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Introduction

The number of particles produced in ultra-relativistic nucleus-nucleus collisions is well
described by the statistical model. In this model, the particle yields depend on temperature
and chemical potentials. In this thesis, we will describe the computation of higher moments
of the multiplicity distribution along with their implementation in the heavy-ion collisions.
For this, we will use a method based on central statistical moments. Furthermore, we will
provide the temperature dependence of the moments of the proton number distribution
at chemical non-equilibrium for relevant cool-down scenarios based on the data from the
RHIC BES programme.

In Chapter 1, the concept of the Quark-Gluon Plasma (QGP) will be introduced and
the main motivation for using multiplicity fluctuations along with the statistical approach
will be laid down.

In Chapter 2, the statistical moments will be formally introduced, defined and
elaborated. We will focus on the first four central moments especially, as those are the most
important ones when considering the heavy-ion collisions. They are called mean (M),
variance (0?), skewness (S) and kurtosis (k) and they - along with the respective
products of said moments - contribute significantly to a better understanding of the heavy-
ion collisions and the subsequent particle production, which will also be emphasized in the
text. Also, the canonical and grandcanonical formalism will be introduced as well as the
so-called "scaled variance” which is widely used when describing fluctuations specifically.

In Chapter 3, the topic of chemical equilibrium and the fluctuations therein will
be elaborated. Subsequently, the fluctuations in a hadron resonance gas model will be
introduced and the corresponding thermodynamic susceptibilites will be defined and the
first four cumulants in the ideal hadron gas will be written down. At the end of this
Chapter, the loss of chemical equilibrium and the chemical freeze-out parametrization
will be dealt with and the effect of resonance decays will be taken into account, which
includes the generalization of the first four cumulants in the ideal hadron gas for the case
that the effect of resonance decays is assumed.

In Chapter 4, the formalism laid down in Chapter 3 will be further generalized in order
to account for the case of chemical non-equilibrium, which is characterized by all stable
particle species having their own chemical potential. The calculation of said potentials will
be introduced. We will reintroduce the formula for the particle pressure and adjust it to
the state of chemical non-equilibrium. Furthermore, we will write down the formulae for
the (net)-baryon and (net-)proton number density as well as particle fluctuations thereof
expressed as the scaled variance along with the products So and ko?, all while accounting



for the state of chemical non-equilibrium using the generalized particle pressure formula.
These formulae will be presented as functions of temperature.

In Chapter 5, the results of the performed calculations will be introduced for the
first four moments of the proton number distribution. The temperature dependence of
the proton number density, the scaled variance o?/M and the products So and ko>
will be plotted for the most central collisions (centralities 0-5, 5-10) using data from
the beam energy scan program (BES) at RHIC. The calculations will be performed for
seven collision energies for both centralities, which are characterized by their respective
freeze-out parametres.



Chapter 1

Quark-Gluon Plasma and Heavy Ion
Collisions within the Statistical
Model

The main goal of Heavy Ion Collisions is the study of nuclear matter at high energy
density. This is of particular interest when investigating the properties of hadronic matter
and of the Quark-Gluon Plasma region (QGP), which is assumed to have existed during
the first few microseconds after the Big Bang, for which the existence of a highly dense
region is necessary within the laboratory.

The term "Heavy Ions” means that extremely heavy atomic nuclei are used, whereas
"ultrarelativistic energy” stands for the energy regime where the kinetic energy exceeds
the rest energy significantly [I]. This energy range makes high energy collisions a perfect
tool for studying smaller objects, i. e. subatomic particles, successfully providing the basis
for particle physics. On the other hand, low energy collisions are suitable for describing
more complex compound object, i. e. nuclei, thus laying ground for nuclear physics.

The main aim of this Chapter is to introduce the concept of the QGP with the emphasis
on its thermodynamical or statistical approach.

1.1 Quark-Gluon Plasma

The Quark-Gluon Plasma (QGP) is a state of matter where partons are deconfined, i.
e. not confined in hadrons. Deconfinement is phenomenologically (i. e. within the QCD
framework) defined as a phase transition. Furthermore, this state of matter is believed
to have existed during the earliest state of the Universe (~ 10 us after the Big Bang
[19]). Under certain special circumstances, said state may also emerge in ultrarelativistic
heavy-ion collisions. However, its existence is limited to a period of the order of few fm/c.
Speaking in terms of physics, such a collision can be considered similar, which is why it
is often referred to as a little-bang or micro-bang [19)].
In Figure the spacetime evolution of a fireball induced after a collision of two
nuclei A and B is depicted, while nuclei with a large proton number, such as ?Pb or
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™Au, are usually used. Such a collision results in a formation of dense hadronic matter,
whose energy density e approximately corresponds to a value € > 1 GeV fm~2 and the
corresponding pressure P of the relativistic matter approximately equals to P ~ %e [19].

The character of the phase transition mentioned above, the normal position of nuclear
matter in the QCD phase diagram along with relevant scales of the nuclear many-body
problem is shown in Figure [I.2] As can be seen in the aforementioned Figures, the phase
transition is characterized by two free parameters - the freeze-out temperature 7{s,) and
the baryo-chemical potential upg.

(@) . (b)

Figure 1.1: Spacetime evolution of a fireball: (a) without QGP, (b) with QGP (taken from [I§]).

Due to a high pressure the fireball will continue to expand until it has reached the
so called freeze-out. The life expectancy of the fireball 7 (meaning the time that passed
between the collision and the freeze-out) depends on the volume of the system and is

approximately given by
2R
~ — 1.1
. (1)

where R is the radius of the sphere used to approximate the fireball, ¢ is the speed of

T

light in a vacuum.

After the freeze-out, a large abundance of low-energy hadrons can be observed. This
is typical for a heavy-ion collision, since it is characterized by the fact that the collision
energy is partitioned among a large number of hadrons, contrary to elementary interac-
tions (see [19]). It is the high particle yield that justifies the assumption that heavy-ion
collisions can be well described by using the methods of statistical physics. A considerable
advantage of these methods is the fact that they do not require the description of every
single particle in the system, but describe the system as a whole.

4
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Figure 1.2: Illustration of the position of nuclear matter in the QCD phase diagram, outlining
relevant scales of the nuclear many-body problem. Taken from [20].

1.1.1 Comparison of the Big-Bang and the Micro-Bang

As we have already mentioned the similarity between the micro-bang and the Big Bang, it
seems only fitting to point out that these two theoretical phenomena are neither entirely
equivalent, as the reader may have acquired the impression of a certain similarity based on
the previous description. In Figure we can see two nuclei, which are subject to Lorentz
contraction in the direction of movement. The collision is depicted in the centre of mass
reference frame. The collision of these two nuclei results in the formation of a highly
dense matter - the fireball, which subsequently expands according to Figure [I.Tjuntil the
final state is reached, where individual particles which were formed after the chemical
freeze-out are present. In Figure these particles are depicted as arrows.

This brings us to the conclusion that even though the conditions immediately after the
collision are very similar to those during the earliest stages of the universe, it is impossible
to compare these two events. The main reason is that the life expectancy of the QGP in
the Universe and that in a heavy-ion collision are different by a factor of 10'8.

The time scale of the expansion of the Universe is defined by the mutual conformity
of gravitational forces and the radiation and Fermi pressure of hot matter, whereas in
the case of a micro-bang, there is no gravitational interaction that would slow down
the expansion of the fireball, which justifies the already mentioned difference between the
times of expansion of the fireball and of the Universe. One must also consider the fact that



( Micro-Bang )

Big-Bang Micro-Bang
" 23
= 30us T=h 10 %
] e a0 g
Ng /N = 10 Ng /N = 0.001

Figure 1.3: Lead nuclei in the state of Lorentz Contraction (taken from [19]).

the properties of the fireball as well as its size change rapidly with the fireball’s expansion,
quite unlike during the early stages of the Universe. The time expansion constant of the

3c?
=\ 32:GB (1.2)

where B is the vacuum energy (the so called "bag constant” - see Chapter 1.2) and G is

Universe 77 can be expressed as

the gravitational constant.

In the early Universe, the baryon number density was extremely low, which was caused
by the presence of baryons and almost exactly the same number of antibaryons. Contrary
to that, in laboratory conditions, a dense fireball with an non-negligible baryon number
N, emerges. The term "unnegligible” means that the ratio of the difference of the number
of baryons and that of antibaryons to the number of baryons, which can be expressed as

N, — N,
N,
is much much greater than 0 in heavy-ion collisions (in the case of energies in the order
of MeV, this ratio is almost equal to 1; in the early Universe, it was almost 0). For this
reason, a considerable matter-antimatter asymmetry is assumed within a micro-bang.

The numerical value of the constant B is approximately 145 MeV < B i < 235 MeV
and that of the time constant 7y approximately 66 us > 75> 25 ps (taken from [19]).

The time evolution of the Universe is depicted in Figure [1.4] which shows the time
dependence of typical particle energies. Likewise, the values of energy of individual collid-
ers (in a decreasing order - LHC, RHIC a SPS) are depicted. Here we can see that after
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Figure 1.4: Time dependence of the particle energy in the Universe (taken from [19]).

the neutrino separation, the subsequent evolution of the Universe is well known and doc-
umented. The same however does not apply for earlier stages. As already mentioned, in
a period of approximately 10 us after the Big Bang, the transformation of the deconfined
parton phase into a hot gas comprised of hadrons, more specifically of mesons, baryons
and antibaryons, takes place. Immediately after that, the baryon-antibaryon annihilation
is believed to have taken place in the early Universe as well as a possible separation of
baryons from antibaryons.

The lattice QCD calculations proved [24] that the transformation of the QGP into a
hadron gas occurs at a temperature of approximately 7" ~ 170 MeV. If the methods of
statistical physics are used, it can be found out that the baryons and antibaryons make up
approximately 25 % of the energy of the early Universe, half of which comprises of heavy
baryons and antibaryons. It is also assumed that the strong interaction did not play any
role at and after the point of nucleosynthesis.

1.2 Statistical properties of nuclear matter

The main source of information about the nature, composition and size of the original
medium are the hadron multiplicities. The main focus is the question, to what extent
the measured particle yields are in the state of equilibrium. According to the theoretical
apparatus which e. g. sources such as [I7] and [23] base upon, the main quality able
to prove the existence of the QGP is the chemical equilibrium of all emerging hadron
constituents, which can lead to a high level of chemical saturation - mostly considering

7



strange particles - which is connected with the existence of a deconfined phase during the
earliest moments of a heavy-ion collision.

In the Gibbs’ approximation, the behaviour of thermodynamical observables can be
quantified as an average over all statistical samples (not as one may think as a time average
for a specific state). Therefore, the distribution is obtained by averaging over the whole
phase space. Furthermore, the sample corresponding to thermodynamical equilibrium is
such a sample, in which the phase density is equal to the density of the whole available
phase space.

1.2.1 Energy distribution

We will now sum up the mathematical apparatus used for describing of statistical
ensembles. This apparatus does not differ from that used in classical statistical physics,
e. g. [17].

Let N be the number of identical bound systems, which are distinguishable from one
another e. g. by their respective energy states E;. In order to simplify the whole situation,
we shall assume that the energy states F; only possess discrete values and that there are
K different "macro” states. It can be generally assumed that some energy states E; will
be occupied more than once, therefore let n; represent the occupation of the i-th energy

state. The total energy E®Y) can then be written as

K
i=1

and the total number of states as .
N=> n. (1.4)
i=1

If we do not consider any other quantum numbers, the states E; are equivalent, which
means indistinguishable in terms of statistical physics. A distribution such that the
n;-th state possesses energy E;, can be reached by various means. Let us consider

N!
KN: T T T NCC': — xnlxn2...l‘nK =19 15
(w1t a0+ k) o1 an!m!“‘m{! ) K lai=1,  (1.5)

then the normalized coefficients expressing the relative probability of reaching an i-th
state in ensemble n with n; equivalent elements are given by
K-NN!
Hz’lil !

Our goal is to find the most probable distribution 7, which means having to find
the maximal value of the logarithm In W, where W is given by Eq. (1.6 with respect to
conditions (1.3]) and (1.4). The whole problem now transforms into the search for bound

extremes. The Lagrange function of such system A(ny,ng,--- ,ng) is given by

A(ny,ny, -+ ng) :an(n)—aZni—BZniEi. (1.7)

W (n) = (1.6)

8



where a and 3 are the corresponding Lagrange multipliers.

