n!

∞∫

0

e−ttndt =
∞∑

n=0

∞∫

0

e−t (zt)n

n!
dt =

=

∞∫

0

e−t

∞∑
n=0

(zt)n

n!
dt =

∞∫

0

e−(1−z)tdt. (1.10)

The integral on the righthand side of (1.10) can be used to define the sum of the

series
∑∞

n=0 zn outside the unit disk. The sum is well-defined whenever the integral

converges. This is true in the whole halfplane

Re z < 1. (1.11)

In the sense of Definition 1.0.2 the Borel method is regular and analytic because the

integral on the righthand side of (1.10) is a holomorphic function in z.

(a) Borel method (b) µ-method introduced in

the Section 1.2.2

Figure 1.1: Domains of summation of the series
∑∞

n=0 zn

It is clear that the integral defines the sum in a larger region than the standard

Taylor expansion in z does. On the other hand, we can simultaneously see a weak

point of this approach. The analytic continuation given by the Borel method is, due

to Theorem 1.1.1, restricted to the Borel polygon, despite the fact that a large area of

analyticity still spreads outside the polygon. The holomorphy region for the function

f(z) = 1
1−z

equals

C \ {1}. (1.12)
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1.2. Extension of the Borel Polygon 1. The Mathematical Background

One question arises: ”Is it possible to make analytic continuations beyond the Borel

polygon?” There exist many opportunities how to give a positive answer to this ques-

tion. One possibility is to make an extension of the Borel polygon into a larger region2.

Another one is to make analytic continuations by means of conformal mappings. The

former is introduced in the Section 1.2 and the latter in the Section 1.3.

1.2 Extension of the Borel Polygon

Let us consider the series (1.1) with nonzero radius of convergence3. The possibility

of recovering a certain function from its power series outside its Borel polygon can be

obtained by extending the Borel polygon to a larger domain completely containing

the Borel polygon. In the following sections, we shall present two methods respecting

this condition.

1.2.1 Generalization of the Borel Summation

Extensions of the Borel polygon presented in this section can be considered as the

generalization of the Borel method reviewed in the Section 1.1. Just for illustration,

it is possible to show the basic ideas of this method in the case of the series (1.9).

The Borel method allows one to define the sum of (1.9) in the region (1.11) which

has the border

Re z = 1. (1.13)

Expression (1.13) can be expressed equivalently as follows:

r = (cos ϕ)−1, z = reiϕ, |ϕ| < π

2
. (1.14)

2Figure 1.1 above shows the one possible extension of the Borel polygon of the function f(z) =
∑∞

n=0 zn to a larger domain called the Mittag-Leffler (principal) star introduced by Definition 1.2.2.

The picture was taken from the paper [12].
3Due to the fact that the character of this section is only informative we shall present the

concluding ideas taken from the paper [12] very briefly.

7



1.2. Extension of the Borel Polygon 1. The Mathematical Background

An extension of the Borel polygon of the function f(z) = 1
1−z

can be made by

replacing the border (1.14) with

r =
[
cos

(ϕ

α

)]−α

, |ϕ| < π

2
α, (1.15)

where z = reiϕ and α > 0 provided that Re z < 1 is extended into the region

Bα

(
1

1− z

)
= rα−1

cos
(ϕ

α

)
< 1. (1.16)

It is easy to check that for α = 1 the region (1.14) is reproduced. For α small, region

Bα

(
1

1−z

)
spreads further to the righthand half-plane than the Borel polygon of the

function f(z) = 1
1−z

.

Let us now define the region Bα(f) for arbitrary function f(z) regular at the

origin [12].

Definition 1.2.1 Let f(z) be an arbitrary function regular at the origin and let C(z0)

be a contour given by the relation

r = r0

[
cos

θ − θ0

α

]−α

, |θ − θ0| < π

2
α. (1.17)

Let us draw the contour C(zs) for each singularity zs of f(z) and discarding from the

complex plane C the domain C0(zs) closed up by the contour, for which the sign = in

expression (1.17) is replaced by >. Then Bα(f) denotes a starlike region containing

the disk of convergence of the Taylor series of f(z) centered at the origin.

The concluding theorem of this section generalizing the Borel method has the follow-

ing form:

Theorem 1.2.1 Let f(z) be the principal branch of an analytic function, regular at

the origin,

f(z) =
∞∑

n=0

anzn.

Then the integral

8



1.2. Extension of the Borel Polygon 1. The Mathematical Background

I(z) =

∞∫

0

tβ−1e−t

∞∑
n=0

an
(tαz)n

Γ(αn + β)
dt, 0 < α ≤ 2, β > 0, (1.18)

converges iff z ∈ Bα(f). Then

f(z) = I(z). (1.19)

The convergence is absolute and uniform on any bounded subset of Bα(f) with nonzero

distance from the boundary of Bα(f). For the first derivative f ′(z) of f(z) the fol-

lowing representation

f ′(z) =

∞∫

0

tβ−1e−t

∞∑
n=0

nanz
n−1 (tα)n

Γ(αn + β)
dt (1.20)

holds.

Theorem 1.2.1 shows the price payed for the extension of the Borel polygon. As

we have already mentioned, the extension is done for α < 1 and the suppression of

the coefficients an in (1.1) is obtained by dividing an by Γ(αn + β) instead of n!.

Therefore, the resulting suppression is weaker than the n!-like suppression since

n! > Γ(αn + β), 0 < α < 1, β > 0. (1.21)

Thus, for α small this method is applicable to a smaller class of sequences of coeffi-

cients {an}∞n=0. Note that for α = β = 1 one obtains the Borel method and therefore

B1(f) is equal to the Borel polygon of a function f(z).

Remark 1.2.1 The domain Bα(f) is invariant under differentiation, i.e. Bα(f ′) =

Bα(f). Inserting first derivative f ′(z) of f(z)

f ′(z) =
∞∑

n=1

nanz
n−1

in Theorem 1.2.1 one obtains another integral representation of f ′(z), different from

(1.20)

f ′(z) =

∞∫

0

tβ−1e−t

∞∑
n=1

nan
(tαz)n−1

Γ[α(n− 1) + β]
dt. (1.22)
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1.2. Extension of the Borel Polygon 1. The Mathematical Background

1.2.2 Moment Constant Summability Method

In the previous section, we have constructed the summation method that extends the

Borel polygon. This method along with the standard Borel summation is one member

of the so-called moment constant summability methods [5]. Nevertheless, there exists

a moment constant summability method generalizing the previous method of the

Borel polygon extension providing an analytic continuation of a function regular at

the origin onto its Mittag-Leffler (principal) star.

We shall start with the definition of the Mittag-Leffler (principal) star [7].

Definition 1.2.2 Let zi, Ri and N have the same meaning as in Definition 1.1.3.

Cut the complex z-plane along that part of each ray Ri that lies behind the singularity

zi, and remove these cuts from the complex z-plane. The part of the z-plane remaining

after these cuts are removed is called the Mittag-Leffler (principal) star of the

function f(z). We shall denote it by MLS(f)4.

It is useful to notice that for f(z) = 1
1−z

, the Mittag-Leffler star MLS
(

1
1−z

)
equals

C \ 〈1, +∞).

Theorem 1.2.1 provides, in contrast to Theorem 1.1.1, a considerable improve-

ment. As we have already mentioned in Section 1.2.1, the region Bα(f) for α < 1,

where we can carry out the summation (1.18), is larger than the Borel polygon B1(f)

of the function f(z). It is clear that for α > 0 arbitrarily small, the domain Bα(f)

approaches arbitrarily close the Mittag-Leffler star MLS(f). However, it is forbidden

to choose α = 0. Therefore, the function I(z) defined by (1.18) can never represent

the sum of f(z) in the whole MLS(f). Nevertheless, the moment constant summa-

bility method representing the expanded function f(z) in the whole MLS(f), which

existence was mentioned in the beginning of this section, exists and is constructed

using the following theorem [12].

Theorem 1.2.2 Let f(z) be the principal branch of an analytic function regular at

origin

4Figure 1.2 bellow used to illustrate Definitions 1.1.3, 1.2.2 and Theorems 1.2.1, 1.2.2 is taken

from [7].
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1.2. Extension of the Borel Polygon 1. The Mathematical Background

Figure 1.2: Explanation of symbols: C . . . convergence circle of the series (1.1),

P1, P2, P3, P4 . . . the Borel polygon from Definition 1.1.3,

P ′
1, P ′

2, P ′
3, P ′

4 . . . extension of the Borel polygon from Theorem 1.2.1,

R1, R2, R3, R4 . . . boundary of MLS(f) from Definition 1.2.2 and Theorem 1.2.2.

f(z) =
∞∑

n=0

anzn.

Then the integral J(z)

J(z) =

∞∫

0

exp(− exp t)
∞∑

n=0

an
(zt)n

µ(n)
dt, (1.23)

converges iff z ∈ MLS(f), where {µ(n)}∞n=0 is the Stieltjes moment sequence generated

by the measure dχ = exp(− exp t)dt and defined as

µ(n) =

∞∫

0

exp(− exp t)tndt. (1.24)

Then

11



1.2. Extension of the Borel Polygon 1. The Mathematical Background

f(z) = J(z). (1.25)

The convergence is absolute and uniform in any bounded subset of MLS(f) with

nonzero distance from the boundary of MLS(f). For the first derivative f ′(z) of

f(z) the following representation

f ′(z) =

∞∫

0

exp(− exp t)
∞∑

n=1

nanz
n−1 tn

µ(n)
dt (1.26)

holds.

It can be shown that the moment constant summability methods defined in [5]

are automatically regular in the sense of Definition 1.0.2. However not analytic in

general. Nevertheless, it was proven [12] that the moment constant method based on

the above Theorem 1.2.2 provides an analytic continuation of (1.1).

As in the case of Theorem 1.2.1, the price payed for this powerful result yielding

the analytic continuation of the power series (1.1) in the whole MLS(f) is a relatively

weaker suppression of the coefficients an by the moments µ(n). This phenomenon

leads from the fact that moments µ(n) grow asymptotically slower for n → ∞ than

the gamma function Γ(αn + β) for any α > 0 [12].

Remark 1.2.2 The domain MLS(f) is invariant under differentiation, i.e. MLS(f ′) =

MLS(f). Inserting first derivative f ′(z) of f(z)

f ′(z) =
∞∑

n=1

nanz
n−1

in Theorem 1.2.2 one obtains another integral representation of f ′(z), different from

(1.26)

f ′(z) =

∞∫

0

exp(− exp t)
∞∑

n=1

nan
(tz)n−1

µ(n− 1)
dt. (1.27)
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1.3. The Use of Conformal Mapping 1. The Mathematical Background

1.3 The Use of Conformal Mapping

Take the series (1.1) convergent on the disk KR in the complex z-plane. The radius

R is equal to the distance of the nearest singularity of a function f(z) from the origin

5.

A conformal mapping w(z) of the z-plane can be used to improve the convergence

of the series (1.1) in the sense that,

1. the power series

f(z) = f(z(w)) =
∞∑

n=0

cnw
n (1.28)

is convergent in a region Cw of the complex z-plane that is conformally mapped

onto the disk Kw in the w-plane by w(z), is larger than KR and fully contains

it, that means KR ⊂ Cw, and

2. the series (1.28) has a faster convergence rate than (1.1) at every point z ∈ KR.

The proof can be found in a paper by Ciulli and Fischer [16], including the

result that if Cw̃ is the domain of analyticity of the expanded function and

w̃(z) is the conformal mapping that maps Cw̃ onto the unit disk in the w̃-plane,

then the series

f(z) = f(z(w̃)) =
∞∑

n=0

c̃nw̃
n (1.29)

is convergent at every point of Cw̃ and yields the fastest convergence rate at

every point. This conformal mapping w̃(z) and the corresponding power series

(1.29) are called optimal.

For reasons which will become clear later we shall restrict ourselves to such functions

w(z) that

w(z)|z=0 = 0 ∧ w(z)|z=z1 = 1, (1.30)

where z1 is the location of the singularity nearest to the origin.

5Note that R can be calculated using the following formula 1
R = lim supn→∞

n
√
|an|.

