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Abstrakt:

Luminozita je na experimentu ALICE stanovena pomocí referen£ního ú£in-
ného pr·°ezu zm¥°eného ve van der Meer (vdM) skenech. VdM sken p°edpok-
ládá faktorizovatelnost distribuce balíku do dvou nezávislých sm¥r·. Pokud
jsou sm¥ry korelované, luminozita je ²patn¥ stanovena pomocí vdM sken· a
hodnota musí být opravena. V této práci byl vytvo°en program simulující vdM
skeny, který byl následn¥ pouºit ke studiu efekt· korelovaných balík·. Exper-
imentální chyby jsou modelovány pomocí reálných dat. Program také testuje
metodu pouºívanou na experimentu ALICE pro r·zné modely balík· zahrnující
korelaci. Je ukázáno, ºe vytvo°ený program v této práci je uºite£ný ke studiu
stanovení luminozity na LHC.
Klí£ová slova: Luminozita, ALICE, vdM kalibrace, Nefaktorizovatelnost
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Abstract:
Luminosity is determined in ALICE using reference cross sections measured in
van der Meer (vdM) scans. A vdM scan assumes factorisation of the bunch
distribution into two independent directions. If the directions are correlated
the luminosity determined by vdM scans is wrong and has to be corrected.
In this thesis a program to simulate vdM scans was developed and used to
study the e�ects of correlated bunches. The experimental uncertainties are
modelled using real data. The program benchmarks the method used in ALICE
for di�erent bunch models which include correlations. It is shown that the
program developed in this work is useful to study luminosity determination at
the LHC.
Key words: Luminosity, ALICE, vdM calibration, Non-factorisation
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Preface

Van der Meer scans are performed at the LHC to determined reference cross
sections that are used later on to measure luminosity. The scans assume that
the distribution describing the transverse pro�le of the colliding bunches, can be
factorised in the two corresponding perpendicular directions. If these directions
are correlated, the scan will yield wrong results that need to be corrected.

The method to estimate the correction and the uncertainty of this so called
non-factorisation, assumes by necessity both a single Gaussian model of the
luminosity region and a double Gaussian model for the bunch pro�les.

In this thesis I have developed a suite of programs, based on the Monte Carlo
method, to simulate vdM scans and test if the correction method at the LHC is
appropriate when using single or double Gaussian models for the bunch pro�les.
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Chapter 1

Introduction

Determination of luminosity is a fairly forward process once everything works
properly. The main di�culty is to correctly assign a measurement uncertainty
and to apply corrections (for the case where not everything works as expected).
Since there are several phenomena a�ecting the uncertainty (discussed in detail
later), we have performed a systematic study on the determination of luminos-
ity at the LHC, and focused in one of the less well known correction factors,
which in occasions is one with the highest contribution to the measurement un-
certainty. In short, this phenomenon is called transverse beam correlation. An
illustration of this e�ect will be shown after discussing luminosity in Chapter 2
and describing a method of luminosity determination in Chapter 3. The goal
of this thesis is to develop a program to simulate in detail van der Meer (vdM)
scans as performed at the LHC and use the program to evaluate the method
used in ALICE to correct for non-factorisation e�ects.

In order to ease the reading, several theoretical chapters are included, which
may be skipped by an experienced reader. Chapter 2 introduces the physical
quantity called luminosity. Several equations help to demonstrate di�erent re-
sults for di�erent collision conditions, which are useful later to formulate the
luminosity determination at bunched colliders, see Chapter 3. In that chap-
ter, there are also several common corrections applied to data obtained from
vdM scans. The technical application of this method varies throughout di�er-
ent experiments. Since the work relates to data acquired by ALICE, Chapter 4
presents the experiment itself and also the realisation of the vdM scan. Chap-
ter 5 begins the theoretical introduction to beam factorisation, which addition-
ally includes the derivation of luminosity correction for beams with transverse
correlation for the single Gaussian model of a bunch pro�le. The result of this
derivation is crucial for benchmarking the numerical simulation we have created.
Explanation and benchmarking results of the simulation can be found in Chap-
ter 6. With this simulation we have created Monte Carlo data resembling the
real acquired data. The MC data were then analysed with the same algorithm
used for real data. This enabled us to compare the analysis output with the
known input for di�erent bunch models, which is discussed in Chapter 7.

14



CHAPTER 1. INTRODUCTION 15

Throughout the thesis, the Gaussian distribution will be often used. To
keep the text uniform a standard integral is presented here in Eq. (1.1). The
integral will be of use for computing luminosity and analytically computing the
non-factorisation ratio in Chapter 5.∫ ∞

−∞
exp

(
−ax2 − bx

)
=

√
π

a
exp

(
b2

4a

)
. (1.1)



Chapter 2

Luminosity

Luminosity is a physical quantity, which relates the rate to the cross section of
any process. Once the luminosity is determined for one process it can be used
for other processes measured in the same set of collisions. This chapter will
introduce several methods of luminosity determination with a deeper focus on
the method of van der Meer (vdM) scans, which is further analysed in the next
chapter. The theoretical calculations are needed for comparison with the simu-
lation (more on this topic in Chapter 6), so one can cross check the numerical
results.

The de�ning equation, where rate RP , cross section σP and luminosity L
are related, is Eq. (2.1).

RP = LσP . (2.1)

Luminosity is the proportional factor between rate and cross section. Fur-
thermore one can derive Eq. (2.2), which involves two processes (A and B) and
shows one of the �rst methods of measuring cross sections for di�erent processes,

σB =
RBσA
RA

. (2.2)

For colliders with bunched beams, it is possible to relate luminosity with the
accelerator's parameters as shown in Eq. (2.3), where K is a kinematic factor
depending on the collision angle, nb is the number of bunches, f is the revolution
frequency, N1,2 are the number of particles in the two colliding bunches and most
importantly S1,2 which are the bunch probability distributions.

L = KnbfN1N2

∫ ∞
−∞

S1(x, y, z, t)S2(x, y, z, t) dxdy dz dt. (2.3)

This equation works only for head-on collisions. Other collision possibilities
are collisions under a crossing angle or collisions with an o�set. It is common
to solve the integral under the assumption of Gaussian distribution functions,
which is a fairly good description of the bunches' actual distribution (for the
case of LHC bunches) and also it is possible to obtain analytical solutions. It has

16



CHAPTER 2. LUMINOSITY 17

to be stated, that the z coordinate is coupled with time due to the movement
of the bunches which in the Gaussian case is described as∫ ∞

−∞
S1(z + ct)S2(z − ct) dz dt

=

(
1√

2πσz

)2 ∫ ∞
−∞

exp

(
− (z + ct)2

2σ2
z

)
exp

(
− (z − ct)2

2σ2
z

)
dz dt

=
1

2πσ2
z

∫ ∞
−∞

exp

(
− (z2 + 2zct+ c2t2) + (z2 − 2zct+ c2t2)

2σ2
z

)
dz dt

=
1

2πσ2
z

∫ ∞
−∞

exp

(
− (z2 + c2t2)

σ2
z

)
dz dt

where σz is the bunch length or second moment of the Gaussian distribution.
This can be separated and the result is shown in (2.4), which is the inverse value
of the kinematic factor K (for head-on collisions).∫ ∞

−∞
S1(z + ct)S2(z − ct) dz dt =

1

2c
. (2.4)

The previous part enables the treatment of the part depending on the trans-
verse coordinates x and y to be performed independently (unless there is a
correlation between the transverse and the longitudinal parts of the distribu-
tion). The following equations present the luminosity formulas for Gaussian
bunches, which both have the same variance in each direction (σx, σy). For
head-on collisions luminosity is computed by Eq. (2.5). A great property of the
Gaussian distribution is that when collisions occur with an o�set ∆x, ∆y, the
o�set can be factorised, which results into a product of head-on term with a
coe�cient as shown in Eq. (2.6).