We may now partially differentiate the whole equation according to the variable n;
and set it equal to zero. By neglecting the influence of constants K and N, we obtain the
equation for the i-th state

and now searching for the value of n,,. If furthermore n, >> 1, we may - using the
Lagrange theorem -approximate the derivative of the logarithm of the factorial of an
arbitrary number k£ as

d In(k!) — In(k — 1)!

%[ln(k:!)} = 1)

The maximal value n; of ((1.6)) can therefore be written as

=Ink. (1.9)

n; = ye PP (1.10)

The inverse value of the parameter 5 has the meaning of temperature T', which is expressed
" T = L (1.11)
3 .

From Eq. (1.4) we may now deduce the relation for the total number of particles

K K
d =) e =N (1.12)
=1 =1

The meaning of the parameter 7 is to regulate the total number of particles in the ensemble
N. It can be rewritten in an exponential form

y=e (1.13)
If we insert (1.10]) into ([1.3), we obtain the total energy E®)
K
i=1 i
If we divide E®Y) by the number of ensembles N, it leads to
E®™ Fe PP d
_ gy _ Y2 B ="z (1.15)
N Y Zz e~ PEi ap

The symbol Z stands for the canonical partition function, which we may express as
7 = Zye‘ﬂEi. (1.16)

Contrary to the microcanonical approach, where the energy is fixed for each mem-
ber of the ensemble, the statistical ”canonical” approach serves for studying the most
probable energy distribution and other physical interactions between the members of the
ensemble. These properties only depend on parameters 5 and v, the Lagrange multipliers
representing the energy conservation and the particle number conservation, respectively.

9



1.2.2 Grandcanonical formalism

Let us now assume that energy is equally distributed, as energy transfer occurs among
macrosystems. In the grandcanonical approach we will again search for the most probable
distribution, yet this time we will take another quantum number corresponding to the
change among individual members of the statistical ensemble, into account. The methodics
will be equivalent to the one used in the case of the canonical approach, but as there
is another (discrete) quantum number, it is necessary to characterize said number by
another (discrete) parameter, which will be called the baryon number. The condition
of the baryon number conservation is expressed as follows

N
> nfby =™ = N, (1.17)

i=1

where b; is the average number of baryons in each sample we take into account. Apart
from conditions ([1.3)) and (1.4, we therefore have another condition given by ((1.17)).

Let us now consider the conditions ((1.3)), (1.4]) and ([1.17]). The condition (1.17]) requires

another Lagrange multiplier to be assigned, which we for the sake of simplicity rewrite
as Kk = —InA. We may now proceed to searching for the extremes of the corresponding
Lagrange function. If we perform equivalent calculations as in the previous Section, we

obtain the derivative of the Lagrange function with respect to parameter n:
0
@[— In(n?!) — nla — BnlE; +In Al b|s, = 0. (1.18)

The derivative is set equal to zero in order to find the extreme value.

An equivalent method as in the previous Section can be used to obtain the most
probable distribution 7;, given by

0l = Y\ PFi (1.19)
Let us now redefine the chemical potential u as

w="TIn\. (1.20)

Then the quantity A can be rewritten as

>
I

)
sy
=
I

o
e

(1.21)

which enables us to express it as a function of temperature 7" and the chemical potential
i - the two quantities essential (and sufficient) for determining the point where the
phase transition occurs. This quantity is called fugacity.

10



The chemical potentials elaborated above have the meaning of energy necessary to add
or remove a particle at a fixed pressure, energy and entropy. Using the same formalism as
in the case of the canonical potential, by which we obtained Eq. ([1.15]), we obtain

_ S E\be B d
SR ST 122

The quantity Z then represents the grandcanonical partition function given by

Z(\V,B.N) =7 Aie PP (1.23)
;b

We may also write a relation for the average value of b with respect to the grandcanonical
partition function. This is given by

3 bidbie P d d
h= =L =— (1 Nie™BE | = X\—1n Z(8,)\). 1.24
Sy e PEL TN n%:7 ‘ o 2B (1.24)

1.2.3 Independent (quasi)particles

In terms of quantum mechanics, the grandcanonical ensemble can be looked upon as an
ensemble with hamiltonian H with eigenvalues F;, which correspond to discrete energy
states |7). This fact can be written as

H|i)=E;|i). (1.25)

With the operator b (according to the correspondence principle assigned to baryon number
b) commutes with the Hamiltonian, we may also write

bli,b) =bli,b). (1.26)
The values b then correspond to eigenvalues of b.

The grandcanonical partition function, which we have derived as ([1.23]), may in the
operator representation be rewritten as

7 = Z (1,0 ’ye’B(H’“E’) li,b) =Tr fye’ﬁ(H’“i’) (1.27)
ib

where T'r symbolizes the trace of the matrix.

This relation is very important, since the trace of a quantum operator does not depend
on the representation. This means that we may choose any arbitrary set |n) of basic
states and always find a corresponding (quantum) canonical or grandcanonical partition
function. We can thus obtain information about the properties of quantum gases, which
are often approximated as an ensemble of independent (quasi)particles. In the same way,
the interactions between said particles can be included using the perturbation expansion.

11



We speak about quasiparticles, if there are objects in the medium similar to particles,
whose mass is different from that of elementary particles. Generally speaking, states of
collective excitation characterized by a mass spectrum will be observed. The hadronic
matter can thus be described as another system with a high mass density. If the excitation
states are well defined, it does not matter if we take particles or quasiparticles while
performing the calculation of the trace .

Let us now choose the basis of the occupation number of ”one quasiparticle”. In this case,
each macrostate |n) is described by a set of occupation numbers n; with corresponding
baryon numbers b;, energy ¢; and the energy of state £, = > ,n;e;. The sum over all
states corresponds to the sum over all enabled sets n;: For fermions, we have n; € 0,1 and
for bosons we have n; € 0,1,2,--- ,0o. The partition function Z can thus be expressed as

7 — Z =2 niBlei—pbi—F  Iny) _ ZH —niB(ei—pbi—B~ 1 n~)
_H Z e—niB(ei—pbi—f~  Iny)

i ony=

(1.28)

In the last modification, we have taken advantage of the possibility of interchanging
the sum and product signs, which follows from equivalent summing over all states and
summing over all enabled sets n;. The logarithm of the partition function can then be
expressed as

InZpp=In]](1+ yeBlEmm)E — g D In(1 £yl ) (1.29)
where 74" corresponds to fermions F' and ”-” corresponds to bosons B.

It is also necessary to verify the values we obtain, if antiparticles instead of particles
are used. The eigenvalue of the operator b in Eq. 1) will be the opposite value of that
obtained for particles. This means that the fugacity A7 for antiparticles is equal to

I
AF =2

Chemical potentials are then expressed as
[y = —p.

For a homogenous spacetime, the energy of an i-th state e; is given by

1.2.4 Fermi and Bose quantum gases

Let us now consider a particle of mass m and degeneration g. Then Eq. (1.29) can be
rewritten as

d3
InZp/g(V,B3,\,7) = igV/ﬁ [ln(l + AN BV () j:,y)\—le—ﬂ\/]ﬂ—l—nw)} ‘
(1.31)

12



The second logarithm in Eq. (1.31)) was added to account for the presence of antiparti-
cles. If we perform the classical Boltzmann limit, which means, that the term within the
exponential function is much smaller than one, we obtain

dS 2 2
InZy = gV / #’V(A + AT v, (1.32)

The normalized partice spectrum which is represented as a relative probability of

finding a particle on an energy level E;, may - using Eq. (1.10) and ((1.12)) - be rewritten

as

; 1 0
I ————— N —BE; | | 1.33
== =g () Y
The relation for a one-particle spectrum is the following

1
vy lefe 11

fF/B(&ﬁ,/\W) = (1.34)

where (+) symbolizes fermions, (-) bosons.

1.2.5 Towards the role and the motivation of using multiplicity
fluctuations in the QGP research

In the next Chapters, we will elaborate on multiplicity fluctuations as an efficient tool
for characterizing the QGP region. As we have mentioned before, the phase transition is
fully described (at sufficiently high collision energies) by a set of two parameters, these
being the temperature 7" and the baryo-chemical potential 1.

As the HRG models reproduce the equilibrium 1QCD results for the lowest order
susceptibilities and their ratios (see further text) reasonably well [3] [§], we may further
restrict on using the HRG model only. Statistical hadronization models have been suc-
cessfully used to describe the data on hadron multiplicities in relativistic nucleus-nucleus
(A+A) collisions [2]. In A+A collisions, the grand canonical ensemble (GCE) is preferred,
whereas the canonical ensemble (CE) or the microcanonical ensemble (MCE) have been
used for describing the pp, pp and ete™ collisions.

It has been shown that the moments of net-particle multiplicity distributions from the
experiment can be related to susceptibilities of conserved charges calculated on the lattice
[3]. Therefore, chemical freeze-out parameters can be directly determined in the thermally
equilibrated GCE approach on the lattice without having to rely on statistical models.
This makes said moments - which immediately lead to said fluctuations - a powerful tool
in determination of the freeze-out parameters.

13



Chapter 2

Calculation of the statistical
moments within the Statistical

Model

Statistical moments are an important mathematical tool used to describe and calculate
multiplicity fluctuations in the statistical model. The m-th central moment ¢,,(X), where
m € N is defined as follows:

pm(X) = E(X — EX)™

where /X is the mean value of the statistical quantity X. We will further concentrate on
the quantities defined by the first four moments only, as those are of great significance.
They are defined and called as follows:

mean: M = ¢

variance: 02 =

skewness: S = @3/903/2

kurtosis: k = /3 — 3

The constant —3 may or may not be added to kurtosis, which depends on whether we
want the kurtosis of the Gauss distribution to be equal to zero. In our calculations, this
factor is accounted for. The meaning of skewness and kurtosis becomes obvious from
Figure [2.1], where also the meaning of those two moments is depicted: skewness measures
the assymetry of the probability distribution, kurtosis its ”tailedness”.

2.1 Grandcanonical and canonical formalism

We usually assume that we work with grandcanonical or canonical ensemble, whose
event-by-event distributions of conserved quantities are characterized by the quantities
(M, o, S, k) defined above. In order to be able to directly compare theoretical predictions
and experimental measurements, we also introduce the following:

14
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Figure 2.1: Explanation of skewness and kurtosis [I].

So = 3/ (2.1)

KO® = P4/ (2.2)

M/o® = ¢1/p2 (2.3)
(2.4)

503/M = 903/901

Specifically, fluctuations can be described by means of the so-called ”scaled vari-

ance” w [7] of a multiplicity distribution:

LW ><;[><N> _ JM (2.5)

defined in accordance with [9] where N is the multiplicity distribution of any hadron
species, which includes primary or final (i.e. after resonance decays [7]) hadrons or the

sum of an arbitrary number of hadron species (see further text). Obviously, this is the

inverse value of the ratio given by Eq. (2.3

The grandcanonical partition (GC) function is given by
w— 2(n)A}’ (2.6)

ZGC()‘j> = HeXp Z n—]

'I’LJ'=1
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and the single particle partition function by
n+1 95V 2 n;m;

20 .
TN

The products runs over all types of hadrons and the sum is necessary due to the quantum
statistical distribution.

Furthermore, K, is the modified Bessel function (see |[Appendix Al), V' is the vol-
ume of the hadron gas,

A — <Mj>

j = exXp | =

T
is the fugacity for each particle species j, m; is the hadron mass, p; is the chemical
potential of a particle species j,

is the spin degeneracy and the upper sign holds for fermions, lower sign for bosons.

Canonical formalism is a little more complicated, as it cannot be factorized into one-
species expressions, as is the case for the GC formalism. We will now introduce the vector
of total charges

—

Q = (le Q27 Q3) = (BJ S? Q)
and the vector of charges of the hadron species j
3 = (q1.4> 42,5, 83.5) = (bj, 85, 45)

where (), B, .S denote the charge, the baryon number and the strangeness, respectively.

