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podklady (literaturu, projekty) uvedené v přiloženém seznamu.
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Abstract:

The number of particles produced in ultra-relativistic nucleus-nucleus collisions is well

described by the statistical model. In this model, the particle yields depend on temper-

ature and chemical potential. However, statistical physics can also predict multiplicity

fluctuations, which can subsequently be compared to experimental data. The aim of this

thesis is to provide information on how to compute multiplicity fluctuations along with

higher moments of the multiplicity distribution using the central statistical moments. Fur-

thermore, said moments of the multiplicity distribution in a hadron resonance gas model

will be investigated for both the chemical equilibrium and the chemical non-equilibrium,

where the generation of temperature-dependent chemical potentials for each stable par-

ticle species is assumed. Finally, the results in form of the temperature dependence of

the moments of the proton number distribution at chemical non-equilibrium will be intro-

duced for relevant cool-down scenarios based on the data from the RHIC BES programme.
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Abstrakt:

Počty částic produkované v ultrarelativistických jaderných srážkách jsou dobře popsány

statistickým modelem. V tomto modelu záviśı výtěžky na teplotě a chemickém potenciálu.

Statistická fyzika však dokáže předpovědět i fluktuace multiplicity. Ty pak mohou být

porovnány s daty z experimentu. Ćılem této práce je poskytnout informace o výpočtu fluk-

tuaćı multiplicity a vyšš́ıch moment̊u rozděleńı multiplicity za použit́ı centrálńıch stati-

stických moment̊u. Budou představeny metody výpočt̊u fluktuaćı multiplicity ve stati-

stickém modelu nejprve pro chemickou rovnováhu, poté i pro chemickou nerovnováhu, při

které předpokládáme generováńı chemických potenciál̊u pro každý stabilńı druh částic v
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protonového č́ısla v závislosti na teplotě pro scénáře chlazeńı relevantńı pro ultrarelativi-

stické jaderné srážky z programu RHIC BES.
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Introduction

The number of particles produced in ultra-relativistic nucleus-nucleus collisions is well

described by the statistical model. In this model, the particle yields depend on temperature

and chemical potentials. In this thesis, we will describe the computation of higher moments

of the multiplicity distribution along with their implementation in the heavy-ion collisions.

For this, we will use a method based on central statistical moments. Furthermore, we will

provide the temperature dependence of the moments of the proton number distribution

at chemical non-equilibrium for relevant cool-down scenarios based on the data from the

RHIC BES programme.

In Chapter 1, the concept of the Quark-Gluon Plasma (QGP) will be introduced and

the main motivation for using multiplicity fluctuations along with the statistical approach

will be laid down.

In Chapter 2, the statistical moments will be formally introduced, defined and

elaborated. We will focus on the first four central moments especially, as those are the most

important ones when considering the heavy-ion collisions. They are called mean (M),

variance (σ2), skewness (S) and kurtosis (κ) and they - along with the respective

products of said moments - contribute significantly to a better understanding of the heavy-

ion collisions and the subsequent particle production, which will also be emphasized in the

text. Also, the canonical and grandcanonical formalism will be introduced as well as the

so-called ”scaled variance” which is widely used when describing fluctuations specifically.

In Chapter 3, the topic of chemical equilibrium and the fluctuations therein will

be elaborated. Subsequently, the fluctuations in a hadron resonance gas model will be

introduced and the corresponding thermodynamic susceptibilites will be defined and the

first four cumulants in the ideal hadron gas will be written down. At the end of this

Chapter, the loss of chemical equilibrium and the chemical freeze-out parametrization

will be dealt with and the effect of resonance decays will be taken into account, which

includes the generalization of the first four cumulants in the ideal hadron gas for the case

that the effect of resonance decays is assumed.

In Chapter 4, the formalism laid down in Chapter 3 will be further generalized in order

to account for the case of chemical non-equilibrium, which is characterized by all stable

particle species having their own chemical potential. The calculation of said potentials will

be introduced. We will reintroduce the formula for the particle pressure and adjust it to

the state of chemical non-equilibrium. Furthermore, we will write down the formulae for

the (net)-baryon and (net-)proton number density as well as particle fluctuations thereof

expressed as the scaled variance along with the products Sσ and κσ2, all while accounting
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for the state of chemical non-equilibrium using the generalized particle pressure formula.

These formulae will be presented as functions of temperature.

In Chapter 5, the results of the performed calculations will be introduced for the

first four moments of the proton number distribution. The temperature dependence of

the proton number density, the scaled variance σ2/M and the products Sσ and κσ2

will be plotted for the most central collisions (centralities 0-5, 5-10) using data from

the beam energy scan program (BES) at RHIC. The calculations will be performed for

seven collision energies for both centralities, which are characterized by their respective

freeze-out parametres.
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Chapter 1

Quark-Gluon Plasma and Heavy Ion

Collisions within the Statistical

Model

The main goal of Heavy Ion Collisions is the study of nuclear matter at high energy

density. This is of particular interest when investigating the properties of hadronic matter

and of the Quark-Gluon Plasma region (QGP), which is assumed to have existed during

the first few microseconds after the Big Bang, for which the existence of a highly dense

region is necessary within the laboratory.

The term ”Heavy Ions” means that extremely heavy atomic nuclei are used, whereas

”ultrarelativistic energy” stands for the energy regime where the kinetic energy exceeds

the rest energy significantly [1]. This energy range makes high energy collisions a perfect

tool for studying smaller objects, i. e. subatomic particles, successfully providing the basis

for particle physics. On the other hand, low energy collisions are suitable for describing

more complex compound object, i. e. nuclei, thus laying ground for nuclear physics.

The main aim of this Chapter is to introduce the concept of the QGP with the emphasis

on its thermodynamical or statistical approach.

1.1 Quark-Gluon Plasma

The Quark-Gluon Plasma (QGP) is a state of matter where partons are deconfined, i.

e. not confined in hadrons. Deconfinement is phenomenologically (i. e. within the QCD

framework) defined as a phase transition. Furthermore, this state of matter is believed

to have existed during the earliest state of the Universe (∼ 10 µs after the Big Bang

[19]). Under certain special circumstances, said state may also emerge in ultrarelativistic

heavy-ion collisions. However, its existence is limited to a period of the order of few fm/c.

Speaking in terms of physics, such a collision can be considered similar, which is why it

is often referred to as a little-bang or micro-bang [19].

In Figure 1.1 the spacetime evolution of a fireball induced after a collision of two

nuclei A and B is depicted, while nuclei with a large proton number, such as 82Pb or
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79Au, are usually used. Such a collision results in a formation of dense hadronic matter,

whose energy density ε approximately corresponds to a value ε > 1 GeV fm−3 and the

corresponding pressure P of the relativistic matter approximately equals to P ' 1
3
ε [19].

The character of the phase transition mentioned above, the normal position of nuclear

matter in the QCD phase diagram along with relevant scales of the nuclear many-body

problem is shown in Figure 1.2. As can be seen in the aforementioned Figures, the phase

transition is characterized by two free parameters - the freeze-out temperature T(fo) and

the baryo-chemical potential µB.

Figure 1.1: Spacetime evolution of a fireball: (a) without QGP, (b) with QGP (taken from [18]).

Due to a high pressure the fireball will continue to expand until it has reached the

so called freeze-out. The life expectancy of the fireball τ (meaning the time that passed

between the collision and the freeze-out) depends on the volume of the system and is

approximately given by

τ ≈ 2R

c
(1.1)

where R is the radius of the sphere used to approximate the fireball, c is the speed of

light in a vacuum.

After the freeze-out, a large abundance of low-energy hadrons can be observed. This

is typical for a heavy-ion collision, since it is characterized by the fact that the collision

energy is partitioned among a large number of hadrons, contrary to elementary interac-

tions (see [19]). It is the high particle yield that justifies the assumption that heavy-ion

collisions can be well described by using the methods of statistical physics. A considerable

advantage of these methods is the fact that they do not require the description of every

single particle in the system, but describe the system as a whole.
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Figure 1.2: Illustration of the position of nuclear matter in the QCD phase diagram, outlining

relevant scales of the nuclear many-body problem. Taken from [20].

1.1.1 Comparison of the Big-Bang and the Micro-Bang

As we have already mentioned the similarity between the micro-bang and the Big Bang, it

seems only fitting to point out that these two theoretical phenomena are neither entirely

equivalent, as the reader may have acquired the impression of a certain similarity based on

the previous description. In Figure 1.3 we can see two nuclei, which are subject to Lorentz

contraction in the direction of movement. The collision is depicted in the centre of mass

reference frame. The collision of these two nuclei results in the formation of a highly

dense matter - the fireball, which subsequently expands according to Figure 1.1,until the

final state is reached, where individual particles which were formed after the chemical

freeze-out are present. In Figure 1.3, these particles are depicted as arrows.

This brings us to the conclusion that even though the conditions immediately after the

collision are very similar to those during the earliest stages of the universe, it is impossible

to compare these two events. The main reason is that the life expectancy of the QGP in

the Universe and that in a heavy-ion collision are different by a factor of 1018.

The time scale of the expansion of the Universe is defined by the mutual conformity

of gravitational forces and the radiation and Fermi pressure of hot matter, whereas in

the case of a micro-bang, there is no gravitational interaction that would slow down

the expansion of the fireball, which justifies the already mentioned difference between the

times of expansion of the fireball and of the Universe. One must also consider the fact that

5



Figure 1.3: Lead nuclei in the state of Lorentz Contraction (taken from [19]).

the properties of the fireball as well as its size change rapidly with the fireball’s expansion,

quite unlike during the early stages of the Universe. The time expansion constant of the

Universe τU can be expressed as

τU =

√
3c2

32πGB
(1.2)

where B is the vacuum energy (the so called ”bag constant” - see Chapter 1.2) and G is

the gravitational constant.

In the early Universe, the baryon number density was extremely low, which was caused

by the presence of baryons and almost exactly the same number of antibaryons. Contrary

to that, in laboratory conditions, a dense fireball with an non-negligible baryon number

Nb emerges. The term ”unnegligible” means that the ratio of the difference of the number

of baryons and that of antibaryons to the number of baryons, which can be expressed as

Nb − N̄b

Nb

,

is much much greater than 0 in heavy-ion collisions (in the case of energies in the order

of MeV, this ratio is almost equal to 1; in the early Universe, it was almost 0). For this

reason, a considerable matter-antimatter asymmetry is assumed within a micro-bang.

The numerical value of the constant B is approximately 145 MeV < B
1
4 < 235 MeV

and that of the time constant τU approximately 66 µs > τU> 25 µs (taken from [19]).

The time evolution of the Universe is depicted in Figure 1.4, which shows the time

dependence of typical particle energies. Likewise, the values of energy of individual collid-

ers (in a decreasing order - LHC, RHIC a SPS) are depicted. Here we can see that after

6



Figure 1.4: Time dependence of the particle energy in the Universe (taken from [19]).

the neutrino separation, the subsequent evolution of the Universe is well known and doc-

umented. The same however does not apply for earlier stages. As already mentioned, in

a period of approximately 10 µs after the Big Bang, the transformation of the deconfined

parton phase into a hot gas comprised of hadrons, more specifically of mesons, baryons

and antibaryons, takes place. Immediately after that, the baryon-antibaryon annihilation

is believed to have taken place in the early Universe as well as a possible separation of

baryons from antibaryons.

The lattice QCD calculations proved [24] that the transformation of the QGP into a

hadron gas occurs at a temperature of approximately T ' 170 MeV. If the methods of

statistical physics are used, it can be found out that the baryons and antibaryons make up

approximately 25 % of the energy of the early Universe, half of which comprises of heavy

baryons and antibaryons. It is also assumed that the strong interaction did not play any

role at and after the point of nucleosynthesis.

1.2 Statistical properties of nuclear matter

The main source of information about the nature, composition and size of the original

medium are the hadron multiplicities. The main focus is the question, to what extent

the measured particle yields are in the state of equilibrium. According to the theoretical

apparatus which e. g. sources such as [17] and [23] base upon, the main quality able

to prove the existence of the QGP is the chemical equilibrium of all emerging hadron

constituents, which can lead to a high level of chemical saturation - mostly considering

7



strange particles - which is connected with the existence of a deconfined phase during the

earliest moments of a heavy-ion collision.

In the Gibbs’ approximation, the behaviour of thermodynamical observables can be

quantified as an average over all statistical samples (not as one may think as a time average

for a specific state). Therefore, the distribution is obtained by averaging over the whole

phase space. Furthermore, the sample corresponding to thermodynamical equilibrium is

such a sample, in which the phase density is equal to the density of the whole available

phase space.

1.2.1 Energy distribution

We will now sum up the mathematical apparatus used for describing of statistical

ensembles. This apparatus does not differ from that used in classical statistical physics,

e. g. [17].

Let N be the number of identical bound systems, which are distinguishable from one

another e. g. by their respective energy states Ei. In order to simplify the whole situation,

we shall assume that the energy states Ei only possess discrete values and that there are

K different ”macro” states. It can be generally assumed that some energy states Ei will

be occupied more than once, therefore let ni represent the occupation of the i-th energy

state. The total energy E(N) can then be written as

E(N) =
K∑
i=1

niEi (1.3)

and the total number of states as

N =
K∑
i=1

ni. (1.4)

If we do not consider any other quantum numbers, the states Ei are equivalent, which

means indistinguishable in terms of statistical physics. A distribution such that the

ni-th state possesses energy Ei, can be reached by various means. Let us consider

KN = (x1 + x2 + · · ·+ · · ·+ xK)N |xi=1 =
∑
n

N !

n1!n2! · · ·nK !
xn1

1 x
n2
2 · · ·x

nK
K |xi=1, (1.5)

then the normalized coefficients expressing the relative probability of reaching an i-th

state in ensemble n with ni equivalent elements are given by

W (n) =
K−NN !∏K
i=1 ni!