LHeadOn =
nbfN1N2

4π(σxσy)
, (2.5)

LOffset = LHeadOnCOffset, COffset = exp

(
− (∆x)2

4σ2
x

)
exp

(
− (∆y)2

4σ2
y

)
.

(2.6)
For collisions with crossing angle φ it will be assumed that φ is small and the

angle denotes a tilt of the bunches in the (x, z) plane. Under these assumptions
it is possible to calculate the luminosity for collisions under a crossing angle, see
Eq. (2.7).

LAngle = LHeadOnCAngle, CAngle =
1√

1 +
(
θσz

2σx

)2 . (2.7)

Figure 2.1 shows a representative example of the correction factor for dif-
ferent angles. For an angle of 500 µrad the luminosity decreases by more than
10% for bunch dimensions close to those used at the LHC.
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Figure 2.1: Angle correction factor for σz = 5 cm and σx = 50 µm.

Both phenomena (crossing angle, o�set) decrease the luminosity, which is
actually used in experiments like ALICE, which needs lower collision rate com-
pared to ATLAS or CMS. However, the crossing angle is not used only to de-
crease the luminosity, but mainly to avoid collisions with satellites1. This type
of collision is unwanted as they clog the detector and take place in unwanted
locations.

A case, which is used rarely is beam o�set while maintaining non-zero cross-
ing angle. The equation to compute luminosity in this case is given in [1, p. 26].
The sketch of the situation is shown in Fig.2.2. Eq. (2.8) gives the non-trivial
expression for luminosity under the conditions stated above.

LOff+Angle = LHeadOnCOffsetCCrossingAngle exp

(
B2

A

)
, (2.8)

A =
sin2 Θ

σ2
y

+
cos2 Θ

σ2
z

, B =
∆y sin Θ

2σ2
y

, Θ =
Φ

2
.

A challenge nowadays is to enhance luminosity, while preserving the same
crossing angle. A possible solution to this problem are crab waist and crab
crossing collisions [4, 5] invented in the 1980's. The implementation at the LHC
(SPS) was successful on 23 May 2018 and it will play a key role in the high
luminosity upgrade [6].

The term luminosity has been introduced in this chapter and several theoret-
ical cases of luminosity calculation have been presented. All presented equations

1The radio-frequency con�guration of the LHC is such that the accelerator orbit is divided

in 3564 slots of 25 ns each. Each slot is further divided in ten buckets of 2.5 ns each. In

nominally �lled slots, the particle bunch is captured in the central bucket of the slot. The

charge circulating outside of the nominally �lled slots is referred to as ghost charge; the charge

circulating within a nominally �lled slot but not captured in the central bucket is referred to

as satellite charge.
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Figure 2.2: Sketch for the case where the bunches collide under the angle Φ and
are shifted by ∆y. Taken from [1].

will be of use in Chapter 6, where the uncertainties on the numerical simulation
will be estimated. In my Bachelor thesis [7] one can �nd some of the analystical
integrations needed in the intermediate steps leading to the equations presented
in chapter.



Chapter 3

Van der Meer scan

The method [8] pioneered by Simon van der Meer in 1968 is most commonly
used today at hadron colliders. Its aim is to calibrate a reference cross section
for a corresponding detector, which is later used during data taking. The de-
tector used as luminometer must be fast enough with short dead time. As a
consequence the output of such a detector is only the rate of detected events.
In order to relate this rate to an absolute value of luminosity a calibration is
done.

This chapter will cover brie�y the theory of this method and the next chapter
will cover the experimental implementation at ALICE.

3.1 Theory

The van der Meer scan is based on the movement of beams in two orthogonal
directions while measuring the rate of interactions. This enables us to specify
a so called visible cross section σvis, which during data-taking plays the role of
a reference cross section and the detectors used during the vdM scans act as
luminometer measuring the rate of interactions. From Eq. (2.1) one determines
the luminosity. To measure the visible cross section, it is needed to adapt
Eq. (2.3). Because the process is independent of bunch distributions, it will
remain in the form of S1(x, y, z) and S2(x, y, z). And as the movement is in two
orthogonal directions, it will be assumed, that it is already integrated over z.

The luminosity for bunches with an o�set of (∆x,∆y), and assuming that
Si(x, y) = Si(x)Si(y), equals

LVdM(∆x0,∆y0) = fnbN1N2∫ ∞
−∞

S1x(x)S2x(x+ ∆x0) dx

∫ ∞
−∞

S1y(y)S2y(y + ∆y0) dy.

(3.1)

As the beams will move in orthogonal directions separately, one can label
the part integrating over y as a constant (for one chosen separation ∆y)

20



CHAPTER 3. VAN DER MEER SCAN 21

LVdM(∆x,∆y0) = Cy

∫ ∞
−∞

S1x(x)S2x(x+ ∆x) dx, (3.2)

but the luminosity cannot be directly measured � Eq. (2.1) is used to switch
luminosity for rate (a measurable quantity).

R(∆x,∆y0) = σvisCy

∫ ∞
−∞

S1x(x)S2x(x+ ∆x) dx, (3.3)

∫ ∞
−∞

S2x(x+ ∆x) d∆x =

∫ ∞
−∞

S2x(x) dx. (3.4)

In Eq. (3.3) the visible cross section has been added. It is possible to integrate
the equation in d∆x and use Eq. (3.4) to apply the normalisation of bunch
distribution (

∫∞
−∞ Si(x) dx = 1) to compute the integrated rate∫ ∞

−∞
R(∆x,∆y0) d∆x = σvisCy. (3.5)

With this knowledge, it is possible to compute the integral in x from Eq. (3.1)
in the following manner∫ ∞

−∞
S1x(x)S2x(x+ ∆x0) dx =

R(∆x0,∆y0)∫∞
−∞R(∆x,∆y0) d∆x

. (3.6)

This means that once the rate of interactions is measured for di�erent separa-
tions, the value of luminosity can be determined as

LVdM(∆x0,∆y0) = fnbN1N2
R(∆x0,∆y0)∫∞

−∞R(∆x,∆y0) d∆x

R(∆x0,∆y0)∫∞
−∞R(∆x0,∆y) d∆y

.

(3.7)
In a simpli�ed case the measured points are plotted into a graph, �tted by

an appropriate function, which is integrated to obtain
∫∞
−∞R(∆x0,∆y) d∆y or

in the x-direction
∫∞
−∞R(∆x,∆y0) d∆x. An illustration of the possible scan

outcome is in Fig.3.1.
In a real world scenario the scan outputs need to be corrected for several

measurement artifacts (such as orbit drift, length-scale uncertainty, pileup etc.).
In addition the measurement has to be corrected by the key assumption that
the bunch distributions can be factorised into these two orthogonal directions
(which is not always true). For these cases a generalisation of the vdM method
has been developed which can be found in [9], where luminosity is computed as
follows

LVdM(∆x0,∆y0) = fnbN1N2
R(∆x0,∆y0)∫∞

−∞R(∆x,∆y) d∆xd∆y
. (3.8)

The great disadvantage of this approach is the high time demand. For this
reason it is not used at LHC.
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Figure 3.1: Rate of interaction measured at each ∆x-separation represented by
a black point, which are �tted by a red function (here Gaussian). The �t is
integrated to obtain the area under the curve which is equal to the integrated
rate needed in determination of the luminosity using Eq. (3.7).

3.2 Corrections

In this section several corrections to the vdM scan data will be discussed: correc-
tion to the length of the step, correction for the orbit drift and XY -correlations.

First of all, the calibration is done separately for each bunch pair as the
bunch population may change. The results are later combined, however, for the
analysis they are treated separately.

During the vdM scan a length-scale calibration is performed, which "cali-
brates" the beam o�set. The goal of this correction is to �ne tune the conversion
factor between magnet current and the beam displacement. That is why both
beams are shifted in the same direction and the centre of the luminosity region
is measured by the trackers in the experiments. The measured shift is compared
with the machine input. A linear �t determines the correction needed. For ex-
ample in 2015 at CMS the correction factor was 0.983 (0.985) in the horizontal
(vertical) direction [10].