As such, three conservation laws are imposed within the canonical formalism. We
introduce an exact conservation law as the restriction on the sets of the occupation
numbers {n,,;}, which means only those sets satisfying

AQ =) il =0
P,

can be realized and the equilibrium probability distribution W, . (An, ;) can be introduced
as follows:

A \2
Wee (Any,;) H exp [—%] ) (Z innpyi) ) (Z biAnp,i) ) (Z siAnp,i>
pyi pii Py Py pii

whereas for the GC formalism, this would be



Furthermore, if we introduce the Wick-rotated fugacities:
Aj = expli Z Qi il
where ¢;,7 € {1,2,3} is the rotation angle and ¢; ; the vector of charges of the hadron
species j.
The canonical partition function will now be expressed as:
3

1 2T ]
H - / d@eﬂQmi
2m Jo

i=1

Zg= Zao(Aj) (2.8)

where Zgc is the GC partition function given by Eq. (2.6).

Let h be a set of hadron species with the corresponding fugacity factor ;. We may
then write

>\j — >\h>\j

and have now everything we need to write down the explicit form of the first four statistical
moments:

1 9% > 25
Q

jEh nj':1

1[0 0Z
(Np) = la/\h ()\ha—/\h)] Ia,=1 =

Z Z n;zj nJ jq’ +
Q

j€h nj=1

z;(n; 2e(ng) “a- njqj 1 (2.10)
DPIETID 3D

j€h nj=1 keh np=1

17



n]‘]] Ngqk
E E 7’L]Z] TL] E E Zk nk +

jE€h nj=1 keh np=1

Z Z zj(n;) Z Z 2 (1)

JjER Tbjil k€h np=1

Zzzl nl —n;jq; —nkdk—nql (2'11>
Zg

leh n;=1

() -

1[0 (0 (. 0 ( 0Z
Z4 {3)% (Aha)\h ()\ha/\h ()\h OAn )))} b =

Zan] n;) Q Tjjq’—i—

j€h nj=1
Q n]Qj_nka
n ZJ n] Zk nk
jeh n;=1 keh np=1
—+o00
”JqJ N qk
njz;i(n;) ngze(ng) Z,
jEh ny=1 keh np=1
—+o00 “+o00 —+o00
+6 E g njzj(n;) E E 2 (ng) E E zi(ny)
j€h n;=1 keh np=1 leh n;=1

Q—n;q;—npdi—mq

23
400 +oo +oo
DD zEm)d D am) YD alm)
j€h nj=1 keh nip=1 leh n;=1
oo L= . L, -
SN cn(nm) Q‘”jqj‘"’qu’“:”“”‘”'”q’” (2.12)
meh nm=1 Q

18



2.2 Asymptotic fluctuations in the canonical ensem-
ble

The canonical partition function is given by Eq. (2.8). We will now introduce a way to

compute this integral using the so-called ”saddle-point expansion” (see [Appendix B]).
The integration is performed on the complex w unit circle parametrized as:

w; = explig;].

The canonical partition function may then be written as

1 —o-
Z5 = (27T—i):3]{dej{dws]{dewgB_lwgs_leQ 1exp2zj(1)w3wswqé (2.13)

where z;(1) is the one-particle partition function given by

v
5(1) = @+ D / Ppesp |\ /2 +m?] (2.14)
Obviously:
wz” = exp[—BInwg, (2.15)
wéQ = exp|—Q Inwg), (2.16)
and
wg® = exp[—SInwg] (2.17)

where ), B, S denote the charge, the baryon number and the strangeness, respectively.
Let

[asry

g(i) = wiwdwg (2.18)
B
S
Q
= 2.21
rQ =y, (2.21)
and
I 4):—PBhle—Pslnws—lean—l—Z—waS wg. (2.22)
We may now write
1 - -
%45 = T }{ dws 7{ dws 7{ dwog (@) explV £()] (2.23)

Once the quantum statistics is neglected and in the absence of any other dynami-
cal effects, the multiplicity distribution of any primary hadron is a Poisson, which means
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w = 1, where w is the scaled variance defined by Eq. (2.5)).

Having performed the calculations in Eq. (2.9) and Eq. (2.10), we can rewrite the
scaled variance as the sum of a Poissonian term, which means 1, and a canonical
correction term:

Z5 g o .
Zth (N;) Ekeh “k(1) ( Z»qk - - QZ@%)

Wl > (V)

(2.24)
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Chapter 3

Multiplicity fluctuations for a
resonance gas model with chemical
equilibrium

Since we have at this point presented all the necessary formalism concerning the
calculation of multiplicity fluctuations, it seems only fitting that we now proceed towards
systems where chemical equilibrium is a priori assumed. At first, we will present a certain
generalization of what we laid down above.

As statistical models provide a valid description of hadron multiplicities in relativistic
nucleus-nucleus collisions [2], we may further concentrate on multiplicity fluctuations in
high energy nuclear collisions.

3.1 Fluctuations in a hadron resonance gas model

We may describe fluctuations in the number of particles of species ¢ in a thermally and
chemically equilibrated Hadron Resonance Gas (HRG) using the corresponding suscepti-
bilities defined as
(o _dETy .
O/ T)"

where [ € N.

The susceptibilities can be related to the cumulants of the multiplicity distribution of

particle ¢ via
i 1 1
® N,

W = o (N0, = s (V) (32

X = o (AN, = s (AN (33

X = oo ((AN), = s ((AN) (3.4

& = % (ANYY), = % ((an)) - 3(an)?)’) (3.5)
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where AN; = N; — (NN;) and the subscript ¢ denotes the corresponding cumulant value.

It is obvious that the first three cumulants are equal to the corresponding central
moments, but the fourth cumulant is given by a combination of fourth and second
central moments. The cumulants will be discussed later on in this Chapter. If we
assume an equilibrium HRG model in the GCE formulation, thermally produced and
non-interacting particles and anti-particles are uncorrelated [8]. The susceptibilities of
the net-distributions can thus be written as:

net,i

X = x4 (=) (3.6)

where i denotes the species of the antiparticle and i the species of the particle.

As we have already mentioned in Chapter 2, some ratios of the susceptibilities can
be expressed in terms of the first four central moments, those being the mean M, the
variance o, and in terms of the skewness S and the kurtosis k, as we can see in Eq. (2.1)),

The dependence of susceptibility ratios (2.1)), (2.2) and (2.3) on the collision en-
ergy +/s is depicted in Fig. [3.113.3] The full squares depict experimental data on net

proton fluctuations as measured by the STAR collaboration for the two most central colli-
sion classes (0-10%). Empty circles stand for the susceptibility ratios for the net baryon
number fluctuations in the full HRG model, the empty triangles show the corresponding
ratios for the net proton fluctuations with respect to primordial protons and anti/protons.

We may now write down the specific equilibrium pressure P, which is given by
the sum of the partial pressures of all particle species i included in the model []]:

1
P/T4: WZIDZ%/B(MT7MB7MQ7MS>’ (37>
where e
In Z%/B = $(27f)13 /d3k1n(1 F ziexp(—¢/T)). (3.8)

The single-particle energy is equal to

e =/ k> +m?

with m; being the particle mass, g; the degeneracy factor, V' the volume and z; being the
fugacity given by

zi = exp((Bipp + Qipiq + Sips)/T) = exp(pi/T). (3.9)

We may also perform the partial derivative of the pressure with respect to the particle
chemical potential y;, which gives us the density of particles i:

ni(T, i) = (2%3 /dgkfFD/BE(T, i) (3.10)
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Figure 3.1: Ratios of susceptibilities as function of the collision energy. Taken from [§].

where frp/pg is the Fermi-Dirac/Bose-Einstein distribution function for (anti-)baryons
Or mesons.

3.1.1 The first four cumulants in the ideal hadron gas
In this subsection, the aforementioned cumulants of primary particles ¢ will be discussed
[9]. We may plug Eq. (3.9)) into Eq. (3.8]), thus immediately obtaining

Vg [+
W Z(TVo) = 5% [ ol £esp(<(B - p)/T), (3D
0

where E; = /p? + m? is the single particle energy.

Using Eq.(3.11), we may now calculate the first four cumulants. The mean num-
ber of primary particles i is calculated (see formalism in Chapter 2) as follows:

oo
0 TV 0

Hi - 2n?

where 1
exp[(E; — ;) /T £ 1

The variance and higher order cumulants have the following form:

n;, =

2
Hi TV
. [t
_ 2V~"; / p2dp ni(1 T ny), (3.14)
™ Jo
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3
Hi TV

_ Vgi e 2 2

2 o \*
Cy = ((AN)") =3((AN;)?)" = (T ) In Z; (3.17)

Opi
TV

Vgi [T 5 2 3

= 5.2 p*dp ni(1 F Tn; + 12n] F 6n?). (3.18)
0

3.2 Loss of chemical equilibrium and chemical freeze-

out parametrization

The chemical composition of a HRG in local thermal and chemical equilibrium is
determined by the conserved quantum charges [8]. However, the created matter ex-
pands rapidly, causing the density to decrease and leading to an enhancement of the
particle mean free path. Consequently, there must be a specific set of parameters
(T7e, ,ug, ,uéo, ug), where reactions like baryon-antibaryon annihilation (pp — wrmrm)
become too rare to maintain chemical equilibrium among different particle species
[8]. This particular set of parameters describes the chemical freeze-out. The chemical
freeze-out is an instant at which chemical equilibrium is lost, the chemical composition
of the gas is frozen-out and after which only elastic scatterings occur frequently enough
to maintain local thermal equilibrium until even these become too rare and the particles
start to stream freely after the kinetic freeze-out [§].

We may assume that chemical equilibrium is not completely lost just after the
chemical freeze-out. If the temperature 7' is high enough, specific reactions in form of
resonance regenerations and decays (e.g. 7m — p — 7m) continue to occur, which means
that resonances are still in chemical equilibrium with their decay products.

We may assume the hadronic matter to be in a state of partial chemical equillib-
rium, which means that the chemical potentials of all stable hadrons pu; become

T—dependent, while the chemical potentials of the resonances (whose effects will be
discussed in the next Section) pg become functions of the pup:

pr =) i (Ma)g
h
The sum runs over all stable hadrons and

<nh>R = Z bfnﬁr
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is the decay-channel averaged number of hadrons h produced in the decay of resonance
R, where b% is the branching ratio of the decay-channel and nﬁr =0,1,... is the number
of hadrons A formed in that specific decay-channel.

In accordance with [8], the chemical freeze-out parameters are taken as an input
and the freeze-out temperature is parametrized - for different collision energies - by a
polynomial function of up:

TI(ul) = a — b)) — ()’ (3.19)

where a = (0.166 4 0.002) GeV, b = (0.139 4+ 0.016) GeV~', ¢ = (0.053 £ 0.021) GeV 3.

The baryon-chemical potential can be given as a function of /s:

d
fo _ B

where dp = (1.308 + 0.028) GeV, ez = (0.273 & 0.008) GeV .

(3.20)

All the parameter values are taken from []. If we want to investigate the /s—dependence
of the electric charge and strangeness chemical potentials -5 and pg- we have to require
the following [§]:

(T, i, s, ) = 0, (3.21)

ngwt) (Ta “B, Hs, MQ) = xngwt) (T7 “B, Hs, /’LQ) (322)

where z € (0,1) ., e. g.  ~ 0.4 for Au + Au and Pb + Pb collisions [§].

Just as in case of Eq. 1) ug) and uéo can be parametrized as functions of /s.
Here, the parameters are dg = —0.0202 GeV, eq = 0.125GeV~! and d, = 0.224 GeV,
es = 0.184 GeV~1.

3.3 The effect of resonance decays

We will now finally take the resonance decays into account. As we have already men-
tioned, the chemical potential of the resonances pgr depends on the chemical potential of
stable hadron species . As such, the resonances significantly affect the evolution of the
created strongly interacting hadronic matter and their decays exercise a major influence
on the final numbers of the stable hadrons and fluctuations [8]. We may now consider the
derivative of P/T* with respect to u;/T as defined in Eq. (3.1). Considering that only
the chemical potentials p, are independent of each other (while the pgr depend on uy),
we obtain

o(p/T*)
O(pn/T)

where (IV},) and (Ng) are the means of the primordial numbers of hadrons and resonances,

VT [ = (Nn) + > {N&) () g (3.23)

respectively. The sum runs over all the resonances in the model.
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In agreement with the QCD equations of state [§], there are 26 particle species we consider
stable, those being: 7%, 7+, 7=, K+, K=, K°, Ky,n and p,n, A°, X+, %0 ¥~ =% ==, Q™ and
their respective anti-baryons.