. (1.6)

Our goal is to find the most probable distribution n̄, which means having to find

the maximal value of the logarithm lnW , where W is given by Eq. (1.6) with respect to

conditions (1.3) and (1.4). The whole problem now transforms into the search for bound

extremes. The Lagrange function of such system A(n1, n1, · · · , nK) is given by

A(n1, n1, · · · , nK) = lnW (n)− a
∑
i

ni − β
∑
i

niEi. (1.7)
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where a and β are the corresponding Lagrange multipliers.

We may now partially differentiate the whole equation according to the variable ni
and set it equal to zero. By neglecting the influence of constants K and N , we obtain the

equation for the i-th state

∂

∂ni
[− ln(ni!)− nia− βniEi]|nm = 0 (1.8)

and now searching for the value of n̄m. If furthermore n̄i >> 1, we may - using the

Lagrange theorem -approximate the derivative of the logarithm of the factorial of an

arbitrary number k as

d

dk
[ln(k!)] ≈ ln(k!)− ln(k − 1)!

k − (k − 1)
= ln k. (1.9)

The maximal value n̄i of (1.6) can therefore be written as

n̄i = γe−βEi . (1.10)

The inverse value of the parameter β has the meaning of temperature T , which is expressed

as

T =
1

β
. (1.11)

From Eq. (1.4) we may now deduce the relation for the total number of particles

K∑
i=1

n̄i = γ
K∑
i=1

e−βEi = N. (1.12)

The meaning of the parameter γ is to regulate the total number of particles in the ensemble

N . It can be rewritten in an exponential form

γ = e−a. (1.13)

If we insert (1.10) into (1.3), we obtain the total energy E(N)

E(N) =
K∑
i=1

n̄iEi = γ
∑
i

Eie
−βEi . (1.14)

If we divide E(N) by the number of ensembles N , it leads to

E(N)

N
= Ē(N) =

γ
∑

iEie
−βEi

γ
∑

i e
−βEi

= − d

dβ
lnZ. (1.15)

The symbol Z stands for the canonical partition function, which we may express as

Z =
∑
i

γe−βEi . (1.16)

Contrary to the microcanonical approach, where the energy is fixed for each mem-

ber of the ensemble, the statistical ”canonical” approach serves for studying the most

probable energy distribution and other physical interactions between the members of the

ensemble. These properties only depend on parameters β and γ, the Lagrange multipliers

representing the energy conservation and the particle number conservation, respectively.
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1.2.2 Grandcanonical formalism

Let us now assume that energy is equally distributed, as energy transfer occurs among

macrosystems. In the grandcanonical approach we will again search for the most probable

distribution, yet this time we will take another quantum number corresponding to the

change among individual members of the statistical ensemble, into account. The methodics

will be equivalent to the one used in the case of the canonical approach, but as there

is another (discrete) quantum number, it is necessary to characterize said number by

another (discrete) parameter, which will be called the baryon number. The condition

of the baryon number conservation is expressed as follows

N∑
i=1

nbibi = b(N) = Nb̄i (1.17)

where b̄i is the average number of baryons in each sample we take into account. Apart

from conditions (1.3) and (1.4), we therefore have another condition given by (1.17).

Let us now consider the conditions (1.3), (1.4) and (1.17). The condition (1.17) requires

another Lagrange multiplier to be assigned, which we for the sake of simplicity rewrite

as κ = − lnλ. We may now proceed to searching for the extremes of the corresponding

Lagrange function. If we perform equivalent calculations as in the previous Section, we

obtain the derivative of the Lagrange function with respect to parameter nbi :

∂

∂nbi
[− ln(nbi !)− nbia− βnbiEi + lnλnbi bi]|n̄m = 0. (1.18)

The derivative is set equal to zero in order to find the extreme value.

An equivalent method as in the previous Section can be used to obtain the most

probable distribution n̄i, given by

n̄bi = γλbie−βEi . (1.19)

Let us now redefine the chemical potential µ as

µ = T lnλ. (1.20)

Then the quantity λ can be rewritten as

λ = eβµ = e
µ
T , (1.21)

which enables us to express it as a function of temperature T and the chemical potential

µ - the two quantities essential (and sufficient) for determining the point where the

phase transition occurs. This quantity is called fugacity.
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The chemical potentials elaborated above have the meaning of energy necessary to add

or remove a particle at a fixed pressure, energy and entropy. Using the same formalism as

in the case of the canonical potential, by which we obtained Eq. (1.15), we obtain

Ē(N) = γ

∑
i;bEiλ

bie−βEi

γ
∑

i;b λ
bie−βEi

= − d

dβ
lnZ. (1.22)

The quantity Z then represents the grandcanonical partition function given by

Z(V, β, λ) = γ
∑
i;b

λbie−βEi . (1.23)

We may also write a relation for the average value of b with respect to the grandcanonical

partition function. This is given by

b̄ =

∑
i;b biλ

bie−βEi∑
i;b λ

bie−βEi
= λ

d

dλ

(
ln
∑
i;b

γλbie−βEi

)
= λ

d

dλ
lnZ(β, λ). (1.24)

1.2.3 Independent (quasi)particles

In terms of quantum mechanics, the grandcanonical ensemble can be looked upon as an

ensemble with hamiltonian Ĥ with eigenvalues Ei, which correspond to discrete energy

states |i〉. This fact can be written as

Ĥ |i〉 = Ei |i〉 . (1.25)

With the operator b̂ (according to the correspondence principle assigned to baryon number

b) commutes with the Hamiltonian, we may also write

b̂ |i, b〉 = b |i, b〉 . (1.26)

The values b then correspond to eigenvalues of b̂.

The grandcanonical partition function, which we have derived as (1.23), may in the

operator representation be rewritten as

Z =
∑
i,b

〈i, b| γe−β(Ĥ−µb̂) |i, b〉 = Tr γe−β(Ĥ−µb̂) (1.27)

where Tr symbolizes the trace of the matrix.

This relation is very important, since the trace of a quantum operator does not depend

on the representation. This means that we may choose any arbitrary set |n〉 of basic

states and always find a corresponding (quantum) canonical or grandcanonical partition

function. We can thus obtain information about the properties of quantum gases, which

are often approximated as an ensemble of independent (quasi)particles. In the same way,

the interactions between said particles can be included using the perturbation expansion.
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We speak about quasiparticles, if there are objects in the medium similar to particles,

whose mass is different from that of elementary particles. Generally speaking, states of

collective excitation characterized by a mass spectrum will be observed. The hadronic

matter can thus be described as another system with a high mass density. If the excitation

states are well defined, it does not matter if we take particles or quasiparticles while

performing the calculation of the trace (1.27).

Let us now choose the basis of the occupation number of ”one quasiparticle”. In this case,

each macrostate |n〉 is described by a set of occupation numbers ni with corresponding

baryon numbers bi, energy εi and the energy of state En =
∑

i niεi. The sum over all

states corresponds to the sum over all enabled sets ni: For fermions, we have ni ∈ 0, 1 and

for bosons we have ni ∈ 0, 1, 2, · · · ,∞. The partition function Z can thus be expressed as

Z =
∑
n

e−
∑∞
i=1 niβ(εi−µbi−β−1 ln γ) =

∑
n

∏
i

e−niβ(εi−µbi−β−1 ln γ)

=
∏
i

∑
ni=0,1···

e−niβ(εi−µbi−β−1 ln γ).
(1.28)

In the last modification, we have taken advantage of the possibility of interchanging

the sum and product signs, which follows from equivalent summing over all states and

summing over all enabled sets ni. The logarithm of the partition function can then be

expressed as

lnZF/B = ln
∏
i

(
1± γe−β(εi−µbi)

)±1
= ±

∑
i

ln(1± γλbie−βεi) (1.29)

where ”+” corresponds to fermions F and ”-” corresponds to bosons B.

It is also necessary to verify the values we obtain, if antiparticles instead of particles

are used. The eigenvalue of the operator b̂ in Eq. (1.29) will be the opposite value of that

obtained for particles. This means that the fugacity λf̄ for antiparticles is equal to

λf̄ = λ−1
f .

Chemical potentials are then expressed as

µf = −µf̄ .

For a homogenous spacetime, the energy of an i-th state εi is given by

εi =
√
m2
i + ~p2. (1.30)

1.2.4 Fermi and Bose quantum gases

Let us now consider a particle of mass m and degeneration g. Then Eq. (1.29) can be

rewritten as

lnZF/B(V, β, λ, γ) = ±gV
∫

d3p

(2π)3

[
ln(1± γλe−β

√
p2+m2

) + ln(1± γλ−1e−β
√
p2+m2

)
]
.

(1.31)
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The second logarithm in Eq. (1.31) was added to account for the presence of antiparti-

cles. If we perform the classical Boltzmann limit, which means, that the term within the

exponential function is much smaller than one, we obtain

lnZcl = gV

∫
d3p

(2π)3
γ(λ+ λ−1)e−β

√
p2+m2

. (1.32)

The normalized partice spectrum which is represented as a relative probability of

finding a particle on an energy level Ei, may - using Eq. (1.10) and (1.12) - be rewritten

as

w̄i =
n̄i
N

=
e−βEi∑
j e
−βEj

= − 1

β

∂

∂Ei

(
ln
∑
j

γe−βEj

)
. (1.33)

The relation for a one-particle spectrum is the following

fF/B(ε; β, λ, γ) =
1

γ−1λ−1eβε ± 1
(1.34)

where (+) symbolizes fermions, (-) bosons.

1.2.5 Towards the role and the motivation of using multiplicity

fluctuations in the QGP research

In the next Chapters, we will elaborate on multiplicity fluctuations as an efficient tool

for characterizing the QGP region. As we have mentioned before, the phase transition is

fully described (at sufficiently high collision energies) by a set of two parameters, these

being the temperature T and the baryo-chemical potential µb.

As the HRG models reproduce the equilibrium lQCD results for the lowest order

susceptibilities and their ratios (see further text) reasonably well [3] [8], we may further

restrict on using the HRG model only. Statistical hadronization models have been suc-

cessfully used to describe the data on hadron multiplicities in relativistic nucleus-nucleus

(A+A) collisions [2]. In A+A collisions, the grand canonical ensemble (GCE) is preferred,

whereas the canonical ensemble (CE) or the microcanonical ensemble (MCE) have been

used for describing the pp, pp̄ and e+e− collisions.

It has been shown that the moments of net-particle multiplicity distributions from the

experiment can be related to susceptibilities of conserved charges calculated on the lattice

[3]. Therefore, chemical freeze-out parameters can be directly determined in the thermally

equilibrated GCE approach on the lattice without having to rely on statistical models.

This makes said moments - which immediately lead to said fluctuations - a powerful tool

in determination of the freeze-out parameters.
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Chapter 2

Calculation of the statistical

moments within the Statistical

Model

Statistical moments are an important mathematical tool used to describe and calculate

multiplicity fluctuations in the statistical model. The m-th central moment ϕm(X), where

m ∈ N is defined as follows:

ϕm(X) = E(X − EX)m

where EX is the mean value of the statistical quantity X. We will further concentrate on

the quantities defined by the first four moments only, as those are of great significance.

They are defined and called as follows:

mean: M = ϕ1

variance: σ2 = ϕ2

skewness: S = ϕ3/ϕ
3/2
2

kurtosis: κ = ϕ4/ϕ
2
2 − 3

The constant −3 may or may not be added to kurtosis, which depends on whether we

want the kurtosis of the Gauss distribution to be equal to zero. In our calculations, this

factor is accounted for. The meaning of skewness and kurtosis becomes obvious from

Figure 2.1, where also the meaning of those two moments is depicted: skewness measures

the assymetry of the probability distribution, kurtosis its ”tailedness”.

2.1 Grandcanonical and canonical formalism

We usually assume that we work with grandcanonical or canonical ensemble, whose

event-by-event distributions of conserved quantities are characterized by the quantities

(M , σ, S, κ) defined above. In order to be able to directly compare theoretical predictions

and experimental measurements, we also introduce the following:
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Figure 2.1: Explanation of skewness and kurtosis [1].

Sσ = ϕ3/ϕ2 (2.1)

κσ2 = ϕ4/ϕ2 (2.2)

M/σ2 = ϕ1/ϕ2 (2.3)

Sσ3/M = ϕ3/ϕ1 (2.4)

Specifically, fluctuations can be described by means of the so-called ”scaled vari-

ance” ω [7] of a multiplicity distribution:

ω =
〈N2〉 − 〈N〉2

〈N〉
=
σ2

M
(2.5)

defined in accordance with [9] where N is the multiplicity distribution of any hadron

species, which includes primary or final (i.e. after resonance decays [7]) hadrons or the

sum of an arbitrary number of hadron species (see further text). Obviously, this is the

inverse value of the ratio given by Eq. (2.3).

The grandcanonical partition (GC) function is given by

ZGC(λj) =
∏
j

exp

 +∞∑
nj=1

zj(nj)λ
nj
j

nj

 (2.6)
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and the single particle partition function by

zj(nj) = (∓1)nj+1 gjV

2π2nj
Tm2

jK2

(njmj

T

)
. (2.7)

The products runs over all types of hadrons and the sum is necessary due to the quantum

statistical distribution.