The orbit drift is a more complex problem. It has di�erent e�ects in the scan
plane and in the non-scan (constant) plane. The drift narrows or widens the scan
curve in the scan direction, depending on the direction of drift and assuming
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constant velocity of the drift. In the non-scan plane the e�ect is di�erent � the
scan behaves as if the axis are tilted (not orthogonal) � see Fig.3.2.

Figure 3.2: Deformation of axis during vdM scan with constant drift velocity.
Taken from [1].

As described earlier, in general one cannot assume factorisable bunches. The
e�ect of non-factorisation has been studied in [7], where it is estimated, that
the correction can be as high as 3% � depending on the correlation factor in
the bunches. To measure the correction, primary vertices are reconstructed and
�tted by appropriate bunch distributions � di�erent for each bunch crossing.
Then the correction factor is extracted from the �t parameters. More on this
topic can be found in Chapter 6.

This chapter has given a brief overview of the van der Meer scan method.
With the main focus of this work on the LHC, more information about imple-
menting this method will be presented in the next chapter.



Chapter 4

Luminosity determination in

ALICE

There are four main experiments at the LHC, each having a di�erent research
goal. Due to the focus on di�erent aspects of particle collisions the detectors and
methods of obtaining data vary. However, all four experiments use the vdM scan
to calibrate absolute luminosity. The di�erence is in the experimental setup and
application of corrections. The best precision of the luminosity measurement
on a bunched hadron collider is 1.16% determined by LHCb (year 2014, [11]).
Due to working with the ALICE collaboration, this chapter will focus only on
describing ALICE and its methods of obtaining luminosity.

One common measurement is done for every experiment at the LHC and that
is bunch population measurement, which appears in Eq. (2.3) under the N1,2.
To measure the bunch population several special devices have been developed
at the LHC. A DC current transformer (DCCT), a device based on the �ux-
gate magnetometer principle, measures the total beam population � meaning it
cannot distinguish between bunches. Its resolution and range are astonishing
having 1µA as rms for 1s average and a range from 8µA to 860mA. To measure
the bunch-by-bunch population a Fast Beam Current Transformer is used. It
cannot measure absolute values of bunch population, but only relative. How-
ever, it is capable of measuring all 3564 nominal bunches scaled to 25ns slots. In
order to assign absolute values, the sum of all fractions are scaled to the value
obtained by the DCCT. At the LHC there are two DCCTs and two FBCT per
beampipe [12, 13].

24
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4.1 ALICE

A Large Ion Collider Experiment (ALICE) is optimised for heavy ion collisions,
which means that the 19 sub-detectors have to track and identify the tens of
thousands of particles produced in each collision. The research goal of this
experiment is to study matter heated to 10000 times the temperature of the
Sun and to answer why protons and neutrons weight more than 100 times more
than the quarks they are made of [14]. An overview of the whole experiment
with labels of all subsystems is shown in Fig.4.1.
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Figure 4.1: The ALICE in a 3D computer model, taken from [2].

Closest to the beampipe is the Inner Tracking System consisting of mainly
semiconductor detectors. Surrounding it is the Time Projection Chamber, ca-
pable of tracking particles over large distances while obtaining all three spatial
components. Since the experiment is encapsulated by a magnet which steers
charged particles, it is possible to compute momentum of the particles passing
through the detector system.

ALICE uses two detectors, which serve as luminometers. Both detectors
have two parts which are located at both sides of the interaction point. The V0
has parts A and C, each consists of 32 scintillator tiles. V0-A is 340 cm from
the nominal interaction point (IP) and V0-C is 90 cm from the IP along the
beam axis. The detector T0 has as well parts A and C, each being an array of
12 Cherenkov counters. T0-A is 370 cm from the IP and T0-C is 70 cm from
the IP (one is behind the V0-A and the second is in front of the V0-C). Both
V0 and T0 have great time resolution and thus serve as triggers for the other



CHAPTER 4. LUMINOSITY DETERMINATION IN ALICE 26

Figure 4.2: Raw rate measured by T0 detector during vdM scan in 2014 proton-
lead collisions. Taken from [3]

sub-detectors. They provide information about z-position of the primary vertex
(T0) and rate of interaction (T0 and V0).

The methodology that has been used during the 2013 p-Pb (Pb-p) vdM scan
will be presented. Due to the asymmetric setup of luminometers and the shift of
the centre-of-mass frame, the vdM scan had to be done for both con�gurations.
The boundaries for beam movement have been set as ±6σb (6 expected bunch
widths). The vdM scan consists of 2 repeated scans, each including a X and
a Y scan. The �rst scan was made in the horizontal direction and then in the
vertical, while shifting the beam from negative to positive. The second scan was
the same as the �rst one except the shifting, which was done from positive to
negative. The scan in each direction was measured at 25 points, where every
point was measured for 30 seconds [3]. Also during the scan, the number of
bunches is reduced to be able to measure collisions of bunch with residual gas
molecules or ghosts/satellites. All this information is needed in order to create
a simulation with conditions similar to real life.
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4.1.1 Vertex reconstruction

The primary vertex is the precise position where a collision took place. This
collision generates primary particles. The particles leave a signal inside the
detectors, which can be reconstructed into positions. All positions of a single
particle make up its trajectory in the detector. In case of ALICE, these detectors
are ITS and TPC as presented earlier. However, during a collision there may be
up to several thousands particles, making it di�cult to distinguish them. There
are several possible approaches to reconstruct tracks: starting from the points
closest to the collision or from the other end by reconstructing tracks from the
most outside positions. But this section does not focus on track reconstruction,
its main focus is on the vertex �nding and vertex �tting algorithms.

The vertex �nding algorithm selects tracks, which have the same primary
vertex. This is done by extrapolating the track to their origin and grouping
tracks within a certain range of distance among themselves. To be able to
reconstruct a vertex at least 5 tracks are needed. The more tracks point toward
the same spot the better. However, in high multiplicity events some of the tracks
might be fake. This means that the vertex �nding is always a compromise. The
goal of the vertex �tting algorithm is to obtain the best �t coordinates of the
vertex. The precise method used at ALICE is described in [15]. In short the
algorithm minimises a χ2 function, which is a sum over all tracks, "weighted"
by the precision of the track. The output is the vertex position (with x, y
and z coordinates) and covariance matrix of a 3D Gaussian distribution which
accounts for the measurement uncertainty.

4.1.2 Non-factorisation determination in ALICE

The primary vertices are used for measurement of the so called luminosity re-
gion, which is an input for the non-factorisation analysis. Since the real bunch
distributions are not known, there are several assumptions made with respect to
the technique used for analysis. First, in order to use analytically the covariance
matrix of the measured primary vertices, we compute the mean, variance and
correlation of the luminosity region for each set of primary vetrices obtained
in each vdM scan step under the assumption of single Gaussian bunch pro-
�les. Then, in order to estimate non-factorisation, we assume double Gaussian
bunch pro�les and the parameters are �tted to correspond to measured means,
variances and correlations of luminosity regions. The double Gaussian model
is assumed because it allows to compute analytically the luminosity including
corrrelations and as determined in the vdM scans. The ratio of these two lu-
minosities is the non-factorisation correction. To assign an uncertainty to this
method, the �t parameters are varied within their �t uncertainties and the non-
factorisation ratio is recomputed. The maximum/minimum from 50 variations
is taken as 1 sigma uncertainty. To understand the assumptions and their e�ects
on the analysis, the procedure has to be checked with simulations.
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4.1.3 O�set and diagonal scans

O�set scans have working points di�erent to (0;0), meaning the collisions are
not head-on at the common point in both directions of the vdM scan. The
advantage is obtaining more scan points, which improves the precision of vertex
�tting plus serves as cross-check of data that has been already taken. The
downside is higher sensitivity to systematic e�ects [11].