13



1.3. The Use of Conformal Mapping 1. The Mathematical Background

Let us constrain for a moment on the situation when all the singularities of a

function (1.1) are located on the real positive semi-axis, 0 < z1 ≤ z ≤ +∞. Such

conformal mapping respecting the requirements mentioned above is to be of the form

w(z) =

1−
√

1− z

z1

1 +
√

1− z

z1

. (1.31)

w(z) transforms the whole complex z-plane cut along 〈z1, +∞〉 onto the unit disk

centered at the origin. The mapping (1.31) also satisfies the conditions (1.30) and

the points of the cut are mapped onto the boundary of the unit disk.

To obtain analytic continuation for (1.1) outside the convergence domain KR we

have to expand f(z) in powers of w(z):

f(z) = f(z(w)) =
∞∑

n=0

cnwn. (1.32)

This can be done by means of the following steps. Take the series (1.1) truncated at

the order N

fN(z) =
N∑

n=0

anzn (1.33)

and expand powers zn in powers of w(z). By truncating this expansion at the order

N we get

zn
N =

N∑
j=n

bnjw
j. (1.34)

The coefficients bnj can be calculated by expressing z in terms of w as

z(w) =
4z1w

(w + 1)2
. (1.35)

Then, inserting the equation (1.34) into (1.33) and changing the order of summations

yields

14



1.3. The Use of Conformal Mapping 1. The Mathematical Background

fN(z) =
N∑

n=0

anzn = a0 +
N∑

n=1

anzn = a0 +
N∑

n=1

an

N∑
j=n

bnjw
j

= a0 +
N∑

n=1

N∑
j=n

anbnjw
j = a0 +

N∑
j=1

j∑
n=1

anbnjw
j = a0 +

N∑
j=1

cjw
j

=
N∑

j=0

cjw
j, (1.36)

where

c0 = a0, cj =
j∑

n=1

anbnj, j ∈ N. (1.37)

Finally, considering the limit of the equation (1.36) for N → +∞ one obtains the

sought expansion of f(z) in powers of the conformal mapping w(z)

lim
N→+∞

N∑
j=0

cjw
j =

∞∑
j=0

cjw
j = f(z). (1.38)

This expansion converges inside the unit disk of the w-plane. Thus it converges in the

whole cut z-plane. As pointed out in [7], the fastest asymptotic rate of convergence

is achieved when a conformal mapping w is optimal in the above mentioned sense.

1.3.1 A Simple Example

To illustrate the method explained in the previous subsection, let us consider the

function (1.9). In this situation z1 = 1 and therefore (1.35) becomes

z(w) =
4w

(w + 1)2
. (1.39)

Equation (1.34) yields

zn
N =

N∑
j=n

1
j!

dj

dwj

[
4w

(w + 1)2

]n ∣∣∣∣
w=0

wj, (1.40)

and (1.36), (1.37), (1.38) imply

f(z) = 1 +
∞∑

j=1

1
j!

j∑
n=1

dj

dwj

[
4w

(w + 1)2

]n ∣∣∣∣
w=0

wj. (1.41)
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1.3. The Use of Conformal Mapping 1. The Mathematical Background

If we take a closer look at the last equation we find the calculation of the coeffi-

cients cj defined according to (1.37) as

cj =
1
j!

j∑
n=1

dj

dwj

[
4w

(w + 1)2

]n ∣∣∣∣
w=0

(1.42)

rather cumbersome. It is due to the j-th derivation of a composite function entangled

in (1.42). We shall carry out these calculations in several steps.

Let us first write zn by means of w(z) in the form

zn = 4nwn−1 w

(w + 1)2n
. (1.43)

Then using the Leibniz chain-rule for the j-th derivation of the product of two func-

tions one obtains

djzn

dwj
=

dj

dwj

[
4nwn−1 w

(w + 1)2n

]
= 4n dj

dwj

[
wn−1 w

(w + 1)2n

]

= 4n

j∑

l=0

j!
(j − l)!l!

[
dlwn−1

dwl

]
dj−l

dwj−l

[
w

(w + 1)2n

]

= 4n

j∑

l=0

j!
(j − l)!l!

[
(n− 1)!

(n− l − 1)!
wn−l−1

] [
(−1)j−l (2n + j − l − 2)!

(2n− 2)!

w − j−l
2n−1

(w + 1)2n+j−l

]

=
j∑

l=0

(−1)j−l4n j!
(j − l)!l!

(n− 1)!
(n− l − 1)!

(2n + j − l − 2)!
(2n− 2)!

wn−l − wn−l−1 j−l
2n−1

(w + 1)2n+j−l
.

(1.44)

Formulae

dlwn−1

dwl
=

(n− 1)!
(n− l − 1)!

wn−l−1 (1.45)

dj−l

dwj−l

[
w

(w + 1)2n

]
= (−1)j−l (2n + j − l − 2)!

(2n− 2)!

w − j−l
2n−1

(w + 1)2n+j−l
(1.46)

can easily be proven by induction. Now inserting (1.44) into (1.41) yields
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1.3. The Use of Conformal Mapping 1. The Mathematical Background

f(z) = 1 +
∞∑

j=1

1
j!

j∑
n=1

j∑

l=0

(−1)j−l4n j!
(j − l)!l!

(n− 1)!
(n− l − 1)!

(2n + j − l − 2)!
(2n− 2)!

× wn−l − wn−l−1 j−l
2n−1

(w + 1)2n+j−l

∣∣∣∣∣
w=0

wj. (1.47)

Moreover, the sum

j∑

l=0

(−1)j−l4n j!
(j − l)!l!

(n− 1)!
(n− l − 1)!

(2n + j − l − 2)!
(2n− 2)!

wn−l − wn−l−1 j−l
2n−1

(w + 1)2n+j−l

∣∣∣∣∣
w=0

(1.48)

can be easily simplified. In fact, after we set w = 0, every term will vanish except for

the term belonging to the index l = n− 1, and (1.48) is reduced to the single term

(−1)j−n4n j!
(2n− 1)!

(n + j − 1)!
(j − n)!

. (1.49)

As a consequence, the coefficient cj defined by (1.42) is of the form

cj =
1
j!

j∑
n=1

(−1)j−n4n j!
(2n− 1)!

(n + j − 1)!
(j − n)!

= 4j, (1.50)

and finally we obtain the expansion of f(z) = 1
1−z

in powers of its optimal conformal

mapping w. Equation (1.41) yields the following expression:

1
1− z

= 1 +
∞∑

j=1

4jwj(z). (1.51)

The final step in this exercise is to check the convergence of the new expansion

(1.51). For this purpose we shall use the extreme case of the d’Alembert quotient

criterion.

For all z in the whole cut z-plane (1.12) there exists a real A < 1 such that the

following expression for w(z) holds

|w(z)| ≤ A. (1.52)

Then using this inequality one derives
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1.4. Asymptotic Series 1. The Mathematical Background

∣∣∣∣
4(j + 1)wj+1

4jwj

∣∣∣∣ =

∣∣∣∣
j + 1

j
w

∣∣∣∣ ≤
j + 1

j
A

j→+∞−−−−→ A < 1. (1.53)

Therefore (1.51) for all z in the whole cut z-plane as a numerical series and by the

definition it is convergent as a functional series.

1.4 Asymptotic Series

The divergence of perturbative expansions in quantum field theory was already con-

sidered in the Preface. Extensive studies of this phenomenon were performed leading

to the conclusion that the standard QCD perturbative expansions in powers of the

renormalized couplant are divergent, Borel non-summable and having zero radius of

convergence [17,18]. The factorial growth of perturbative coefficients at large orders

is also present and, moreover, the coefficients do not alternate signs [19–25].

The fact that the perturbative series’ radius of convergence equals zero means

that the searched function f(z) has a singularity at the origin z = 0. As we have

already mentioned, such a power series cannot be understood in the sense of a Taylor

expansion, but it can be interpreted as an asymptotic series. Let us then very briefly

recall the definition of an asymptotic series.

Definition 1.4.1 Let S be a set of points with the origin z = 0 as an accumula-

tion point, and f(z) a function defined on S. We shall say that f(z) has on S the

asymptotic series
∑∞

n=0 anzn for z → 0 and denote it by

f(z) ≈
∞∑

n=0

anz
n, z → 0, z ∈ S (1.54)

if

f(z)−
N∑

n=0

anzn = o(zN), z → 0, z ∈ S. (1.55)

Perturbation theory yields, at least in principle, all the expansion coefficients of

the expanded Green function which is, in fact, unknown. As we have pointed out, a

certain power series is asymptotic to an infinite number of different functions. This

can be easily seen from the fact that the function
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1.4. Asymptotic Series 1. The Mathematical Background

g(z, a, c) = ce−
a
z , c ∈ C, a > 0 (1.56)

has the asymptotic series of the form

∞∑
n=0

anz
n, ∀n ∈ N0, an = 0 (1.57)

for z → 0, in any angle | arg z| < π
2 . Therefore, any function of the form f(z) +

g(z, a, c) has the asymptotic series equal to the asymptotic series (1.54) of the function

f(z) itself.

These ambiguities can be treated with additional conditions which have to be

imposed on the asymptotic series. These conditions are needed to make the determi-

nation of the expanded function unique, or at least, to reduce the ambiguity 6. Let us

recall one example of such conditions which guarantee the expanded function to be

equal to the Borel sum of its asymptotic power series. This subject was thoroughly

studied by Watson leading to the statement of the following theorem [26] 7:

Theorem 1.4.1 Let f(z) be analytic in a sector | arg z| < 1
2π + ε, |z| < η, for some

ε > 0 and η > 0. Let f(z) have there the asymptotic expansion

f(z) =
N−1∑
n=0

anz
n + RN(z) (1.58)

with

|RN(z)| ≤ AσNN !|z|N (1.59)

uniformly in N and z in the sector. Then

1. the Borel transform B(t) =
∑∞

n=0
antn

n! converges on the disk |t| < 1
σ

,

2. B(t) has an analytic continuation to the sector | arg t| < ε,

6The uniquely determined function is understood as the exact solution of a studied QCD problem,

which we in fact do not know. For further explanations, please see Preface and Chapter 2.
7For a more complete overview of additional conditions needed for the expanded function to be

uniquely recovered from its asymptotic power series please see [7, 52].
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3. the integral

g(z) =
1
z

∞∫

0

e−
t
z B(t)dt (1.60)

converges absolutely in the open disk Rez−1 > η−1 and there equals f(z)8.

Unfortunately, the conditions required by this theorem are too strong to be ful-

filled by renormalizable theories such as QED or QCD [17]. Also, in the case of the

improved theorem given by Nevanlinna [27,28] and Sokal [29], to the best our knowl-

edge, neither QED nor QCD are able to offer conditions which would be sufficient

for a unique determination of the expanded function f(z) from the asymptotic series

(1.54).

Some improvement can be achieved through the analytic continuation of the Borel

transform of perturbative series by means of the optimal conformal mapping intro-

duced by I. Caprini and J. Fischer [8–10]. Since this thesis is devoted to the ap-

plication of this method on certain QCD processes, we shall present its theoretical

background more extensively in the following section.

1.5 Optimal Expansion of the Borel Integral

In Section 1.3 we presented one of the many possibilities of performing an analytic

continuation of an arbitrary power series of the form of (1.1) by means of the optimal

conformal mapping of the domain of analyticity of the function f(z) onto the unit

disk. We also recalled the result proved by S. Ciulli and J. Fischer [16] that the

asymptotically fastest convergence rate is achieved by expanding in powers of the

optimal conformal mapping.

In perturbative QCD, only little information is available about the singularities of

the Borel transform of Green functions. This information is obtained from the study

of certain classes of Feynman diagrams and from many non-perturbative effects. As

8Note that the properties 1, 2 and 3 are, according to Definition 1.1.2, the three conditions of

Borel summability.
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was pointed out in [8], the Borel plane and the Borel transform seem to be very

suitable objects as the starting point in our following discussions. One can expand

the Borel transform in powers of its optimal conformal mapping variable and obtain

a convenient non-power expansion of the Borel integral. Due to the the fact that the

Borel transform of the QCD field correlators, e.g. the Adler function, has singularities

placed on the positive real semi-axis9, the condition 2 for the Borel summability in

Definition 1.1.2 is not satisfied and a prescription specifying the integration path of

the Borel integral is needed [8].

