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FJFI, CTU

Title:
Study of Properties of the Dipole Scattering Amplitude Using Balitsky-
Kovchegov Evolution Equation
Author: Marek Matas

Abstract: It has been known for a long time that hadron structure functions show
a large increase in the number of gluons in the region of small Bjorken-x. The steep
rise of the number of gluons in the hadron at a fix scale is described by the BFKL
evolution equation. However, experimental data suggest less gluons in a hadron than
there should be according to the solution of the leading-log BFKL equation. This
can be taken as the evidence of a phenomenon called parton saturation. Accord-
ingly, the number of gluons in a hadron is given by the dynamical balance between
radiation and recombination processes, which can lead to the suppression of the
number of gluons. These recombination effects in the hadron are described by the
Balitsky-Kovchegov equation(BK), a 2D integro-differencial equation with divergent
kernel. The solution of the BK equation provides the dipole scattering amplitude
that incorporates the effects mentioned above and that can be used to predict the
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solve the equation, one has to do it numerically and so the study of the properties
of the numerical solution is of great importance.

Key words: Deep Inelastic Scattering, Balitsky-Kovchegov equation, HERA

Název práce:
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muśı se řešit numericky a studium vlastnost́ı tohoto numerického řešeńı je velmi
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Introduction

Great attention in the previous decade was given to studying the properties of par-
ticles at the high-energy limit of QCD. Deep Inelastic Scattering (DIS) studied at
the HERA collider was a good tool for measuring such properties. Evolution equa-
tions such as BFKL [1–5], BK [6–10], JMWLK [11–15] and DGLAP [16–18] are used
to describe the properties of particles that take part in high energy collisions. The
BFKL evolution equation predicts the emergence of new partons as the energy of
the collision increases. In this approach, at leading logarithmic (LL) accuracy the
gluon density is not bound by unitarity restrictions.

In the experiments at large accelerators such as HERA or LHC, it was shown that
the number of partons does not completely satisfy this equation and that there are
less partons then predicted. Measured cross sections predicted by these evolution
equations grow above the experimentally obtained values at high energies, where
the largest contribution to the cross section is due to newly created gluons. The fact
that predictions from LL-BFKL equation overshoot experimental data may be due
to recombination processes inside the hadrons and it is included in the BK evolution
equation. Recombination processes take place when it is not anymore energetically
favorable for a new parton to emerge in the hadron and its entire phase space is
already populated.

The BK evolution equation is an integro-differential equation and there are several
ways to solve it numerically [19–22]. The BK evolution equation considered in this
work includes running coupling kernel that takes into account the two loop processes
and assumes both impact parameter dependent and independent solutions.

Using numerical methods such as the Runge-Kutta method of fourth order and
Simpson’s rule, one can obtain predictions for the structure functions and reduced
cross sections of DIS that include recombination processes within the hadron. Nu-
merical methods used to compute these values need to be studied and an optimal
setup regarding the precision and speed of computation has to be tested [23].

The solution of the BK equation depends on the considered initial condition. Cur-
rently used initial conditions require several parameters that need to be fitted from
data in order to obtain valid predictions for observable quantities. It is desirable
to come up with an initial condition that would require less parameters and would
correspond to the physical nature of this equation. Geometric scaling [24–27] is a
phenomenon that might be used for acquiring such an initial condition . This ap-
proach generalizes the evolution of the solution towards higher rapidities and allows
us to reverse this evolution back to the starting rapidities and corresponding Bjorken-
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x. The properties of this acquired initial condition require only a single parameter
that needs to be fitted from data and is obtained solely from the properties of the
integro-differential equation itself. However in this approach, the measured structure
functions cannot be described in as straightforward way as it was with the original
initial condition. The change of the evolution behavior when this initial condition
is introduced needs to be studied in order to answer the question of validity of this
approach and to determine the new set of computation parameters such as σ0.

The b-dependent BK equation requires a more sophisticated approach in both im-
plementing the numerical methods to solve it as well as interpreting the obtained
results [28–30]. Introducing the impact parameter to the computation increases the
dimension of the computation matrix by two (absolute value of the impact param-
eter and the angle between this vector and dipole distance vector), which increases
the computation time from minutes in the non b-dependent case up to weeks for
a full computation for all impact parameter vector possibilities. The properties of
the solution itself differs significantly from the one obtained without the impact
parameter dependence. In this approach, dipoles with large dipole distance exhibit
a significant decrease in the scattering amplitude in contrary to the b-independent
solution. This effect takes into account that dipoles much larger than the hadron
they are interacting with have smaller probability to do so. The solutions of this
equation have been studied and compared to the b-independent results.