In 2018, for the PbPb vdM scan, an additional scan has been added in the
diagonal directions. First both beams were moved apart by 2.5σ from head-
on position on the y = x axis. Then they cross over in 20 steps, so the �nal
con�guration is the same as initial, just with swapped beams. Data taking at
each step takes 30 seconds. Second scan is similar, only the beams move on
the axis where y = −x. This diagonal scan should enable determination of the
beam non-factorisation with higher precision, where the greatest advantage will
probably be for the method using primary vertices.
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Beam factorisation

The assumption of bunch shape factorisation may not hold true during van der
Meer scans. There are models which enable us to study this e�ect analytically,
which will be shown in this chapter. In order to describe the most important
parts, only the simplest model (single Gaussian in 2D) will be used in the
following calculations. The goal of this demonstration is to compute the ratio of
the luminosity without assumption of factorisation (will be further called true)
and the luminosity obtained by measuring the rate while moving the beams
separately in two orthogonal directions (by the vdM method, will be further
called vdM).

The 2D single Gaussian distribution in Eq. (5.1) includes a correlation fac-
tor ρ, when the factor is non-zero the distribution cannot be factorised. To
shorten the derivation of the true luminosity Eq. (5.2) from [16] will be used.

G(x, y) = exp

[
− 1

2(1− ρ2)

(
(x− µx)

2

σ2
x

+
(y − µy)

2

σ2
y

− 2ρ (x− µx) (y − µy)

σxσy

)]
.

(5.1)

Ltrue∗ =

√
|K|

2π
√
|σa||σb|

. (5.2)

σa =

(
σ2
x1 ρ1σx1σy1

ρ1σx1σy1 σ2
y1

)
,

σb =

(
σ2
x2 ρ2σx2σy2

ρ2σx2σy2 σ2
y2

)
,

K−1 = σa
−1 + σb

−1.

Please note that K has this simple form only for head-on collisions. The σa
is the covariance matrix of the �rst bunch and σb is the covariance matrix of
the second bunch. Since only the determinant of K is needed, it is possible to
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use the equivalence between the inverse value of matrix determinant with the
determinant of inverse matrix

det(K) =
1

det(K−1)
.

The result is then described in Eq. (5.3). It is visible, that the expression
is symmetrical to the change of bunch labeling (changing 1 by 2). This is the
expected behavior since they both are described by the same model. Same
behavior is expected for the second part of computation � vdM luminosity,
where a di�erent approach is used.

Ltrue∗ =
1

2π
√
σ2
x1σ

2
y1(1− ρ21) + σ2

x2σ
2
y2(1− ρ22) + σ2

x1σ
2
y2 + σ2

x2σ
2
y1 − 2σx1σy1σx2σy2ρ1ρ2

.

(5.3)

To calculate the luminosity for each separation a triple integral will be used.
First integration will eliminate the dependence on the beam separation. And
then it is possible to integrate over x and y. To simplify the algebraic process,
a substitution was made, see Eq. (5.4). The computation alone is afterwards
straight forward using the standard integral Eq. (1.1). The result is shown in
Eq. (5.5).

A =
1

4πσx1σy1σx2σy2
√

1− ρ21
√

1− ρ22
,

a1 =
1

2(1− ρ21)σ2
x1

,

a2 =
1

2(1− ρ22)σ2
x2

,

a = a1 + a2,

b =
1

2(1− ρ21)σ2
y1

+
1

2(1− ρ22)σ2
y2

,

c1 =
ρ1

(1− ρ21)σx1σy1
,

c2 =
ρ2

(1− ρ22)σx2σy2
,

c = c1 + c2. (5.4)
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G1G2(∆x, 0) = A exp
[
−x2a− 2x∆xa1 −∆x2a1 − y2b+ xyc+ ∆xyc1

]
.∫

G1G2(∆x, 0) d∆x = A

√
π

a1
exp

[
−x2a2 + xyc2 − y2

(
b− c21

4a1

)]
.∫ ∫

G1G2(∆x, 0) d∆xdx = A

√
π

a1

√
π

a2
exp

[
−y2

(
b− c21

4a1
− c22

4a2

)]
.∫ ∫ ∫

G1G2(∆x, 0) d∆xdxdy = A
π

√
a1a2

√
π

b− c21
4a1
− c22

4a2

,

∫ ∫ ∫
G1G2(∆x, 0) d∆xdxdy =

1√
2π(σ2

y1 + σ2
y2)

.

LVdM∗(0, 0) =
R(0, 0)∫∞

−∞R(∆x,∆y0) d∆x

R(0, 0)∫∞
−∞R(∆x0,∆y) d∆y

.

LvdM∗ = 2π
√

(σ2
x1 + σ2

x2)(σ2
y1 + σ2

y2)L2
true∗. (5.5)

Once both expressions (true luminosity and vdM luminosity) are divided,
the non-factorisation ratio is obtained, Eq. (5.6). When both correlation factors
ρ1,2 are zero, the ratio is equal to one. The ratio can be equal to one even in cases
when Eq. (5.7) is satis�ed � bunches alone exhibit non-factorisation, but their
product does not. It may seem that non-factorisation is only disadvantageous,
however, from purely mathematical point of view, it can enhance luminosity
once the sign of correlation factors is the same (a detailed study, prediction
and a recommendation of skew quadrupole usage is far beyond the scope of this
work).

R =

√
1−

σ2
x1σ

2
y1ρ

2
1 + σ2

x2σ
2
y2ρ

2
2 + 2σx1σy1σx2σy2ρ1ρ2

(σ2
x1 + σ2

x2)
(
σ2
y1 + σ2

y2

) , (5.6)

ρ1 = −σx2σy2
σx1σy1

ρ2. (5.7)

If the experiment would only acquire rates of interaction at di�erent sep-
arations, one would never be able to tell the parameters needed for this kind
of analysis. This is the reason why experiments complement measuring rates
with primary vertex reconstruction as described earlier, which enables indirect
measurement of non-factorisation. In order to verify this approach a simulation
has been created.
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Scan simulation

The simulation is coded in C++ within the ROOT framework [17]. The idea of
the simulation is �rst to generate random points in three dimensions following
a given bunch distribution and �ll them into a histogram. The histogram repre-
sents a bunch, which is later overlapped with another bunch (this corresponds
to the integral over time) to create a luminosity region. The luminosity region is
integrated to obtain the luminosity value for that particular collision. In a later
phase of the analysis the points in the luminosity region will be smeared using
the uncertainty covariance matrices obtained by ALICE from their measurement
of the primary vertex.

As a �rst step, each part of the simulation has to be veri�ed, at least for
simple bunch distributions � cases that can be compared to an analytical compu-
tation. This benchmarking to evaluate the analysis code will be further detailed
in the next chapter.

The whole simulation code consists of several classes, each with a di�erent
purpose. Figure 6.1 is a schematic sketch of the algorithm with key functions
written over the arrows. The class vdM_Bunch serves as initial stepping stone
into the simulation. In this class all distribution parameters are set and ran-
dom points are generated. Points from two vdM_Bunch classes are input into
vdM_Interaction class which enables setting many collision parameters (shift,
crossing angle, step sizes etc.). By calling the function collide, one obtains the
luminosity value for the selected collision and may also obtain the vertex distri-
bution of the luminous region. This part of the text will deal with luminosity
values only.

6.1 Benchmarking

The goal of benchmarking is to check all parts of the simulation for potential
programming errors by looking for the behaviour which would di�er from ana-
lytical expectations. The generation of bunches has been veri�ed in my Bachelor
thesis [7, p. 41-46]. One remark to be made concerning the widths of 1D cuts
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Figure 6.1: Scheme of collision simulation.
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made to 2D distribution � in my B. Sc. thesis was a bias of 2-4%. This was
later resolved � the histogram bins contained low number of entries, which in
turn meant lower σ when �tted by the χ2 method. Once the likelihood method
was used all values were equal to the analytical ones.