Let us give a simple example to illustrate the basic idea of introducing a non-

power expansion replacing the expansion in powers of z. We make the following

formal manipulations:

f(z) =
∞∑

n=0

anz
n =

∞∑
n=0

anz
n 1
n!

∞∫

0

e−ttndt =

∞∫

0

e−t

∞∑
n=0

1
n!

an

︸︷︷︸
bn

un︷ ︸︸ ︷
(zt)n dt

=

∣∣∣∣∣
substitution u = zt is valid only for z ∈ R, z > 0,

not for z ∈ C in general

∣∣∣∣∣

=
1
z

∞∫

0

e−
u
z

∞∑
n=0

bnu
ndu =

1
z

∞∫

0

e−
u
z lim

N→∞

N∑
n=0

bnundu

=
1
z

∞∫

0

e−
u
z lim

N→∞

N∑
n=0

bn

N∑

k=0

c
(n)
k wk(u)du

=
1
z

∞∫

0

e−
u
z lim

N→∞

N∑

k=0

k∑
n=0

bnc
(n)
k

︸ ︷︷ ︸
ck

wk(u)du. (1.61)

Let us consider, instead of this result, the expression

f(z) = lim
N→∞

N∑

k=0

ck
1
z

∞∫

0

e−
u
z wk(u)du, (1.62)

which is formally obtained by interchanging the sum and the integration. This ex-

pansion can be rewritten as

9These singularities are called instantons and infrared renormalons.
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f(z) =
∞∑

k=0

ckWk(z), (1.63)

where

Wk(z) =
1
z

∞∫

0

e−
u
z wk(u)du. (1.64)

To give the sum (1.63) precise mathematical meaning, one has to consider the equa-

tion

W (z) =
1
z

∞∫

0

e−
u
z B(u)du =

∞∑
n=0

cnWn(z), B(u) =
∞∑

n=0

bnu
n, (1.65)

as the definition of the Borel integral provided that the integration path is prop-

erly defined and the series
∑∞

n=0 cnWn(z) is convergent. The generalized principal

value prescription seems to be a reasonable, although not necessary, choice for the

integration path. One can define W PV
n (z) as

W PV
n (z) =

1
2z

[∫

C+

e−
u
z wn(u)du +

∫

C−
e−

u
z wn(u)du

]
, n = 0, 1, 2, . . . , (1.66)

where C+ and C− are the lines parallel to the positive real axis, the former slightly

above it and the latter slightly below it. Thus, for any ε > 0, ε ¿ 1 one can rewrite

the equation (1.66) in the form

W PV
n (z) =

1
2z




∞∫

0

e−
u+iε

z wn(u + iε)du +

∞∫

0

e−
u−iε

z wn(u− iε)du


 , n = 0, 1, 2, . . .

(1.67)

Convergence conditions of the optimal expansion are investigated in detail in [9, 10].

Let us recall the results. For this purpose we introduce the notation

W +
n (z) =

1
z

∫

C+

e−Fn(u)du, (1.68)

W−
n (z) =

1
z

∫

C−
e−Fn(u)du, (1.69)
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where

Fn(u) =
u

z
− n ln w(u). (1.70)

The relevant optimal conformal mapping is of the form10

w(u) =

√
1 + u−

√
1− u

2
√

1 + u +

√
1− u

2

. (1.71)

Let us now write z = |z|eiψ, ψ = arg z. The asymptotic behavior of the integrals

(1.68), (1.69) is then of the form

W +
n (z) ≈ n

1
4 ζne−2

3
4 (1+i)

√
n
z , ψ > −π

6
, (1.72)

W−
n (z) ≈ n

1
4 (ζ∗)ne−2

3
4 (1−i)

√
n
z , ψ <

π

6
, (1.73)

where

ζ =

√
2 + i√
2− i

, ζ∗ =

√
2− i√
2 + i

(1.74)

belong to the images of infinities in the upper and the lower u-plane given by the con-

formal mapping (1.71). Using the equations (1.72), (1.73) one obtains the asymptotic

behavior for W PV
n (z) according to (1.67) of the form

W PV
n (z) ≈ n

1
4 ζne−2

3
4 (1+i)

√
n
z + n

1
4 (ζ∗)ne−2

3
4 (1−i)

√
n
z , (1.75)

which is valid only for ψ satisfying the condition

|ψ| < π

6
. (1.76)

The conditions needed for the convergence of the expansion (1.63) can be obtained

from the ratio11

10We shall discuss this particular choice later in Section 2.3.
11Note that the d’Alembert convergence criterion is used (d’Alembert ratio test).
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∣∣∣∣
cnWn(z)

cn−1Wn−1(z)

∣∣∣∣ (1.77)

considered for large n. This yields the following bounds for the coefficients:

1.

∀ε > 0, |cn| < Ceεn
1
2 , (1.78)

2.

∃c > 0, |cn| ≈ ecn
1
2 , (1.79)

and the domains of convergence of (1.63) corresponding to these bounds are:

1.

Re
[
(1± i)z−

1
2

]
> 0, (1.80)

2.

Re
[
2

3
4 (1± i)z−

1
2 + c

]
> 0. (1.81)

We have to bear in mind that the condition (1.80) is equivalent to

|ψ| ≤ π

2
− δ, ∀δ > 0, (1.82)

while the condition (1.76) is more restrictive. Thus, the former statement (1.78)

about the convergence of the optimal expansion of the Borel integral is valid only in

the domain (1.76) and the latter one (1.79) is valid only in the intersection

ψ ∈
{

Re
[
2

3
4 (1± i)z−

1
2 + c

]
> 0

}
∩

(
−π

6
,
π

6

)
. (1.83)

Finally, let us turn to the asymptotic expansions of Wn(z) for small z. We shall

recall this results only very briefly [10]. The asymptotic expansion for Wn(z) is of

the form

Wn(z) ≈
∞∑

k=n

ξ
(n)
k k!zk, z → 0+, (1.84)

where
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ξ
(n)
k =

1
k!

dkwn(u)
duk

∣∣∣∣
u=0

(1.85)

is the Taylor coefficient in the expansion of the n-th power of the optimal conformal

mapping w(u) in the powers of u

wn(u) =
∞∑

k=n

ξ
(n)
k uk. (1.86)

The analytic properties of Wn(z) can be found in [10].

1.5.1 Simple Examples

Before proceeding to the main part of this thesis - the application of the Caprini-

Fischer method in QCD - let us show some very illustrative examples of some common

series and conformal mappings.

1.5.1.1 The Optimal Expansion of the Borel Integral by means of the

Conformal Mapping with Single Cut

Let us consider the power series of the form

∞∑
n=0

n!zn. (1.87)

The Borel transform of (1.87) then equals

B(u) =
∞∑

n=0

un (1.88)

and this series converges surely inside the unit disk |u| < 1, where the sum is equal

to the function

B(u) =
1

1− u
, (1.89)

which is holomorphic in the whole complex u-plane except the pole at u = 1. The

Borel integral of the series (1.87) has the form
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1
z

∞∫

0

e−
u
z B(u)du =

1
z

∞∫

0

e−
u
z

∞∑
n=0

undu. (1.90)

Since the series (1.88) is divergent for |u| ≥ 1, the Borel integral (1.90) is ill-defined

and thus the Borel method according to Theorem 1.1.1 is of no use. Nevertheless the

integral can be given a precise meaning. This requires the following:

1. the Borel transfom (1.88) has to be analytically continued outside its conver-

gence disk,

2. the integration path in the Borel integral (1.90) has to be properly defined.

The analytic continuation of the Borel transform is possible by means of the analytic

function 1
1−u

. The analyticity domain of this function is (1.12).

The singularity u = 1 of the analytically continued Borel transform (1.89) causes

the ill definition of the Borel integral (1.90). One can therefore define the integral by

means of the generalized principal value prescription as12

1
z

PV

∞∫

0

e−
u
z

1
1− u

du =
1
2z




∞∫

0

e−
u+iε

z
1

1− (u + iε)
du +

∞∫

0

e−
u−iε

z
1

1− (u− iε)
du


 .

(1.91)

Let us define then the function I(z) by the equation

I(z) =
1
z

PV

∞∫

0

e−
u
z

1
1− u

du. (1.92)

Therefore, we have defined the sum of the series (1.87) as

∞∑
n=0

n!zn =
1
z

PV

∞∫

0

e−
u
z

1
1− u

du. (1.93)

Another possibility of defining the sum of the series (1.87) is using the optimal

expansion of the Borel integral. As mentioned in the previous Section 1.5, one has

12At this point, it is good to mention that the generalized PV prescription represents one of the

many possibilities of giving precise mathematical meaning to the integrals of this type.
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to expand the Borel transform (1.88) in powers of its optimal conformal mapping to

obtain the analytic continuation outside its unit disk of convergence. For this purpose

it is possible to remove the whole line 〈1, +∞). Then the domain

D 1
1−u

= C \ 〈1, +∞) (1.94)

can be mapped conformally into the unit disk. The optimal conformal mapping of

D 1
1−u

has according to (1.31) the form

w 1
1−u

(u) =
1−√1− u

1 +
√

1− u
. (1.95)

To expand the Borel transform (1.88) in powers of the function (1.95) means to search

for the solution of the Example 1.3.1. Then, according to (1.51) we have

B(u) = 1 +
∞∑

j=1

4j
[
w 1

1−u
(u)

]j

. (1.96)

Therefore, the optimal expansion of the Borel integral (1.90) is due to (1.63) equal

to

1
z

∞∫

0

e−
u
z B(u)du = 1 +

∞∑
n=1

4nWn(z), (1.97)

where

Wn(z) =
1
z

PV

∞∫

0

e−
u
z

[
w 1

1−u
(u)

]n

du. (1.98)

The sum of the series (1.87) is then defined by

∞∑
n=0

n!zn = 1 +
∞∑

n=1

4nWn(z). (1.99)

The series on the righthand side of (1.99) is convergent at least in the region [54]

Re
[
z−

1
3

]
> 0 ⇒ |Argz| < 3

2
π, (1.100)

since the coefficients cn = 4n surely satisfy the condition
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|cn| < Meεk
2
3 , ∀ε > 0. (1.101)
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Figure 1.3: Summation of the power series
∑∞

n=0 n!zn.

In Figure 1.3 one can find a graphical comparison of two approaches of defining

the sum of the series (1.87). Firstly by (1.93) and secondly by (1.99). The black

curve represents standard approximant - partial sum truncated at the order N = 3,

i.e.
∑3

n=0 n!zn. The red curve represents the PV integral (1.93). Finally, the blue,

green and brown curves represent the partial sums of (1.99) truncated at the order

N = 3, 9, 15, i.e. 1 +
∑3

n=1 4nWn(z), 1 +
∑9

n=1 4nWn(z) and 1 +
∑15

n=1 4nWn(z),

respectively.

As can be easily seen from the picture, the PV integral representation (1.93) of the

sum (1.87) is, however, equal to the representation by the optimal expansion (1.99).

Indeed, the higher the order N of the partial sum 1 +
∑N

n=1 4nWn(z), the better the

approximation of the PV integral (1.93). It is good to recall at this point that it is

not only the position of the singularities of the Borel transform, which is sufficient for

defining the sum of a general power series, but also the character of these singularities

is essential. The definition (1.93) is in fact the generalization of the approach (1.99),

which also deals with information about the nature of the singularities present in

the Borel plane. This can be done by factorization of these singularities of the Borel
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transform simply by rewriting the Borel transform (1.88). Since, in our case only one

singularity is present, Borel transform (1.88) takes the following form13

B(u) =
1

1− u

∞∑
j=0

b̃ju
j, (1.102)

Then the sum (1.99) with respect to (1.97) has the form

1 +
∞∑

n=1

4nWn(z) =
1
z

∞∫

0

e−
u
z B(u)du =

1
z

∞∫

0

e−
u
z

1
1− u

∞∑
n=0

b̃nu
ndu. (1.103)

By expanding the righthand side in powers of optimal conformal mapping we obtain

1+
∞∑

n=1

4nWn(z) = b̃0
1
z

∞∫

0

e−
u
z

1
1− u

du+
∞∑

j=1

cj
1
z

∞∫

0

e−
u
z

1
1− u

[
w 1

1−u
(u)

]j

du, (1.104)

where coefficients cj are according to (1.50) of the form

cj =
1
j!

j∑
n=1

b̃n(−1)j−n4n j!
(2n− 1)!