Furthermore, K2 is the modified Bessel function (see Appendix A), V is the vol-

ume of the hadron gas,

λj = exp
(µj
T

)
is the fugacity for each particle species j, mj is the hadron mass, µj is the chemical

potential of a particle species j,

gj = 2Jj + 1

is the spin degeneracy and the upper sign holds for fermions, lower sign for bosons.

Canonical formalism is a little more complicated, as it cannot be factorized into one-

species expressions, as is the case for the GC formalism. We will now introduce the vector

of total charges
~Q = (Q1, Q2, Q3) = (B, S,Q)

and the vector of charges of the hadron species j

~qj = (q1,j, q2,j, q3,j) = (bj, sj, qj)

where Q,B, S denote the charge, the baryon number and the strangeness, respectively.

As such, three conservation laws are imposed within the canonical formalism. We

introduce an exact conservation law as the restriction on the sets of the occupation

numbers {np,i}, which means only those sets satisfying

∆Q =
∑
p,i

qi∆np,i = 0

can be realized and the equilibrium probability distribution Wc.e.(∆np,i) can be introduced

as follows:

Wc.e.(∆np,i) ∝
∏
p,i

exp

[
−(∆np,i)

2

2v2
p,i

]
· δ

(∑
p,i

qi∆np,i

)
· δ

(∑
p,i

bi∆np,i

)
· δ

(∑
p,i

si∆np,i

)

whereas for the GC formalism, this would be

Wg.c.e.(∆np,i) ∝
∏
p,i

exp

[
−(∆np,i)

2

2v2
p,i

]
.

16



Furthermore, if we introduce the Wick-rotated fugacities:

λj = exp[i
∑
i

qi,jφi]

where φi, i ∈ {1, 2, 3} is the rotation angle and qi,j the vector of charges of the hadron

species j.

The canonical partition function will now be expressed as:

Z ~Q =

[
3∏
i=1

1

2π

∫ 2π

0

dφie
−iQiφi

]
ZGC(λj) (2.8)

where ZGC is the GC partition function given by Eq. (2.6).

Let h be a set of hadron species with the corresponding fugacity factor λh. We may

then write

λj → λhλj

and have now everything we need to write down the explicit form of the first four statistical

moments:

〈Nh〉 =
1

Z ~Q

∂Z ~Q

∂λh
|λh=1 =

∑
j∈h

∞∑
nj=1

zj(nj)
Z ~Q−nj ~qj

Z ~Q

(2.9)

〈
N2
h

〉
=

1

Z ~Q

[
∂

∂λh

(
λh
∂Z ~Q

∂λh

)]
|λh=1 =

∑
j∈h

+∞∑
nj=1

njzj(nj)
Z ~Q−nj ~qj

Z ~Q

+

∑
j∈h

+∞∑
nj=1

zj(nj)
∑
k∈h

+∞∑
nk=1

zk(nk)
Z ~Q−nj ~qj−nk ~qk

Z ~Q

(2.10)
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〈
N3
h

〉
=

1

Z ~Q

[
∂

∂λh

(
λh

∂

∂λh

(
λh
∂Z ~Q

∂λh

))]
|λh=1 =

∑
j∈h

+∞∑
nj=1

n2
jzj(nj)

Z ~Q−nj ~qj

Z ~Q

+

3

∑
j∈h

+∞∑
nj=1

njzj(nj)
∑
k∈h

+∞∑
nk=1

zk(nk)
Z ~Q−nj ~qj−nk ~qk

Z ~Q

+

∑
j∈h

+∞∑
nj=1

zj(nj)
∑
k∈h

+∞∑
nk=1

zk(nk)

∑
l∈h

+∞∑
nl=1

zl(nl)
Z ~Q−nj ~qj−nk ~qk−nl~ql

Z ~Q

(2.11)

〈
N4
h

〉
=

1

Z ~Q

[
∂

∂λh

(
λh

∂

∂λh

(
λh

∂

∂λh

(
λh
∂Z ~Q

∂λh

)))]
|λh=1 =

∑
j∈h

+∞∑
nj=1

n3
jzj(nj)

Z ~Q−nj ~qj

Z ~Q

+

4

∑
j∈h

+∞∑
nj=1

n2
jzj(nj)

∑
k∈h

+∞∑
nk=1

zk(nk)
Z ~Q−nj ~qj−nk ~qk

Z ~Q


+ 3

∑
j∈h

+∞∑
nj=1

njzj(nj)
∑
k∈h

+∞∑
nk=1

nkzk(nk)
Z ~Q−nj ~qj−nk ~qk

Z ~Q


+ 6

∑
j∈h

+∞∑
nj=1

njzj(nj)
∑
k∈h

+∞∑
nk=1

zk(nk)
∑
l∈h

+∞∑
nl=1

zl(nl)

Z ~Q−nj ~qj−nk ~qk−nl~ql

Z ~Q

]

+

∑
j∈h

+∞∑
nj=1

zj(nj)
∑
k∈h

+∞∑
nk=1

zk(nk)
∑
l∈h

+∞∑
nl=1

zl(nl)

∑
m∈h

+∞∑
nm=1

zm(nm)
Z ~Q−nj ~qj−nk ~qk−nl~ql−nm ~qm

Z ~Q

]
(2.12)
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2.2 Asymptotic fluctuations in the canonical ensem-

ble

The canonical partition function is given by Eq. (2.8). We will now introduce a way to

compute this integral using the so-called ”saddle-point expansion” (see Appendix B).

The integration is performed on the complex w unit circle parametrized as:

wi = exp[iφi].

The canonical partition function may then be written as

Z ~Q =
1

(2πi)3

∮
dwB

∮
dwS

∮
dwQw

−B−1
B w−S−1

S w−Q−1
Q exp

∑
j

zj(1)w
bi
Bw

si
S w

qi
Q (2.13)

where zj(1) is the one-particle partition function given by

zj(1) = (2Jj + 1)
V

(2π)3

∫
d3p exp

[
−
√
p2 +m2

j

]
. (2.14)

Obviously:

w−BB = exp[−B lnwB], (2.15)

w−QQ = exp[−Q lnwQ], (2.16)

and

w−SS = exp[−S lnwS] (2.17)

where Q,B, S denote the charge, the baryon number and the strangeness, respectively.

Let

g(~w) = w
bj−1
B w

sj−1
S w

qj−1
Q , (2.18)

ρB =
B

V
, (2.19)

ρS =
S

V
, (2.20)

ρQ =
Q

V
(2.21)

and

f(~w) = −ρB lnwB − ρS lnwS − ρQ lnwQ +
∑
k

zk(1)

V
wbkB w

sk
S w

qk
Q . (2.22)

We may now write

Z ~Q−~qj =
1

(2πi)3

∮
dwB

∮
dwS

∮
dwQg(~w) exp[V f(~w)] (2.23)

Once the quantum statistics is neglected and in the absence of any other dynami-

cal effects, the multiplicity distribution of any primary hadron is a Poisson, which means
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ω = 1, where ω is the scaled variance defined by Eq. (2.5).

Having performed the calculations in Eq. (2.9) and Eq. (2.10), we can rewrite the

scaled variance as the sum of a Poissonian term, which means 1, and a canonical

correction term:

ω = 1 +

∑
j∈h 〈Nj〉

∑
k∈h zk(1)

(
Z~Q− ~qk− ~qj
Z~Q− ~qj

−
Z~Q− ~qk
Z~Q

)
∑

j∈h 〈Nj〉
(2.24)
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Chapter 3

Multiplicity fluctuations for a

resonance gas model with chemical

equilibrium

Since we have at this point presented all the necessary formalism concerning the

calculation of multiplicity fluctuations, it seems only fitting that we now proceed towards

systems where chemical equilibrium is a priori assumed. At first, we will present a certain

generalization of what we laid down above.

As statistical models provide a valid description of hadron multiplicities in relativistic

nucleus-nucleus collisions [2], we may further concentrate on multiplicity fluctuations in

high energy nuclear collisions.

3.1 Fluctuations in a hadron resonance gas model

We may describe fluctuations in the number of particles of species i in a thermally and

chemically equilibrated Hadron Resonance Gas (HRG) using the corresponding suscepti-

bilities defined as

χ
(i)
l =

∂l(P/T 4)

∂(µi/T )l
|T (3.1)

where l ∈ N.

The susceptibilities can be related to the cumulants of the multiplicity distribution of

particle i via

χ
(i)
1 =

1

V T 3
〈Ni〉c =

1

V T 3
〈Ni〉 (3.2)

χ
(i)
2 =

1

V T 3

〈
(∆Ni)

2
〉
c

=
1

V T 3

〈
(∆Ni)

2
〉

(3.3)

χ
(i)
3 =

1

V T 3

〈
(∆Ni)

3
〉
c

=
1

V T 3

〈
(∆Ni)

3
〉

(3.4)

χ
(i)
4 =

1

V T 3

〈
(∆Ni)

4
〉
c

=
1

V T 3

(〈
(∆Ni)

4
〉
− 3

〈
(∆Ni)

2
〉2
)

(3.5)
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where ∆Ni = Ni − 〈Ni〉 and the subscript c denotes the corresponding cumulant value.

It is obvious that the first three cumulants are equal to the corresponding central

moments, but the fourth cumulant is given by a combination of fourth and second

central moments. The cumulants will be discussed later on in this Chapter. If we

assume an equilibrium HRG model in the GCE formulation, thermally produced and

non-interacting particles and anti-particles are uncorrelated [8]. The susceptibilities of

the net-distributions can thus be written as:

χnet,il = χl + (−1)lχīl (3.6)

where ī denotes the species of the antiparticle and i the species of the particle.

As we have already mentioned in Chapter 2, some ratios of the susceptibilities can

be expressed in terms of the first four central moments, those being the mean M , the

variance σ, and in terms of the skewness S and the kurtosis κ, as we can see in Eq. (2.1),

(2.2), (2.3), (2.4).

The dependence of susceptibility ratios (2.1), (2.2) and (2.3) on the collision en-

ergy
√
s is depicted in Fig. 3.1-3.3. The full squares depict experimental data on net

proton fluctuations as measured by the STAR collaboration for the two most central colli-

sion classes (0-10%). Empty circles stand for the susceptibility ratios for the net baryon

number fluctuations in the full HRG model, the empty triangles show the corresponding

ratios for the net proton fluctuations with respect to primordial protons and anti/protons.

We may now write down the specific equilibrium pressure P , which is given by

the sum of the partial pressures of all particle species i included in the model [8]:

P/T 4 =
1

V T 3

∑
i

lnZM/B
mi

(V, T, µB, µQ, µS), (3.7)

where

lnZM/B
mi

= ∓ V gi
(2π)3

∫
d3k ln(1∓ zi exp(−εi/T )). (3.8)

The single-particle energy is equal to

εi =
√
k2 +m2

i

with mi being the particle mass, gi the degeneracy factor, V the volume and zi being the

fugacity given by

zi = exp((BiµB +QiµQ + SiµS)/T ) ≡ exp(µi/T ). (3.9)

We may also perform the partial derivative of the pressure with respect to the particle

chemical potential µi, which gives us the density of particles i:

ni(T, µi) =
gi

(2π)3

∫
d3kfFD/BE(T, µi) (3.10)
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Figure 3.1: Ratios of susceptibilities as function of the collision energy. Taken from [8].

where fFD/BE is the Fermi-Dirac/Bose-Einstein distribution function for (anti-)baryons

or mesons.

3.1.1 The first four cumulants in the ideal hadron gas

In this subsection, the aforementioned cumulants of primary particles i will be discussed

[9]. We may plug Eq. (3.9) into Eq. (3.8), thus immediately obtaining

lnZi(T, V, µi) =
V gi
2π2

∫ +∞

0

±p2dp ln[1± exp(−(Ei − µi)/T )], (3.11)

where Ei =
√
p2 +m2

i is the single particle energy.

Using Eq.(3.11), we may now calculate the first four cumulants. The mean num-

ber of primary particles i is calculated (see formalism in Chapter 2) as follows:

C1 = M = 〈Ni〉 =

[(
T
∂

∂µi

)
lnZi

]
T,V

=
V gi
2π2

∫ +∞

0

p2dp ni (3.12)

where

ni =
1

exp[(Ei − µi)/T ]± 1
.

The variance and higher order cumulants have the following form:

C2 = σ2 =
〈
(∆Ni)

2
〉

=

[(
T
∂

∂µi

)2

lnZi

]
T,V

(3.13)

=
V gi
2π2

∫ +∞

0

p2dp ni(1∓ ni), (3.14)
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Figure 3.2: Ratios of susceptibilities as function of the collision energy. Taken from [8].

Figure 3.3: Ratios of susceptibilities as function of the collision energy. Taken from [8].
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C3 =
〈
(∆Ni)

3
〉

=

[(
T
∂

∂µi

)3

lnZi

]
T,V

(3.15)

=
V gi
2π2

∫ +∞

0

p2dp ni(1∓ 3ni + 2n2
i ), (3.16)

C4 =
〈
(∆Ni)

4
〉
− 3

〈
(∆Ni)

2
〉2

=

[(
T
∂

∂µi

)4

lnZi

]
T,V

(3.17)

=
V gi
2π2

∫ +∞

0

p2dp ni(1∓ 7ni + 12n2
i ∓ 6n3

i ). (3.18)

3.2 Loss of chemical equilibrium and chemical freeze-

out parametrization

The chemical composition of a HRG in local thermal and chemical equilibrium is

determined by the conserved quantum charges [8]. However, the created matter ex-

pands rapidly, causing the density to decrease and leading to an enhancement of the

particle mean free path. Consequently, there must be a specific set of parameters

(T fo, µfoB , µ
fo
S , µ

fo
Q ), where reactions like baryon-antibaryon annihilation (pp̄ → πππππ)

become too rare to maintain chemical equilibrium among different particle species

[8]. This particular set of parameters describes the chemical freeze-out. The chemical

freeze-out is an instant at which chemical equilibrium is lost, the chemical composition

of the gas is frozen-out and after which only elastic scatterings occur frequently enough

to maintain local thermal equilibrium until even these become too rare and the particles

start to stream freely after the kinetic freeze-out [8].