Several phenomena were controlled and compared to analytical predictions
� luminosity in head-on collisions, e�ect of a crossing angle (y − z), the bunch
width determined by a simulated vdM scan and the e�ect of non-factorisation
(more in Sec. 6.3).

Histograms consist of discrete bins which are �lled with entries. This means
that Eq. (2.3) cannot be used with the integral. Instead a sum is used � to get
the total number of entries summing the complete histogram over all bins � see
Eq. (6.1), where n is the total number of entries and the distribution is assumed
to be normalised. The di�erence is in the computation of the luminosity region.
To get a luminosity region two bunches are overlapped, both histograms having
the same bin widths in each direction. But to normalise this procedure one has
to divide by the bin-widths ∆x, ∆y. The reason one does not need to account
for ∆z is that it is already summed. To obtain a luminosity value from the
luminosity region it is su�cient to multiply by the kinematic factor as shown in
Eq. (6.2) � the nb (number of bunches) and f (frequency) are set to 1 and are
not shown anymore, because they will cancel in the ratio of luminosities.

n

∫ ∞
−∞

Si(x, y, z) dxdy dz =

Nbins∑
x,y,z=0

Hi(x, y, z). (6.1)

KN1N2

∫ ∞
−∞

S1(x, y, z + ct)S2(x, y, z − ct) dxdy dz dt =

Nbins∑
x,y,z=0

Nbinsz∑
i=−Nbinsz

H1(x, y, z + i)H2(x, y, z − i)
∆x∆y

. (6.2)

To be able to compare the simulation (right side of Eq. 6.2) one must com-
pute the left side, which is already done for head-on collisions with single Gaus-
sian bunch distributions shown in Eq. (2.5). A graph has been made to compare
the analytical prediction with the output of the simulation see Fig.6.2. There
seems to be a systematic o�set of 0.3% and an RMS of 0.3%. It is worth noting
that the point of (0.55, 0.55) is very far away from unity and is suspected to
have a rounding/over�ow issue. In all the following text we will be using a
generous uncertainty of 0.5% arising from the random generation.

To verify the correct behaviour of the simulation during collisions with cross-
ing angle, Eq. (2.7) was used. The dependence of the luminosity on the crossing
angle was plotted. A �t was done to estimate the simulation uncertainty � the
only variable parameter was p1 which is shown in Eq. (6.3). The other pa-
rameter which is �xed is the p0 which only represents the fraction σz

2σx
. The

uncertainty on p1 is 1% and it is clearly overestimated. This was achieved by
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Figure 6.2: Comparison of computed luminosity to analytically predicted lumi-
nosity (their ratio on palette), dependent on the bunch widths in x (on x-axis)
and y (on y-axis).

using the computed value of head-on luminosity instead of the analytical value,
which on its own has a 0.5% uncertainty. The result is shown in Fig. 6.3.

LAngle
LHeadOn

=
1√

1 + p1
(
θσz

2σx

)2 . (6.3)

Other two checks need to be made, before computing the uncertainties for
more complicated cases. One is a vdM scan, which should obey the o�set given
by Eq. (2.6). To make understanding easier, the ratio of the o�set luminosity to
the head-on luminosity was plotted and �tted by a Gaussian function. The width
of the �t σf was expected to be

√
2σx,y depending on the direction of the o�set.

For the parameters used in the simulation the expected width was σf−ex =
0.07071 and the one obtained from the simulation was σf = (0.07066±0.00003).
The generated data and �t is in Fig.6.4.

The last veri�cation involves a vdM scan with a crossing angle, because the
dependence is more complex, than a multiplication of two correction factors �
as was already shown in Eq. (2.8). The correction factor can be rearranged
to get Eq. (6.4). For a well visible e�ect, the common simulation values had
to be adjusted � σy = 0.05, σz = 5.2 and the crossing angle Θ = 0.01. The
vdM scan should output a Gaussian function with width σex = 0.102021. The
result of the simulation is in Fig. 6.5, which reveals the �t value being σf =
(0.10238± 0.00009).
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Figure 6.3: Dependence of luminosity on collision angle. The bunch parameters
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corresponds to the analytical model with an uncertainty better than 1%.
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C = exp

[
−∆y2

4σ2
y

(
1− σ2

z sin2 Θ

σ2
z sin2 Θ + σ2

y cos2 Θ

)]
. (6.4)

Overall these simple cases of single Gaussian have very precise results and
once luminosity ratios of generated values are used it is possible to obtain un-
certainty of tenths of percent.
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Figure 6.5: Simulation output showing the results for the vdM scan in the y-
direction while maintaining the crossing angle. This is the last benchmark using
single Gaussian bunch pro�les to obtain the simulation uncertainty.

6.2 Simulation uncertainties

In this section, �rst the general formula for head-on collisions of Gaussian
bunches will be given, which will be useful to evaluate the simulation using
double Gaussian bunch pro�les. From the benchmarking the uncertainties for
a single Gaussian are known. Thus it is possible to estimate the uncertainties
for double Gaussian bunches and compare the prediction with the results of a
simulation. This will be important for studies presented later in this work to
accurately simulate the di�erence of luminosity determined by a vdM scan and
by the simulation.

The most general formula for a head-on luminosity for two colliding Gaussian
bunches is in Eq. (6.5) � bunch "1" has widths σ1x,y, bunch two is de�ned by
widths σ2x,y. To understand the usefulness in the case of a double Gaussian
bunch pro�le collisions, it is needed to present the double Gaussian distribution
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beforehand.
LHeadOn =

nbfn1n2

2π
√

(σ2
1x + σ2

2x)(σ2
1y + σ2

2y)
. (6.5)

The double Gaussian distribution is a sum of two single Gaussian distribu-
tions with a condition � both single Gaussians have the same mean. In order
to leave the distributions normalised the weight factor w is added as shown in
Eq. (6.6), where G represents a single Gaussian.

DG = wGA + (1− w)GB . (6.6)

Now to compute the head-on luminosity, the equation will reduce to four
parts, each consisting of a single Gaussian part. This way Eq. (6.5) is used.
To make it clear a schematic Eq. (6.7) demonstrates the collision of bunch 1
(consists of Gaussians A and B) with bunch 2 (consists of Gaussians C and D).
We want to obtain an estimate of the simulation uncertainty, each integral has
a relative error σrel determined in Sec. 6.1 � σrel = 0.5%. This value is used
for every integral in Eq. (6.7) and all uncertainties were summed in quadrature.
This fact is expressed in Eq. (6.8), where integrals are noted by subscripts of
constituents from Eq. (6.7).

L = Kn1n2

∫ ∞
−∞

(W1G1AG2C +W2G1AG2D +W3G1BG2C +W4G1BG2D) dV dt.

(6.7)

σL = σrel
√
K1 +K2 +K3 +K4, (6.8)

K1 = (w1w21A2C)2,

K2 = (w1(1− w2)1A2D)2,

K3 = ((1− w1)w21B2C)2,

K4 = ((1− w1)(1− w2)1B2D)2.

The following values are used for the simulation: σ1B−x,y = 0.51, σ2C−x,y =
0.3, σ2D−x,y = 0.5, σz−1A,2C = 6.0, σz−1B,2D = 5.0, Θ = 0 and w1,2 = 0.5. The
other parameters were varied in the range from 0.2 to 0.7 separately by steps
of 0.05. From this knowledge the relative uncertainty calculated by Eq. (6.8) is
around 0.25%. The output is in Fig.6.6, where for the most part the ratio is
less than 0.27% away from unity determined from Fig.6.7.

1The main interest is to model a real life case, which can be done by choosing proportional

values of bunch widths. This is the reason of omitting units in the text. The only need of

assigning units is for vertex distribution, which must correspond to real-life covariance matrix

element units.
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Figure 6.6: Benchmarking simulation for Double Gaussian bunch pro�les. The
z-axis/palette represents the ratio of the simulated luminosity divided by the
analytically predicted luminosity.
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Figure 6.7: Histogram created from the z-values of Fig.6.6. Values are �tted by
a Gaussian function to obtain the uncertainty of the simulation.