(n + j − 1)!
(j − n)!

. (1.105)

Since

b̃0 = 1, b̃n = 0, ∀n ∈ N, (1.106)

the coefficients cj vanish, so

cj = 0, ∀j ∈ N. (1.107)

Therefore, the equation (1.104) transforms to

∞∑
n=0

n!zn = 1 +
∞∑

n=1

4nWn(z) =
1
z

∞∫

0

e−
u
z

1
1− u

du. (1.108)

13Every integral is considered to be defined using the PV prescription.
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1.5.1.2 The Optimal Expansion of the Borel Integral by means of the

Conformal Mapping with two Cuts

Let us now demonstrate the problem analogous to the one presented in the previous

section. We shall consider the following power series

∞∑
n=0

(2n)!z2n. (1.109)

The Borel transform has the form

B(u) =
∞∑

n=0

u2n. (1.110)

This can be easily verified when one rewrites the series (1.109) to take the form

∞∑
n=0

(2n)!z2n =
∞∑

n=0

(−1)n + 1
2

n!zn. (1.111)

Then, it is very simple to check the validity of (1.110)

B(u) =
∞∑

n=0

1
n!

(−1)n + 1
2

n!un =
∞∑

n=0

(−1)n + 1
2

un =
∞∑

n=0

u2n. (1.112)

The Borel transform (1.110) has two singularities: −1, 1. As in the case of the

previous example, the convergence region is equal to the unit disk, where the Borel

transform can be summed uniquely to

B(u) =
1

1− u2
. (1.113)

The analyticity region of the function (1.113) equals

C \ {−1, 1}. (1.114)

Note, however, that neither (1.12), which appeared to be the case of the Borel trans-

form with one sigularity (1.88), nor (1.114) can be conformally mapped onto a unit

disk. We can avoid this difficulty by taking the function

w 1
1−u2

(u) =

√
1 + u−√1− u√
1 + u +

√
1− u

, (1.115)
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which conformally maps the double-cut complex plane

D 1
1−u2

= C \ {(−∞,−1〉 ∪ 〈1,∞)} (1.116)

onto the unit disk. By this, however, some information is lost, because (1.113) is

holomorphic everywhere except u = ±1, while the mapping (1.115) is holomorphic

everywhere except the rays (−∞,−1〉 and 〈1,∞)14.

According to the previous example, one can analytically continue the Borel trans-

form (1.110) outside its region of convergence simply by the expression (1.113). There-

fore the formal Borel integral suitable for the series (1.109) equals

1
z

∞∫

0

e−
u
z

1
1− u2

du. (1.117)

Again, the integral has to be correctly defined since the singularity u = 1 lies on the

integration path. We shall use once more the generalized PV prescription to do this,

and define the function similar to I(z) in (1.92) by

I(z) =
1
z

PV

∞∫

0

e−
u
z

1
1− u2

du. (1.118)

Finally, we have defined the sum of the series (1.118) as follows

∞∑
n=0

(2n)!z2n =
1
z

PV

∞∫

0

e−
u
z

1
1− u2

du. (1.119)

Nevertheless, the analytic continuation of the Borel transform (1.118) can be

obtained by means of the expansion in powers of the optimal conformal mapping

(1.115). Moreover, as the essential information about the nature of the singularities

is also known, it can be used properly. The maximum of the information was used in

the definition (1.119) where the Borel transform (1.110) was reexpanded to take the

form

B(u) =
1

1− u

1
1 + u

∞∑
n=0

b̃nun, (1.120)

14Similar remark has to be noted also with respect to the previous example. The information loss

can be traced back to replacing the pole at u = 1 by the cut 〈1,∞).
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with singularities u = ±1 factorized out, where

b̃0 = 1, b̃n = 0, ∀n ∈ N (1.121)

similarly to (1.102). But another three possibilities of using the information about

the singularities of the Borel transform arise15:

1. Nothing will be factorized out, only the position of the singularities will be used

to construct the appropriate optimal conformal mapping. Then, the optimal

expansion of the Borel integral

1
z

∞∫

0

e−
u
z

∞∑
n=0

u2ndu (1.122)

in powers of the mapping (1.115) will be performed,

2. The singularity u = −1 will be factorized out. The Borel transform will have

the form

B(u) =
1

1 + u

∞∑
n=0

un. (1.123)

Then, the optimal expansion of the Borel integral

1
z

∞∫

0

e−
u
z

1
1 + u

∞∑
n=0

undu (1.124)

in powers of the mapping (1.115) will be performed,

3. Finally, the singularity u = 1 will be factorized out. The Borel transform will

have the form

B(u) =
1

1− u

∞∑
n=0

(−1)nun. (1.125)

Then, the optimal expansion of the Borel integral

15Every integral is considered to be defined by means of the generalized PV prescription.
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1
z

∞∫

0

e−
u
z

1
1− u

∞∑
n=0

(−1)nundu (1.126)

in powers of the mapping (1.115) will be performed.
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Figure 1.4: Summation of the power series
∑∞

n=0(2n)!z2n, approximants to the order

N=4

The appropriate expansion functions and optimal expansions have to be of the form16:

1.
1
z

∞∫

0

e−
u
z

∞∑
n=0

u2ndu = 1 +
∞∑

n=1

4nW2n(z), (1.127)

where

W2n(z) =
1
z

∞∫

0

e−
u
z

[
w 1

1−u2
(u)

]2n

du, (1.128)

2.
1
z

∞∫

0

e−
u
z

∞∑
n=0

u2ndu = 1 +
∞∑

n=1

2nW n(z), (1.129)

16Every integral is considered to be defined by means of the generalized PV prescription.
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Figure 1.5: Summation of the power series
∑∞

n=0(2n)!z2n, approximants to the order

N=10
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Figure 1.6: Summation of the power series
∑∞

n=0(2n)!z2n, approximants to the order

N=20

where

W n(z) =
1
z

∞∫

0

e−
u
z

1
1 + u

[
w 1

1−u2
(u)

]n

du, (1.130)
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3.
1
z

∞∫

0

e−
u
z

∞∑
n=0

u2ndu = 1 +
∞∑

n=1

(−1)n2nW̃n(z), (1.131)

where

W̃n(z) =
1
z

∞∫

0

e−
u
z

1
1− u

[
w 1

1−u2
(u)

]n

du. (1.132)

Therefore, we have three definitions of the sum (1.109) different from (1.119):

= 1 +
∞∑

n=1

4nW2n(z) (1.133)

∞∑
n=0

(2n)!z2n = 1 +
∞∑

n=1

2nW n(z) (1.134)

= 1 +
∞∑

n=1

(−1)n2nW̃n(z). (1.135)

Figures 1.4, 1.5 and 1.6 compare the standard sum (1.109) truncated at the order

N = 2 (black line) with the sum (1.119) (red line) and with the approximants (1.133)

(blue line), (1.134) (brown line) and (1.135) (green line) taken to the order N =

5, 10, 20. Similarly to the previous example, the approximants of the higher order

provide better approximation of (1.119).

It is useful to point out that the information about the character of the singulari-

ties which lie in the old integration path, i.e. on the real semi-axis, is very important.

The use of this information provides better numerical behaviour of the optimal ex-

pansion of the Borel integral. This can be seen again from the Figures 1.4, 1.5 and

1.6. The approximation, considered to a certain order N , of the red line by the green

lines, which represents the approximants with the right-hand singularity factorized

out, is much better than the approximation provided by the brown lines (only left

singularity factorized out) or the blue lines (none of the singularities factorized out).

However, the information about the position and the character of all singularities

of the Borel transform in the whole Borel plane, not just the ones that lie on the

real semi-axis, drastically reduces the order N of the certain approximant needed to
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approximate the Borel integral with a prescribed accuracy. Moreover, when the Borel

transform is analytically continued outside the region of its convergence by means of

the sum of its series inside the convergence disk, the optimal expansion of the certain

Borel integral reduces only to the leading term (the red line approximants).
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Chapter 2

Perturbative QCD

Quantum chromodynamics belongs to non-abelian gauge theories of quantum fields.

It is the non-abelian character of gauge group SU(3) what makes the situation com-

pletely different from the case of abelian QED and leads to the following specific

characteristics of QCD.

The first one is the so-called colour confinement. This phenomenon having

no analogy in the classical physics is the consequence of the dynamical properties of

the theory of strong interactions. These attributes yield the fact that only colourless

combinations of quarks, antiquarks and gluons can be observed in Nature as hadrons

with finite masses.

The second specific phenomenon of QCD is the so-called asymptotic freedom,

which, roughly speaking, means that the renormalized couplant vanishes at short

distances. This fundamental feature of QCD can be traced back to the selfinteraction

of gluons yielding the behaviour of the renormalized couplant a(µ, RS) drastically

different when compared to the case of the QED couplant. As a consequence, QCD

is well-defined at short distances and the apparatus of perturbative theory can be

used to compute cross sections of hard processes 1.

1These nontrivial aspects of QCD will be further discussed in following sections.
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2.1 Basic Concepts in QCD

We shall comment briefly on the QCD Lagrangian to demonstrate the selfinteraction

of gluons, the phenomenon yielding very specific characteristics of QCD mentioned

above. The QCD Lagrangian is of the form

LQCD = −1
4

~Gµν
~Gµν + Ψ̄(i∂/−mq)Ψ + gΨ̄γµ

~TΨ ~Aµ, (2.1)

where the local field operator Ψ(x) describes the quark colour triplet of a particular

flavour, i.e. u, d, s, c, t, b. Therefore, it can be represented by the colour 3-vector

in the colour space

Ψ(x) =




Ψ1(x)

Ψ2(x)

Ψ3(x)


 . (2.2)

Similarly, ~Aµ describes an octet of coloured gluons and can be represented by the

8-vector2

~Aµ(x) =




A1
µ(x)

A2
µ(x)
...

A8
µ(x)




. (2.3)

Elements of the 8-vector ~Gµν

~Gµν(x) =




G1
µν(x)

G2
µν(x)

...

G8
µν(x)




. (2.4)

2Also, there exists alternative 3×3 matrix representation of the gluon octet which is widely used

and is defined using the generators of SU(3) as follows:

Aµ(x) =
8∑

a=1

Aa
µ(x)Ta,

where Ta, a = 1, 2, . . . , 8 are generators of SU(3).
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represent tensors of field strength for each color field Aa
µ, a = 1, 2, . . . , 8. Every

Ga
µν , a = 1, 2, . . . , 8 is defined as follows

Gµν
a = F µν

a + gf bc
a Aµ

b A
ν
c =

∂Aν
a(x)

∂xµ

− ∂Aµ
a(x)

∂xν

+ gf bc
a Aµ

b A
ν
c . (2.5)

The existence of the additional term gf bc
a Aµ

b A
ν
c on the right-hand side of (2.5) is a

consequence of the non-abelian character of the gauge group SU(3).

Writing out ~Gµν
~Gµν explicitly in terms of Aa

µ yields

~Gµν
~Gµν = ~Fµν

~F µν

+ g

{
f bc

a

(
∂Aa

ν

∂xµ
− ∂Aa

µ

∂xν

)
Aµ

b A
ν
c + fa

bc

(
∂Aµ

a

∂xν

− ∂Aν
a

∂xµ

)
Ab

µA
c
ν

}

+ g2f bc
a fa

deA
µ
b A

ν
cA

d
µA

e
ν . (2.6)

It can be seen easily from (2.6) that the QCD Lagrangian (2.1) differs from the QED

one in the presence of two additional terms

g

{
f bc

a

(
∂Aa

ν

∂xµ
− ∂Aa

µ

∂xν

)
Aµ

b A
ν
c + fa

bc

(
∂Aµ

a

∂xν

− ∂Aν
a

∂xµ

)
Ab

µA
c
ν

}
+ g2f bc

a fa
deA

µ
b A

ν
cA

d
µA

e
ν

(2.7)

describing the selfinteraction of three and four gluons. As we have already pointed

out in the beginning of Chapter 2, the selfinteraction of gluons leads to the phe-

nomenological consequences as the colour confinement and the asymptotic freedom.