Results obtained by solving this equation can be used in describing and understand-
ing processes that occur in heavy-ion physics, especially on experiments such as LHC
or RHIC.

In this work, we first manage to reproduce the results obtained by other theoretical
groups both for the impact parameter independent equation [21] as well as for the so-
lutions that include the impact parameter dependence [29,30]. Since these numerical
computations are typically CPU-time demanding, we then focused on the optimiza-
tion of the numerical method. We managed to reduce the running time by more then
one order of magnitude after implementing the optimized computation [23]. Then we
established an analysis to find and test a new initial condition that would be given
by the intrinsic properties of the rcBK equation. The properties of this scaled initial
condition proved to be of a different nature then those of the originally considered
MV initial condition. We tested those properties and then established the optimal
way of obtaining such initial condition. The scaled initial condition was then used to
predict values of the structure function in regions where it differs from the MV initial
condition. We then focused on the impact parameter dependent rcBK equation for
which the finding of a scaled initial condition is strongly restricted by its CPU-time
demands. We managed to develop a new numerical solving method for this equation
that enables us to reduce the computation time down to a few hours of running
time. These methods enable us to improve and test new initial conditions and other
properties of such evolution equation which can lead to reducing the number of free
parameters in this approach and better describing the physical processes of deep
inelastic scattering.
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My personal contribution to the results presented in this thesis is the following:

1. Implementation of the Runge-Kutta method of order one, two and four to
solve the rcBK evolution equation.

(a) The method of order two has already been used in [21], and I have used
those results to cross check my implementation.

(b) The method of order four has been introduced in [22], and I have used
those results to cross check my implementation

2. I have searched for the best parameters of the numerical setup to balance the
speed of execution with the accuracy of the numerical results. These results
are new; they are presented in Section 4.1 and have been reported in [23].

3. I have explored the use of initial conditions obtained from solutions of the
rcBK equations at large rapidities using geometric scaling. These results are
new. They are discussed in Section 4.3 and are intended for publication in the
near future.

4. I have used the same methods to solve the impact parameter dependent BK
equation. This equation has been solved before using a different numerical
method [24, 29], and I have used those results to cross check my implementa-
tion. These results are presented in Section 4.4.
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Chapter 1

High energy collision
phenomenology

1.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) is one of the important tools that allow us to verify
physical theories. It is a highly energetic scattering of a lepton off a hadron, where
many new particles are created upon the collision and the original hadron falls apart.
Such collision can be simplified as shown in Fig. 1.1.

Figure 1.1: Deep inelastic scattering [31].

Relation 1.1. describes such scattering where L is an incoming lepton with four-
momentum l, N is a hadron with four-momentum P, L’ is the outgoing lepton
with four-momentum l’ and X represents particles created by the interaction with
four-momentum fraction R.

L(l) +N(P )→ L′(l′) +X(R) (1.1)
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1.1.1 Lorentz-invariant variables

To describe this process we need to define Lorentz-invariant variables as shown in
Eq. 1.2, 1.3, 1.4 and 1.5. In Eq. 1.2, s is the total energy of the collision in the
center-of-mass (CMS) frame, Q2 is the so called scale of the virtual photon, q2 is
squared four-momentum passed from the lepton to the hadron, ν is the total energy
that is passed from the lepton to the target in the target’s rest frame and x is the
so called Bjorken x that (in the infinite momentum frame) gives us the ratio of the
momentum carried by the scattered gluon or quark to the total momentum carried
by the target.

s = (P + l)2 (1.2)

q2 = −Q2 = (l − l′)2 (1.3)

ν =
P · q
mp

=
W 2 −Q2 −m2

p

2mp

(1.4)

x =
Q2

2P · q
=

Q2

Q2 +W 2 −m2
p

(1.5)

Here mp is the mass of the proton. We shall also define the variable W 2, which gives
us the total energy that is given to the hadron in the CMS frame as shown in Eq.
1.6

W 2 = (P + q)2 (1.6)

y =
P · q
P · l

=
Q2

x(s−m2
p)

(1.7)

and equation 1.7 represents the transferred energy fraction from the lepton onto the
hadron. The scale Q2 defines the resolution of the scattering process, since the incom-
ing particle can interact with objects with size proportional to 1/Q2. By increasing
the energy, we are able to see softer gluons (with smaller fraction of momenta) that
are emitted by more energetic gluons.