We will now demonstrate this using the example of fluctuations in the final num-
bers of protons. Since pp is p,-dependent and under assumption of fixed average
numbers of produced protons as determined by the branching ratios of the resonance
decays, we may write:

N> +Z (NR) (np) (3.24)
((AN,)2) = ((AN,)2) + 3 ((ANR)?) (my) (3.25)
((AN,)*) = (AN + D~ (ANR)?) () (3.26)

<(AN >—<AN S UANRY, () (3.27)

The same holds for antiprotons; p is then replaced by p. The related susceptibilities are
given by
A(p) _ Xz ) 4 le n,) (3.28)

In reality though, the actual numbers of decay products follow a multinomial distribution,
since resonance decays are probabilistic processes. Said multinomial distribution results in
fluctuations on the final particle numbers, which makes it necessary for them to be taken
into account. If we assume a grandcanonical ensemble, the corresponding cumulants of
the final proton distribution read as follows [§]:

() = (Np) + 3 (Nw) (my) (3.29)
((AN) = (AN?) + 37 ((ANR) )5+ 3 (Ne) ((Any)?) . (3.30)

(AN = (AN + 2 (N (o) 53
¥ 32 (V) (g (B, >R+Z<NR><<A%>3>R

R
(aN)") = <<ANp>4>c+Z<<ANR>4> (mo) (3.32)
+ 6Z< (ANg)® ((An,)?) +Z< (ANR)?) [3((An,))y

+ 4y, ((Any)?) +Z Ng) {(Any)") -
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Figure 3.4: Ratios of susceptibilities as function of the collision energy with resonance decays

taken into account. Taken from [§].

The factors ((Any)?) g, ((Anp)?)g and ((Ang)?*) g, vanish for those resonances which
have only one decay-channel or for which the number of formed hadrons nﬁr of
species h is the same in each decay-chanel r. As mentioned before, the subscript
¢ denotes the value of the corresponding cumulant. The first three cumulants are
equal to the corresponding central moments, which is why we can omit the subscript,

whereas we cannot omit if we consider the fourth cumulant, which differs from the fourth
central moment. That is why we retained the subscript ¢ in both Eq. (3.27)) and Eq. (3.32)).

We may now - exactly as in the previous Section - compute the ratios of suscep-
tibilities as defined before. We should mention that in our framework primordial
protons and anti-protons are uncorrelated and no baryonic or anti-baryonic resonance
decays into an anti-proton or proton, the formula given by Eq. remains valid for
the susceptibilities of the net proton distribution even when resonance decays are included.

In Fig. we see the dependence of ratios of susceptibilities as function of
the collision energy /s and the comparison with Fig.|3.113.3, where the resonance decays
were not taken into account. The empty squares show the same as in Fig. [3.1}3.3] the
empty diamonds show the average influence of the resonance decays on the net-proton
fluctuations. The empty triangles depict the full impact of resonance decays and
include the probabilistic contribution.
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Figure 3.5: Ratios of susceptibilities as function of the collision energy with resonance decays
taken into account. Taken from [g].
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Figure 3.6: Ratios of susceptibilities as function of the collision energy with resonance decays
taken into account. Taken from [g].
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3.3.1 Particle correlation after resonance decays and the Gen-
erating Function

As we have already mentioned, the resonance decay has a probabilistic character, which
causes the particle number fluctuations in the final state. The main goal of this subsection
is to provide information on how to determine the particle correlation. The statistical cen-
tral moments can be found from the following function called the generating function:

Nr

¢=]] (Z o] ] Xﬁ") (3.33)

where b is the branching ratio of the r—th branch, nR the number of i—th particles
produced in that decay mode and 7 runs over all branches with requirement Y bF = 1.
The \; are auxiliary parameters set to one in the final formulae.

The averages from resonance decays can expressed as:

_ 0
NiEXR:<Ni>R:)\ia—)\iG:ZR:NRZbR nf —ZNR i) g (3.34)

N;N; = ;(N]\W =\ 8(2\ (%‘%G) (3.35)
= Z[NR(NR — 1) {ni) g (nj) p + Nr (ninj) gl
where (n;n;) = >, bfnfinf..

The origin of the formula defined by Eq. (3.33)) is given by the fact that the nor-
malized probability distribution P(N},) for the decay of Ng resonances is the following:

(b)) Nk )
= Np! H N <Z N, — NR> , (3.36)
where Np denotes the numbers of R—th resonances decaying via r—th branch.

The scaled variance wi due to decays of R—th resonances will then read

(NP) g = (Ni)g _ (n3)p — (ni)p _ 20, 0r(nip)? = (3, b'nii,)?
(Ni) g (ni) g > bﬁni,r .

(3.37)

Tk
UJR:

We can immediately see that Eq. ‘D is equal to 0, if either nfr are the same
in all decay channels or if there is only one decay channel, which would mean b¥ = 1.
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Also, Eq. (3.34) and (3.35)) assume fixed values of Ng, while in reality, Ng fluctuates,
due to which we finally arrive at

 ((NB) — (N3 ),
Wl = = wh + (n;) p Wr, 3.38
R <<NZ>R>T R < >R R ( )
where the scaled variance ) )
WR = <NR>T - <NR>T (339)

<NR>T

corresponds to the thermal fluctuation of the number of resonances [2].

3.4 Experimental cuts

In Fig. 3.1 and Fig. |3.4 a reference to ”(experimental) cuts” has been made.
This means that the experimental phase-space coverage is limited in rapidity y and
transverse momentum kr according to the detector design and the demands from recon-
struction efficiency and particle identification [§]. The following kinematic acceptance
cuts have been considered by the STAR collaboration: |y| < 0.5 and 0.4 < kr < 0.8 GeV
with full azimuthal coverage (¢ = 27).

For our purposes, the acceptance cuts can be modelled by limiting the integration
range in Eq. (3.8) and Eq. (3.10) accordingly [8]. This means that the momentum
variables (k,, k,, k) are transformed into (k,y, ¢), which implies replacing the integration
measure d°k by kpy/kZ% + m?cosh(y) dkrdydd and the single-particle energies ¢; by
cosh(y)+/k2 + m?. Thus, the results for the net-proton fluctuations as shown in the
mentioned figures can (and could) be obtained.
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Chapter 4

Multiplicity fluctuations for a
resonance gas model with chemical
non-equilibrium

The main aim of this chapter is to provide formulae for the temperature dependence of
the (net-)baryon and (net-)proton number multiplicity along with that of the ratios of
higher thermodynamic susceptibilities, while chemical potentials, whose calculation will
also be summarized, will appear for each stable particle species. Before we do that, we
will summarize some of the facts we have stated in the previous Chapters. The effect of
resonance decays will also be taken into account. As such, we approximate the hadron gas
by a collection of free particles [6], distributed according to

Badp E - -
dN; = Ok gl {exp( T,u > + 1} (4.1)

where p; is the chemical potential of level 4,1 =7, K, p, N,... and E = \/m? + p? and +
depends on whether the particle is a fermion or a boson, g; = 2J;+1 is the isospin degener-
ation factor corresponding to the statistical weight, providing (¢, = 3,9x = 4,9, =9,...).

The pressure generated by the distribution (4.1)) is given by

P= sz:/ pln{uexp(“;E)}. (4.2)

where we assumed V = 1.

4.1 Chemical potentials in a HRG model with chem-
ical non-equilibrium

In order to be able to lay down the formalism describing the state of chemical non-
equilibrium, we have to consider the chemical potentials first. All performed calculations
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are in accordance with [6]. They start building up once the chemical equilibrium is
lost. We assume that the population of the excited states remains in equilibrium with
the particles formed in their decay [6]. Furthermore, we set the chemical potential of
the mother equal to the sum of the chemical potentials of the daughters. If there are
several decay channels (i. e. more than one) open, we multiply the various final state
configurations with the corresponding branching ratio.

Let us for example consider the states p(770), A(1231) and ay(1320). Considering
the aforementioned assumptions, this leads to

Hp = 2Hir,

fa = Hr + fiN

and

fas = 2.8px + 0.1pg + 0.15u,,.

The condition for partial equilibrium determines the chemical potentials of the excited
states as functions of the potentials corresponding to the stable particles

o={m,K,n N\ ZEQ}
, which occur as end products of the decay chain

po=3"dns (43)

where df is the mean number of stable particles emerging in the decay of the level i,
e. g., dI'. is the mean number of pions emerging in the decay of the level s.

If we want to obtain the temperature dependence of chemical potentials of hadron
species by assuming fixed adundancies after a chemical freeze-out (as is our case, see
which is characterized by a freeze-out temperature T/ and chemical
potentails for baryon number pup and strangeness pg, we perform this recursively using
the formalism above, with the initial potentials being calculated as

Hoe = Bcr,uB + SO'/'LS

where B, is the baryon number and S, the strangeness of the stable particle o, while
including every resonance in the model decaying into the respective stable particle. This
allows us to account for several collision energies \/syy (see further text), as these are
characterized by the set {7V up, ug}.
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4.2 The partition function and higher moments
of particle distributions at chemical non-
equilibrium

We now have everything we need to introduce the full-scale formalism of multiplicity
fluctuations within systems in chemical non-equilibrium. Let us now perform the following
denotations:

- 4...all particles (resonances) included in the model
- j...j-th stable particle
- A...set of all stable particles
- Ap...set of stable baryons
- Nji...average number of the j-th stable particle produced by channel 7, equivalent to
d? in 4.1
- pj. .. chemical potential of stable particle j obtained as described in 4.1
- m,;...mass of resonance 1%
- d;. . .isospin degeneracy of the i-th particle
As we shall further concentrate on baryons only, we may write the logarithm of the
partition function for the i-th resonance as

nZ2 (V,T, i) = ’ n|{l+exp| =" )exp _VETTAN (44
W Z8 (V1.0 = 2% [ @k (1 2jea Nk i

(2m)3 T T
Transforming into spherical coordinates using
k1 = psin v cos @,
ko = psin¥sin p,
ks = pcos v
with
p €< 0, +00),
v e<0,m>,
p Ee<0,2m >,

one obtains

5 Vd. +oo pm 2T )
Iz (V,T, i) = —/ / / X 4.5
wrp = g [ [ (4.5
N 3 )
X In <1 + exp <M) exp (—M>> dp sin 9dddyp =

T
d. +00 ) N'i . /2 2
7 Jo T T
Vd,
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where I(p, m;) represents the integral.

In order to conveniently compute the integral I(p,m;), we shall use the Taylor
expansion. At first, we will define

sew ()
( jea m@)

thus u(+o00) = 0. Since all the baryon masses i are above 1 GeV, it is convenient

meq e

(and justified) to perform the Taylor equation of I(p, m;) at infinity. The function

f(p) =In (1 +exp (ZjeA Njiﬂj.) exp (——\/m»

T T

then transforms into
F(u) = In(1 4 "),

where we perform the Taylor expansion at 0. We may therefore use the following MacLau-

rin series: N
> k
In(1 ineq. — -1 k+1 ineq.ku_ 46
1+ 270 = 3 (46)
therefore, Eq. (4.5)) transforms into
— de — —1 h ineq.k oo
In ZnE;(Va T, ji) = 52 ( k) z'net / p*u”(p)dp. (4.7)
0

k=1

We may now perform the following parametrization for

+oo
/ p*u"(p)dp :
0

- p=m;sinhn
- dp = m; coshndn.