2.2 Renormalization in QCD

In the following, let us assume all quarks to be massless3. Then, the Lagrangian

(2.1) has only one free parameter g, the so-called colour charge. Applying the

standard quantization procedure on (2.1), one obtains perturbative QCD, where any

observable is represented by a series in powers g2.

Straightforward calculations using the technique of Feynman diagrams in QCD

however, similarly to QED, lead to the problem of divergencies of loop momentum

3We shall assume all quarks to be massless throughout this work.
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Feynman integrals4. A method, invented by Feynman, Schwinger and Tomonaga,

how to get rid of these divergencies is called renormalization. The essence of

renormalization is redefinition of the original quantities, usually called as bare

ones in the Lagrangian (2.1), i.e. colour charge, fermion masses and field operators

Ψ(x), ~Aµ(x). After applying this procedure, renormalized theory then works with the

new, renormalized quantities instead of the bare ones. Technical realization of the

renormalization procedure can be introduced in two steps, at first applying the so-

called regularization procedure, which isolates ultraviolet divergences, followed by

the introduction of counterterms, which cancel the original ultraviolet divergences.

Many regularization methods have been invented recently, but presently the most

widely used one is the so-called dimensional regularization.

Renormalization procedure removes physically meaningless infinite terms. How-

ever, because the cancellation of ultraviolet infinities of loop integrals does not de-

termine the counterterms uniquely, we are left with a considerable freedom how to

define renormalized quantities, which goes under the name renormalization group

5. The requirement of self-consistency of the perturbation theory implies the invari-

ance of the sum of perturbative series for physical observables with respect to this

RG. Nevertheless, this condition guarantees an observable to be independent of a

particular choice of renormalized quantities, only if the sum of the corresponding

perturbative series is considered to all orders. Since in realistic calculations at most

only first three terms of perturbative series are known, a selection of properly defined

renormalized quantities is important and integral part of every perturbation theory

application.

2.2.1 Renormalization Scale and Scheme Dependence of Per-

turbative Series

As we have already mentioned in QCD with massless quarks there is only one free

parameter in the Lagrangian (2.1). Therefore, every observable depends only on

renormalized colour charge g. Further we define the so-called strong coupling

4For instance, QED corrections to the photon and fermion propagator considered at one loop.
5We shall denote renormalization group as RG.
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parameter as

αs =
g2

4π
. (2.8)

It it useful to notice that αs is a function depending on a number of free parameters

introduced in the process of renormalization. One of them, having the dimension of

mass, is called renormalization scale and denoted as µ. The rest of them define

the so-called renormalization scheme which will be denoted as RS. For brevity,

the so-called renormalized couplant, or simply couplant, is defined having the

following form6

a =
αs

π
. (2.9)

The renormalization scale and scheme dependence of couplant a is defined by the

RG equation7

∂a(µ, RS)
∂ ln µ

≡ β(a) = −ba2(µ, RS)
[
1 + ca(µ, RS) + c2a

2(µ, RS) + · · · ] . (2.10)

The coefficients b and c are uniquely defined by the number of quark flavours nf and

colours Nc as

b =
11Nc − 2nf

6
, c =

51Nc − 19nf

22Nc − 4nf

, (2.11)

while ci, i ≥ 2 are arbitrary finite numbers. It is very useful to make the parametriza-

tion of RS just by the set of free parameters {ci} [11]. Moreover, it is possible to

derive from (2.10) the dependence of the couplant a (µ, {ci}) on parameters ci, i ≥ 2

in the form

∂a (µ, {ci})
∂cj

≡ βj = −β(a)

a∫

0

bxj+2

β(x)2 dx. (2.12)

6The purpose of this definition is to eliminate the very frequent appearance of powers of number

π.
7The right-hand side of the RG equation (2.10), i.e. β(a), is called the β-function of QCD.
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The RG equation (2.10) has infinitely many solutions which differ by a certain

boundary condition. We shall adopt the commonly used boundary condition

a(µ = Λ) = ∞, (2.13)

where Λ is a new free parameter distinguishing particular solutions of (2.10) for a

specified β(a) and having, similarly to µ, the dimension of mass8. Since the couplant

a depends actually only on the ratio µ
Λ , it is possible without the loss of generality to

fix Λ and vary µ only.

We have pointed out so far that in QCD, contrary to quantum mechanics, even

the expansion parameter, i.e. the couplant, is not well-defined. Precisely speaking,

ambiguities in the definition of couplant occur as can be easily from the form of the

β(a) function on the right-hand side of (2.10). According to (2.10), β(a) is defined

by a formal power series as

β(a) = −ba2

(
1 + ca +

∞∑
i=2

cia
i

)
. (2.14)

Thus, it is very important to give the β-function unambiguous meaning making the

right-hand side of (2.10) well-defined. This problem can be treated very easily by a

certain choice of RS. Since any RS is fully defined by specifying the set {ci}, it is

easy to make the sum
∑∞

i=2 cia
i unambiguous, e.g. convergent in some area of the

a-plane or simply equal to zero, making the couplant a well-defined. Moreover, it

is possible to choose such scale µ and RS, that a perturbative series for a physical

observable9 is reduced to the leading term only [42]. Then, contrary to the previous

case, the problems pointed out in Preface concern the Equation (2.10).

In general, respecting only the boundary condition (2.13), the solution of the RG

equation (2.10) at LO reads10

8Note that the definition (2.13) cannot always be used. For instance, choosing c2 < 0 and

ci = 0, i ≥ 3 yields the limit limµ→Λ a(µ, c2) to be finite! Please, see Figure 2.1.
9A perturbative series for a physical observable may have the form (2.27), which we shall discuss

more in detail.
10LO denotes the so-called leading term, i.e. the term having the smallest power of a on the

right-hand side of (2.10).
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a
(µ

Λ

)
=

1

b ln
(µ

Λ

) . (2.15)

Since in realistic QCD Nc = 3 and nf ≤ 6, the coefficient b is positive. Thus

a
(µ

Λ

)
→ 0, µ →∞. (2.16)
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(a) The behaviour of QCD β-function for three

different choices of c2.
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(b) The behaviour of corresponding couplants

a as a functions of the scale µ.

Figure 2.1: The behaviour of QCD β-function and corresponding couplants.

The expression (2.16) manifests the asymptotic freedom. Contrary to QED, this

means that Λ is not the upper bound for the physically meaningful values of µ, but the

lower one. Figure 2.1 sketches the behaviour of QCD β-function and corresponding

couplants. It is important to notice here, that ambiguity in specifying the set {ci, i ≥
2} plays enormous role. In Figure 2.1, only first arbitrary parameter c2 is taken into

account and for three different choices of c2, three different behaviours of couplant

a(µ) at small µ occur. Since for c2 = 0 and c2 > 0, the couplant a(µ) blows up to

infinity for µ → Λ, choosing c2 < 0 leads to the so-called couplant freezing11.

Considering (2.10) at NLO, the resulting equation is of the form12

∂a(µ)
∂ ln µ

≡ β(a) = −ba2(µ)
[
1 + ca(µ)

]
(2.17)

11Interesting discussion concerning the physical relevance of couplant freezing can be found in

[4, 50].
12NLO denotes the so-called next-to-leading term.
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The couplant a can be expressed analytically in closed-form in terms of the Lambert

W function, which is defined implicitly as follows

W (z) exp(W (z)) = z. (2.18)

Then, using (2.18) yields

a(µ) = − 1

c
[
1 + W−1

(
−1

e

(
µ
Λ

)− b
c

)] , (2.19)

where the subscript -1 on W denotes the branch of the Lambert W function required

for asymptotic freedom. However, the couplant considered to NLO can be defined

also implicitly as follows

b ln
(µ

Λ

)
=

1
a

+ c ln
ca

1 + ca
. (2.20)

In general, considering (2.10) at an arbitrary order n, the implicit equation defining

couplant a reads

b ln
(µ

Λ

)
=

1
a

+ c ln
ca

1 + ca
+

a∫

0

dx

[
− 1

x2Bn(x)
+

1
x2(1 + cx)

]
, (2.21)

where

Bn(x) = 1 + cx + c2x
2 + · · ·+ cn−1x

n−1. (2.22)

It is trivial to check, that for n = 2, the equation (2.21) takes the form (2.20).

Moreover, setting n = 3, i.e. considering (2.10) at NNLO, one obtains13

b ln
(µ

Λ

)
=

1
a

+ c ln
ca

1 + ca
+

a∫

0

dx

[
− 1

x2(1 + cx + c2x2)
+

1
x2(1 + cx)

]
. (2.23)

Performing the integration in (2.23) yields the implicit equation for couplant a con-

sidered at NNLO as
13NNLO denotes the so-called next-to-next-to-leading term.
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b ln
(µ

Λ

)
=

1
a

+ c ln
ca√

1 + ca + c2a2
+ f (a, c2) , (2.24)

where

f (a, c2) =
2c2 − c2

d

[
arctan

2c2a + c

d
− arctan

c

d

]
,

d =
√

4c2 − c2, 4c2 > c2, (2.25)

f (a, c2) =
2c2 − c2

d

[
ln

∣∣∣∣
2c2a + c− d

2c2a + c + d

∣∣∣∣− ln

∣∣∣∣
c− d

c + d

∣∣∣∣
]

,

d =
√

c2 − 4c2, 4c2 < c2. (2.26)

Further on, let us consider a perturbative series for an observable not specified in

detail of the form

R(Q) = a(µ, ci)
[
r0 + r1(Q,µ, ci)a(µ, ci) + r2(Q,µ, ci)a

2(µ, ci) + · · · ] . (2.27)

The requirement that (2.27) has to be invariant with respect to RG means

∂R(Q)
∂ ln µ

= 0,
∂R(Q)

∂ci

= 0, i ≥ 2, (2.28)

which applied to the finite sum

RN = a(µ, ci)
[
r0 + r1(Q,µ, ci)a(µ, ci)+

+ r2(Q, µ, ci)a
2(µ, ci) + · · ·+ rN−1a

N−1(µ, ci)
]

=

=
N−1∑

k=0

rka
k+1(µ, ci) (2.29)

implies

∂RN

∂ ln µ
= O

(
aN+1

)
,

∂RN

∂ci

= O
(
aN+1

)
. (2.30)

Thus, the N -th order partial sum of the series (2.27) is of the form
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RN =
N−1∑

k=0

rka
k+1(µ, ci)

= F(µ, ci, i ≤ N − 1; ρ, ρj, 2 ≤ j < N − 1), (2.31)

where the quantities ρ, ρj, j ≥ 2 are the so-called RG invariants [11]. This means,

that they are independent of µ and ci, i ≥ 2. Solving equations (2.30) yields the

following expressions for coefficients r1(Q,µ, ci), r2(Q,µ, ci)

r1(Q,µ) = b ln
µ

Λ
− ρ

(
Q

Λ

)
, (2.32)

r2(Q, µ, c2) = ρ2 − c2 +
(
r1 +

c

2

)2
. (2.33)

The invariant ρ is defined in MS RS14 as follows

ρ

(
Q

ΛMS

)
= b ln

Q

ΛMS

− r1

(
µ = Q, MS

)
. (2.34)

The invariant ρ2, contrary to ρ, is only a pure number. When considering higher

coefficients rk, k ≥ 3, higher invariants ρk, k ≥ 3 have to be taken into account.

These invariants, similarly to ρ2, are also pure numbers.

Using (2.21) we can express (2.32), (2.33) and their higher order modifications it

is possible to express only in terms of renormalized couplant a, RG invariants ρj and

coefficients ci. Explicitly, we find

RNLO(a, ρ) = (1 + r0)a +

[
c ln

ca

1 + ca
− ρ

]
a2 (2.35)

and

RNNLO(a, ρ, ρ2, c2) = (2 + r0)a +

[
3

(
c ln

ca√
1 + ca + c2a2

+ f(a, c2)− ρ

)
+ 2c

]
a2

+

[(
c ln

ca√
1 + ca + c2a2

+ f(a, c2)− ρ +
c

2

)2

+ ρ2 − c2

]
a3.

(2.36)

14This scheme will be described in the Section 2.2.2.1.
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Equations (2.35), (2.36) imply that in QCD perturbative expansions in powers of

renormalized couplant are in fact not power series, since the coefficients rk of pertur-

bative expansions are very complicated functions of a.