CHAPTER 6. SCAN SIMULATION 40

6.3 Bunch non-factorisation

So far we have veri�ed the components of the simulation, the creation of ran-
dom points, the overlap under di�erent conditions. And we have set an upper
uncertainty bound to this approach. It is also needed to compare whether the
analytically computed non-factorisation ratio is equal to the ratio obtained by
the pure simulation (computing both true and vdM luminosity via numerical
simulation).

First, only simulating head-on luminosity was tested while varying the cor-
relation factor of one of the beams while keeping the other correlation constant.
This scenario was already presented analytically for the single Gaussian model
in Chapter 5. The result is plotted in Fig. 6.8. The important result here is the
luminosity enhancement for the correlation factor of the �rst beam is not equal
to minus the correlation factor of the second beam (ρ1 6= ρ2). The red curve is
expressed in Eq. (6.9).

Ltrue∗ =

1

2π
√
σ2
x1σ

2
y1(1− ρ21) + σ2

x2σ
2
y2(1− ρ22) + σ2

x1σ
2
y2 + σ2

x2σ
2
y1 − 2σx1σy1σx2σy2ρ1ρ2

.

(6.9)
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Figure 6.8: Dependence of luminosity on correlation factor ρ. The parameters
used for the simulation: σx1 = σx2 = σy1 = σy2 = 0.2, ρ1 = ρ, ρ2 = 0.5. Red
line represents analytically computed luminosity and therefore is not a �t!
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The non-factorisation ratio is de�ned as "true" luminosity divided by "vdM"
luminosity. For that reason the simulation mimicked the vdM procedure to
obtain the luminosity by shifting the beams. Both simulated scans are in
Fig. 6.9, 6.10. Important to note here is, that the �t is a single Gaussian,
because both beams are modeled by single Gaussian. This may not hold true
once other bunch models would be used. (Convolution of two single Gaus-
sians make up one single Gaussian, but convolution of two double Gaussians
makes four single Gaussians.) The analytical formula for "vdM" luminosity is
in Eq. (6.10). But to obtain it from the simulation several steps have to be
made. For each separation the "rate" is saved into a graph which is later �tted
by the appropriate function. The �t is integrated and the ratio of head-on rate
by the �t integral gives the resulting "vdM" luminosity.

LvdM∗ = 2π
√

(σ2
x1 + σ2

x2)(σ2
y1 + σ2

y2)L2
true∗. (6.10)
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Figure 6.9: Simulation output demonstrating the x-scan of the vdM calibration.
There are 25 scan points (black) �tted by a Gaussian function (red).
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Figure 6.10: Simulation output demonstrating the y-scan of the vdM calibration.
There are 25 scan points (black) �tted by a Gaussian function (red).

With all this done, it is possible to compare results for the non-factorisation
ratio R = Ltrue

LvdM
. Figure 6.11 compares the pure simulation values (black)

with the analytical prediction (red line). Note that the correction for non-
factorisation e�ects can be quite large. The agreement between the results are
well within the simulation uncertainty. The parameters of the simulation were
the following: σx1 = 0.25, σx2 = 0.2, σy1 = 0.2, σy2 = 0.25, ρ2 = 0.3 and ρ1
was variable from -0.5 to 0.5. The maximum di�erence between analytically
predicted value and the numerically obtained is less than 0.2% meaning that
the uncertainty is overestimated for the chosen bunch parameters.
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Figure 6.11: Non-factorisation ratio computed analytically (red line) and ob-
tained by a simulation (black dots). The simulation results agree with the
analytical prediction within the error.



Chapter 7

Simulation analysis

The previous chapter demonstrated the di�erence in the simulation of the mea-
sured luminosity compared to the one truly delivered. Now we will treat a more
realistic case by adding �nite detector resolution and measurement uncertainty.
To do that ALICE real-life data from several vdM scans have been used. But
�rst the approach used by ALICE will be presented. Second, the simulation
mimicking real-life data will be explained. And last will be presented a study
of uncertainties for this approach while using di�erent models (single or double
Gaussian).

7.1 ALICE approach

In Section 4.1.1 the method of obtaining an unconstrained primary vertex and
appropriate covariance matrix has been sketched. This is the starting point for
the following approach of bunch non-factorisation measurement. For each beam
separation a luminosity region is reconstructed from all unconstrained primary
vertices. The luminosity region is �tted by a single Gaussian, which takes into
account the measurement uncertainty of each vertex. From the single Gaussian
the mean, RMS value and correlation is extracted. These values are plotted with
their dependence on the beam separation and �tted to a model which includes
correlations, speci�cally a model with bunches described by double Gaussian
distributions. The two double Gaussian distributions represent the colliding
beams and the bunch parameters are set, by a minimisation procedure, such
that the luminosity region exhibits the same behavior as that expected from the
double Gaussian model. Figures representing this procedure (for the simulated
data reported below) are shown in the appendix.

For the simulation we used parameters which correspond to those obtained
in the analysis of real data. The data were acquired in pPb collisions with an
energy of 8.16 TeV per nucleon pair, the �ll number is 5533. After the two
XY scans a length-scale calibration was executed. A selection of the data was
performed, by picking vertices with more than 15 contributors (this enhances

44
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Table 7.1: Values of double Gaussian model �tted to real-life data by Dr. Mayer.

w1 = 0.64 w2 = 0.44
σx1a = 36.6 µm σx1b = 22.0 µm σx2a = 39.7 µm σx2b = 37.3 µm
σy1a = 23.5 µm σy1b = 13.6 µm σy2a = 26.5 µm σy2b = 32.6 µm
σz1a = 84.0 mm σz1b = 90.7 mm σz2a = 85.0 mm σz2b = 42.5 mm
ρxy1a = 0.16 ρxy1b = 0.25 ρxy2a = 0.26 ρxy2b = -0.06

the resolution of the vertex position). Graphs in Fig.7.1, Fig.7.2 and Fig.7.3
display the dependence of the resolution on the vertex position (which are the
diagonal terms in the covariance matrix). There are other terms which de�ne
the resolution correlations dependent on two coordinates. The �t was done by
Dr. Christoph Mayer from the ALICE Collaboration1. The parameters found
are reported in Table (7.1).

Every �tted parameter has an uncertainty of the determined value (in Ta-
ble 7.1 the uncertainties are omitted, since they are not crucial for setting simu-
lation input parameters). To obtain the non-factorisation ratio R the �t values
are used. The uncertainty of the ratio is then obtained by varying the parame-
ters within their �t uncertainty and computing non-factorisation ratio again.
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Figure 7.1: Dependence of the resolution on the vertex position in the x-
direction. For the most part the resolution σx is around 20 µm, which is
comparable to the bunch width.

1This was a personal communication between Dr. Mayer and Dr. Contreras, my supervisor.
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Figure 7.2: Dependence of the resolution on the vertex position in the y-
direction. For the most part the resolution σy is around 20 µm, which is com-
parable to the bunch width.
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Figure 7.3: Dependence of the resolution on the vertex position in the z-
direction. For the most part the resolution σz is around 30 µm, which is three
orders of magnitude smaller than the bunch width.
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7.2 Vertex simulation description

In Chapter 6 the part of simulation computing luminosity for various collision
conditions has been presented. In order to obtain the vertices, similar input
parameters to the real ones are used for the bunch distributions. Once the
histogram with the luminosity region is obtained a proportional part of points
to the number of entries is randomly generated. These points represent the
vertices. Covariance matrices from real-life data are randomly assigned and
the generated vertices are smeared. This step usually doubles the RMS of the
luminosity region, however, since the error matrices are kept, it is possible to
"unfold" the smearing and obtain the input parameters.