Using the relation
cosh?n — sinh?n = 1,

one arrives at
+o00 +oo ]{Z
/ p*uF(p) = / m; exp (—?mi cosh 77) cosh 77 sinh® ndn,
0 0

which can be recast as

+oo “+o0o k’ +oo k’
/ p*uf(p) = m? (/ cosh® nexp (——mi cosh 77) dn — / coshnexp (——mi cosh 77) dn) :
0 0 T 0 T
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We use the identity
1 3
cosh®n = 1 cosh(3n) + 1 cosh(n),

which leads to

+o0 1 +o0 k
/ pPut(p) = —m3 </ cosh(3n) exp (——mi cosh 17) dn—
+00 k
— / coshnexp <——mi cosh 7]) dn)
0 T

In accordance with with [Appendix Al and with [26], we may write

o=t (5 () -5 ()

where K7, K3 are modified Bessel functions of the second kind (see|Appendix Al). This - in

accordance with the corresponding recurrence relation given by Eq. (A.14}) - immediately
400 2
2, k m; km;
U = TK. .
[ = e ()

Therefore, Eqs. (4.4H4.7]) can be recast as

leads to

— dzm2 = 1)kt k km;
In Zﬁi(v, T,i)=VT 57 Z (- k;)2 exp (T Zsz‘/Lj) Ky ( T ) . (4.8)
=1 jeA

4.3 (Net-)baryon and (net-)proton number densities

We shall also - for the coming Chapter to be more straightforward - explicitly mention
the relations expressing the (anti)baryon number density

np = - 271'2 ZZ Z Naidim

i k= 1CL€AB

exp( o) <’“?“>

ng = B =35 ZZ > Nadm ) - (4.10)

i k=1a€EAp

k km;
exp (fZM’iM) K, ( T )

JjEA

)kJrl

(4.9)
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and the (anti)proton number density

n, = 27T2 Z Z Npidim

exp< ; Zuj) (k;?) (4.11)

=573 z; Z Npid;m exp (T ZE; zug> (k;%) (4.12)

which for net-quantities obviously lead to terms included in the denominators of Eq. (4.20)
and Eq. (4.21)), respectively, in the following Section:

np =

ng_g = nB—nB (4.13)

I 3Lexp< >N @uj) ()

i k=1a€Ap jEA

Np—p = Np—Ng (4.14)

- LS s e (£ ) (42)

JEA

i1l

4.4 Net-baryon number and net-proton number vari-

arnces

In accordance with Eq. (C.10)) in [Appendix C|and for

O*In[Z(V, T, fi
aljlaa,ub

Cov(Ny, N) = T?
we obtain

Var(Ng_g) = Y (Cov(Ny, Ny) + Cov(Ng, Ny) (4.15)
a,beAp

— OO'U(N@,NI)) —OOU(NaaNB))

= 27T2 Z Z Z Nm;Nbi + NaiNgi - NaiNbi - Na¢N5i> ’

[ k= labGAB

kmi
dym?2(—1)F+! exp( Z z/h) ( T )

jeA

= 271'2 ZZ Z Naz Naz sz_Nl_n)

i k=1 a,beEAp

kmi
dimy(—1)F exp( Z zMJ) ( T ),

JEA
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which specifically for protons (which for the Eq. above means a = b = p) results in

Var(N, ;) = W;Z : (4.16)
d;m3(—1 Hlexp( >N zug> (k?)

jeEA

4.5 Scaled variance of the (net-)baryon number and
(net-)proton multiplicity distribution

In accordance with the definition of the scaled variance written down in
which we will - entirely for the sake of clarity - once again mention here

<N2> - <N>2
Sl CLOA 4.17
(N) ( )
combined with o1 olnZ
nz n
4.1
anAB < Ha alud ) ( 8>

for the whole set of net-baryons and

OlnZ Oln Z)
N,y =T — 4.19
() =1 (G~ O (4.19)
specifically for net-protons, one may write
<N1§,B> - <NBfB>2
(4.20)

e (N5 5)
> ZZS? Za,beAB(Nai — Nai)(Noi — NEz)d'mz(— )kH eXp (%Mz) Ko (kl}l)
S 0 ey (Nai = Naadi? S5 exp () 1 (M57)
where p; = > jea Njipt; for the whole set of net—baryons or specifically

(M) = (N
Wy = N (4.21)

5 S (Nt — N i (— 1) exp (& 5000 Ny ) K ()
5 S0 (N — N S exp (557 e Ny ) £ (42)
for net-protons. Separately for protons and antiprotons, we may write

) ()
W, = A (4.22)
Do ZJFOO N2dm S(— 1)* 1t exp (% ZjeA Nji,u]) Ko (k?)

400 (—=1)k+1 m;
DD ke Npidim?+ €xp <% ZjeA Nji“j) K (kT )
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) - )
wp = <Np> (4.23)
Z ZJrOO N2d m? ( 1)k+1 exp (E ZjeA N'i,uj) K, (k;}z)

S S Nndm? E2 L exp (5524 Ny ) 1o (422)

The definition of the scaled variance given by Eq. (2.5) and Eq. (4.17) corresponds to
the following ratio of susceptibilities

X2_02
X1 M’

where M is the mean value. This is entirely in accordance with [§] and M

4.6 Third and fourth moment of the (net-)baryon
number and (net-)proton distribution

In accordance with the formalism laid down above and with [Appendix C| we may now
write down the relations for skewness (S) and kurtosis (), which we will do - for the sake
of transparency - in the form of ratios of susceptibilities

X _ gy
X2

and
X4 2
— =Ko",
X2

whose definitions are in accordance with [§] and with [Appendix C

For the whole set of stable baryons, the formulae - see - are as fol-

lows:
Zi ZZ:OI a,b,c€EAB dlmzz( )kJrlkNaszz ci €XP < Z]EA ZMj) K, (kml)
> Zif;"i Za,beAB dim (—1)FHL N, Ny, exp (T ZjeA Nji“ﬁ) K (kgr’n>

So |B:

(4.24)
> S Y aedeny GimE(—1)F P k2N Ny N Ny exp <% djea Nﬁﬂj) K, ()

> ZZ:E Za,beAB dimif(— 1)1 Nyi Ny exp (% Z]EA Nji“ﬂ‘) Ky (k?l)
(4.25)

/€02 |B:

for baryons, for antibaryons we obtain
> S Y eeny dimZ(—1)F T kNG Ny, Ne; exp <% > jea Nji:“j) K (5)
> DS Y avea, dim2(—1)F+1 Ny Ny exp (% djea sz‘#a’) Ky (B7e)

So |p=

(4.26)
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> ZZ:; ab,c,d€Ap dym (= 1)*1 k2 Ng; Ny N Ng; exp (% ZjeA Njiﬂj) Ky (k?l)
> 2:51 abEAR dym(—1)1 Ng; Ny, exp (% ZjEA Nﬂ“]’) Ky (kgl)
(4.27)

Obviously, in accordance with the following formulae hold for a net-baryon
distribution:

So | _ X apeciy [gmq dimi (—1) T k(Ny; — Ng;) exp (£p) K (22)
net B— = )
5 S Sty (1 (Nog — Nt (N — Ny exp () Ko (5
(4.28)
KO |net B= P ab,cdeAp H dim?(—1)* " k*(Ny — Ng) exp (%) Ko (k}n)

> S Y anen, Bim(—1)F ( Ny — Nai) (Noy — Nyi) exp (%p1) K (524)
2

where i = ZjGA Nﬂ,uj and
H(Nqi — Ngi) = (Nai — Nai) (Ny — Nyi) (Nei — Nzi),
q=a
d
TT(Vyi = Nai) = (Nai = Nat) (Noi — Nig)(Nei — Nai) (Nai — Nagy).
q=a

If we now restrict the formulae to protons (and antiprotons) only, we obtain the following

formulae:
5o | — e > Yoas Nydim? (—1)" k exp <§ D jea Njiﬂj) Ky (M) (430)
SRR S S Npdim?(—1)Ft exp (% Djen Njiuj) K (%) |
XD ST N W e (§ T M) K ()
Ty > Sl NEdim? (—1)F+1 exp (% Djea sz’#j) Ky (%) |
and for antiprotons as follows
LDV S o2 N dim (—1)F E exp <% D jea Njiﬂj) Ky (%)
So = 23 (4.32)

) 00 mi
S NAdm(— 1) exp (530 Ny ) Ko (4)

D e ()60

P o . .
A D i Nz dimi (—1)¥ 1 exp (% 2 jea sz’ﬂj) K (%7)

For a net-proton distribution, the formulae are the following

5 S0 (N — Ny (— 1) exp (557, Nouns ) Ko (55)
> 2ol (N — Ny 2dym? (—1)#+1 exp <% 2jea Nﬂﬂj) Ky (%)

. (4.34)

SU |net p
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> 2okt (Nyi = N, ) dimi (= 1)1 k2 exp (% 2 jea sz-uj) K> (*74)

> 2oi 2t (Npi = N 2dimi (=1)F+ exp (% 2 jea Njiﬂj) K> (72)

2 _
RO |net p—

. (4.35)

As none of the terms given by Eq. (4.9)-(4.14) and Eq. (4.20) - (4.35) is volume-

dependent, it is convenient to use them for further calculations, since the volume is not a
priori known.
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Chapter 5

Results

The derived formulae will now be implemented using data from DRAGON with the
newest PDG update (see [Appendix E)). The calculations will be performed for the most
central Au + Au collisions (centrality 0-5 and 5-10) and for seven collision energies in ac-
cordance with [2], these being \/syy = 7.7,11.5,19.6,27.0, 39.0,62.4,200 GeV. For our
purposes, the ratio fits (GCER) have been used, for which there are always correspond-
ing chemical freeze-out parameters for grand canonical ensemble. All errors considered
are systematic uncertainities. The statistical errors may be obtained by using the Delta
theorem approach [12] [14]. For more details, see TABLE VIII in [21].

In this Chapter, the temperature dependencies of the (net-)proton number densities
and the ratios of thermodynamic susceptibilities

X2

w ==,

X1
So =23

X2

and

2 X4
Ko™ = —
X2

will be presented for each of the collision energies and each centrality. On the top of each
Figure, there is a depiction indicating which centrality and collision energy has been taken
into account.

5.1 (Net-)proton number densities

The density of the particle number distribution for protons is given by Eq. [4.11] for
antiprotons by Eq. and for net-protons by Eq. The corresponding Figures are
Fig. - for centrality 0-5 and Fig. - for centrality 5-10.

One can see that for both centralities, protons, antiprotons and consequently also net-
protons rise with the temperature monotonously. The density of net-protons increasingly
differs from that of protons with the rising collision energy. This means that whereas for
the lowest collision energy /syny = 7.7 GeV the number of antiprotons is almost zero
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(meaning that the proton-antiproton yield is dominated almost entirely by protons), this
ceases to be the case as the collision energy increases. For \/syy = 200 GeV, the density
of antiprotons exceeds that of net-protons, which means that compared to the number of
produced protons, also a considerable number of antiprotons emerges.

5.2 Scaled variance of the (net-)proton distribution

The scaled variance for protons is given by Eq. [4.22, for antiprotons by Eq. and

for net-protons by Eq. [4.21] The corresponding Figures are Fig. - for centrality
0-5 and Fig. - for centrality 5-10.

We can see that for both centralities, the scaled variance shows a decreasing trend with
rising temperature. If we take a closer look at the individual results (i. e. for protons, an-
tiprotons and net-protons separately), we realize that the scaled variance of protons and
antiprotons remains approximately the same for all collision energies and both centrali-
ties, whereas that of the net-proton yield - while always retaining the decreasing trend
characteristic for all yields - reaches an upwards shifting range of values (whose span
remains approximately constant, this holds for the ranges of values of all scaled variance
results for all yields) with increasing energy.

5.3 Ratio of the third and the second thermodynamic
susceptibility for protons, antiprotons and net-
protons

The product

So =X
X2

is given by Eq. 4.30] for antiprotons by Eq. and for net-protons by Eq. [4.34] The

corresponding Figures are Fig. - for centrality 0-5 and Fig. - for
centrality 5-10.

Again, for both centralities, a similar trend can be observed. This time, too, this means
that the product So shows a decreasing tendency with rising temperature. However,
contrary to the scaled variance, the results for the net-proton yield show that the range
of values (whose span remains approximately constant, this again holds for the ranges of
values of all So results for all yields) shifts downwards with rising collision energy (while
always retaining the decreasing trend with rising temperature).
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5.4 Ratio of the fourth and the second thermody-
namic susceptibility for protons, antiprotons and

netprotons

The product
2 _ X4

X2
is given by Eq. 4.31] for antiprotons by Eq. and for net-protons by Eq. The

corresponding Figures are Fig. - for centrality 0-5 and Fig. - b.14d)| for
centrality 5-10.