2.2.2 Commonly Used Choices of Renormalization Schemes

As we have pointed out, the meaningful phenomenological application of QCD re-

quires renormalization of the theory. We have also mentioned that every renormal-

ization process of a certain renormalizable field theory is preceded by regularization,

which isolates the ultraviolet loop integral divergencies.

The commonly used regularization method in QCD preserving the gauge invari-

ance, as pointed out in Section 2.2, is dimensional regularization. Moreover, this

approach is generally the technically simplest one. The basic feature of dimensional

regularization is that after regularizing our theory using dimensional regularization,

powers of the term ln 4π−γE appear in the results. γE is the so-called Euler constant,

which is an artefact of the power expansion of the Euler function Γ.

2.2.2.1 Renormalization Schemes MS and MS

After regularizing our theory, it is possible to proceed to the renormalization. As we

already know, this can be made using the technique of counterterms. These are the

additional terms introduced into the Lagrangian, which compensate divergencies of

loop integrals. It is possible to introduce such terms in the following ways:

1. Counterterms introduced into the QCD Lagrangian compensate only divergent

terms of perturbative expansion. All finite terms remain unchanged.

2. Counterterms introduced into the QCD Lagrangian compensate not only diver-

gent terms of perturbative expansion, but also some terms which are finite.

The former RS is called the Minimal Subtraction scheme, denoted as MS. In the

case the counterterms are chosen to cancel also the above mentioned terms ln 4π−γE,

the latter is called the Modified Minimal Subtraction scheme, which is commonly

denoted as MS.
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2.2.2.2 Renormalization Scheme PMS - Principle of Minimal Sensitivity

Another choice of the renormalization scale and scheme is based on the Principle of

Minimal Sensitivity and thus, it is denoted as PMS. This method was introduced

by P. M. Stevenson [11]. The basic idea of PMS is to select the renormalization scale

and scheme by imposing the conditions

∂RN(Q,µ, ci)
∂ ln µ

= 0,
∂RN(Q,µ, ci)

∂ci

= 0. (2.37)

Therefore, we search for point having coordinates [µ, ci] where the partial sum RN is

having, locally, the smallest variations with respect to changes of {µ, RS} = {µ, ci}.
However, there is a possibility of existing of many such points fulfilling this require-

ment.

2.3 Adler Function of QCD

Let us now turn to the so-called Adler function of QCD15 and recall its basic

features, which will be used in Chapter 3.

Figure 2.2: The Borel plane for the Adler function [10].

15For definition see [6].
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Perturbative QCD yields the formal expansion of the Adler function in powers of

renormalized strong coupling parameter αs(µ, RS) in the form

D(s) = 1 +
∞∑

n=1

Dn (s, µ, RS)

(
αs (µ, RS)

π

)n

, (2.38)

where s is a kinematical variable equal to the external momentum squared. The coef-

ficients Dn(s, µ, RS) are assumed to have the following specific large order behaviour

Dn (s, µ, RS) ∼
∑

k

Ck (s, µ, RS) n!nδk(s,µ,RS)

(
πβ0

k

)n

, (2.39)

where the sum runs over k ∈ Z \ {0, 1} [6]. The expression (2.38) can be rewritten

using (2.9) as follows

D(s) = 1 + a

∞∑
n=0

Dn+1a
n. (2.40)

Then, the Borel transform of the function

D(s)− 1 = a

∞∑
n=0

Dn+1a
n (2.41)

is of the form

B[D](u) =
∞∑

n=0

bnu
n (2.42)

and the coefficients bn satisfy

bn =
Dn+1

n!
. (2.43)

Finally, the Adler function (2.40) can be formally obtained in the following integral

representation

D(s) = 1 +

∞∫

0

e−
u
a B[D](u)du. (2.44)

The large order behaviour of the coefficients Dn (2.39) governs the existence of

branch point singularities for the function B[D](u) (2.42) in the Borel u-plane [6].

The corresponding dominant behaviour of B[D](u) is of the form
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B[D](u) ∼
∑

k

CkΓ(δk + 1)
(

1− u

k

)−δk−1
. (2.45)

Equation (2.45) implies that B[D](u) becomes singular at the branch points located

along the negative axis, the so-called ultraviolet renormalons, and along the pos-

itive axis, the so-called infrared renormalons. We mean the rays u ≤ −1 and

u ≥ 2, respectively16. Precisely speaking, the renormalons are located at points

u = k, k ∈ Z \ {0, 1}.
The Borel transform (2.42) is renormalization scale and scheme dependent. How-

ever, it is generally assumed that position of its singularities in the Borel u-plane is

renormalization scale and scheme independent. Moreover, as discussed in [6], it is

independent of the external momenta s. The nature of the first two branch points,

the UV renormalon u = −1 and the IR renormalon u = 2 was revealed in [39,40]. It

was shown that near the first UV renormalon u = −1 the function B[D](u) behaves

as [39]

B[D](u) ∼ r1

(1 + u)γ1
, (2.46)

where r1 is unknown and

γ1 = 3− 2π
c

b
+ λ1, (2.47)

where λ1 as well as b and c depend on the number of flavours considered. Similarly,

near the first IR renormalon u = 2 B[D](u) behaves as [40]

B[D](u) ∼ r2

(2− u)γ2
, (2.48)

where

γ2 = 3− 2π
c

b
. (2.49)

Analogous to r1, r2 is also unknown.

16Please see Figure 2.2 [10].
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2.3.1 Optimal Expansion of the Adler Function

Following the steps proposed in [8–10] and in Section 1.5 we shall expand the integral

(2.44). The optimal expansion of the Adler function B[D](u) (2.42) in powers of

the optimal conformal mapping (1.71) provides an analytic continuation of the Borel

transform outside its convergence disk 17. Let us recall the definition of w(u), which

is of the form

w(u) =

√
1 + u−

√
1− u

2
√

1 + u +

√
1− u

2

and its inverse

u =
8w

3w2 − 2w + 3
. (2.50)

w

w

Infinity

Infinity

2nd IR sheet
1st1s

t U
V
 s
he

et

2n
d 

U
V
 s
he

et

Figure 2.3: The complex w-plane for the Adler function [10].

The Borel u-plane with removed cuts u ≤ −1 and u ≥ 2 represents the domain of

holomorphy D of (2.42)

D = C \ {(−∞,−1〉 ∪ 〈2, +∞)} . (2.51)

17Note that the radius of the convergence disk is such that the disk reaches the nearest singularity,

i.e. u = −1. Thus, the radius equals one and B[D](u) is convergent on the unit disk.
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Since the Caprini-Fischer method requires the whole holomorphy domain (2.51) of

(2.42) to be conformally mapped by the function (1.71) onto the unit disk, (1.71)

possesses the same cuts as the Borel transform B[D](u) (2.42). This yields the specific

definition (1.71) of the optimal conformal mapping w(u)18. According to Section 1.5

and [8–10], the optimal expansion of the Borel integral (2.44) is done using (1.63) in

the form

D(s) = 1 +
∞∑

n=1

D̃nWn(a), (2.52)

where the expansion functions Wn(a), n ∈ N0 are defined using (1.64), (1.66) and

(1.67) as follows [38]

Wn(a) =
1
n!

(
8
3

)n 1
a

PV

∞∫

0

e−
u
a wn(u)du, n ∈ N0. (2.53)

0 2 4 6 8 10
a

-1.5

-1

-0.5

0

0.5

1

1.5

2

W
n
Ha
L

W5

W4

W3

W2

W1

Figure 2.4: The shape of the expansion functions Wn(a), n = 1, 2, . . . , 5.

The shape of the functions Wn(a) for n = 1, 2, . . . , 5 is sketched in Figure 2.4. As was

already pointed out, the functions (2.53) are singular at the point a = 0 and possess

asymptotic expansions [10]

18Note that the mapping (1.71) is unique up to the rotations about the origin by an angle ϕ.
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Wn(a) ≈
∞∑

k=n

ζnka
k. (2.54)

As can be easily seen, Equation (2.53) implies that ζnn = 1, n ∈ N. Therefore, the

asymptotic expansions for the functions Wn(a), n = 1, 2, 3 read

W1(a) ≈ a− 0.5a2 + 1.21875a3 + · · · , (2.55)

W2(a) ≈ a2 − 1.5a3 + · · · , (2.56)

W3(a) ≈ a3 + · · · . (2.57)

The expansion coefficients D̃n in (2.52) can be easily computed from the original

coefficients Dn in (2.38). For instance

D̃1 = D1, (2.58)

D̃2 = D2 −D1ζ12, (2.59)

D̃3 = D3 − D̃2ζ23 −D1ζ13

= D3 −D2ζ23 + D1 (ζ12ζ23 − ζ13) . (2.60)

Up till now, only Dn, n = 1, 2, 3 were computed [44–49]. In the MS scheme with

nf = 3 and setting µ =
√

s their numerical values are

D1 = 1,

D2 = 1.63982,

D3 = 6.37101. (2.61)

Using Equations (2.55 - 2.60), (2.61) implies the following numerical values for D̃n, n =

1, 2, 3

D̃1 = 1,

D̃2 = 2.13982,

D̃3 = 8.36199. (2.62)
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Figure 2.5: Comparison of the approximants of the Adler function 1 +
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n=1 Dna
n

and 1 +
∑3

n=1 D̃nWn(a).

The comparison of the expansions (2.38) and (2.52) considered to NNLO can be found

in Figure 2.5.

However, there is another possibility of expanding D(s) in alternative set of func-

tions, which can be considered as a generalization of the set Wn(a), n ∈ N. The

motivation of this procedure is to use to most information known about the analytic

properties of the Borel transform B(u) in the Borel u-plane. Soper and Surguladze

pointed out that the renormalons closest to the origin u = 0 govern the large order

behaviour of perturbative expansion of the Adler function more significantly than

the renormalons further to the right-hand or the left-hand side [43]. Moreover they

suggest to factorize these singularities out introducing the so-called singularity soft-

ening. Since we know the character and the position of the first two renormalons, it

is possible to follow these ideas and write the Borel transform in the form

B(u) =
1

(1 + u)γ1(2− u)γ2

∞∑
n=0

D̂n+1

n!
un. (2.63)

This yields, following similar steps as in the previous case, another set of expansion

function W̃n(a), n ∈ N defined as follows
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W̃n(a) =
1
n!

(
8
3

)n 1
a

PV

∞∫

0

e−
u
a (1 + u)−γ1

(
1− u

2

)−γ2

wn(u)du, n ∈ N0, (2.64)

which are displayed in Figure 2.6 for n = 1, 2, . . . , 5.
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Figure 2.6: The shape of the expansion functions W̃n(a), n = 1, 2, . . . , 5.
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The asymptotic expansions for the functions W̃n(a), n = 1, 2, 3 read

W̃1(a) ≈ a− 3.098a2 + 17.9315a3 + · · · , (2.65)

W̃2(a) ≈ a2 − 5.397a3 + · · · , (2.66)

W̃3(a) ≈ a3 + · · · . (2.67)

Therefore, we have constructed another expansion of the Adler function, which is of

the form

D(s) = 1 +
∞∑

n=1

DnW̃n(a), (2.68)

where coefficients Dn, n ∈ N can be calculated using the same procedure as have

been used for coefficients D̃n, n ∈ N. Comparison of three different approximants

of the Adler function, i.e. (2.38), (2.52) and (2.68) can be found in Figure 2.7.

The convergence conditions for the optimal expansion (2.68) were studied in [31]

leading, however, to the same conclusion as in the case of expansion (2.52), which

were discussed in Section 1.5 and studied in papers [9,10]. The graphical comparison

of the approximants in Figures 2.5 and 2.7 illustrates completely different behaviour

of pertubative expansion (2.38) and the new optimized expansions (2.52), (2.68). It

is useful to point out very specific behaviour of the approximant (2.68). Note that it

varies quite slowly around the value D(s) = 1.
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Chapter 3

τ -lepton Decay and e+e−

Annihilation in QCD

The renormalization scale and scheme dependence of perturbative expansions consid-

ered to finite order was discussed more in detail in Subsection 2.2.1. As mentioned

before, in this chapter we shall apply the Caprini-Fischer method of resummation

proposed in Section 1.5 on perturbative expansions corresponding to the processes

of τ -lepton decay and e+e− annihilation. The aim is to compare the renormaliztion

scale dependence of the finite order approximants resulting from standard perturba-

tion theory with the dependence of the approximants obtained by Caprini-Fischer

resummation considered to the same order.