1.1.2 DIS in Bjorken limit

The emission of a photon from a lepton is an understood process and is well described
by Quantum Field Theory. A point-like lepton serves as a source of the virtual
photon that will then interact with the hadron. Scattering of the virtual photon
off the hadron results in breaking the hadron and creating other particles. In this
model, we are working in the infinite momentum frame which supposes very high
momentum of the scattered proton.

If we consider the high energy limit and keep Q2 fixed, the Bjorken x decreases
since s ∼ Q2/x. Therefore, the observed objects carry lower and lower fraction of
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Figure 1.2: Distribution of parton density for different constituents of a proton [32].

the total momentum. In the high energy region, the proton is mostly populated by
gluons (which is explained more further in the thesis) [1–3] and therefore we will
neglect the effects of quarks as shown in Fig. 1.2. In this figure we can see how the
parton density distribution evolves for different partons with respect to Bjorken x.
We can see that below x ∼ 10−1 the gluon density is larger then the density of other
partons and their density keeps on growing above all boundaries. The growth of the
gluon density can be tamed by the introduction of saturation.

The differential cross section depends on the energy and scale of the process. Equa-
tion 1.8 shows such dependence, where F1(x,Q2) and F2(x,Q2) are the structure
functions of proton, α represents the electromagnetic coupling, y is the inelasticity,
x is the Bjorken x and Q2 is the scale of the virtual photon.

d2σ

dxdQ2
=

4πα2

xQ4
((1− y)F2 + y2xF1)

=
4πα2

xQ4

((
1− y +

y2

2

)
F2 −

y2

2
FL

) (1.8)

because Callan-Gross relation holds

FL = F2 − 2xF1 (1.9)

where FL is called the longitudinal structure function.

For the structure functions FL(x,Q2) and F2(x,Q2) stands [33]

F2 =
Q2(1− x)

4π2α

Q2

Q2 + 4m2
px

2
σγ∗ptot (1.10)
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FL =
Q2(1− x)

4π2α
σL (1.11)

which with the approximation of x→ 0 changes into [34]

F2 =
Q2(1− x)

4π2α
(σT + σL) (1.12)

FL =
Q2

4π2α
σL (1.13)

since for σγ∗ptot stands

σγ∗ptot = σT + σL (1.14)

where σT and σL are the cross sections for absorption of longitudinally and transver-
sally polarized photons and mp is the mass of a proton.

The structure function F2(x,Q2) can be also expressed using the naive parton model
as

F2(x,Q2) = x
∑
i

e2
qi

(qi(x,Q
2) + q̄i(x,Q

2)) (1.15)

where qi is the quark density, q̄i the antiquark density, eqi is the charge of the quark
divided by the unit charge and the sum runs over all quark flavors. At the next order
in perturbation, the structure function depends also on the gluon density.

1.1.3 Color dipole approach to DIS

So far we have shown how the inner composition of proton changes with respect to
energy and scale of the incoming photon.

If we consider the target rest frame, the lepton - hadron collision is as follows.
First, the incoming lepton emits a virtual photon. This photon then spontaneously
fluctuates into a quark - antiquark color dipole (analog to the dipole in electrody-
namics). This dipole then interacts strongly with the target proton and its further
fluctuation back into a photon is disrupted. This approach is called the Color dipole
model [35–40]. The fluctuation of a photon into the color dipole is necessary be-
cause of new particles that emerge from the collision, which is only possible when
strong interaction is present and could not be described by mere electromagnetic
interaction.

At small x, it can be shown that the lifetime of such quark - antiquark fluctuation
is greater than the average time of the whole interaction [31], which is important
because then the dipole has enough time to react with the target hadron before it
annihilates. The cross section of the total photon-proton scattering is shown in 1.16,
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Figure 1.3: Color dipole fluctuating from the virtual photon [41].

where | Ψi
T,L |2 is the wave function of the photon that fluctuates to create a color

dipole. Indexes T and L correspond to transverse and longitudinal polarizations of
the incident photon and eqi , mqi and z correspond to fractional electric charge of
quark qi, its mass and fraction of the longitudinal momentum of photon it carries.

σγ
∗−h
T,L (x,Q2) =

∑
i

∫
d~rdz | Ψi

T,L(z, ~r) |2 σqq̄(~r, x) (1.16)

The final cross section is then computed by integrating the photon-color dipole
wavefunction and the cross section of the quark-antiquark dipole scattering of the
proton target over all transverse dipole sizes ~r and over all possible values of photon’s
fractional momentum z [21].