RO

As was the case for all results before, a similar - this time again decreasing in terms
of temperature dependence - trend can be observed here, again for both centralities and
all collision energies. Whereas the results for protons and net-protons are very close for
all energies and both centralities, those for anti-protons show a ”converging” tendency
towards protons and net-protons with rising collision energy. For both cetralities, the
values for all three yields at \/syy = 200 GeV are very close to each other.

As for the ”spikes” one might observe in most of the Figures depicting the temperature
dependence of ko2, these must be entirely caused by the input values we put into the
calculations, these being temperature 7', the corresponding chemical potentials of stable
particles p; and the average number of stable particles Nj; (see the beginning of the
previous Chapter).
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Figure 5.1: Results for the volume density n l’ scaled variance y2/x1 l) and the prod-
ucts of statistical moments So (5.1c) and xo? (5.1d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy /syny = 7.7 GeV.
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Figure 5.2: Results for the volume density n 1) scaled variance x2/x1 1' and the prod-
ucts of statistical moments So (5.2c) and ko? (5.2d)) of protons, antiprotons and
net-protons for centrality 0-5 and collision energy /syny = 11.5 GeV.
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Figure 5.3: Results for the volume density n l’ scaled variance y2/x1 l) and the prod-
ucts of statistical moments So (5.3c) and ko? (5.3d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy /syny = 19.6 GeV.
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Figure 5.4: Results for the volume density n 1) scaled variance x2/x1 1' and the prod-
ucts of statistical moments So and ko? (5.4d)) of protons, antiprotons and
SNN — 27.0 GeV.

net-protons for centrality 0-5 and collision energy
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Figure 5.5: Results for the volume density n l’ scaled variance y2/x1 l) and the prod-
ucts of statistical moments So (5.5c) and ko? (5.5d) of protons, antiprotons and
net-protons for centrality 0-5 and collision energy /syny = 39.0 GeV.
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Figure 5.6: Results for the volume density n (/5.6al), scaled variance x2/x1 1' and the prod-

ucts of statistical moments So and ko2 (5.6d)) of protons, antiprotons and
net-protons for centrality 0-5 and collision energy /syny = 62.4 GeV.
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Figure 5.7: Results for the volume density n l’ scaled variance y2/x1 l) and the prod-
ucts of statistical moments So (5.7c) and ko? (5.7d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy /syny = 200 GeV.
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Figure 5.8: Results for the volume density n (5.8al), scaled variance x2/x1 1' and the prod-

ucts of statistical moments So and ko2 (5.8d) of protons, antiprotons and
net-protons for centrality 5-10 and collision energy /syny = 7.7 GeV.
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Figure 5.9: Results for the volume density n l’ scaled variance y2/x1 l) and the prod-
ucts of statistical moments So (5.9¢) and ko? (5.9d) of protons, antiprotons and
net-protons for centrality 5-10 and collision energy /syny = 11.5 GeV.
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Figure 5.10: Results for the volume density n 1’ scaled variance y2/x1 (5.10b) and the

products of statistical moments So (5.10c) and xo? (5.10d)) of protons, antiprotons
and net-protons for centrality 5-10 and collision energy /syny = 19.6 GeV.
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Figure 5.11: Results for the volume density n l) scaled variance x2/x1 (5.11b) and the

products of statistical moments So (5.11c) and xo? (5.11d)) of protons, antiprotons
and net-protons for centrality 5-10 and collision energy /syny = 27.0 GeV.
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Figure 5.12: Results for the volume density n 1’ scaled variance y2/x1 (5.12b)) and the

products of statistical moments So (5.12c) and xo? (5.12d)) of protons, antiprotons
and net-protons for centrality 5-10 and collision energy /syny = 39.0 GeV.



9e-005

8e-005

7e-005

6e-005

5e-005

4e-005

3e-005

2e-005

1le-005

5-10, 62.4 GeV

0.1 0.11 0.12 0.13 0.14 0.15 0.16
T [GeV]

(a) Temperature dependence of the volume density.

Xzfi1

5-10, 62.4 GeV

08

0.6

0.06

0.07

0.08

0.1 0.11 0.12 0.13 0.14 0.15 0.16
T [Gev]

(b) Temperature dependence of the scaled variance.

¥afka

Xafiz

Figure 5.13: Results for the volume density n

5-10, 62.4 GeV

P
p bar

o . . net

0.07

0.08

0.1 0.1 012 013 014 015  0.16
T [GeV]

(c) Temperature dependence of So.

5-10, 62.4 GeV

0.72 =

0.71

0.7 bbb

0.68

067 koo

T Py P DN

0.65 —
0.64 —
0.63 -

0.62

0.06

0.07

0.08

0.1 0.11 0.12 0.13 0.14 0.15 0.16
T [GeV]

(d) Temperature dependence of ko?.

57
5.13a), scaled variance x2/x1 (5.13b]) and the

products of statistical moments So (5.13c) and xo? (5.13d)) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy

sy = 62.4 GeV.
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Figure 5.14: Results for the volume density n 1’ scaled variance y2/x1 (5.14b)) and the

products of statistical moments So (5.14c) and xo? (5.14d)) of protons, antiprotons
and net-protons for centrality 5-10 and collision energy /syny = 200 GeV.



5.5 Comparison to experimental data

The relevant experimental data are depicted in Fig. (So, ko?) and Fig. |5.15b
(x2/x1)- As the data in Fig. were taken from RHIC - as were the data we have used
to perform the calculations above - these are presented first and are also to be considered
more accurate, since the collision energies are the same as those we have used. In order
to account for the scaled variance y2/x; as well, we have used the experimental results
from the STAR experiment, although the collision energies there are slightly different
from those used in the former case (of course, the STAR experiment is located at RHIC).
The corrected data on ys/y1 mentioned in the article can be found on the public STAR
webpage [22].

As can be seen in both Figures, the data relevant for us in order to perform comparison
of any kind are for the case of Fig. the filled circles, as these are the net-proton yields
for centrality 0-5 in a Au + Au collision, and for the case of Fig. the net-proton
yields depicted in the Figure. As these are the most central collisions as well, we shall
assume that the centrality taken into account was 0-5, as was the case for the §o and xo?
measurements in Fig. [5.154]

Since the purpose of our research was to determine the temperature dependence
of chosen ratios of thermodynamic susceptibilities and the data we have just presented
depend on the collision energy ,/syy only, it seems fitting that we perform a comparison
between the trends of the respective temperature dependencies of said ratios for the
centrality 0-5 and compare, how much the value for the chemical freeze-out (i. e. the
maximal value) differs from what we can see in the mentioned Figures.

The scaled variance y2/x; in Fig. shows a regular increase with the rising collision
energy. The same can be said about our results for the scaled variance for centrality 0-5
and the corresponding collision energies, meaning that the range of values (whose span
can be considered constant) is shifted upwards with rising collision energy.

As for the So product, we can see in Fig. that for the most central collisions, the
results for the net-proton yield show a decrease, ranging between the values approximately
0.9 and 0.1. If we look at our results, the same could be said about the range of values for
net-protons in the individual Figures (and for the corresponding calculations, from which
these Figures resulted), which varies from somewhere around 0.9 for \/syy = 7 GeV and
0.1 for /syn = 200 GeV.

The ko? product in Fig. shows an approximately constant value around 0.7 for the
most central Au+Au collisions, however while this is the case only for the first four collision
energies in the experimental measurement, our results show a range of values around 0.7
(more specifically between 0.62 and 0.74) for each of the seven collision energies.
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Figure 5.15: Experimental results.
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Conclusion

The primary aim of this thesis was to provide information on how to calculate moments
of multiplicity distribution using the central statistical moments. The emphasis was laid on
the first four moments and more importantly on the ratios of the related thermodynamic
susceptibilities, which are of great interest when describing the QCD-predicted phase tran-
sition within heavy-ion collisions, believed to be the cause of QGP coming into existence.
Subsequently, we implemented the derived formulae in exploring the temperature depen-
dence of specific ratios of thermodynamic susceptibilities for protons, antiprotons and net
protons. Finally, a brief comparison to experimental data acquired from RHIC/STAR was
performed. The thesis as a whole can be summarized as follows:

In Chapter 1, a brief overview was given about the Quark-Gluon Plasma and the
motivation of using moments of multiplicity distribution (specifically the multiplicity fluc-
tuations described by the scaled variance) to acquire new knowledge concerning the QGP
region.

In Chapter 2, the mathematical apparatus necessary to perform all the calculations
was provided. Statistical moments in form of central moments were introduced along with
close elaboration of the first four moments and the corresponding statistical quantities
defined by them (mean M, variance o, skewness S, kurtosis x) as well as their ratios and
products, which are of great importance for describing multiplicity fluctuations in the
statistical model. Moreover, the basics of canonical and grandcanonical formalism, with
emphasis laid on the latter, as this is the one we have used in further calculations.

Chapter 3 provided formalism for multiplicity fluctuations in a hadron resonance gas
model with the assumption of chemical equilibrium. The hadron resonance gas model was
introduced and the corresponding susceptibilities were defined. Using said susceptibilities,
the first four cumulants in the ideal hadron gas were derived. Subsequently, the loss of
chemical equilibrium and the chemical freeze-out parametrization were elaborated, which
enabled us to finally lay down the formalism necessary for the resonance decays to be
accounted for, which we did immediately afterwards and we also adjusted the formulae
expressing the first four cumulants in the ideal hadron gas, in order to account for the
resonance decays.

In Chapter 4, we have generalized the formalism from the previous Chapter in order to
account, for chemical non-equilibrium. We assumed that each stable particle species now
has its own chemical potential and we have derived the corresponding formulae for the
statistical moments for both baryons and specifically protons with emphasis on baryon
and proton number density n, the scaled variance x»/x; and the products So and ko?.
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We have considered a total of 26 particle species stable, those being 7, K, n, N, A, ¥, =, €.
The method of calculating said potentials was also introduced. Furthermore, we have up-
dated the tables of resonance decays and particle properties of the DRAGON programme
according to the newest PDG update.

In Chapter 5, the calculation of said chemical potentials for corresponding sets of
freeze-out parameters along with the computation of average numbers of stable particles
for each resonance decay was performed. The freeze-out parameters in question concerned
the most central collisions at RHIC (i. e. centrality 0-5 and 5-10) for 7 collision energies
VNN = 7.7,11.5,19.6,27.0, 39.0,62.4,200 GeV. As such, we obtained a temperature de-
pendence for chemical potentials of all stable particles for each configuration of centrality
and collision energy. These were then implemented into the derived formulae and the cor-
responding temperature dependencies of the number density n, the scaled variance x2/x1
and the products So and ko? for protons, antiprotons and net-protons were plotted for
each configuration of centrality and collision energy.

Finally, the obtained results were confronted with experimental data, which comprised
exclusively net-protons. As these data were plotted as functions of the collision energy
Vv/sny and not the temperature 7', we have compared the shift of ranges of values for
the individual quantities for net-protons up- or downwards with the trend followed by
experimental data. While the scaled variance y2/x; and So = x3/x2 agreed with the
data quite well, the ko2 = x4/x2 product showed an approximately constant value around
0.7 for the most central Au+Au collisions only for the first four collision energies in the
experimental measurement, whereas our results showed a range of values around 0.7 (more
specifically between 0.62 and 0.74) for each of the seven collision energies.
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Appendix A

Bessel functions

In this Chapter, some brief trivia on Bessel functions and their practical use will
be presented. A brief theoretical overview concerning the mathematical apparatus used
in this master’s thesis will be provided. The whole apparatus was taken from and is in
accordance with [26].

A.1 Bessel functions

The Bessel functions were first defined by Daniel Bernoulli and later on generalized
by Friedrich Bessel. They are defined as canonical solutions y = y(z) of a differential
equation better known as the ”Bessel differential equation”:

2 d%y dy

ay Ay 2 2y
xdx2+$dx+(x a‘)y=0 (A.1)

where the arbitrary complex number « is called the order of the Bessel function.