We may assume that chemical equilibrium is not completely lost just after the

chemical freeze-out. If the temperature T is high enough, specific reactions in form of

resonance regenerations and decays (e.g. ππ → ρ→ ππ) continue to occur, which means

that resonances are still in chemical equilibrium with their decay products.

We may assume the hadronic matter to be in a state of partial chemical equillib-

rium, which means that the chemical potentials of all stable hadrons µh become

T−dependent, while the chemical potentials of the resonances (whose effects will be

discussed in the next Section) µR become functions of the µh:

µR =
∑
h

µh 〈nh〉R .

The sum runs over all stable hadrons and

〈nh〉R ≡
∑
r

bRr n
R
h,r
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is the decay-channel averaged number of hadrons h produced in the decay of resonance

R, where bRr is the branching ratio of the decay-channel and nRh,r = 0, 1, . . . is the number

of hadrons h formed in that specific decay-channel.

In accordance with [8], the chemical freeze-out parameters are taken as an input

and the freeze-out temperature is parametrized - for different collision energies - by a

polynomial function of µB:

T fo(µfoB ) = a− b(µfoB )2 − c(µfoB )4 (3.19)

where a = (0.166± 0.002) GeV, b = (0.139± 0.016) GeV−1, c = (0.053± 0.021) GeV−3.

The baryon-chemical potential can be given as a function of
√
s:

µfoB (
√
s) =

dB
1 + eB

√
s

(3.20)

where dB = (1.308± 0.028) GeV, eB = (0.273± 0.008) GeV−1.

All the parameter values are taken from [8]. If we want to investigate the
√
s−dependence

of the electric charge and strangeness chemical potentials -µB and µS- we have to require

the following [8]:

n
(net)
S (T, µB, µS, µQ) = 0, (3.21)

n
(net)
Q (T, µB, µS, µQ) = xn

(net)
B (T, µB, µS, µQ). (3.22)

where x ∈ 〈0, 1〉 ., e. g. x ' 0.4 for Au + Au and Pb + Pb collisions [8].

Just as in case of Eq. (3.20), µfoQ and µfoS can be parametrized as functions of
√
s.

Here, the parameters are dQ = −0.0202 GeV, eQ = 0.125GeV−1 and ds = 0.224 GeV,

eS = 0.184 GeV−1.

3.3 The effect of resonance decays

We will now finally take the resonance decays into account. As we have already men-

tioned, the chemical potential of the resonances µR depends on the chemical potential of

stable hadron species µh. As such, the resonances significantly affect the evolution of the

created strongly interacting hadronic matter and their decays exercise a major influence

on the final numbers of the stable hadrons and fluctuations [8]. We may now consider the

derivative of P/T 4 with respect to µh/T as defined in Eq. (3.1). Considering that only

the chemical potentials µh are independent of each other (while the µR depend on µh),

we obtain

V T 3∂(P/T 4)

∂(µh/T )
|T = 〈Nh〉+

∑
R

〈NR〉 〈nh〉R (3.23)

where 〈Nh〉 and 〈NR〉 are the means of the primordial numbers of hadrons and resonances,

respectively. The sum runs over all the resonances in the model.
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In agreement with the QCD equations of state [8], there are 26 particle species we consider

stable, those being: π0, π+, π−, K+, K−, K0, K̄0, η and p, n,Λ0,Σ+,Σ0,Σ−,Ξ0,Ξ−,Ω− and

their respective anti-baryons.

We will now demonstrate this using the example of fluctuations in the final num-

bers of protons. Since µR is µp-dependent and under assumption of fixed average

numbers of produced protons as determined by the branching ratios of the resonance

decays, we may write: 〈
N̂p

〉
= 〈Np〉+

∑
R

〈NR〉 〈np〉R (3.24)〈
(∆N̂p)

2
〉

=
〈
(∆Np)

2
〉

+
∑
R

〈
(∆NR)2

〉
〈np〉2R (3.25)〈

(∆N̂p)
3
〉

=
〈
(∆Np)

3
〉

+
∑
R

〈
(∆NR)3

〉
〈np〉3R (3.26)〈

(∆N̂p)
4
〉
c

=
〈
(∆Np)

4
〉
c

+
∑
R

〈
(∆NR)4

〉
c
〈np〉4R . (3.27)

The same holds for antiprotons; p is then replaced by p̄. The related susceptibilities are

given by

χ̂
(p)
l = χ

(p)
l +

∑
R

χ
(R)
l 〈np〉

l
R . (3.28)

In reality though, the actual numbers of decay products follow a multinomial distribution,

since resonance decays are probabilistic processes. Said multinomial distribution results in

fluctuations on the final particle numbers, which makes it necessary for them to be taken

into account. If we assume a grandcanonical ensemble, the corresponding cumulants of

the final proton distribution read as follows [8]:〈
N̂p

〉
= 〈Np〉+

∑
R

〈NR〉 〈np〉R (3.29)

〈
(∆N̂p)

2
〉

=
〈
(∆Np)

2
〉

+
∑
R

〈
(∆NR)2

〉
〈np〉2R +

∑
R

〈NR〉
〈
(∆np)

2
〉
R
, (3.30)

〈
(∆N̂p)

3
〉

=
〈
(∆Np)

3
〉

+
∑
R

〈
(∆NR)3

〉
〈np〉3R (3.31)

+ 3
∑
R

〈
(∆NR)2

〉
〈np〉R

〈
(∆np)

2
〉
R

+
∑
R

〈NR〉
〈
(∆np)

3
〉
R

〈
(∆N̂p)

4
〉
c

=
〈
(∆Np)

4
〉
c

+
∑
R

〈
(∆NR)4

〉
〈np〉4R (3.32)

+ 6
∑
R

〈
(∆NR)3

〉
〈np〉2R

〈
(∆np)

2
〉
R

+
∑
R

〈
(∆NR)2

〉 [
3
〈
(∆np)

2
〉2

R

+ 4 〈np〉R
〈
(∆np)

3
〉
R

]
+
∑
R

〈NR〉
〈
(∆np)

4
〉
R,c
.

27



Figure 3.4: Ratios of susceptibilities as function of the collision energy with resonance decays

taken into account. Taken from [8].

The factors 〈(∆nh)2〉R, 〈(∆nh)2〉R and 〈(∆nh)4〉R,c vanish for those resonances which

have only one decay-channel or for which the number of formed hadrons nRh,r of

species h is the same in each decay-chanel r. As mentioned before, the subscript

c denotes the value of the corresponding cumulant. The first three cumulants are

equal to the corresponding central moments, which is why we can omit the subscript,

whereas we cannot omit if we consider the fourth cumulant, which differs from the fourth

central moment. That is why we retained the subscript c in both Eq. (3.27) and Eq. (3.32).

We may now - exactly as in the previous Section - compute the ratios of suscep-

tibilities as defined before. We should mention that in our framework primordial

protons and anti-protons are uncorrelated and no baryonic or anti-baryonic resonance

decays into an anti-proton or proton, the formula given by Eq.(3.28) remains valid for

the susceptibilities of the net proton distribution even when resonance decays are included.

In Fig. 3.4-3.6, we see the dependence of ratios of susceptibilities as function of

the collision energy
√
s and the comparison with Fig. 3.1-3.3, where the resonance decays

were not taken into account. The empty squares show the same as in Fig. 3.1-3.3, the

empty diamonds show the average influence of the resonance decays on the net-proton

fluctuations. The empty triangles depict the full impact of resonance decays and

include the probabilistic contribution.
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Figure 3.5: Ratios of susceptibilities as function of the collision energy with resonance decays

taken into account. Taken from [8].

Figure 3.6: Ratios of susceptibilities as function of the collision energy with resonance decays

taken into account. Taken from [8].
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3.3.1 Particle correlation after resonance decays and the Gen-

erating Function

As we have already mentioned, the resonance decay has a probabilistic character, which

causes the particle number fluctuations in the final state. The main goal of this subsection

is to provide information on how to determine the particle correlation. The statistical cen-

tral moments can be found from the following function called the generating function:

G ≡
∏
R

(∑
r

bRr
∏
i

λ
nRi,r
i

)NR

(3.33)

where bRr is the branching ratio of the r−th branch, nRi,r the number of i−th particles

produced in that decay mode and r runs over all branches with requirement
∑

r b
R
r = 1.

The λi are auxiliary parameters set to one in the final formulae.

The averages from resonance decays can expressed as:

N̄i ≡
∑
R

〈Ni〉R = λi
∂

∂λi
G =

∑
R

NR

∑
r

bRr n
R
i,r ≡

∑
R

NR 〈ni〉R , (3.34)

NiNj ≡
∑
R

〈NiNj〉R = λi
∂

∂λi

(
λj

∂

∂λj
G

)
(3.35)

=
∑
R

[NR(NR − 1) 〈ni〉R 〈nj〉R +NR 〈ninj〉R],

where 〈ninj〉 ≡
∑

r b
R
r n

R
i,rn

R
j,r.

The origin of the formula defined by Eq. (3.33) is given by the fact that the nor-

malized probability distribution P (N r
R) for the decay of NR resonances is the following:

P (N r
R) = NR!

∏
r

(bRr )N
r
R

N r
R!

δ

(∑
r

N r
R −NR

)
, (3.36)

where N r
R denotes the numbers of R−th resonances decaying via r−th branch.

The scaled variance ωi∗R due to decays of R−th resonances will then read

ωi∗R ≡
〈N2

i 〉R − 〈Ni〉2R
〈Ni〉R

=
〈n2

i 〉R − 〈ni〉
2
R

〈ni〉R
≡
∑

r b
R
r (nRi,r)

2 − (
∑

r b
R
r n

R
i,r)

2∑
r b

R
r n

R
i,r

. (3.37)

We can immediately see that Eq. (3.37) is equal to 0, if either nRi,r are the same

in all decay channels or if there is only one decay channel, which would mean bR1 = 1.
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Also, Eq. (3.34) and (3.35) assume fixed values of NR, while in reality, NR fluctuates,

due to which we finally arrive at

ωiR ≡
〈〈N2

i 〉〉T − 〈〈Ni〉R〉
2
T

〈〈Ni〉R〉T
= ωi∗R + 〈ni〉R ωR, (3.38)

where the scaled variance

ωR =
〈N2

R〉T − 〈NR〉2T
〈NR〉T

(3.39)

corresponds to the thermal fluctuation of the number of resonances [2].

3.4 Experimental cuts

In Fig. 3.1-3.3 and Fig. 3.4-3.6, a reference to ”(experimental) cuts” has been made.

This means that the experimental phase-space coverage is limited in rapidity y and

transverse momentum kT according to the detector design and the demands from recon-

struction efficiency and particle identification [8]. The following kinematic acceptance

cuts have been considered by the STAR collaboration: |y| ≤ 0.5 and 0.4 ≤ kT ≤ 0.8 GeV

with full azimuthal coverage (φ = 2π).

For our purposes, the acceptance cuts can be modelled by limiting the integration

range in Eq. (3.8) and Eq. (3.10) accordingly [8]. This means that the momentum

variables (kx, ky, kz) are transformed into (k, y, φ), which implies replacing the integration

measure d3k by kT
√
k2
T +m2

i cosh(y) dkTdydφ and the single-particle energies εi by

cosh(y)
√
k2
T +m2

i . Thus, the results for the net-proton fluctuations as shown in the

mentioned figures can (and could) be obtained.
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Chapter 4

Multiplicity fluctuations for a

resonance gas model with chemical

non-equilibrium

The main aim of this chapter is to provide formulae for the temperature dependence of

the (net-)baryon and (net-)proton number multiplicity along with that of the ratios of

higher thermodynamic susceptibilities, while chemical potentials, whose calculation will

also be summarized, will appear for each stable particle species. Before we do that, we

will summarize some of the facts we have stated in the previous Chapters. The effect of

resonance decays will also be taken into account. As such, we approximate the hadron gas

by a collection of free particles [6], distributed according to

dNi =
d3xd3p

(2π)3
gi

{
exp

(
E − µi
T

)
± 1

}−1

(4.1)

where µi is the chemical potential of level i, i = π,K, ρ,N, . . . and E =
√
m2
i + p2 and ±

depends on whether the particle is a fermion or a boson, gi = 2Ji+1 is the isospin degener-

ation factor corresponding to the statistical weight, providing (gπ = 3, gK = 4, gρ = 9, . . . ).

The pressure generated by the distribution (4.1) is given by

P = T
∑
i

±gi
∫

d3p

(2π)3
ln

{
1± exp

(
µi − E
T

)}
. (4.2)

where we assumed V = 1.

4.1 Chemical potentials in a HRG model with chem-

ical non-equilibrium

In order to be able to lay down the formalism describing the state of chemical non-

equilibrium, we have to consider the chemical potentials first. All performed calculations
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are in accordance with [6]. They start building up once the chemical equilibrium is

lost. We assume that the population of the excited states remains in equilibrium with

the particles formed in their decay [6]. Furthermore, we set the chemical potential of

the mother equal to the sum of the chemical potentials of the daughters. If there are

several decay channels (i. e. more than one) open, we multiply the various final state

configurations with the corresponding branching ratio.