3.1 τ -lepton Decay

3.1.1 Basic Formulae

Let us consider the familiar ratio

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + e−νe)
, (3.1)

which is fully computable within the framework of perturbative QCD as follows

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + e−νe)
= 3(1 + δEW)(1 + Rτ ). (3.2)
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The term δEW is the electroweak correction [32–34]

δEW =

(
5
12

+ 2 ln
MZ

Mτ

)
α(Mτ )

π
, α(Mτ ) =

1
133.29

(3.3)

and its numerical value is approximately δEW ' 0.019. The QCD contribution Rτ

has the perturbative expansion of the form

Rτ (Mτ ) = a(µ, ck)
[
1 + r1 (Mτ , µ) a(µ, ck) + r2 (Mτ , µ, ck) a2(µ, ck) + . . .

]
. (3.4)

The rate Rτ is related to the corresponding Adler function as [35,36]

Rτ =
3(1 + δEW)

2πi

∮

|s|=M2
τ

ds

s

(
1− s

M2
τ

)3 (
1 +

s

M2
τ

)
D(s). (3.5)

Moreover, it was shown [37] that Equation (3.5) can be rewritten as follows

Rτ = 3(1 + δEW)


1 +

∞∫

0

e−
u
a B[D](u)Fτ

(
bu

2

)
du


 , (3.6)

where

Fτ (u) =
−12 sin(πu)

πu(u− 1)(u− 3)(u− 4)
. (3.7)

Therefore, the QCD contribution Rτ can be expressed as follows

Rτ =

∞∫

0

e−
u
a B[D](u)Fτ

(
bu

2

)
du. (3.8)

The integration path in the integral (3.8) runs from 0 to ∞ and circumvents the

singularities of the Borel transform B(u), which create non-uniqueness of (3.8). To

eliminate this non-uniqueness the universally adopted PV prescription is chosen.

3.1.2 Expansion Functions W ij
n (a)

Similarly to the case of the optimal expansion of the Adler function considered in

Subsection 2.3.1, we shall expand the integral representation (3.8) of Rτ . Inserting

58



3.1. τ -lepton Decay 3. τ -lepton Decay and e+e− Annihilation in QCD

the optimal expansion of B[D](u) into (3.8) one obtains the optimal expansion of

(3.8) in the form

Rτ =
∞∑

n=1

r̄nWn(a), (3.9)

where the expansion functions Wn(a), n ∈ N for the QCD contribution Rτ are defined

as follows [38]

Wn(a) =
1
n!

(
8
3

)n (
2
b

)n 2
ab

PV

∞∫

0

e−
2u
ab Fτ (u)wn(u)du. (3.10)

However, similarly to the case of the Adler function, it is possible to define another sets

of expansion functions using the so-called singularity softening [43]. For this purpose,

we shall introduce new expansion functions W ij
n (a), where n is indexing the order of

the function. Index i will denote how many pairs of renormalons are factorized out.

Finally, j will index the shifting of the cuts of the optimal conformal mapping w(u)

to the left-hand and to the right-hand side by one, respectively. Moreover, we shall

use index j also in the case of corresponding conformal mapping and denote it as

wj(u).

In general, W ij
n (a) is defined as follows1

W ij
n (a) =

1
a

∞∫

0

e−
u
a

i∏

k=0

(
1 +

u

k

)−γ2k−1
(

1− u

k + 1

)−γ2k

wn
j (u)du, (3.11)

where wj(u) is of the form

wj(u) =

√
1 +

u

j + 1
−

√
1− u

j + 2√
1 +

u

j + 1
+

√
1− u

j + 2

. (3.12)

Let us again emphasize that the integration is in the sense of PV. The formal term

(
1 +

u

0

)−γ−1
(

1− u

1

)−γ0

,

1For brevity, it is useful to omit the normalization factors and the function Fτ . We shall write

down the expansion functions relevant in the case of τ -lepton decay later on.
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which enters the definition (3.11) corresponding to index k = 0 will be identified with

unity

(
1 +

u

0

)−γ−1
(

1− u

1

)−γ0 ≡ 1. (3.13)

Moreover, let us require that i ≥ j. This condition avoids shifting of the cuts to

forerun the factorization of renormalon pairs. Violation of this requirement yields

that some renormalons will be omitted and thus, their contribution not properly

counted in. The functions (3.11) are singular at the point a = 0 having there the

asymptotic expansion of the form [10]

W ij
n (a) ≈

∞∑

k=n

ζ ij
nka

k. (3.14)

Further on, we shall work with the expansion functions of the type W 00
n (a), W 10

n (a)

and W 11
n (a). These functions are defined according to (3.11) as

W 00
n (a) =

1
a

∞∫

0

e−
u
a wn

0 (u)du, (3.15)

W 10
n (a) =

1
a

∞∫

0

e−
u
a (1 + u)−γ1

(
1− u

2

)−γ2

wn
0 (u)du, (3.16)

where w0(u) is of the form

w0(u) =

√
1 + u−

√
1− u

2
√

1 + u +

√
1− u

2

(3.17)

and

W 11
n (a) =

1
a

∞∫

0

e−
u
a (1 + u)−γ1

(
1− u

2

)−γ2

wn
1 (u)du, (3.18)

where w1(u) is of the form

w1(u) =

√
1 +

u

2
−

√
1− u

3√
1 +

u

2
+

√
1− u

3

. (3.19)
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The inverse mapping of (3.19) is of the form

u =
24w1

5w2
1 − 2w1 + 5

. (3.20)

The expansion functions (3.15), (3.16) and (3.18) can be easily modified for the

case of τ -lepton decay. Taking into account Equation (3.8) yields the definition of

corresponding expansion functions as follows

W 00
n (a) =

1
n!

(
8
3

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab Fτ (u)wn

0 (u)du, (3.21)

W 10
n (a) =

1
n!

(
8
3

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab (1 + u)−γ1

(
1− u

2

)−γ2

Fτ (u)wn
0 (u)du, (3.22)

W 11
n (a) =

1
n!

(
24
5

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab (1 + u)−γ1

(
1− u

2

)−γ2

Fτ (u)wn
1 (u)du. (3.23)

It is easy to check that functions (3.21), (3.22) and (3.23) are normalized in such way

that

ζ ij
nn = 1, n = 1, 2, 3, 0 ≤ j ≤ i ≤ 1. (3.24)

Thus, the asymptotic expansions of (3.21), (3.22) and (3.23) for n = 1, 2, 3 are of the

form

W 00
1 (a) ≈ a + 6a2 + 0.08a3 + · · · ,

W 00
2 (a) ≈ a2 + 7.312a3 + · · · ,

W 00
3 (a) ≈ a3 + · · · , (3.25)

W 10
1 (a) ≈ a + 0.154a2 + 22.214a3 + · · · ,

W 10
2 (a) ≈ a2 − 1.456a3 + · · · ,

W 10
3 (a) ≈ a3 + · · · (3.26)
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and

W 11
1 (a) ≈ a + 0.904a2 + 19.013a3 + · · ·

W 11
2 (a) ≈ a2 + 0.794a3 + · · · ,

W 11
3 (a) ≈ a3 + · · · , (3.27)

respectively.
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Figure 3.1: The shape of the expansion functions W 00
n (a), n = 1, 2, . . . , 5.

Figures 3.1, 3.2 and 3.3 shows the behaviour of expansion functions (3.21), (3.22) and

(3.23), respectively, for n = 1, 2, . . . , 5.

3.1.3 Renormalization Scale Dependence of Rτ Approximants

We shall use the novel expansions

Rτ =
∞∑

n=1

rij
n−1W

ij
n (a) (3.28)

to investigate the renormalization scale dependence of finite order approximants of

Rτ . In the case of the standard perturbation theory, the dependence was discussed

in [37, 41]. The dependence in the case of expansion function (3.21) and (3.22) was
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Figure 3.2: The shape of the expansion functions W 10
n (a), n = 1, 2, . . . , 5.
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Figure 3.3: The shape of the expansion functions W 11
n (a), n = 1, 2, . . . , 5.

considered in [38]. Now, we shall compare the scale dependence of these approximants

with the new ones resulting from the expansion in functions (3.23).

The coefficients rij
n can be easily computed, similarly to the coefficients D̃n in the

case of the Adler function using (2.58 - 2.60), from the coefficients rn of the standard

perturbative expansion (3.4) as follows
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rij
0 = r0 = 1, (3.29)

rij
1 = r1 − r0ζ

ij
12 = r1 − ζ ij

12, (3.30)

rij
2 = r2 − rij

1 ζ ij
23 − r0ζ

ij
13

= r2 − r1ζ
ij
23 + r0

(
ζ ij

12ζ
ij
23 − ζ ij

13

)

= r2 − r1ζ
ij
23 + ζ ij

12ζ
ij
23 − ζ ij

13. (3.31)

Let us construct the finite order order sums of (3.28) in the form

Rij,(N)
τ =

N∑
n=1

rij
n−1W

ij
n (a). (3.32)

It can be shown [38] that the approximants (3.32) obey the same property of formal

internal consistency of the standard perturbation theory (2.30). This means that the

derivatives of R
ij,(N)
τ with respect to ln µ are of the form

∂R
ij,(N)
τ (µ)
∂ ln µ

=
∞∑

k=N+1

sij
k W ij

k (a), (3.33)

where sij
k are some numbers. Therefore, Equation (3.33) can be considered as a

generalization of (2.30).

Further on, we shall proceed to numerical tests of the renormalization scale depen-

dence of approximants (3.32). The so-called ’t Hooft renormalization convention

will be used, which means that ci = 0, i ≥ 2. Therefore, the couplant a is defined by

RG equation considered to NLO at every order of perturbative expansion. Moreover

we set Nc = 3 and nf = 3, which implies using (2.11)

b =
9
2
, c =

16
9

.

The numerical value of Q is taken to be equal to Mτ , so

Q = Mτ = 1.8GeV.

This choice yields [41]
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r1

(
µ = Q, MS

)
= 5.2.

In order to illustrate the scale dependence, the fundamental parameter Λ correspond-

ing to MS and nf = 3 is set equal to

Λ(3)

MS
= 0.31 GeV, (3.34)

which is close to the current world average. This implies

ρ1

(
Q

Λ(3)

MS

)
= b ln

Q

Λ(3)

MS

− r1

(
µ = Q, MS

)
= 2.72

and the RG invariant ρ2 is equal to [41]

ρ2 = −6.27.
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Figure 3.4: Renormalization scale dependence of R
ij,(N)
τ , 0 ≤ j ≤ i ≤ 1, considered

to LO

The graphical comparison of the approximants R
ij,(N)
τ , 0 ≤ j ≤ i ≤ 1 with the

conventional pertubative expansion of Rτ considered to LO, NLO and NNLO can

be found in Figures 3.4, 3.5 and 3.6, respectively. It is easy to see that the scale

dependence of the R
ij,(N)
τ , 0 ≤ j ≤ i ≤ 1 approximants differs significantly from
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τ , 0 ≤ j ≤ i ≤ 1, considered

to NLO
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Figure 3.6: Renormalization scale dependence of R
ij,(N)
τ , 0 ≤ j ≤ i ≤ 1, considered

to NNLO

the conventional ones denoted as SPT. Moreover, a remarkable difference between

the approximants R
00,(N)
τ , R

10,(N)
τ and R

11,(N)
τ can be observed. This implies that

singularity softening plays an important role. This can be seen from the fact that the

values of approximant R
10,(3)
τ are very close to the PMS optimal point of the standard

perturbative approximant considered to NNLO (note the distinctive plateau in the
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shape of R
10,(3)
τ ). However, the values of R

00,(3)
τ blow closely to this stationary point.

The approximant R
11,(3)
τ varies around this point quite rapidly. Therefore, it can be

concluded that the shifting the cuts of optimal conformal mapping is not very useful

despite the fact that a ”knee” is remarkably present at NLO. Note the big numerical

differences between approximants considered to NLO, which surprisingly vanish in

NNLO.