The Bessel functions can be distinguished according to the parameter a. If « is an
integer, we talk about cylinder functions or the cylindrical harmonics because they
appear in the solution to Laplace’s equation in cylindrical coordinates. Once « is a half-
integer (i.e. for each a there is an n € N such that o = n + %), then we call the functions
y = y(x) the spherical Bessel functions and they are obtained when the Helmholtz
equation is solved in spherical coordinates.

The Bessel functions of the first kind are denoted as J,(x). They are solutions of
Bessel’s differential equation that are finite at the origin (z = 0) for integer or positive
values of o and diverge as x approaches the value x = 0 for negative non-integer o. They
can be defined as follows:

b (_1)m T\ 2m+o
Jalz) = Z m!l'(m + a +1) (5) (A-2)

m=0

It is worth mentioning that for non-integer «, the functions J, and J_, are linearly
independent, which makes them two solutions of the differential equation. If « is an
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integer, the following is valid:
Jop = (=1)"Jn(2), (A.3)

which means that the solutions are no longer linearly independent. The second solution is
then expressed as the Bessel function of the second kind denoted as Y, and defined
as follows:

Jo(x) cos(am) — J_q(x)

sin(ar)

Ya(x) =

(A.4)

The plots of Bessel functions of the first and second kind for a@ = 0, 1,2 are depicted in
Figure and in Figure [A.2] respectively.
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Figure A.1: Bessel Functions of the First Kind J,. Taken from [26].

A.2 Modified Bessel functions

The Bessel functions are well defined, even though their argument z is complex.
However, if a special case occurs - when this argument is purely complex - we talk about
the modified Bessel function (also called the hyperbolic Bessel function) of the
first kind (denoted as I,(z)) and of the second kind (denoted as K,(z)). Those are
defined by the following equations:

[e.9]

o ] 1 T\ 2m+ta
Ta(w) = i7" Joliz) = Z m!ll'(m+a+1) (5) (A.5)

m=0
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Figure A.2: Bessel Functions of the Second Kind Y,. Taken from [26].

These solutions are two independent solutions of the modified Bessel equation:

d*y dy
2 2 2

. AT
T+ (z®+a’)y=0 (A7)
Unlike the classical Bessel functions, which oscillate as functions of a real argument in
both I,(z) and K,(z), the Modified Bessel functions grow exponentially. We will now

present the integral form of the Modified Bessel functions (assuming that Re(z) > 0):

I, (z) = 1 /07T exp(x cos(f)) cos(al)db —

M/ exp(—xcosht —at)dt  (A.8)
0

™ ™

K, (x) :/ exp(—x cosh t) cosh(at)dt (A.9)
0
The plots of Bessel functions of the first and second kind for @ = 0, 1,2 are depicted in
Figure and in Figure [A.4] respectively.

A.3 Recurrence Relations

Let Z,(z) denote I,(z) or ™ K,(z) or any linear combination of these functions, the
coefficients in which are independent of 2 € C and v € IN. Then the following recurrence
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relations can be used:

Zus(2) = Zuna(z) = 2 2,(2) (A.10)
ZKQ:ZWNQ—ZL@) (A.11)
Zyr(2) + Zysa(2) = 2Z0(2) (A.12)
Z,(2) = Zon(2) + < 2,(2) (A.13)

For our purposes, the function K,(z) and Eq. (A.10]) are of great importance. Since Z,(2)
can be Z,(z) = ¢™K,(z) and

one may write

Kyi(2) = Kyma(2) = K (2). (A.14)
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Appendix B

Saddle-point expansion

We may now introduce the method of the saddle-point expansion. Let wy = (Ag, As, Ag)
be the saddle point. Then obviously

0.f (w)

8w;€

sy, = 0.

We will now try to find the explicit solution of a complex d-dimensional integral

I(v) = [H/r dwk] g(w)e”

where 'y, is the k-th path of integration.

If v is large, then only a small segment around the saddle point wy contributes to
the total integral value. We may then write

o0

v f(wo 1 s oo Iy —1THE
I(v) ~ e’ )W [H/_ dtk] glw(t))e 2

where H is the Hessian matrix of f(u).

We may now summarize the procedure as follows: at first we choose a real inte-
gration variable #j:

wy — wor, = €%y,

where ¢, denotes the phase.

Consequently, the original path is "deformed” into a line in the complex plane.
After that, we expand g(w) into a Taylor series around W = wp.

Finally, we assume that H is diagonalizable, so we can find a matrix A such that

H’ = AHAT.
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The integral will now have the following expression:

1
(27v)ddetH o

LDy 2 s A
v 2.4~ OwOw,y, < N 0

d -
aiagg})!uro +vg(u70)” . (B.1)

k=1

—

I(v) ~ exp(vf(up)) wo )+

where v and «; are constants dependent only on function f and its derivatives.

69



Appendix C

Calculation of the first four
statistical moments for many input
parameters

All calculations are performed in accordance with Chapter 2, where we defined the
m-th central statistical moment as

om(X) = E[(X — EX)™]. (C.1)

The m-th moment about the origin (also called the raw moment) can be expressed as
follows:
P (X) = E[X™]. (C.2)

One can immediately see that for the first four moments, the following relations are
fulfilled:

pr=¢ = (C.3)

g =y — @ (C.4)

p3 = @ — 3pph + 20° (C.5)

pa = ¢) — 4oy + 6p%0h — 3¢" (C.6)

C.1 First central moment - the mean value

Let A; be a set of n arbitrary statistical quantities, i € {1,...,n}. Then using the defini-
tion of the first central moment, we obtain

i=1 L i=1 i=1
1D SX B ST i
[ i=1 i=1 i=1
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which proves the linearity of the first central statistical moment. By inserting

into Eq. (C.7)), where

we obtain

Ai =N
Ni—f = NZ - NE)
)= > _(EN; - EN). (C8)
I€EAR

C.2 Second central moment - the variance

Let A; be a set of n arbitrary statistical quantities, i € {1,...,n}. Then using the defini-

tion of the second central moment, we obtain

+(5)

By inserting

into Eq. (C.9)), where

Var (Zn: AZ-) (C.9)
BEEN

2

n

E Z(Az — E4;)

=1

E Zn: (4 — EA;)(A; — EA;)

Li,j=1

S E[(4— EA)A, — BA))

2,j=1
Z CO'U(A“A])
ij=1
Ai= N5
NZ—E = N; Ng,



we obtain

Var(Np_g) = Y. Cou(Nii,N;_j) (C10)
_ weiB E[(Niis — ENi_3)(N,_; — EN,_;)]
_ J:gf [E(N,_iN,_;) — E(N_) E(N,_;)]
— jZB [E[(N: — N;)(N; — N;)] — E(N; — N;)E(N; — N;)]
_ ZJEB [Cou(N;, Nj) + Cov(N;, N;) — Cov(N;, Nj) — Cou(Ni, N3)]
ijen

C.3 Third statistical moment

Let A; be a set of n arbitrary statistical quantities, i € {1,...,n}. Then using the defini-
tion of the third central moment, we obtain

3 (iA,») = B En:Ai_E<zn:Ai) (G
- FE Zn:(Ai—EAi)

n

= 3 B[(A - BA)(A; — EA) (A — EA)]

) lie ey

+ 2<E Zn:Ai
i=1

— 3K

)3_
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C.4 Fourth statistical moment

Let A; be a set of n arbitrary statistical quantities, i € {1,...,n}. Then using the defini-
tion of the fourth central moment, we obtain

(C.12)

= Y E[(A— EA)(A; — EA))(A, — EA) (A — EA))

i,k 0=1
n 4 n n 3]
8]l
=1 i=1 =1
> A ) .
=1 _

s ]

C.5 Ratios of susceptibilities

>
i=1

According to [8], the thermodynamic susceptibility x; of particle species a is given by
@ _ 0(p/TY ., 0'(P/T)

=1 LT 1" 7 C.13
N T o 1)
For partial pressure P/T*, in accordance with given by
P _ InZ(V, T, i) (C.14)
i VT5 ! : '

which - according to the calculations specifically performed above - can be recast as

—4 %QTQZ;Zd eXp(TZ zu]) (k;}) (C.15)

jEA

Eq. (C.13) can be rewritten as

a _ k kml
Xl( ) 2T2 ZZd m k—l—lkl 2Ncl”. exp (fZ.N},,[@) Kg ( T ) . (Cl6>

i jeA

Obviously, the ratio of any two thermodynamic susceptibilities of the same particle species
a, denoted Xl(a) and Y\, 1 # n, can be written as

X9 2 Soaly dim (—1)FH RN exp (% > jea Niikt

@ ~ ~ .
Xn > 2ol dim2 (= 1)FH k2N exp <% > jea Njitt

— [ —
s
—
bl
E
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If all baryons are taken into account, Eq. (C.13) and Eq. (C.16|) are in accordance with
[16] generalized as

oL (P/T*)
Oltay - - - Oftg,

+oo
= #ZZ Z dimf(—l)kﬂkl—?Nali.. alzexp( Z Zu])x

i k=1 g.,eAp,sell<n JjeA

X K2 (k$1>

where ay, ..., a, are stable baryons.

(@1,-an) il

X1 - (C.18)

Obviously, Eq. (C.17) for any two thermodynamic susceptibilities denoted [ and
0,1 # o is then generalized as

Xl(a1 ..... ) — Zz E::{ as€Ap,sell<n dim2<_1)k+lkl_2Na1i . Nali exp (%'ul) Ky (k;%)
Xgal ..... an) Zl 22‘201 0sCAp 8C50%n d m? ( 1)k+1k0 2N . Naoz' exp (%Mz) Ky (kmz)
1

where i = ZjEA Nﬂ,uj

C.5.1 Ratios of susceptibilities for a net-baryon distribution

If we want to obtain the susceptibilities for a net-baryon distribution, Eq. (C.18]) trans-
forms into

oL (P/TY)
Olay - - - Oflg,
1 o
- 2272 Z Z Z dlm?( )k+1kl 2( ait Na’u’) s (Nali - Ndli) X

k=1 asEAR, sEZl<n

9 exp< SN ZM]) ("‘;”L)

JEA

X?et(al ..... an) Tl (C20)

and Eq. (C.19) transforms accordingly.
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Appendix D

Clebsch-Gordan Coefficients

In the following Chapter, the definition and basic properties of Clebsch-Gordan Coef-
ficients will be introduced, along with a way of calculating them explicitly. All performed
calculations were taken from and are in accordance with [27].

D.1 Definition and properties

A system of two mechanical angular momenta can be characterized by operators of
the total angular momentum J2, J, and operators of the individual angular momenta
J17, Ji., J5 ", Jas. Thus, two groups of mutually commuting operators can be written down:

A2 A2 A ~
: J1 ) J2 7']2’ Jz

~ 2 924 <
: Jl 9 J2 7J127 JQZ?
which leads to the following basis states:

- coupled eigenstates, denoted as | Jy, Jo; J, M) or | J, M)
- uncoupled eigenstates, denoted as | Jy, Jo; My, M) or | (M, Ms))

Since these are both complete basis systems, they are related to each other via a
unitary transformation

| M) = )" | (M, My)) (M, My) | J,M). (D.1)

M1,M>

The amplitudes (M, Ms) | J, M) in Eq. (D.1)) are called Clebsch-Gordan (CG) coeffi-

cients, whose most important properties can be summed up as follows:

- CG-coefficients vanish if M # My 4+ M,

- The following selection rule can be applied to the total angular momentum J:
| Ji— o |<J < Ji+Jy

- CG-coefficients can be chosen as real.
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D.2 Conventional methods of deriving the CG Coef-
ficients and general formulae

In order to derive the specific form of the CG-coefficients, the iterative application of
the lowering operator J =J, - z'jy on the maximum state is used. The maximum state
can be expressed as

| S, M) = | (M, = Jy, My = J3)) (D.2)

where J = J; + Jy and M = M; + M. The effect of the lowering operator on | J, M) is
given by

J | JM)=~/(J+M)(J—-M+1)|J M-1). (D.3)

If we project the resulting states onto the coupled product state ((M;, Ms), we obtain
the CG-coefficients.