Let us for example consider the states ρ(770), ∆(1231) and a2(1320). Considering

the aforementioned assumptions, this leads to

µρ = 2µπ,

µ∆ = µπ + µN

and

µa2 = 2.8µπ + 0.1µK + 0.15µη.

The condition for partial equilibrium determines the chemical potentials of the excited

states as functions of the potentials corresponding to the stable particles

σ = {π,K, η,N,Λ,Σ,Ξ,Ω}

, which occur as end products of the decay chain

µi =
∑
σ

dσi µσ (4.3)

where dσi is the mean number of stable particles emerging in the decay of the level i,

e. g., dπi . is the mean number of pions emerging in the decay of the level i.

If we want to obtain the temperature dependence of chemical potentials of hadron

species by assuming fixed adundancies after a chemical freeze-out (as is our case, see

Figure E.1, which is characterized by a freeze-out temperature T (fo) and chemical

potentails for baryon number µB and strangeness µS, we perform this recursively using

the formalism above, with the initial potentials being calculated as

µσ = BσµB + SσµS

where Bσ is the baryon number and Sσ the strangeness of the stable particle σ, while

including every resonance in the model decaying into the respective stable particle. This

allows us to account for several collision energies
√
sNN (see further text), as these are

characterized by the set {T (fo), µB, µS}.
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4.2 The partition function and higher moments

of particle distributions at chemical non-

equilibrium

We now have everything we need to introduce the full-scale formalism of multiplicity

fluctuations within systems in chemical non-equilibrium. Let us now perform the following

denotations:

· i. . . all particles (resonances) included in the model

· j. . . j-th stable particle

· A. . . set of all stable particles

· AB. . . set of stable baryons

· Nji. . . average number of the j-th stable particle produced by channel i, equivalent to

dσi in 4.1

· µj. . . chemical potential of stable particle j obtained as described in 4.1

· mi. . . mass of resonance i

· di. . . isospin degeneracy of the i-th particle

As we shall further concentrate on baryons only, we may write the logarithm of the

partition function for the i-th resonance as

lnZB
mi

(V, T, ~µ) =
V di

(2π)3

∫
d3k ln

(
1 + exp

(∑
j∈ANjiµj

T

)
exp

(
−
√
k2 +m2

i

T

))
. (4.4)

Transforming into spherical coordinates using

k1 = p sinϑ cosϕ,

k2 = p sinϑ sinϕ,

k3 = p cosϑ

with

p ∈< 0,+∞),

ϑ ∈< 0, π >,

ϕ ∈< 0, 2π >,

one obtains

lnZB
mi

(V, T, ~µ) =
V di

(2π)3

∫ +∞

0

∫ π

0

∫ 2π

0

p2 × (4.5)

× ln

(
1 + exp

(∑
j∈ANjiµj

T

)
exp

(
−
√
p2 +m2

i

T

))
dp sinϑdϑdϕ =

=
V di
2π2

∫ +∞

0

p2 ln

(
1 + exp

(∑
j∈ANjiµj

T

)
exp

(
−
√
p2 +m2

i

T

))
dp :=

:=
V di
2π2

I(p,mi).

34



where I(p,mi) represents the integral.

In order to conveniently compute the integral I(p,mi), we shall use the Taylor

expansion. At first, we will define

· u(p) := exp

(
−
√
p2+m2

i

T

)
· zineq. := exp

(∑
j∈ANjiµj

T

)
,

thus u(+∞) = 0. Since all the baryon masses i are above 1 GeV, it is convenient

(and justified) to perform the Taylor equation of I(p,mi) at infinity. The function

f(p) = ln

(
1 + exp

(∑
j∈ANjiµj

T

)
exp

(
−
√
p2 +m2

i

T

))
then transforms into

f(u) = ln(1 + zineq.u),

where we perform the Taylor expansion at 0. We may therefore use the following MacLau-

rin series:

ln(1 + zineq.u) =
+∞∑
k=1

(−1)k+1zineq.
kuk

k
, (4.6)

therefore, Eq. (4.5) transforms into

lnZB
mi

(V, T, ~µ) =
V di
2π2

+∞∑
k=1

(−1)k+1

k
zineq.

k
∫ +∞

0

p2uk(p)dp. (4.7)

We may now perform the following parametrization for∫ +∞

0

p2uk(p)dp :

· p = mi sinh η

· dp = mi cosh ηdη.

Using the relation

cosh2 η − sinh2 η = 1,

one arrives at∫ +∞

0

p2uk(p) =

∫ +∞

0

m3
i exp

(
− k
T
mi cosh η

)
cosh η sinh2 ηdη,

which can be recast as∫ +∞

0

p2uk(p) = m3
i

(∫ +∞

0

cosh3 η exp

(
− k
T
mi cosh η

)
dη −

∫ +∞

0

cosh η exp

(
− k
T
mi cosh η

)
dη

)
.
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We use the identity

cosh3 η =
1

4
cosh(3η) +

3

4
cosh(η),

which leads to∫ +∞

0

p2uk(p) =
1

4
m3
i

(∫ +∞

0

cosh(3η) exp

(
− k
T
mi cosh η

)
dη−

−
∫ +∞

0

cosh η exp

(
− k
T
mi cosh η

)
dη

)

In accordance with with Appendix A and with [26], we may write∫ +∞

0

p2uk(p) =
1

4
m3
i

(
K3

(
kmi

T

)
−K1

(
kmi

T

))
where K1, K3 are modified Bessel functions of the second kind (see Appendix A). This - in

accordance with the corresponding recurrence relation given by Eq. (A.14) - immediately

leads to ∫ +∞

0

p2uk(p) =
m2
i

k
TK2

(
kmi

T

)
.

Therefore, Eqs. (4.4-4.7) can be recast as

lnZB
mi

(V, T, ~µ) = V T
dim

2
i

2π2

+∞∑
k=1

(−1)k+1

k2
exp

(
k

T

∑
j∈A

Njiµj

)
K2

(
kmi

T

)
. (4.8)

4.3 (Net-)baryon and (net-)proton number densities

We shall also - for the coming Chapter to be more straightforward - explicitly mention

the relations expressing the (anti)baryon number density

nB =
〈NB〉
V

=
T

2π2

∑
i

+∞∑
k=1

∑
a∈AB

Naidim
2
i

(−1)k+1

k
· (4.9)

· exp

(
k

T

∑
j∈A

Njiµj

)
K2

(
kmi

T

)

nB̄ =
〈NB̄〉
V

=
T

2π2

∑
i

+∞∑
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∑
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Nāidim
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k
· (4.10)
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)
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and the (anti)proton number density

np =
〈Np〉
V

=
T

2π2

∑
i

+∞∑
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Npidim
2
i
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(4.11)

np̄ =
〈Np̄〉
V

=
T

2π2

∑
i

+∞∑
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Np̄idim
2
i

(−1)k+1

k
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(
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T

)
(4.12)

which for net-quantities obviously lead to terms included in the denominators of Eq. (4.20)

and Eq. (4.21), respectively, in the following Section:

nB−B̄ = nB − nB̄ (4.13)

=
T

2π2

∑
i

+∞∑
k=1

∑
a∈AB

(Nai −Nāi)dim
2
i

(−1)k+1

k
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(
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)
K2

(
kmi

T

)

np−p̄ = np − np̄ (4.14)

=
T

2π2

∑
i

+∞∑
k=1

(Npi −Np̄i)dim
2
i

(−1)k+1

k
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)
K2

(
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T

)

4.4 Net-baryon number and net-proton number vari-

ances

In accordance with Eq. (C.10) in Appendix C and for

Cov(Na, Nb) = T 2∂
2 ln[Z(V, T, ~µ]

∂µa∂µb
,

we obtain

V ar(NB−B̄) =
∑

a,b∈AB

(Cov(Na, Nb) + Cov(Nā, Nb̄) (4.15)

− Cov(Nā, Nb)− Cov(Na, Nb̄))

=
V T

2π2

∑
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=
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)
,
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which specifically for protons (which for the Eq. above means a = b = p) results in

V ar(Np−p̄) =
V T

2π2

∑
i

+∞∑
k=1

(Npi −Npi)
2 · (4.16)

· dim
2
i (−1)k+1 exp

(
k

T
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)
K2

(
kmi

T

)
.

4.5 Scaled variance of the (net-)baryon number and

(net-)proton multiplicity distribution

In accordance with the definition of the scaled variance written down in chapter 2

which we will - entirely for the sake of clarity - once again mention here

ω =
〈N2〉 − 〈N〉2

〈N〉
, (4.17)

combined with

〈NB−B̄〉 = T
∑
a∈AB

(
∂ lnZ

∂µa
− ∂ lnZ

∂µā

)
(4.18)

for the whole set of net-baryons and

〈Np−p̄〉 = T

(
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− ∂ lnZ
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)
(4.19)

specifically for net-protons, one may write
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)
where µi =

∑
j∈ANjiµj for the whole set of net-baryons or specifically

ωp−p̄ =

〈
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(4.21)
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)
for net-protons. Separately for protons and antiprotons, we may write

ωp =

〈
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〉
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ωp̄ =
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The definition of the scaled variance given by Eq. (2.5) and Eq. (4.17) corresponds to

the following ratio of susceptibilities

χ2

χ1

=
σ2

M
,

where M is the mean value. This is entirely in accordance with [8] and Appendix C.

4.6 Third and fourth moment of the (net-)baryon

number and (net-)proton distribution

In accordance with the formalism laid down above and with Appendix C, we may now

write down the relations for skewness (S) and kurtosis (κ), which we will do - for the sake

of transparency - in the form of ratios of susceptibilities

χ3

χ2

= Sσ

and
χ4

χ2

= κσ2,

whose definitions are in accordance with [8] and with Appendix C.

For the whole set of stable baryons, the formulae - see Appendix C - are as fol-

lows:

Sσ |B=

∑
i

∑+∞
k=1

∑
a,b,c∈AB dim

2
i (−1)k+1kNaiNbiNci exp

(
k
T

∑
j∈ANjiµj

)
K2

(
kmi
T

)
∑

i

∑+∞
k=1

∑
a,b∈AB dim

2
i (−1)k+1NaiNbi exp

(
k
T

∑
j∈ANjiµj

)
K2

(
kmi
T

)
(4.24)
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(4.25)

for baryons, for antibaryons we obtain
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(4.27)

Obviously, in accordance with Appendix C, the following formulae hold for a net-baryon

distribution:
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where µi =
∑

j∈ANjiµj and

c∏
q=a

(Nqi −Nq̄i) = (Nai −Nāi)(Nbi −Nb̄i)(Nci −Nc̄i),

d∏
q=a

(Nqi −Nq̄i) = (Nai −Nāi)(Nbi −Nb̄i)(Nci −Nc̄i)(Ndi −Nd̄i).

If we now restrict the formulae to protons (and antiprotons) only, we obtain the following

formulae:
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and for antiprotons as follows
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For a net-proton distribution, the formulae are the following

Sσ |net p=
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As none of the terms given by Eq. (4.9)-(4.14) and Eq. (4.20) - (4.35) is volume-

dependent, it is convenient to use them for further calculations, since the volume is not a

priori known.
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Chapter 5

Results

The derived formulae will now be implemented using data from DRAGON with the

newest PDG update (see Appendix E). The calculations will be performed for the most

central Au+Au collisions (centrality 0-5 and 5-10) and for seven collision energies in ac-

cordance with [21], these being
√
sNN = 7.7, 11.5, 19.6, 27.0, 39.0, 62.4, 200 GeV. For our

purposes, the ratio fits (GCER) have been used, for which there are always correspond-

ing chemical freeze-out parameters for grand canonical ensemble. All errors considered

are systematic uncertainities. The statistical errors may be obtained by using the Delta

theorem approach [12] [14]. For more details, see TABLE VIII in [21].

In this Chapter, the temperature dependencies of the (net-)proton number densities

and the ratios of thermodynamic susceptibilities

ω =
χ2

χ1

,

Sσ =
χ3

χ2

and

κσ2 =
χ4

χ2

will be presented for each of the collision energies and each centrality. On the top of each

Figure, there is a depiction indicating which centrality and collision energy has been taken

into account.

5.1 (Net-)proton number densities

The density of the particle number distribution for protons is given by Eq. 4.11, for

antiprotons by Eq. 4.12 and for net-protons by Eq. 4.14. The corresponding Figures are

Fig. 5.1a - 5.7a for centrality 0-5 and Fig. 5.8a - 5.14a for centrality 5-10.

One can see that for both centralities, protons, antiprotons and consequently also net-

protons rise with the temperature monotonously. The density of net-protons increasingly

differs from that of protons with the rising collision energy. This means that whereas for

the lowest collision energy
√
sNN = 7.7 GeV the number of antiprotons is almost zero
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(meaning that the proton-antiproton yield is dominated almost entirely by protons), this

ceases to be the case as the collision energy increases. For
√
sNN = 200 GeV, the density

of antiprotons exceeds that of net-protons, which means that compared to the number of

produced protons, also a considerable number of antiprotons emerges.

5.2 Scaled variance of the (net-)proton distribution

The scaled variance for protons is given by Eq. 4.22, for antiprotons by Eq. 4.23 and

for net-protons by Eq. 4.21. The corresponding Figures are Fig. 5.1b - 5.7b for centrality

0-5 and Fig. 5.8b - 5.14b for centrality 5-10.

We can see that for both centralities, the scaled variance shows a decreasing trend with

rising temperature. If we take a closer look at the individual results (i. e. for protons, an-

tiprotons and net-protons separately), we realize that the scaled variance of protons and

antiprotons remains approximately the same for all collision energies and both centrali-

ties, whereas that of the net-proton yield - while always retaining the decreasing trend

characteristic for all yields - reaches an upwards shifting range of values (whose span

remains approximately constant, this holds for the ranges of values of all scaled variance

results for all yields) with increasing energy.