There are arguments that it is safer to set j = 0 in the definition of functions

W ij
n (a)0. Consider the expanded function in the form

f(z) =

[∏

k

(
1− sign(Rk)

z

|Rk|
)−γk

]
h(z) + g(z), (3.35)

where Rk are singularities2, Rk ∈ R, γk > 0 and h(z), g(z) holomorphic functions.

Let us rewrite (3.35) in the following form

f(z) =

[∏

k

(
1− sign(Rk)

z

|Rk|
)−γk

]

×
{

h(z) +

[∏

k

(
1− sign(Rk)

z

|Rk|
)γk

]
g(z)

}
. (3.36)

This operation, however, generates new singularities by the term

[∏

k

(
1− sign(Rk)

z

|Rk|
)γk

]
g(z). (3.37)

Afterwards, expanding the function

h(z) +

[∏

k

(
1− sign(Rk)

z

|Rk|
)γk

]
g(z) (3.38)

in powers of shifted conformal mapping, these new singularities are mapped inside the

unit disk worsen the numerical behaviour of the optimal expansion. Therefore, using

unshifted conformal mapping, new singularities are mapped again on the boundary

of the unit disk. Thus, their influence on the numerical behaviour is neglected.

2In our case the UV and IR renormalons.
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3.2 e+e− Annihilation

3.2.1 Basic Formulae

Another hard process, which can be considered within the framework of perturbative

QCD is the e+e− annihilation. Precisely, it is the familiar Re+e−-ratio

Re+e−(Q) =
σ(Q, e+e− → hadrons)
σ(Q, e+e− → µ+µ−)

=

(
3
∑

i

e2
i

)
(1 + Re+e−(Q)) , (3.39)

where the term 3
∑

i e
2
i represents the QPM prediction and Re+e−(Q) is the QCD

correction and Q is the center of mass energy.

The QCD contribution Re+e−(Q) obeys the following perturbative expansion

Re+e−(Q) = a(µ, ci)
[
1 + r1(Q, µ, ci)a(µ, ci) + r2(Q,µ, ci)a(µ, ci)

2 + · · · ] . (3.40)

However, Equation (3.39) can be rewritten as follows [6]

Re+e−(Q) = 12π

( ∑
i

e2
i

)
ImΠ(Q2 + iε), (3.41)

where Π is the electromagnetic correlator of two quark currents, which enters the

definition of the Adler function. Therefore, it is possible to proceed similarly to the

previous case of τ -lepton decay. Moreover, using (3.41) Re+e−(Q) can be formally

represented in the integral form similar to (3.8) [6]. The relevant function Fe+e−(u)

is as follows

Fe+e−(u) =
sin πu

πu
. (3.42)

3.2.2 Expansion Functions W ij
n (a)

Due to (3.42) the relevant expansion function W ij
n (a), 0 ≤ j ≤ i ≤ 1 for Re+e−(Q)

are defined as follows
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W 00
n (a) =

1
n!

(
8
3

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab Fe+e−(u)wn

0 (u)du, (3.43)

W 10
n (a) =

1
n!

(
8
3

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab (1 + u)−γ1

(
1− u

2

)−γ2

Fe+e−(u)wn
0 (u)du,

(3.44)

W 11
n (a) =

1
n!

(
24
5

)n (
2
b

)n 2
ab

∞∫

0

e−
2u
ab (1 + u)−γ1

(
1− u

2

)−γ2

Fe+e−(u)wn
1 (u)du.

(3.45)
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Figure 3.7: The shape of the expansion function W 00
1 (a).

Similarly to the previous case, it is easy to see that functions are normalized to fulfill

the condition ζ ij
nn = 1. Thus, the asymptotic expansions of W 00

n (a), W 10
n (a) and

W 11
n (a) in the neighbourhood of a = 0 for n = 1, 2, 3 are of the form

W 00
1 (a) ≈ a− 1.125a2 − 43.795a3 + · · · ,

W 00
2 (a) ≈ a2 − 3.375a3 + · · · ,

W 00
3 (a) ≈ a3 + · · · , (3.46)
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Figure 3.8: The shape of the expansion functions W 00
n (a), n = 2, . . . , 5.
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Figure 3.9: The shape of the expansion functions W 10
n (a), n = 1, 2, . . . , 5.

W 10
1 (a) ≈ a− 6.97a2 + 40.813a3 + · · · ,

W 10
2 (a) ≈ a2 − 12.143a3 + · · · ,

W 10
3 (a) ≈ a3 + · · · (3.47)

and
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Figure 3.10: The shape of the expansion functions W 11
n (a), n = 1, 2, . . . , 5.

W 11
1 (a) ≈ a− 6.22a2 + 29.596a3 + · · · ,

W 11
2 (a) ≈ a2 − 9.893a3 + · · · ,

W 11
3 (a) ≈ a3 + · · · , (3.48)

respectively.

Figures 3.7, 3.8, 3.9 and 3.10 shows the behaviour of expansion functions (3.43),

(3.44) and (3.45), respectively, for n = 1, 2, . . . , 5.

3.2.3 Numerical Results in the Studies of Re+e− Approxi-

mants

Using the expansion functions (3.43), (3.44) and (3.45) we shall expand Re+e−(Q) in

the following form

Re+e− =
∞∑

n=1

rij
n−1W

ij
n (a). (3.49)

Truncating the expansion (3.49) at finite order N yields the following optimized

approximants
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Figure 3.11: Energy dependence of R
ij,(N)
e+e− , 0 ≤ j ≤ i ≤ 1, considered to LO
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Figure 3.12: Energy dependence of R
ij,(N)
e+e− , 0 ≤ j ≤ i ≤ 1, considered to NLO

R
ij,(N)
e+e− (Q) =

N∑
n=1

rij
n−1W

ij
n (a). (3.50)

The coefficients rij
n are computed identically as in the case of τ -lepton using (3.29 -

3.31).

In order to investigate the Q-dependence of (3.50) we set µ = Q in a(µ, ck) as

well as in the coefficients rij
n (µ, ck, Q). We shall work in ’t Hooft convention as well
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Figure 3.13: Energy dependence of R
ij,(N)
e+e− , 0 ≤ j ≤ i ≤ 1, considered to NNLO
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Figure 3.14: Dependence of the standard approximant Re+e−(a, c2) considered to

NNLO as a function of a and c2 for Q=1 GeV.
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Figure 3.15: Position of the saddle point of the standard perturbation theory approx-

imant Re+e−(a, c2) considered to NNLO.
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Figure 3.16: Energy dependence of R
ij,(N)
e+e− , 0 ≤ j ≤ i ≤ 1, considered to NLO, NNLO

compared with the standard perturbation theory NNLO approximant computed in

PMS scheme with c2 6= 0.

as with c2 6= 0. Coefficient r1 of the conventional expansion can be expressed in MS

as follows [41]

r1(MS, µ = Q) = 1.986− 0.115nf

nf =3−−−→ r1(MS, µ = Q) = 1.941. (3.51)
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The invariant ρ2 equals [41]

ρ2 = −12.2. (3.52)

Figures 3.11, 3.12 and 3.13 shows the behaviour of approximants R
ij,(N)
e+e− , 0 ≤ j ≤

i ≤ 1 with the conventional pertubative expansion of Re+e− considered to LO, NLO

and NNLO. The scale dependence of the R
ij,(N)
e+e− , 0 ≤ j ≤ i ≤ 1 approximants again,

similatly to τ -lepton, differs significantly from the conventional approximants and so

do the approximants R
00,(N)
e+e− , R

10,(N)
e+e− and R

11,(N)
e+e− . The same comments concerning the

singularity softening and cut shifting as in the previous case can be also adopted.

Taking into account c2 6= 0 yields another free parameter in the theory. Thus, the

couplant has to be considered to NNLO and curves in Figures 3.11, 3.12 and 3.13

change to surfaces. These surfaces will be, for a certain value Q of the center of mass

energy, functions of parameter c2 and of the renormalized couplant a. According to

PMS procedure, saddle points of these surfaces will be investigated. The renormal-

ization scale µ and RS will be defined by the coordinates of these saddle points for

a certain value of energy Q. The search for saddle points can be done in parameters

{a, c2}, since a corresponds to µ uniquely via the RG equation.

For illustration, Figure 3.14 shows distinctive saddle in the behaviour of the stan-

dard perturbation theory approximant considered to NNLO with nonzero c2. The

energy Q equals 1 GeV. Moreover, the value of the approximant in the saddle de-

creases with rising energy Q. This phenomenon is manifested in Figures 3.15 and

3.16.
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Summary and Conclusions

Perturbative approach is widely used in QCD calculations of physical observables

in studies of a large number of hard processes. Since at most first three terms of

perturbative series are known, predictions are commonly trusted at high energies

(UV region). However, the low-energy predictions (predictions for IR region) are not

accepted in general, since they blow up.

In this work the renormalization scale dependence in the case of τ -lepton and e+e−

annihilation was investigated. Finite order approximants of ratios Rτ and Rτ were

constructed via the Fischer - Caprini method and many sets of expansion functions

were tested.

The revised numerical tests of scale dependence in the case of τ -lepton decay

shows the importance of the character of first renormalons to be incorporated in the

definition of expansion functions. It can be concluded that the singularity softening

plays a significant role. However, the cuts of the conformal mapping entering the

definition of Caprini - Fischer expansion functions have to stay unshifted, since a

strong numerical evidence was observed that this operation does not lead to better

behaviour of resummed approximants at large distances.

Similar tests in the case of e+e− annihilation were performed, i.e. the Q-dependence

of these approximants was investigated. These pioneer numerical results show again

that the information about the character of renormalons is essential and has to be

properly used in the definition of expansion functions. As in the previous case, the

comparison of Q-dependence leads to the conclusion that the expansion functions,

with the most of the information about character of renormalons used, have to be

preferred. However, one has to bear in mind that cuts of the optimal conformal

mapping have to stay unshifted again. Moreover, the Q-dependence of resummed
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approximants was compared with the approximants resulting from the standard per-

turbation theory computed in the PMS scheme leading to the same conclusions.

Despite the fact that the IR stability of finite order approximants of perturbative

series in QCD was improved by the Caprini - Fischer resummation, we have to be

aware of many other circumstances. One has to bear in mind that this method uses

only the behaviour of perturbative coefficients at large orders and in realistic calcu-

lations we work only with a very small number of them. Moreover, the information

known about the singularities of the Borel transform of the Adler function stems from

the studies of certain classes of Feynman diagrams omitting infinitely many of them.

We also do not know much about the behaviour of the Borel transform on other

sheets of its Riemann surface behind the first renormalons, which appear to be very

complicated branching points. Nevertheless, I consider this method a very promising

step outside the standard perturbation theory bringing interesting new insights on

application of perturbative QCD in the IR region.
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[41] J. Chýla, A. L. Kataev, S. A. Larin, Phys. Lett. B 267 (1991), 269

[42] G. Grunberg, Phys. Rev. D 29 (1984) 10, 2315

[43] D. E. Soper, L. R. Surguladze, Phys. Rev. D 54 (1996), 4566

[44] K. G. Chetyrkin, A. L. Kataev, F. V. Tkachov, Phys. Lett. B 85 (1979), 277

[45] M. Dine, J. Sapirstein, Phys. Rev. Lett. 43 (1979), 668

[46] W. Celmaster, R. Gonsalves, Phys. Rev. Lett. 44 (1980), 560

[47] S. G. Gorishny, A. L. Kataev, S. A. Larin, Phys. Lett. B 259 (1991), 144

[48] L. R. Surguladze, M. A. Samuel, Phys. Rev. Lett. 66 (1991), 560

[49] L. R. Surguladze, M. A. Samuel, Phys. Rev. Lett. 66 (1991), 2416(E)
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[53] J. Fischer, Čs. čas. fyz. 50 (2000), 300

80



[54] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, kap. 40,40A,

Clarendon Press, Oxford 1989, 1993

[55] F. J. Yndurain, Quantum Chromodynamics, Springer-Verlag New York, Berlin,

Heidelberg, Tokyo, 1983

[56] J. Zinn-Justin, Phys. Rep. C 70 (1981) 2, 109

[57] C. S. Lam, T. M. Yan, Phys. Rev. D 16 (1977) 3, 703

[58] M. Luo, W. J. Marciano, preprint BNL-47187 (1992)

[59] D. M. Howe, C. J. Maxwell, Phys. Rev. D 70 (2004), 014002

81