Using the dipole cross-section σqq̄(r, x) we can compute the structure function F2 as
shown in Eq. 1.17 and this can then be measured experimentally.

F2(x,Q2) =
Q2

4π2αem

∫ ∑
i

d~rdz | Ψi
T,L(z, ~r) |2 σqq̄(~r, x̃), (1.17)

[22] where | Ψi
T,L(z, ~r) |2 is a sum of squared longitudinal and transversal photon

wave functions as shown in Eq. 1.19 and x̃ is introduced due to photoproduction
limit as shown in Eq. 1.18 [42].

x̃ = x

(
1 +

4m2
qi

Q2

)
, (1.18)

where the mass of the incident quark is set to the value of 140 MeV2 for u,d and s
quarks. For charm quark, the mass is set to 1.27 GeV2 and 4.2 GeV2 for the beauty
quark [43].

| Ψi
T,L(z, ~r) |2=| Ψi

T (z, ~r) |2 + | Ψi
L(z, ~r) |2 (1.19)

and the longitudinal and transversal photon wave functions are given by

14



| Ψi
T (z, ~r,Q2) |2=

3αem
2π2

e2
qi

((z2 + (1− z)2)ε2K2
1(εr) +m2

qi
K2

0(εr)) (1.20)

| Ψi
L(z, ~r,Q2) |2=

3αem
2π2

e2
qi

(4Q2z2(1− z)2K2
0(εr)) (1.21)

where z is the fraction of the total momentum carried by the quark, K0 and K1 are
the MacDonald functions and

ε2 = z(1− z)Q2 +m2
qi
, (1.22)

where mqi is the mass of the considered quark.

The reduced cross-section is obtained from relation [21]

σr(x, y,Q
2) = F2(x,Q2)− y2

1 + (1− y)2
FL(x,Q2), (1.23)

where inelasticity y is obtained from y = Q2/sx and
√
s is the CMS collision energy.

The actual dipole scattering cross section is then computed by integrating the dipole-
proton scattering amplitude over the impact parameter as shown in Eq. 1.24.

σqq̄(r, x) = 2

∫
d~bN(x, r,~b) (1.24)

This dipole cross section then covers all the QCD effects and can be also obtained
from the BK evolution equation. If we neglect the dependence of the scattering
amplitude N on the impact parameter, the integral over it can be simplified into
expression 1.25. [44],

σqq̄(r, x) = σ0N(x, r) (1.25)

where σ0 is a parameter that we fit from data.

The assumption of independence of the scattering amplitudeN on the impact param-
eter corresponds to approximating the target with finitely big homogeneous hadron
where the size of this hadron is fitted to experimentally measured data. The scat-
tering amplitude reaches values between 1 and 0. For a fixed r, as the Bjorken x
decreases (energy increases) the number of gluons grows and the scattering ampli-
tude approaches 1 since it is very probable for the dipole to interact with this dense
hadron. Its value also increases towards one with the increase of dipole distance r.
With the limit r → 0, we get N → 0 due to the color transparency.

1.2 Evolution equations of parton densities

During the interaction, color dipole exchanges a particle with the target hadron. To
maintain the color conservation, the exchanged particle must be colorless and in the
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first approximation we consider it to be a pair of gluons. The actual complex particle
that is exchanged is called Pomeron. A linear approach to the interaction such as the
one used in BFKL evolution equation suggests only one particle exchange between
the color dipole and target hadron whereas non-linear evolution equations such as
the BK equations suggest multiple pomeron exchanges as shown in Fig. 1.4.

Figure 1.4: Multiple pomeron exchange between the color dipole and the target
hadron [45].

Figure 1.5: Gluon number and size with respect to rapidity and scale [31].

If we fix the scale of the virtual photon and increase the energy of the collision, we
observe that some gluons start to overlap due to fixed dimensions of the proton itself.
In this case we have to take into account the recombination processes that take place
among gluons as they become more influential. The scale when gluons start to overlap
is called saturation scale and occurs when most of the phase space in the proton
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is already occupied by other gluons. Further decreasing of Bjorken x will then not
result into further gluon number rise since the whole system is already saturated and
the new gluons are compensated with the recombination processes and a dynamical
balance is established. This situation varies for different scales as with higher Q2,
we decrease the dimensions of the gluons themselves. We can determine a so called
saturation scale Qs at which this effect takes place with respect to the total energy.
These non-linear recombination processes are described by the Balitsky-Kovchegov
evolution equation (BK).