5.3 Ratio of the third and the second thermodynamic

susceptibility for protons, antiprotons and net-

protons

The product

Sσ =
χ3

χ2

is given by Eq. 4.30, for antiprotons by Eq. 4.32 and for net-protons by Eq. 4.34. The

corresponding Figures are Fig. 5.1c - 5.7c for centrality 0-5 and Fig. 5.8c - 5.14c for

centrality 5-10.

Again, for both centralities, a similar trend can be observed. This time, too, this means

that the product Sσ shows a decreasing tendency with rising temperature. However,

contrary to the scaled variance, the results for the net-proton yield show that the range

of values (whose span remains approximately constant, this again holds for the ranges of

values of all Sσ results for all yields) shifts downwards with rising collision energy (while

always retaining the decreasing trend with rising temperature).
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5.4 Ratio of the fourth and the second thermody-

namic susceptibility for protons, antiprotons and

netprotons

The product

κσ2 =
χ4

χ2

is given by Eq. 4.31, for antiprotons by Eq. 4.33 and for net-protons by Eq. 4.35. The

corresponding Figures are Fig. 5.1d - 5.7d for centrality 0-5 and Fig. 5.8d - 5.14d for

centrality 5-10.

As was the case for all results before, a similar - this time again decreasing in terms

of temperature dependence - trend can be observed here, again for both centralities and

all collision energies. Whereas the results for protons and net-protons are very close for

all energies and both centralities, those for anti-protons show a ”converging” tendency

towards protons and net-protons with rising collision energy. For both cetralities, the

values for all three yields at
√
sNN = 200 GeV are very close to each other.

As for the ”spikes” one might observe in most of the Figures depicting the temperature

dependence of κσ2, these must be entirely caused by the input values we put into the

calculations, these being temperature T , the corresponding chemical potentials of stable

particles µj and the average number of stable particles Nji (see the beginning of the

previous Chapter).
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.1: Results for the volume density n (5.1a), scaled variance χ2/χ1 (5.1b) and the prod-

ucts of statistical moments Sσ (5.1c) and κσ2 (5.1d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 7.7 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.2: Results for the volume density n (5.2a), scaled variance χ2/χ1 (5.2b) and the prod-

ucts of statistical moments Sσ (5.2c) and κσ2 (5.2d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 11.5 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.3: Results for the volume density n (5.3a), scaled variance χ2/χ1 (5.3b) and the prod-

ucts of statistical moments Sσ (5.3c) and κσ2 (5.3d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 19.6 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.4: Results for the volume density n (5.4a), scaled variance χ2/χ1 (5.4b) and the prod-

ucts of statistical moments Sσ (5.4c) and κσ2 (5.4d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 27.0 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.5: Results for the volume density n (5.5a), scaled variance χ2/χ1 (5.5b) and the prod-

ucts of statistical moments Sσ (5.5c) and κσ2 (5.5d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 39.0 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.6: Results for the volume density n (5.6a), scaled variance χ2/χ1 (5.6b) and the prod-

ucts of statistical moments Sσ (5.6c) and κσ2 (5.6d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 62.4 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.7: Results for the volume density n (5.7a), scaled variance χ2/χ1 (5.7b) and the prod-

ucts of statistical moments Sσ (5.7c) and κσ2 (5.7d) of protons, antiprotons and

net-protons for centrality 0-5 and collision energy
√
sNN = 200 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.8: Results for the volume density n (5.8a), scaled variance χ2/χ1 (5.8b) and the prod-

ucts of statistical moments Sσ (5.8c) and κσ2 (5.8d) of protons, antiprotons and

net-protons for centrality 5-10 and collision energy
√
sNN = 7.7 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.9: Results for the volume density n (5.9a), scaled variance χ2/χ1 (5.9b) and the prod-

ucts of statistical moments Sσ (5.9c) and κσ2 (5.9d) of protons, antiprotons and

net-protons for centrality 5-10 and collision energy
√
sNN = 11.5 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.10: Results for the volume density n (5.10a), scaled variance χ2/χ1 (5.10b) and the

products of statistical moments Sσ (5.10c) and κσ2 (5.10d) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy
√
sNN = 19.6 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.11: Results for the volume density n (5.11a), scaled variance χ2/χ1 (5.11b) and the

products of statistical moments Sσ (5.11c) and κσ2 (5.11d) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy
√
sNN = 27.0 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.12: Results for the volume density n (5.12a), scaled variance χ2/χ1 (5.12b) and the

products of statistical moments Sσ (5.12c) and κσ2 (5.12d) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy
√
sNN = 39.0 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.13: Results for the volume density n (5.13a), scaled variance χ2/χ1 (5.13b) and the

products of statistical moments Sσ (5.13c) and κσ2 (5.13d) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy
√
sNN = 62.4 GeV.
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(a) Temperature dependence of the volume density.

(b) Temperature dependence of the scaled variance.

(c) Temperature dependence of Sσ.

(d) Temperature dependence of κσ2.

Figure 5.14: Results for the volume density n (5.14a), scaled variance χ2/χ1 (5.14b) and the

products of statistical moments Sσ (5.14c) and κσ2 (5.14d) of protons, antiprotons

and net-protons for centrality 5-10 and collision energy
√
sNN = 200 GeV.
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5.5 Comparison to experimental data

The relevant experimental data are depicted in Fig. 5.15a (Sσ, κσ2) and Fig. 5.15b

(χ2/χ1). As the data in Fig. 5.15a were taken from RHIC - as were the data we have used

to perform the calculations above - these are presented first and are also to be considered

more accurate, since the collision energies are the same as those we have used. In order

to account for the scaled variance χ2/χ1 as well, we have used the experimental results

from the STAR experiment, although the collision energies there are slightly different

from those used in the former case (of course, the STAR experiment is located at RHIC).

The corrected data on χ2/χ1 mentioned in the article can be found on the public STAR

webpage [22].

As can be seen in both Figures, the data relevant for us in order to perform comparison

of any kind are for the case of Fig. 5.15a the filled circles, as these are the net-proton yields

for centrality 0-5 in a Au + Au collision, and for the case of Fig. 5.15b the net-proton

yields depicted in the Figure. As these are the most central collisions as well, we shall

assume that the centrality taken into account was 0-5, as was the case for the §σ and κσ2

measurements in Fig. 5.15a.

Since the purpose of our research was to determine the temperature dependence

of chosen ratios of thermodynamic susceptibilities and the data we have just presented

depend on the collision energy
√
sNN only, it seems fitting that we perform a comparison

between the trends of the respective temperature dependencies of said ratios for the

centrality 0-5 and compare, how much the value for the chemical freeze-out (i. e. the

maximal value) differs from what we can see in the mentioned Figures.

The scaled variance χ2/χ1 in Fig. 5.15b shows a regular increase with the rising collision

energy. The same can be said about our results for the scaled variance for centrality 0-5

and the corresponding collision energies, meaning that the range of values (whose span

can be considered constant) is shifted upwards with rising collision energy.

As for the Sσ product, we can see in Fig. 5.15a that for the most central collisions, the

results for the net-proton yield show a decrease, ranging between the values approximately

0.9 and 0.1. If we look at our results, the same could be said about the range of values for

net-protons in the individual Figures (and for the corresponding calculations, from which

these Figures resulted), which varies from somewhere around 0.9 for
√
sNN = 7 GeV and

0.1 for
√
sNN = 200 GeV.

The κσ2 product in Fig. 5.15a shows an approximately constant value around 0.7 for the

most central Au+Au collisions, however while this is the case only for the first four collision

energies in the experimental measurement, our results show a range of values around 0.7

(more specifically between 0.62 and 0.74) for each of the seven collision energies.
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(a) Collision energy and centrality dependence of the net proton Sσ and κσ2 from Au + Au

and p + p collisions at RHIC. Crosses, open squares and filled circles are for the efficiency

corrected results of p+p, 70%-80%, and 0%-5% Au + Au collisions, respectively. Taken from

[12].

(b) Results on the comparison of the ratio χ2/χ1 in the HRG model and most central experi-

mental data from STAR. Taken from [22].

Figure 5.15: Experimental results.
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Conclusion

The primary aim of this thesis was to provide information on how to calculate moments

of multiplicity distribution using the central statistical moments. The emphasis was laid on

the first four moments and more importantly on the ratios of the related thermodynamic

susceptibilities, which are of great interest when describing the QCD-predicted phase tran-

sition within heavy-ion collisions, believed to be the cause of QGP coming into existence.

Subsequently, we implemented the derived formulae in exploring the temperature depen-

dence of specific ratios of thermodynamic susceptibilities for protons, antiprotons and net

protons. Finally, a brief comparison to experimental data acquired from RHIC/STAR was

performed. The thesis as a whole can be summarized as follows:

In Chapter 1, a brief overview was given about the Quark-Gluon Plasma and the

motivation of using moments of multiplicity distribution (specifically the multiplicity fluc-

tuations described by the scaled variance) to acquire new knowledge concerning the QGP

region.

In Chapter 2, the mathematical apparatus necessary to perform all the calculations

was provided. Statistical moments in form of central moments were introduced along with

close elaboration of the first four moments and the corresponding statistical quantities

defined by them (mean M , variance σ, skewness S, kurtosis κ) as well as their ratios and

products, which are of great importance for describing multiplicity fluctuations in the

statistical model. Moreover, the basics of canonical and grandcanonical formalism, with

emphasis laid on the latter, as this is the one we have used in further calculations.

Chapter 3 provided formalism for multiplicity fluctuations in a hadron resonance gas

model with the assumption of chemical equilibrium. The hadron resonance gas model was

introduced and the corresponding susceptibilities were defined. Using said susceptibilities,

the first four cumulants in the ideal hadron gas were derived. Subsequently, the loss of

chemical equilibrium and the chemical freeze-out parametrization were elaborated, which

enabled us to finally lay down the formalism necessary for the resonance decays to be

accounted for, which we did immediately afterwards and we also adjusted the formulae

expressing the first four cumulants in the ideal hadron gas, in order to account for the

resonance decays.

In Chapter 4, we have generalized the formalism from the previous Chapter in order to

account for chemical non-equilibrium. We assumed that each stable particle species now

has its own chemical potential and we have derived the corresponding formulae for the

statistical moments for both baryons and specifically protons with emphasis on baryon

and proton number density n, the scaled variance χ2/χ1 and the products Sσ and κσ2.
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We have considered a total of 26 particle species stable, those being π,K, η,N,Λ,Σ,Ξ,Ω.

The method of calculating said potentials was also introduced. Furthermore, we have up-

dated the tables of resonance decays and particle properties of the DRAGON programme

according to the newest PDG update.

In Chapter 5, the calculation of said chemical potentials for corresponding sets of

freeze-out parameters along with the computation of average numbers of stable particles

for each resonance decay was performed. The freeze-out parameters in question concerned

the most central collisions at RHIC (i. e. centrality 0-5 and 5-10) for 7 collision energies
√
sNN = 7.7, 11.5, 19.6, 27.0, 39.0, 62.4, 200 GeV. As such, we obtained a temperature de-

pendence for chemical potentials of all stable particles for each configuration of centrality

and collision energy. These were then implemented into the derived formulae and the cor-

responding temperature dependencies of the number density n, the scaled variance χ2/χ1

and the products Sσ and κσ2 for protons, antiprotons and net-protons were plotted for

each configuration of centrality and collision energy.

Finally, the obtained results were confronted with experimental data, which comprised

exclusively net-protons. As these data were plotted as functions of the collision energy
√
sNN and not the temperature T , we have compared the shift of ranges of values for

the individual quantities for net-protons up- or downwards with the trend followed by

experimental data. While the scaled variance χ2/χ1 and Sσ = χ3/χ2 agreed with the

data quite well, the κσ2 = χ4/χ2 product showed an approximately constant value around

0.7 for the most central Au+Au collisions only for the first four collision energies in the

experimental measurement, whereas our results showed a range of values around 0.7 (more

specifically between 0.62 and 0.74) for each of the seven collision energies.
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Appendix A

Bessel functions

In this Chapter, some brief trivia on Bessel functions and their practical use will

be presented. A brief theoretical overview concerning the mathematical apparatus used

in this master’s thesis will be provided. The whole apparatus was taken from and is in

accordance with [26].

A.1 Bessel functions

The Bessel functions were first defined by Daniel Bernoulli and later on generalized

by Friedrich Bessel. They are defined as canonical solutions y = y(x) of a differential

equation better known as the ”Bessel differential equation”:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (A.1)

where the arbitrary complex number α is called the order of the Bessel function.

The Bessel functions can be distinguished according to the parameter α. If α is an

integer, we talk about cylinder functions or the cylindrical harmonics because they

appear in the solution to Laplace’s equation in cylindrical coordinates. Once α is a half-

integer (i.e. for each α there is an n ∈ N such that α = n+ 1
2
), then we call the functions

y = y(x) the spherical Bessel functions and they are obtained when the Helmholtz

equation is solved in spherical coordinates.

The Bessel functions of the first kind are denoted as Jα(x). They are solutions of

Bessel’s differential equation that are finite at the origin (x = 0) for integer or positive

values of α and diverge as x approaches the value x = 0 for negative non-integer α. They

can be defined as follows:

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

(A.2)

It is worth mentioning that for non-integer α, the functions Jα and J−α are linearly

independent, which makes them two solutions of the differential equation. If α is an
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integer, the following is valid:

J−n = (−1)nJn(x), (A.3)

which means that the solutions are no longer linearly independent. The second solution is

then expressed as the Bessel function of the second kind denoted as Yα and defined

as follows:

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
(A.4)

The plots of Bessel functions of the first and second kind for α = 0, 1, 2 are depicted in

Figure A.1 and in Figure A.2, respectively.