To better illustrate the process described earlier, two �gures are shown.
Figure 7.4 shows generated transverse vertex distribution directly from the sim-
ulation. Whereas Fig. 7.5 displayes the same distribution of vertices smeared
by covariance matrices.
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Figure 7.4: Transverse vertex distribution generated by the simulation, the x
and y axis represent the vertex positions in arbitrary units. Red curves present
2D Gaussian �t.
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Figure 7.5: Transverse vertex distribution originating from previous �gure, ver-
tices are randomly shifted by a covariance matrix obtained by real-life data, the
x and y axis represent the vertex positions in arbitrary units.

7.3 Analysis of simulated data

The assignment was simple � compare the simulation input values with those
acquired by the analysis. However, there are many possible con�gurations and
aspects that can be tested. For that reason, only cases closely related to the
LHC are studied. The following list gives a brief overlook of the con�gurations
chosen to be presented:

1. Varying the bunch width in one direction, while keeping others constant.

2. Varying the correlation in one bunch.

3. Analysing single Gaussian bunch collisions with a double Gaussian model.

4. Analysing double Gaussian bunch collisions with a single Gaussian model.

Complete �gures of �ts can be found in the appendix. The last possible con�g-
uration of analysing double Gaussian collisions with double Gaussian model is
ongoing and thus the results are not shown in this thesis.

1. In the single Gaussian model, there are two bunch widths in the transverse
plane. First only one was varied on input and the dependence of output value
on input was created. To make sure, that the other widths are not a�ected by
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the change of the one, their �tted value was also added into the Fig. 7.6. Even
though smeared vertices were used, the parameters obtained were very close to
the ones that were input. The average uncertainty was 0.4%, which is even lower,
than the uncertainty of the simulated luminosity compared to the analytically
computed from the parameters. Next step was to change two bunch widths
simultaneously � the bunch width in y-direction was decreased while the width
in x-direction was increased. The result is presented in Fig. 7.7. The uncertainty
has increased slightly, but it is still very precise � 0.6%. It is important to note,
that to �nd the bunch widths the correlation factors were �xed to zero. Detailed
�ts are in appendix, see Fig. A.1-A.3. Note that all parameters are correctly
recovered by the �tting procedure. That the �t provides a reasonable value of χ2

and that, as it should be in this case, the correction factor for non-factorisation
e�ects (denoted by R in Fig. A.1) is 1.0, meaning no correction is needed.
The conclusion of this exercise is that the method used by ALICE (and also by
ATLAS) works correctly in this case.
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Figure 7.6: Dependence of bunch widths obtained by the analysis software on
the input value of σx1 - bunch width in x direction of the �rst beam. Results
for the single Gaussian model of the bunch pro�les.
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Figure 7.7: Dependence of bunch widths obtained by the analysis software on
the input value of σx1 - bunch width in x direction of the �rst beam. Results
for the single Gaussian model of the bunch pro�les, �tted by a single Gaussian
model.

2. To obtain the correct value of the non-factorisation ratio, the correct value
of the bunch correlation has to be extracted. The same approach was chosen as
in 1. � the dependence of the value obtained by the analysis was compared to
the input value. First with one beam having the correlation equal to zero and
later a non-zero constant value. Figure 7.8 shows the mentioned dependence,
representing a more complex case. Again the uncertainty is very low, around
0.3%. It was shown, that it is possible to obtain parameters very close to those
from the input. But the key thing is, whether the non-factorisation ratio is
reliable. The highest actual di�erence between the analytical calculation from
input parameters and those given by the analysis software is 0.1% (although the
uncertainty is in some cases higher) as can be seen from Fig. 7.9. The detailed
�ts are Fig. A.4-A.6
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model.
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Figure 7.9: Analysis of non-factorisation ratio for di�erent input values. Results
for the single Gaussian model of the bunch pro�les, �tted by a single Gaussian
model.
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3. For the vdM scan, a great amount of work from the LHC side is put into
making the bunches as close to a single Gaussian distribution as possible. How-
ever, from the analysis point of view, the �t with double Gaussian distributions
is more sensitive to non-factorisation e�ects. The natural question that arises is,
if the non-factorisation ratio is assigned correctly for bunches that are real single
Gaussians when the �tting is done with double Gaussian bunches. There are
more than 2 times more parameters which have to be correctly �tted and due to
the double Gaussian symmetry of the Gaussians, the minimising is sometimes
problematic. The non-factorisation ratio dependent on the correlation factor
is presented in Fig. 7.10. The main di�erence between this approach and the
one presented earlier is the size of the uncertainties. This is exactly due to the
larger number of parameters, which can substitute one another in the case of
single Gaussian collisions. This creates a larger uncertainty of each parameter
and subsequently has an e�ect on the uncertainty. The detailed �ts in appendix
are Fig. A.7-A.12. Note that the parameter w is very close to either 0 or 1,
so the person doing this particular analysis, when checking the values of the
parameters, should realise that a single Gaussian model may be more adequate
and try also that option.
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Figure 7.10: Non-factorisation ratio dependent on correlation factor of the �rst
beam. Results for the single Gaussian model of the bunch pro�les, �tted by a
double Gaussian model.
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4. As has been presented in paragraph 2, the single Gaussian model is per-
forming fairly well. Could it also evaluate correctly the non-factorisation of
double Gaussian collisions? Before going to the results of the simulation, let's
make a thought experiment. If the double Gaussian has the weight w = 0.5
and the same widths for both parts but the opposite sign of correlation factors,
the �t of single Gaussian would not �nd any correlation at all. And this has
an e�ect on the overall luminosity and the non-factorisation ratio. Figure 7.11
presents the analytical ratio computed from a double Gaussian model and the
points are simulated by �tting with a single Gaussian model. The whole set of
parameters used to generate the simulated data is:

w1 = 0.64 w2 = 0.44

σx1a = 36.6 µm σx1b = 22.0 µm σx2a = 39.7 µm σx2b = 37.3 µm

σy1a = 23.5 µm σy1b = 13.6 µm σy2a = 26.5 µm σy2b = 32.6 µm

σz1a = 75.0 mm σz1b = 70.0 mm σz2a = 75.0 mm σz2b = 71.0 mm

ρxy1a = x.xx ρxy1b = 0.25 ρxy2a = 0.26 ρxy2b = −0.06

which is comparable to the real-life data, the ρxy1a was changed to see the impact
on the non-factorisation ratio. However, the single Gaussian model wasn't able
to reproduce the analytically computed values. The most probable explanation
arises from the thought experiment. The detailed �ts are in the appendix as
Fig. A.13-A.15.
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Figure 7.11: Dependence of non-factorisation ratio on correlation factor using
Double Gaussian model for generating data and Single Gaussian model for the
analysis. Red is analytical prediction for the input data and black are points
obtained from the analysis.



Chapter 8

Conclusion

Determination of luminosity via van der Meer scans has been presented. The
ALICE experiment has been brie�y introduced and key detectors to luminosity
measurement were presented. The method of estimating non-factorisation by
�tting the luminosity region provided by the measurement of primary vertices
has been described. To understand non-factorisation further a simulation has
been developed. The simulation is capable of using di�erent bunch distributions
to create a luminosity region. The luminosity regions are later smeared with
real-life data (uncertainties of measurement) and the ALICE analysis software
is used to obtain the individual bunch parameters.

Taking into account that the simulation can generate non-factorisation with
a precision of 0.2%, the analysis code is able to approach similar values for
single Gaussian model, although the determined uncertainty (by the analysis
software) is (for some cases) higher. An analysis of single Gaussian bunches by
double Gaussian model was also carried out. The results are consistent with
analytical predictions, however, the uncertainties are far larger. On the other
hand, it is expected that the analyser would notice the large uncertainties of
parameters and would try to use single Gaussian model instead. The single
Gaussian model was also used to analyse double Gaussian bunch pro�les. In
that case the output was away from analytical predictions and the uncertainties
were smaller than the distance from the analytic predictions. But the data were
obviously not �tted correctly as can be seen from Fig. A.14-A.15, so an analyser
would know that something is not correct.