1.2.1 The DGLAP equations

The DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations are used in in-
teractions, where Q2 is large and x is not too small [33]. They describe the change
of the parton size when higher scales are introduced. The equations themselves, at
leading-log, stand as

dg(x,Q2)

dlnQ2
=
αs
2π

∫ 1

x

dz

z

(∑
i

qi(z,Q
2)Pgq

(x
z

)
+ g(x,Q2)Pgg

(x
z

))
(1.26)

and

dqi(x,Q
2)

dlnQ2
=
αs
2π

∫ 1

x

dz

z

(
qi(z,Q

2)Pqq

(x
z

)
+ g(x,Q2)Pqg

(x
z

))
(1.27)

where qi is the quark density for the flavor i and g is the gluon density. Pij(a) are
the Altarelli-Parisi splitting functions given by terms

Pqq(a) =
4

3

1 + a2

1− a
= Pgq(1− a)

Pgq(a) =
4

3

1 + (1− a)2

a
= Pqq(1− a)

Pqg(a) =
1

2
(a2 + (1− a)2) = Pqg(1− a)

Pgg(a) = 6

(
a

1− a
+

1− a
a

+ a(1− a)

)
= Pgg(1− a)

(1.28)

x is the Bjorken x, αs is the strong coupling constant and Q2 is the scale of the
virtual photon. These equations tell us how the structure functions change when a
different scale is introduced.

1.2.2 The BFKL evolution equation

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) evolution equation is valid in the region
where Q2 is finite and x is low [33,46–48], namely [33]
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αs(Q
2)ln

Q2

Q2
0

� αs(Q
2)ln

1

x
< 1 (1.29)

In the BFKL equation, the unintegrated gluon density f(x, k2
T ) is used and from

that we can obtain the actual gluon density by using the formula

xg(x,Q2) =

∫ Q2

0

d ~kT
k2
T

f(x, k2
T ). (1.30)

Note that ~kT is the transverse momentum of the emitted gluon. The BFKL equation
then stands as [33]

∂f(x, k2
T )

∂ln(1/x)
=

3αs
π
k2
T

∫ ∞
0

d ~k
′
T

k
′2
T

(
f(x, k

′2
T )− f(x, k2

T )

| k′2T − k2
T |

+
f(x, k

′2
T )√

4k
′4
T + k4

T

)
. (1.31)

As the color dipole is accelerated, one of the quarks in the quark-antiquark dipole
can also emit gluons as shown in Fig. 1.6. These gluons can then emit other gluons
and some of these may then fluctuate into other quark-antiquark dipoles within the
original dipole created by the virtual photon. These dipoles do not interact with
each other and many are created within the original dipole, creating a complicated
structure.

Figure 1.6: Color dipole that emits another gluon [45].

1.3 Color Glass Condensate and saturation

Color Glass Condensate (CGC) [49–52] describes a high energy limit state of nuclei.
It is a very densely packed state filled with interacting gluons. This state is the
starting state in nucleus collisions that are schematically shown in Fig. 1.7.
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Figure 1.7: Different phases in nuclei collision [32].

In this picture we see on the left side two nuclei in their CGC state just before the
collision. At the exact time of collision, initial singularity is formed from which all the
following states will emerge (this state differs from an actual geometric singularity).
First, Glasma is formed, which is a short-living precursor the Quark Gluon Plasma
(QGP). Its name is derived from the very hot and dense amorphous packing of
gluons somewhat similar to the structure of metallic glasses and other amorphous
structures. After a short period of time, Quark Gluon Plasma is formed that later
evolves into the free hadron gas.

In the low energetic limit, collisions and new particle creation is dominated by the
quarks, quark antiquark pairs and a few gluons. As x → 0, gluons dominate the
collision and they are responsible for the creation of most of the new particles.

Since at low Bjorken x there is high density of small gluons, strong self interac-
tions occur. Due to the very dense packing and asymptotic freedom of QCD, the
interaction between gluons will be weak for the individual gluons but can prove to
be strong in general due to its coherent properties. The whole proton will be filled
with gluons when the gluon density will be in order of 1

αS
that is when it will not

be anymore energetically favorable for new gluons to be added to the system. If we
try to add new gluons, first the soft gluons with low energy and big dimensions will
fill the entire phase space of the proton so that it is not favorable for new gluons
to emerge. Then only more energetic gluons that have a smaller dimensions can be
added to the system. Note that we are considering only dimensions connected with
the transverse momentum plane and therefore corresponding with the transverse
momentum distribution.