Figure A.1: Bessel Functions of the First Kind Jα. Taken from [26].

A.2 Modified Bessel functions

The Bessel functions are well defined, even though their argument x is complex.

However, if a special case occurs - when this argument is purely complex - we talk about

the modified Bessel function (also called the hyperbolic Bessel function) of the

first kind (denoted as Iα(x)) and of the second kind (denoted as Kα(x)). Those are

defined by the following equations:

Iα(x) = i−αJα(ix) =
∞∑
m=0

1

m!Γ(m+ α + 1)

(x
2

)2m+α

(A.5)
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Figure A.2: Bessel Functions of the Second Kind Yα. Taken from [26].

Kα(x) =
π

2

I−α(x)− Iα(x)

sin (απ)
(A.6)

These solutions are two independent solutions of the modified Bessel equation:

x2 d
2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0. (A.7)

Unlike the classical Bessel functions, which oscillate as functions of a real argument in

both Iα(x) and Kα(x), the Modified Bessel functions grow exponentially. We will now

present the integral form of the Modified Bessel functions (assuming that Re(x) > 0):

Iα(x) =
1

π

∫ π

0

exp(x cos(θ)) cos(αθ)dθ − sin(απ)

π

∫ ∞
0

exp(−x cosh t− αt)dt (A.8)

Kα(x) =

∫ ∞
0

exp(−x cosh t) cosh(αt)dt (A.9)

The plots of Bessel functions of the first and second kind for α = 0, 1, 2 are depicted in

Figure A.3 and in Figure A.4, respectively.

A.3 Recurrence Relations

Let Zν(z) denote Iν(z) or eiπνKν(z) or any linear combination of these functions, the

coefficients in which are independent of z ∈ C and ν ∈ N. Then the following recurrence
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Figure A.3: Modified Bessel Functions of the First Kind. Taken from [26].

Figure A.4: Modified Bessel Functions of the Second Kind. Taken from [26].
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relations can be used:

Zν−1(z)− Zν+1(z) =
2ν

z
Zν(z) (A.10)

Z ′ν(z) = Zν−1(z)− ν

z
Zν(z) (A.11)

Zν−1(z) + Zν+1(z) = 2Z ′ν(z) (A.12)

Z ′ν(z) = Zν+1(z) +
ν

z
Zν(z) (A.13)

For our purposes, the function Kν(z) and Eq. (A.10) are of great importance. Since Zν(z)

can be Zν(z) = eiπνKν(z) and

eiπν = (−1)ν ,

one may write

Kν+1(z)−Kν−1(z) =
2ν

z
Kν(z). (A.14)
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Appendix B

Saddle-point expansion

We may now introduce the method of the saddle-point expansion. Let ~w0 = (λB, λS, λQ)

be the saddle point. Then obviously

∂f(~w)

∂wk
| ~w0 = 0.

We will now try to find the explicit solution of a complex d-dimensional integral

I(ν) =

[
d∏

k=1

∫
Γk

dwk

]
g(~w)eνf(~w)

where Γk is the k-th path of integration.

If ν is large, then only a small segment around the saddle point ~w0 contributes to

the total integral value. We may then write

I(ν) ' eνf( ~w0) 1

(2π)d

[
d∏

k=1

∫ +∞

−∞
dtk

]
g( ~w(~t))e−

1
2
ν~tTH~t

where H is the Hessian matrix of f(~w).

We may now summarize the procedure as follows: at first we choose a real inte-

gration variable tk:

wk − w0k = eiφktk

where φk denotes the phase.

Consequently, the original path is ”deformed” into a line in the complex plane.

After that, we expand g(~w) into a Taylor series around ~w = ~w0.

Finally, we assume that H is diagonalizable, so we can find a matrix A such that

H’ = AHAT.
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The integral will now have the following expression:

I(ν) ' exp(νf( ~w0))

√
1

(2πν)ddetH

[
g( ~w0)+

1

ν

[
−1

2

d∑
k,m=1

∂2g(~w)

∂wk∂wm
| ~w0

(
d∑
i=1

AimAik
hi

)
| ~w0+

d∑
k=1

αi
∂g(~w)

∂wi
| ~w0 + γg( ~w0)

]]
. (B.1)

where γ and αi are constants dependent only on function f and its derivatives.
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Appendix C

Calculation of the first four

statistical moments for many input

parameters

All calculations are performed in accordance with Chapter 2, where we defined the

m-th central statistical moment as

ϕm(X) = E[(X − EX)m]. (C.1)

The m-th moment about the origin (also called the raw moment) can be expressed as

follows:

ϕ′m(X) = E[Xm]. (C.2)

One can immediately see that for the first four moments, the following relations are

fulfilled:

ϕ1 = ϕ′1 =: ϕ (C.3)

ϕ2 = ϕ′2 − ϕ2 (C.4)

ϕ3 = ϕ′3 − 3ϕϕ′2 + 2ϕ3 (C.5)

ϕ4 = ϕ′4 − 4ϕϕ′3 + 6ϕ2ϕ′2 − 3ϕ4 (C.6)

C.1 First central moment - the mean value

Let Ai be a set of n arbitrary statistical quantities, i ∈ {1, . . . , n}. Then using the defini-

tion of the first central moment, we obtain

ϕ1

(
n∑
i=1

Ai

)
= E

[
n∑
i=1

Ai − E

(
n∑
i=1

Ai

)]
(C.7)

= E

[
n∑
i=1

Ai

]
=

n∑
i=1

EAi =
n∑
i=1

ϕ1i
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which proves the linearity of the first central statistical moment. By inserting

Ai = Ni−ī

into Eq. (C.7), where

Ni−ī = Ni −Nī,

we obtain

E(Ni−ī) =
∑
i∈AB

(ENi − ENī). (C.8)

C.2 Second central moment - the variance

Let Ai be a set of n arbitrary statistical quantities, i ∈ {1, . . . , n}. Then using the defini-

tion of the second central moment, we obtain

ϕ2

(
n∑
i=1

Ai

)
= V ar

(
n∑
i=1

Ai

)
(C.9)

= E

[
n∑
i=1

Ai − E

(
n∑
i=1

Ai

)]2

= E

[
n∑
i=1

(Ai − EAi)

]2

= E

[
n∑

i,j=1

(Ai − EAi)(Aj − EAj)

]

=
n∑

i,j=1

E [(Ai − EAi)(Aj − EAj)]

=
n∑

i,j=1

Cov(Ai, Aj).

By inserting

Ai = Ni−ī

into Eq. (C.9), where

Ni−ī = Ni −Nī,
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we obtain

V ar(NB−B̄) =
∑
i,j∈AB

Cov(Ni−ī, Nj−j̄) (C.10)

=
∑
i,j∈AB

E
[
(Ni−ī − ENi−ī)(Nj−j̄ − ENj−j̄)

]
=

∑
i,j∈AB

[
E(Ni−īNj−j̄)− E(Ni−ī)E(Nj−j̄)

]
=

∑
i,j∈AB

[
E[(Ni −Nī)(Nj −Nj̄)]− E(Ni −Nī)E(Nj −Nj̄)

]
=

∑
i,j∈AB

[
Cov(Ni, Nj) + Cov(Nī, Nj̄)− Cov(Nī, Nj)− Cov(Ni, Nj̄)

]

C.3 Third statistical moment

Let Ai be a set of n arbitrary statistical quantities, i ∈ {1, . . . , n}. Then using the defini-

tion of the third central moment, we obtain

ϕ3

(
n∑
i=1

Ai

)
= E

[
n∑
i=1

Ai − E

(
n∑
i=1

Ai

)]3

(C.11)

= E

[
n∑
i=1

(Ai − EAi)

]3

=
n∑

i,j,k=1

E [(Ai − EAi)(Aj − EAj)(Ak − EAk)]

= E

( n∑
i=1

Ai

)3
− 3E

[(
n∑
i=1

Ai

)]
E

( n∑
i=1

Ai

)2


+ 2

(
E

[
n∑
i=1

Ai

])3

.
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C.4 Fourth statistical moment

Let Ai be a set of n arbitrary statistical quantities, i ∈ {1, . . . , n}. Then using the defini-

tion of the fourth central moment, we obtain

ϕ4

(
n∑
i=1

Ai

)
= E

[
n∑
i=1

Ai − E

(
n∑
i=1

Ai

)]4

(C.12)

= E

[
n∑
i=1

(Ai − EAi)

]4

=
n∑

i,j,k,l=1

E [(Ai − EAi)(Aj − EAj)(Ak − EAk)(Al − EAl)]

= E

( n∑
i=1

Ai

)4
− 4E

[(
n∑
i=1

Ai

)]
E

( n∑
i=1

Ai

)3


+ 6

(
E

[
n∑
i=1

Ai

])2

E

( n∑
i=1

Ai

)2
− 3

(
E

[
n∑
i=1

Ai

])4

.

C.5 Ratios of susceptibilities

According to [8], the thermodynamic susceptibility χl of particle species a is given by

χ
(a)
l =

∂l(P/T 4)

∂(µa/T )l
= T l

∂l(P/T 4)

∂µla
. (C.13)

For partial pressure P/T 4, in accordance with chapter 3 given by

P

T 4
=

1

V T 3
lnZ(V, T, ~µ) (C.14)

which - according to the calculations specifically performed above - can be recast as

P

T 4
=

1

2π2T 2

∑
i

+∞∑
k=1

dim
2
i

(−1)k+1

k2
exp

(
k

T

∑
j∈A

Njiµj

)
K2

(
kmi

T

)
, (C.15)

Eq. (C.13) can be rewritten as

χ
(a)
l =

1

2π2T 2

∑
i

+∞∑
k=1

dim
2
i (−1)k+1kl−2N l

ai exp

(
k

T

∑
j∈A

Njiµj

)
K2

(
kmi

T

)
. (C.16)

Obviously, the ratio of any two thermodynamic susceptibilities of the same particle species

a, denoted χ
(a)
l and χ

(a)
n , l 6= n, can be written as

χ
(a)
l

χ
(a)
n

=

∑
i

∑+∞
k=1 dim

2
i (−1)k+1kl−2N l

ai exp
(
k
T

∑
j∈ANjiµj

)
K2

(
kmi
T

)
∑

i

∑+∞
k=1 dim

2
i (−1)k+1kn−2Nn

ai exp
(
k
T

∑
j∈ANjiµj

)
K2

(
kmi
T

) . (C.17)
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If all baryons are taken into account, Eq. (C.13) and Eq. (C.16) are in accordance with

[16] generalized as

χ
(a1,...,an)
l = T l

∂l(P/T 4)

∂µa1 . . . ∂µal
(C.18)

=
1

2π2T 2

∑
i

+∞∑
k=1

∑
as∈AB ,s∈l̂,l≤n

dim
2
i (−1)k+1kl−2Na1i . . . Nali exp

(
k

T

∑
j∈A

Njiµj

)
×

× K2

(
kmi

T

)
where a1, . . . , an are stable baryons.

Obviously, Eq. (C.17) for any two thermodynamic susceptibilities denoted l and

o, l 6= o is then generalized as

χ
(a1,...,an)
l

χ
(a1,...,an)
o

=

∑
i

∑+∞
k=1

∑
as∈AB ,s∈l̂,l≤n dim

2
i (−1)k+1kl−2Na1i . . . Nali exp

(
k
T
µi
)
K2

(
kmi
T

)∑
i

∑+∞
k=1

∑
as∈AB ,s∈ô,o≤n dim

2
i (−1)k+1ko−2Na1i . . . Naoi exp

(
k
T
µi
)
K2

(
kmi
T

)
(C.19)

where µi =
∑

j∈ANjiµj.

C.5.1 Ratios of susceptibilities for a net-baryon distribution

If we want to obtain the susceptibilities for a net-baryon distribution, Eq. (C.18) trans-

forms into

χ
net(a1,...,an)
l = T l

∂l(P/T 4)

∂µa1 . . . ∂µal
(C.20)

=
1

2π2T 2

∑
i

+∞∑
k=1

∑
as∈AB ,s∈l̂,l≤n

dim
2
i (−1)k+1kl−2(Na1i −Nā1i) . . . (Nali −Nāli)×

× exp

(
k

T

∑
j∈A

Njiµj

)
K2

(
kmi

T

)
and Eq. (C.19) transforms accordingly.
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Appendix D

Clebsch-Gordan Coefficients

In the following Chapter, the definition and basic properties of Clebsch-Gordan Coef-

ficients will be introduced, along with a way of calculating them explicitly. All performed

calculations were taken from and are in accordance with [27].