The testing of double Gaussian bunches analysed with double Gaussian
model is in progress and cannot be shown in this thesis. Another step is to
benchmark collisions under crossing angle and compare the results to analytical
predictions (which were not explicitly computed in this thesis). The usage of
other distributions to generate vertices would be a future goal. The program
can be also used to optimise other aspects of the vdM scan procedure. For ex-
ample, the amount of time that the rate is measured in each step: right now the
same time is spent in each step, which does not look like an optimal setup; or
to optimise the size of steps during the scan: currently all steps are of the same
lenght, which also seems not to be optimal to perform the integrals in Eq. (3.7).
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Appendix A

Selected analysis �ts

This part of appendix has the goal of showing more details of �tting analysis.
The introduction into this method is in Sec. 7.1. The selection will pick best and
worst case in the data since there are usually around 11 sets of 14 �ts performed
to create a �gure such as Fig 7.6. The �ts will be presented in the same order
as they were in the thesis.

Sigma �ts

First of all, the bunch width was varied and the output width was studied.
The output had exceptional precision given that the data was smeared. Even
when the correlation factors were not �xed during the �tting procedure, the
uncertainty was around 0.6%.
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mµ0.3 ± = 50.21a
Xσ

mµ0.3 ± = 50.71a
Yσ

0.0 cm± = 5.01a
Zσ

0.01 ± = 0.00
1a
XYρ

mµ0.2 ± = 39.92a
Xσ

mµ0.1 ± = 30.02a
Yσ

0.0 cm± = 5.02a
Zσ

0.01 ± = -0.00
2a
XYρ

radµ0.0 ± = 0.0XZα

radµ0.0 ± = 0.0YZα

+0.000
-0.000R = 1.000

/NDF = 260/341=0.82χ

Figure A.1: The output parameters of the two single Gaussian bunches. The
input parameters were: σx1a = 50 µm, σy1a = 50 µm, σx2a = 40 µm, σy2a = 30 µm,
σz1,2a = 5 cm, ρxy1,2a = 0.
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Figure A.2: The individual graphs and �ts in the simulated vdM x-scan.
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Figure A.3: The individual graphs and �ts in the simulated vdM y-scan.
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Correlation factor and non-factorisation ratio �ts

These �ts were performed on the same set of data, only di�erent quantities were
monitored. The only di�erence was between individual points the uncertainty.
For that reason, we show only one of the �t samples.

mµ0.2 ± = 40.01a
Xσ

mµ0.3 ± = 50.31a
Yσ

0.0 cm± = 5.01a
Zσ

0.01 ± = 0.21
1a
XYρ

mµ0.2 ± = 40.32a
Xσ

mµ0.1 ± = 30.22a
Yσ

0.0 cm± = 5.02a
Zσ

0.00 ± = -0.40
2a
XYρ

radµ0.0 ± = 0.0XZα

radµ0.0 ± = 0.0YZα

+0.000
-0.000R = 1.000

/NDF = 189/341=0.62χ

Figure A.4: The output parameters of the two correlated single Gaussian
bunches. The input parameters were: σx1a = 40 µm, σy1a = 50 µm, σx2a = 40 µm,
σy2a = 30 µm, σz1,2a = 5 cm, ρxy1a = 0.2, ρxy1a = −0.4.
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Figure A.5: The individual graphs and �ts in the simulated vdM x-scan.
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Figure A.6: The individual graphs and �ts in the simulated vdM y-scan.
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Fitting by double Gaussian

The large uncertainties were caused mostly by parameters �tted too loosely. It
is assumed that the person responsible for the analysis would �nd the weights
close to 0 or 1 and would also try �tting with single Gaussian model with higher
precision. The best �t is presented �rst and one of the more problematic ones
is presented second.

mµ0.2 ± = 37.81a
Xσ

mµ0.3 ± = 45.31a
Yσ

0.0 cm± = 5.71a
Zσ

1.36 ± = 0.90
1a
XYρ

0.00 ± = 1.061b
XS

0.01 ± = 1.111b
YS

0.00 ± = 0.841b
ZS

0.01 ± = 0.18
1b
XYρ

0.00 ± = 0.011w

mµ0.2 ± = 39.82a
Xσ

mµ0.1 ± = 30.72a
Yσ

0.0 cm± = 5.12a
Zσ

0.01 ± = -0.00
2a
XYρ

0.05 ± = 1.152b
XS

1.34 ± = 0.752b
YS

0.06 ± = 1.422b
ZS

0.08 ± = 0.07
2b
XYρ

0.01 ± = 0.922w

radµ0.0 ± = 0.0XZα

radµ0.0 ± = 0.0YZα

+0.002
-0.002R = 0.993

/NDF = 176/331=0.52χ

Figure A.7: The output parameters of the two single Gaussian bunches �tted
by double Gaussian model. The input parameters were: σx1a = 40 µm, σy1a =
50 µm, ρxy1a = 0.2, σx2a = 40 µm, σy2a = 30 µm, σz1,2a = 5 cm, ρxy1a = 0.0.
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Figure A.8: The individual graphs and �ts in the simulated vdM x-scan.
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Figure A.9: The individual graphs and �ts in the simulated vdM y-scan.
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mµ0.3 ± = 53.41a
Xσ

mµ0.4 ± = 48.61a
Yσ
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Zσ

0.24 ± = -0.84
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XYρ

0.20 ± = 0.751b
XS

0.01 ± = 1.041b
YS
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0.02 ± = 0.23
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XYρ

0.03 ± = 0.021w

mµ1.1 ± = 39.72a
Xσ

mµ0.7 ± = 30.52a
Yσ

0.7 cm± = 3.82a
Zσ

0.06 ± = -0.37
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XYρ

0.06 ± = 1.062b
XS

0.10 ± = 0.962b
YS

0.31 ± = 1.842b
ZS

0.04 ± = -0.48
2b
XYρ

0.77 ± = 0.662w

radµ0.0 ± = 0.0XZα

radµ0.0 ± = 0.0YZα

+0.008
-0.044R = 0.992

/NDF = 186/331=0.62χ

Figure A.10: The output parameters of the two single Gaussian bunches �tted
by double Gaussian model. The input parameters were: σx1a = 40 µm, σy1a =
50 µm, ρxy1a = 0.2, σx2a = 40 µm, σy2a = 30 µm, σz1,2a = 5 cm, ρxy1a = −0.4.
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Figure A.11: The individual graphs and �ts in the simulated vdM x-scan.
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Figure A.12: The individual graphs and �ts in the simulated vdM y-scan.
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Fitting double Gaussian bunches by single Gaussian model

The person performing the analysis should be very careful, because the single
Gaussian model can describe data around head-on collisions, but it fails far
away. The mean values can be �tted by 1st degree polynomial which is not
enough as is shown in the following �gures.

mµ0.2 ± = 38.01a
Xσ

mµ0.2 ± = 29.61a
Yσ

0.0 cm± = 7.31a
Zσ

0.01 ± = 0.09
1a
XYρ

mµ0.1 ± = 31.22a
Xσ

mµ0.1 ± = 19.82a
Yσ

0.0 cm± = 7.32a
Zσ

0.01 ± = 0.07
2a
XYρ

radµ0.0 ± = 0.0XZα

radµ0.0 ± = 0.0YZα

+0.001
-0.001R = 0.997

/NDF = 431/327=1.32χ

Figure A.13: The output parameters of the two double Gaussian bunches �tted
by single Gaussian model. The input parameters were: σx1a = 39.7 µm, σy1a =
26.5 µm, ρxy1a = 0.26, σx1b = 37.3 µm, σy1b = 32.6 µm, ρxy1b = −0.06, σx2a =
36.6 µm, σy2a = 23.5 µm, ρxy2a = −0.05, σz1,2a = 7.5 cm, σx2b = 22.0 µm, σy2b =
13.6 µm, ρxy2a = 0.25, σz1b = 7.1 cm, σz2b = 7.0 cm.
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Figure A.14: The individual graphs and �ts in the simulated vdM x-scan.
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Figure A.15: The individual graphs and �ts in the simulated vdM y-scan.
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