The explicit formula for the CG-coefficients is given by the so called Racah for-
mula

(M1, My) | J M) = ) (1) V2] +1 (D.4)
k
(Ji+ Jo— DIy — Jo+ D Jo — Jy + J)!
(J1+ Jo+J+ DIy — My — k)2 Jy + My — k)12E!2

X

(Jy 4+ M)y + M) + M)y — M) Js — Mo)I(J — M)!
(J = Jot My + k)2(J — Jy — Mo+ k)2(J, + Jo — J — k)2

Obviously, both methods are very formal, which makes the calculations even in the case
of very small angular momenta quite legthy and impractical, which is why the values of
CG-coefficients have been listed in tables. These tables are in Figure (D.1) and Figure

D3).
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34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS
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Figure D.1: Table of Clebsch-Gordan coefficients: Part 1. Taken from [28].
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Figure 34.1: The sign convention is that of Wigner { Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley ( The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNT.

Figure D.2: Table of Clebsch-Gordan coefficients: Part 2. Taken from [28].
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Appendix E

Update of the list of hadrons and the
list of resonance decays within the
DRAGON Monte Carlo model

One of our tasks was also to update the decay chain tables within the DRAGON
programme, whose documentation can be found in [25]. All the necessary mathematical
apparatus has been laid down earlier in this thesis. Here, only a brief overview will be
provided with emphasis on said update, whose results have been elaborated on earlier on
in the Chapter ”Results”. This update has been performed using PDG - measurements
from 2017, yet for our purposes (meaning the measurements relevant for our aim), these
are much the same even for the current update, which can be found in [I5].

E.1 DRAGON

DRAGON is a Monte Carlo generator of the final state of hadrons emitted from
an ultrarelativistic nuclear collision. The name DRAGON stands of DRoplet and hAdron
GeneratOr for Nuclear collisions. The model upon which it is based is similar to THERMI-
NATOR, yet in case of DRAGON, emission from fragments is included. The fragmentation
at hadronisation phase transition is a result of an abrupt rise of bulk viscosity at T, which
can make the fireball very stiff and if strong expansion - which results from pre-existing
longitudinal movement of the incident nucleons and the inner pressure of the matter -
is present, said fragmentation is very likely to occur. The structure of the programme is

depicted in FigurdE.I]

E.2 Updated particle properties

Our primary concern were the files params.hpp and resonances.input. The file
params.hpp includes the parameters of the model and steering constants for compiling
and running. This also includes the list of all species called pproperties, which is an
array whose entries are records for individual species. The original version from 2009
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Figure E.1: The structure of DRAGON. Taken from [25].

included all baryons with masses up to 2.0 GeV/c? and mesons up to 1.5 GeV/c?. After
the update was performed, all baryons with masses up to 2.5 GeV/c? and mesons up to
2.0 GeV/c? are included. The file resonances.input is a list of resonance decays. If at
least one decay mode for given species is listed in this file, that species is treated as an
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unstable resonance and if a species is not listed, it is treated as stable. The branching
ratios can be found in [I5], whilst for individual combinations (e. g. K*K~ or K°K?,
which both result from the decay of f>(2300)), this branching ratio had to be multiplied

by the corresponding CG-coefficient (see [Appendix D).

Before we proceed to the update tables, a few remarks concerning the syntax are
in order, all of them being in full accordance with [25]. Each line of the vector PChem
pproperties[], which are structures storing the records of properties of individual species
and has as many entries as specified by NOSpec, represents one species and consists of
the following:

1) Monte Carlo ID number of species according to Particle Data Group [29]; in-
eger

2) mass in GeV/c?; double

3) baryon number; integer
4) strangeness; integer

(
t
(2)
(3)
(4)
(5) 1 if the species is a boson, 0 if the species is a fermion
(6) spin degeneracy; integer

(7) 1., double (calculated later by the programme)

(8) 1., double (calculated later by the programme)

(9) -1, integer; determined by the programme, links the species to its decay prescriptions;

remains -1 for stable particles.

The structure of the file resonances.input has been elaborated on above. An ex-
cerpt from said file can be seen in Figure [E.2|

# rho+

213 0.766 0.150

1. 211 0.13957 111 0.13498

# rhoO

11 0.769 0.151

1. 211 0.13957 -211 0.13957

# rho-

=213 -1. 0.150

1. -211 -1. 111 -1.

# omega

223 0.782 0.00844

0.888 -211 0.13957 111 0.13498 211 0.13957
0.0221 -211 0.13957 211 0.13957

0.085 111 0.13457 22 0.

# eta’(958)

331 0.95778 0.000203

0.445 211 0.13957 -211 0.13957 221 0.54751
0.294 113 0.769 22 0.

0.208 111 0.13498 111 0.13498 221 0.54751
0.0303 223 0.782 22 0.

0.0212 22 0. 22 0.

Figure E.2: An excerpt from the file resonances.input. Taken from [25].

As one can see, the structure of this file is the following:
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(1) A record of all decay modes of one resonance starts with a line with three
numbers: the MC code of the resonance, its mass in GeV/c? and its width in GeV.
If -1. is put in the position of the mass, the code automatically reads the mass from
pproperties]].

(2) A record of a two- or three-body decay contains five or seven numbers, respec-
tively. In both cases, there is the branching ratio for the decay channel multiplied by the
CG-coefficient (if possible). This is followed by the MC code of the first daughter particle
and its mass, then the same for the second or third daughter particle.

If the sum of branching ratios is not equal to 1, the program will multiply them
with a common factor, so that the sum will be equal to 1. Moreover, any line starting
with # - or an empty one - is considered as a comment and therefore not included in the
calculations.

E.2.1 Tables of Changes

In accordance with [§], particles listed in the following Table have been considered
stable in our calculations. We have used the DRAGON syntax. In total, we have 26 stable
particles in contrast to the original 23, since 7, £°, 30 have been added. In the other
Tables, the newly added mesons, nucleon resonances, A-resonances, A-resonances,
Y-resonances and =-resonances are summed up along with their properties. For the
sake of clarity, the tables are presented for each type of resonances separately.
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Particle | Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
Tt 211 0.13957 0 (0|1 1
T -211 0.13957 0 (0 |1 1
0 111 0.13498 010 |1 1
K° 311 0.4976 01 |1 1
K° -311 0.4976 0 |-11 1
KT 321 0.4936 01 |1 1
K~ -321 0.4936 0 |-1/1 1
Ui 221 0.54786 0 (0|1 1
p 2212 0.93827 110 (0 2
n 2112 0.93957 11010 2
D -2212 0.93827 -110 10 2
n -2112 0.93957 -110 |0 2
A° 3122 1.11568 1 /-1]0 2
A° -3122 1.11568 ;11110 2
¥t 3222 1.18937 1 /-1]0 2
St -3222 1.18937 -111 10 2
0 3212 1.192642 1 /-1]0 2
50 -3212 1.192642 10110 2
3~ 3112 1.197449 1 ]-110 2
¥ -3112 1.197449 ;11110 2
=0 3322 1.31483 1 1-2]0 2
= 3312 1.32131 1 1-2]0 2
=0 -3322 1.31483 11210 2
C -3312 1.32131 11210 2
Q- 3334 1.67245 1 1-3(0 4
Q- -3334 1.67245 113 (0 4

Table E.1: Table of stable particle species.
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Particle Monte Carlo ID | Mass[GeV /c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
£1(1525) | 335 1.525 00 |1 5
77 (1600) | 9010213 1.662 00 |1 3
79(1600) 9010113 1.662 010 |1 3
7 (1600) | -9010213 1.662 010 |1 3
n(1645) | 10225 1.617 0]0 |1 5
w(1650) 30223 1.67 010 |1 3
w3(1670) 227 1.667 010 |1 7
75 (1670) | 10215 1.6722 00 |1 5
70(1670) | 10115 1.6722 00 |1 5
7, (1670) | -10215 1.6722 0]0 |1 5
p(1690) | 217 1.6888 00 |1 7
A0(1690) | 117 1.6888 0]0 |1 7
p5 (1690) | -217 1.6888 00 |1 7
fo(1710) | 10331 1.723 00 |1 1
7 (1800) 9010211 1.812 010 |1 1
7%(1800) | 9010111 1.812 010 |1 1
7~ (1800) | -9010211 1.812 010 |1 1
¢3(1850) 337 1.854 010 |1 7
f2(1950) 9050225 1.944 010 |1 )
f2(2010) 9060225 2.04 010 |1 )
al (2040) | 219 1.995 0]0 |1 9
a9(2040) | 119 1.995 00 |1 9
a; (2040) | 219 1.995 00 |1 9
£2(2050) | 229 2.018 00 |1 9
f2(2300) 9080225 2.297 010 |1 )
f2(2340) 9090225 2.345 010 |1 )
K, (1770) | 10325 1.773 0|1 |1 )
K, (1770) | -10325 1.773 0]-11 5
K9(1770) | 10315 1.773 0|1 1 )
RO(1770) | -10315 1.773 0]-11 5
K;H(1780) | 327 1.776 0|1 |1 7
K3~ (1780) | -327 1.776 0]-1]1 7
K3°(1780) | 317 1.776 0|1 |1 7
K:O(1780) | 317 1.776 0 |-1]1 7
K5 (1820) | 20325 1.819 0|1 |1 )
K5 (1820) | -20325 1.819 0 -1]1 )
K9(1820) | 20315 1.819 01 |1 5
(9(1820) | -20315 1.819 0-1]1 5

Table E.2: Table of newly added mesons.
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Particle | Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
NT(1875) | 192212 1.9 17010 4
N*(1875) | -192212 1.9 1lo0]o0 4
NO(1875) | 192112 1.9 17010 4
NO(1875) | -192112 1.9 11010 4
N7(1900) | 202212 1.92 1 1010 4
NT(1900) | -202212 1.92 100 1
N°(1900) | 202112 1.92 17010 4
]\_fo(1900) -202112 1.92 -1107]0 4
NT(2190) | 212212 2.075 1]0]0 8
N7*(2190) | -212212 2.075 11010 8
NO(2190) | 212112 2.075 1]0]0 8
NO(2190) | 212112 2.075 1]0]o0 8
NT(2220) | 222212 2.17 100 10
NT(2220) | 222212 2.17 100 10
N©(2220) | 222112 2.17 11010 10
N0(2220) | 222112 2.17 1lo0]o0 10
NT(2250) | 232212 2.2 17010 10
N*(2250) | 232212 2.2 1lo0]o0 10
NO(2250) | 232112 2.2 171010 10
N°(2250) | -232112 2.2 -1101(0 10
NT(2600) | 242212 2.6 1(0]o0 12
NT(2600) | -242212 2.6 1]0]o0 12
N°(2600) | 242112 2.6 17010 12
NO(2600) | -242112 2.6 1/0/0 12
Table E.3: Table of newly added Nucleon Resonances.
Particle Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
ATT(2420) | 192224 2.42 17010 12
AT(2420) | 192214 2.42 17010 12
A(2420) 192114 2.42 17010 12
A~(2420) | 191114 2.42 17010 12
AFF(2420) | -192224 2.42 1/0]0 12
A*(2420) | -192214 2.42 -1101(0 12
A%(2420) | -192114 2.42 1]0]o0 12
A~(2420) | -101114 2.42 1]0]o0 12

Table E.4: Table of newly added A-Resonances.
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Particle | Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
A(2100) | 213122 2.1 1 1-11]0 8
A(2100) | -213122 2.1 101 [0 8
A(2110) | 223122 2.11 1 1-1]0 6
A(2110) | -223122 2.11 11 o 6
A(2350) | 233122 2.35 1 ]-110 10
A(2350) | -233122 2.35 11 o 10

Table E.5: Table of newly added A-Resonances.
Particle | Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
¥1(2030) | 193222 2.03 1 ]-110 8
¥0(2030) | 193212 2.03 1 ]-110 8
¥7(2030) | 193112 2.03 1 ]1-110 8
$+(2030) | -193222 2.03 11 o 8
39(2030) | -193212 2.03 -1 0 8
$7(2030) | -193112 2.03 -1 0 8

Table E.6: Table of newly added X-Resonances.
Particle | Monte Carlo ID | Mass [GeV/c?] | B | S | Boson (1)/Fermion(0) | Degeneracy
=0(1530) | 153322 1.531 120 4
=7(1530) | 153312 1.531 1 1-210 4
Z0(1530) | -153322 1.531 10210 4
=7(1530) | -153312 1.531 10210 4

Table E.7: Table of newly added =-Resonances.
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