D.1 Definition and properties

A system of two mechanical angular momenta can be characterized by operators of

the total angular momentum Ĵ2, Ĵz and operators of the individual angular momenta

Ĵ1
2
, Ĵ1z, Ĵ2

2
, Ĵ2z. Thus, two groups of mutually commuting operators can be written down:

· Ĵ1
2
, Ĵ2

2
,Ĵ2, Ĵz

· Ĵ1
2
, Ĵ2

2
,Ĵ1z, Ĵ2z,

which leads to the following basis states:

· coupled eigenstates, denoted as | J1, J2; J,M〉 or | J,M〉
· uncoupled eigenstates, denoted as | J1, J2;M1,M2〉 or | (M1,M2)〉

Since these are both complete basis systems, they are related to each other via a

unitary transformation

| J,M〉 =
∑
M1,M2

| (M1,M2)〉 〈(M1,M2) | J,M〉 . (D.1)

The amplitudes 〈(M1,M2) | J,M〉 in Eq. (D.1) are called Clebsch-Gordan (CG) coeffi-

cients, whose most important properties can be summed up as follows:

· CG-coefficients vanish if M 6= M1 +M2

· The following selection rule can be applied to the total angular momentum J :

| J1 − J2 |≤ J ≤ J1 + J2

· CG-coefficients can be chosen as real.
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D.2 Conventional methods of deriving the CG Coef-

ficients and general formulae

In order to derive the specific form of the CG-coefficients, the iterative application of

the lowering operator Ĵ− ≡ Ĵx − iĴy on the maximum state is used. The maximum state

can be expressed as

| J,M〉 = | (M1 = J1,M2 = J2)〉 (D.2)

where J = J1 + J2 and M = M1 + M2. The effect of the lowering operator on | J,M〉 is

given by

Ĵ− | J,M〉 =
√

(J +M)(J −M + 1) | J,M − 1〉 . (D.3)

If we project the resulting states onto the coupled product state 〈(M1,M2) , we obtain

the CG-coefficients.

The explicit formula for the CG-coefficients is given by the so called Racah for-

mula

〈(M1,M2) | J,M〉 =
∑
k

(−1)k
√

2J + 1 (D.4)

×

√
(J1 + J2 − J)!(J1 − J2 + J)!(J2 − J1 + J)!

(J1 + J2 + J + 1)!(J1 −M1 − k)2!(J2 +M2 − k)!2k!2

×

√
(J1 +M1)!(J2 +M2)!(J +M)!(J1 −M1)!(J2 −M2)!(J −M)!

(J − J2 +M1 + k)!2(J − J1 −M2 + k)!2(J1 + J2 − J − k)!2
.

Obviously, both methods are very formal, which makes the calculations even in the case

of very small angular momenta quite legthy and impractical, which is why the values of

CG-coefficients have been listed in tables. These tables are in Figure (D.1) and Figure

(D.2).
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Figure D.1: Table of Clebsch-Gordan coefficients: Part 1. Taken from [28].

Figure D.2: Table of Clebsch-Gordan coefficients: Part 2. Taken from [28].
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Appendix E

Update of the list of hadrons and the

list of resonance decays within the

DRAGON Monte Carlo model

One of our tasks was also to update the decay chain tables within the DRAGON

programme, whose documentation can be found in [25]. All the necessary mathematical

apparatus has been laid down earlier in this thesis. Here, only a brief overview will be

provided with emphasis on said update, whose results have been elaborated on earlier on

in the Chapter ”Results”. This update has been performed using PDG - measurements

from 2017, yet for our purposes (meaning the measurements relevant for our aim), these

are much the same even for the current update, which can be found in [15].

E.1 DRAGON

DRAGON is a Monte Carlo generator of the final state of hadrons emitted from

an ultrarelativistic nuclear collision. The name DRAGON stands of DRoplet and hAdron

GeneratOr for Nuclear collisions. The model upon which it is based is similar to THERMI-

NATOR, yet in case of DRAGON, emission from fragments is included. The fragmentation

at hadronisation phase transition is a result of an abrupt rise of bulk viscosity at Tc, which

can make the fireball very stiff and if strong expansion - which results from pre-existing

longitudinal movement of the incident nucleons and the inner pressure of the matter -

is present, said fragmentation is very likely to occur. The structure of the programme is

depicted in FigureE.1.

E.2 Updated particle properties

Our primary concern were the files params.hpp and resonances.input. The file

params.hpp includes the parameters of the model and steering constants for compiling

and running. This also includes the list of all species called pproperties, which is an

array whose entries are records for individual species. The original version from 2009

78



Figure E.1: The structure of DRAGON. Taken from [25].

included all baryons with masses up to 2.0 GeV/c2 and mesons up to 1.5 GeV/c2. After

the update was performed, all baryons with masses up to 2.5 GeV/c2 and mesons up to

2.0 GeV/c2 are included. The file resonances.input is a list of resonance decays. If at

least one decay mode for given species is listed in this file, that species is treated as an
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unstable resonance and if a species is not listed, it is treated as stable. The branching

ratios can be found in [15], whilst for individual combinations (e. g. K+K− or K0K̄0,

which both result from the decay of f2(2300)), this branching ratio had to be multiplied

by the corresponding CG-coefficient (see Appendix D).

Before we proceed to the update tables, a few remarks concerning the syntax are

in order, all of them being in full accordance with [25]. Each line of the vector PChem

pproperties[], which are structures storing the records of properties of individual species

and has as many entries as specified by NOSpec, represents one species and consists of

the following:

(1) Monte Carlo ID number of species according to Particle Data Group [29]; in-

teger

(2) mass in GeV/c2; double

(3) baryon number; integer

(4) strangeness; integer

(5) 1 if the species is a boson, 0 if the species is a fermion

(6) spin degeneracy; integer

(7) 1., double (calculated later by the programme)

(8) 1., double (calculated later by the programme)

(9) -1, integer; determined by the programme, links the species to its decay prescriptions;

remains -1 for stable particles.

The structure of the file resonances.input has been elaborated on above. An ex-

cerpt from said file can be seen in Figure E.2.

Figure E.2: An excerpt from the file resonances.input. Taken from [25].

As one can see, the structure of this file is the following:
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(1) A record of all decay modes of one resonance starts with a line with three

numbers: the MC code of the resonance, its mass in GeV/c2 and its width in GeV.

If -1. is put in the position of the mass, the code automatically reads the mass from

pproperties[].

(2) A record of a two- or three-body decay contains five or seven numbers, respec-

tively. In both cases, there is the branching ratio for the decay channel multiplied by the

CG-coefficient (if possible). This is followed by the MC code of the first daughter particle

and its mass, then the same for the second or third daughter particle.

If the sum of branching ratios is not equal to 1, the program will multiply them

with a common factor, so that the sum will be equal to 1. Moreover, any line starting

with # - or an empty one - is considered as a comment and therefore not included in the

calculations.

E.2.1 Tables of Changes

In accordance with [8], particles listed in the following Table have been considered

stable in our calculations. We have used the DRAGON syntax. In total, we have 26 stable

particles in contrast to the original 23, since η,Σ0, Σ̄0 have been added. In the other

Tables, the newly added mesons, nucleon resonances, ∆-resonances, Λ-resonances,

Σ-resonances and Ξ-resonances are summed up along with their properties. For the

sake of clarity, the tables are presented for each type of resonances separately.
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Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

π+ 211 0.13957 0 0 1 1

π− -211 0.13957 0 0 1 1

π0 111 0.13498 0 0 1 1

K0 311 0.4976 0 1 1 1

K̄0 -311 0.4976 0 -1 1 1

K+ 321 0.4936 0 1 1 1

K− -321 0.4936 0 -1 1 1

η 221 0.54786 0 0 1 1

p 2212 0.93827 1 0 0 2

n 2112 0.93957 1 0 0 2

p̄ -2212 0.93827 -1 0 0 2

n̄ -2112 0.93957 -1 0 0 2

Λ0 3122 1.11568 1 -1 0 2

Λ̄0 -3122 1.11568 -1 1 0 2

Σ+ 3222 1.18937 1 -1 0 2

Σ̄+ -3222 1.18937 -1 1 0 2

Σ0 3212 1.192642 1 -1 0 2

Σ̄0 -3212 1.192642 -1 1 0 2

Σ− 3112 1.197449 1 -1 0 2

Σ̄− -3112 1.197449 -1 1 0 2

Ξ0 3322 1.31483 1 -2 0 2

Ξ− 3312 1.32131 1 -2 0 2

Ξ̄0 -3322 1.31483 -1 2 0 2

Ξ̄− -3312 1.32131 -1 2 0 2

Ω− 3334 1.67245 1 -3 0 4

Ω̄− -3334 1.67245 -1 3 0 4

Table E.1: Table of stable particle species.
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Particle Monte Carlo ID Mass[GeV /c2] B S Boson (1)/Fermion(0) Degeneracy

f ′2(1525) 335 1.525 0 0 1 5

π+
1 (1600) 9010213 1.662 0 0 1 3

π0
1(1600) 9010113 1.662 0 0 1 3

π−1 (1600) -9010213 1.662 0 0 1 3

η(1645) 10225 1.617 0 0 1 5

ω(1650) 30223 1.67 0 0 1 3

ω3(1670) 227 1.667 0 0 1 7

π+
2 (1670) 10215 1.6722 0 0 1 5

π0
2(1670) 10115 1.6722 0 0 1 5

π−2 (1670) -10215 1.6722 0 0 1 5

ρ+
3 (1690) 217 1.6888 0 0 1 7

ρ0
3(1690) 117 1.6888 0 0 1 7

ρ−3 (1690) -217 1.6888 0 0 1 7

f0(1710) 10331 1.723 0 0 1 1

π+(1800) 9010211 1.812 0 0 1 1

π0(1800) 9010111 1.812 0 0 1 1

π−(1800) -9010211 1.812 0 0 1 1

φ3(1850) 337 1.854 0 0 1 7

f2(1950) 9050225 1.944 0 0 1 5

f2(2010) 9060225 2.04 0 0 1 5

a+
4 (2040) 219 1.995 0 0 1 9

a0
4(2040) 119 1.995 0 0 1 9

a−4 (2040) -219 1.995 0 0 1 9

f4(2050) 229 2.018 0 0 1 9

f2(2300) 9080225 2.297 0 0 1 5

f2(2340) 9090225 2.345 0 0 1 5

K+
2 (1770) 10325 1.773 0 1 1 5

K−2 (1770) -10325 1.773 0 -1 1 5

K0
2(1770) 10315 1.773 0 1 1 5

K̄0
2(1770) -10315 1.773 0 -1 1 5

K∗+3 (1780) 327 1.776 0 1 1 7

K∗−3 (1780) -327 1.776 0 -1 1 7

K∗03 (1780) 317 1.776 0 1 1 7

K̄∗03 (1780) -317 1.776 0 -1 1 7

K+
2 (1820) 20325 1.819 0 1 1 5

K−2 (1820) -20325 1.819 0 -1 1 5

K0
2(1820) 20315 1.819 0 1 1 5

K̄0
2(1820) -20315 1.819 0 -1 1 5

Table E.2: Table of newly added mesons.
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Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

N+(1875) 192212 1.9 1 0 0 4

N̄+(1875) -192212 1.9 -1 0 0 4

N0(1875) 192112 1.9 1 0 0 4

N̄0(1875) -192112 1.9 -1 0 0 4

N+(1900) 202212 1.92 1 0 0 4

N̄+(1900) -202212 1.92 -1 0 0 4

N0(1900) 202112 1.92 1 0 0 4

N̄0(1900) -202112 1.92 -1 0 0 4

N+(2190) 212212 2.075 1 0 0 8

N̄+(2190) -212212 2.075 -1 0 0 8

N0(2190) 212112 2.075 1 0 0 8

N̄0(2190) -212112 2.075 -1 0 0 8

N+(2220) 222212 2.17 1 0 0 10

N̄+(2220) -222212 2.17 -1 0 0 10

N0(2220) 222112 2.17 1 0 0 10

N̄0(2220) -222112 2.17 -1 0 0 10

N+(2250) 232212 2.2 1 0 0 10

N̄+(2250) -232212 2.2 -1 0 0 10

N0(2250) 232112 2.2 1 0 0 10

N̄0(2250) -232112 2.2 -1 0 0 10

N+(2600) 242212 2.6 1 0 0 12

N̄+(2600) -242212 2.6 -1 0 0 12

N0(2600) 242112 2.6 1 0 0 12

N̄0(2600) -242112 2.6 -1 0 0 12

Table E.3: Table of newly added Nucleon Resonances.

Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

∆++(2420) 192224 2.42 1 0 0 12

∆+(2420) 192214 2.42 1 0 0 12

∆0(2420) 192114 2.42 1 0 0 12

∆−(2420) 191114 2.42 1 0 0 12

∆̄++(2420) -192224 2.42 -1 0 0 12

∆̄+(2420) -192214 2.42 -1 0 0 12

∆̄0(2420) -192114 2.42 -1 0 0 12

∆̄−(2420) -191114 2.42 -1 0 0 12

Table E.4: Table of newly added ∆-Resonances.
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Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

Λ(2100) 213122 2.1 1 -1 0 8

Λ̄(2100) -213122 2.1 -1 1 0 8

Λ(2110) 223122 2.11 1 -1 0 6

Λ̄(2110) -223122 2.11 -1 1 0 6

Λ(2350) 233122 2.35 1 -1 0 10

Λ̄(2350) -233122 2.35 -1 1 0 10

Table E.5: Table of newly added Λ-Resonances.

Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

Σ+(2030) 193222 2.03 1 -1 0 8

Σ0(2030) 193212 2.03 1 -1 0 8

Σ−(2030) 193112 2.03 1 -1 0 8

Σ̄+(2030) -193222 2.03 -1 1 0 8

Σ̄0(2030) -193212 2.03 -1 1 0 8

Σ̄−(2030) -193112 2.03 -1 1 0 8

Table E.6: Table of newly added Σ-Resonances.

Particle Monte Carlo ID Mass [GeV/c2] B S Boson (1)/Fermion(0) Degeneracy

Ξ0(1530) 153322 1.531 1 -2 0 4

Ξ−(1530) 153312 1.531 1 -2 0 4

Ξ̄0(1530) -153322 1.531 -1 2 0 4

Ξ̄−(1530) -153312 1.531 -1 2 0 4

Table E.7: Table of newly added Ξ-Resonances.
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