It means that with a fixed energy of a proton, its volume is filled with gluons of
dimensions that correspond to energy and if we wanted to add more gluons to the
system, we would have to increase the energy since only gluons with higher pT are
energetically favorable to be added to the system. For every Bjorken x of the hadron,
there is a certain saturation transverse momentum and below that momentum the
whole phase space is saturated. This is schematically shown in Fig. 1.8.

That is why this structure is called a Color Glass Condensate. Color, because it is
composed of particles with a color charge, Glass because it evolves slowly compared
to its environment and Condensate because all the phase space of such CGC is
filled with gluons until the saturation scale is reached. The whole hadron is Lorentz
contracted due to its high momentum and the distribution of the color fields within
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Figure 1.8: Saturation of proton by new high energetic (small) gluons [32].

it is randomly polarized with random color. The gluon fields inside CGC correspond
to low x (high energy) and its sources correspond to high Bjorken x [32].

The CGC model is proven to describe well high energetic hadrons with x corre-
sponding to 10−2. Without the introduction of saturation to the QCD models, the
cross section of gluon interaction diverges as x decreases at a rate of 1

p4T
.

1.3.1 The JIMWLK equations

The set of JIMWLK evolution equations [53–59] is a more general expression that
with approximation of large Nc limit reduces to the BK evolution equation. How-
ever, when the computation is made and compared with the approximated BK
evolution equation, we get only about 0.01 difference between the two results, which
is much less than the values expected [60]. The JIMWLK equations are not integro-
differential equations such as BK but a set of functional differential equations given
by following expressions.

∂WY [α]

∂Y
= HWY [α] (1.32)

WY [α] is the functional probability distribution. This distribution describes the be-
havior of color sources with changing rapidity and H is the Hamiltonian of the
JIMWLK equation given by

H = − 1

16π3

∫
uvz

Muvz

(
1 + V †uVv − V †uVz − V †z Vv

)ab δ

δαau

δ

δαbv
, (1.33)
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here αau is a gauge invariant functional. The notation for the integral follows
∫
u..

=∫
du2 and M is the kernel given by expression

Muvz =
(u− v)2

(u− z)2(z − v)2
. (1.34)

V †x and Vx are Wilson lines given by

V †x = P exp{ig
∫ ∞
−∞

dz−αa(z−, x)} (1.35)

where P denotes that the z− is path-ordered [61].

1.3.2 Balitsky-Kovchegov evolution equation

Balitsky-Kovchegov evolution equation (BK) is one of the equations that describe the
evolution of the scattering amplitude N . It was derived from the JIMWLK evolution
equations in the limit of large number of colors Nc by Kovchegov [10, 62, 63]. It is
a modification of the BKFL evolution equation and unlike BFKL, does account for
the nonlinear effects of gluon recombination. The BK evolution equation is shown
in Eq. 1.36 [64,65]

∂N(r, Y )

∂Y
=

∫
d~r1K

run(r, r1, r2)(N(r1, Y )+N(r2, Y )−N(r, Y )−N(r1, Y )N(r2, Y )),

(1.36)

where Krun(r, r1, r2) can be expressed as in Eq. 1.37 [66]

Krun(r, r1, r2) =
Ncαs(r

2)

2π2

(
r2

r2
1r

2
2

+
1

r2
1

(
αs(r

2
1)

αs(r2
2)
− 1

)
+

1

r2
2

(
αs(r

2
2)

αs(r2
1)
− 1

))
(1.37)

and ~r2 = ~r− ~r1. If we disregard the last term in the BK equation, we obtain a linear
equation that can be shown to be equivalent to the BFKL evolution equation [45].
As the rapidity increases, this linearized version rises the scattering amplitude above
any boundaries. The comparison to the BK equation is shown in Fig. 1.9.

QCD perturbative theory is only applicable for scales Q2 > Λ2
QCD, where the cou-

pling constant is significantly low. In the low energy region, a non-perturbative
approach is necessary. This would correspond to a low x strip along the y-axis in
Fig. 1.10. Below the saturation scale, BFKL and other linear equations are valid and
above this line we get dense and energetic systems described by the BK equation.
This area of validity is shown in Fig. 1.10.

The coupling that is used in the kernel of the integro-differential equation depends
on the number of considered quark flavors according to equation 1.38.
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Figure 1.9: Comparison of the BK equation solutions (blue line) to the BFKL equa-
tion solutions (red line) [45].

αs,nf (r
2) =

4π

β0,nf ln

(
4C2

r2Λ2
nf

) , (1.38)

where

β0,nf = 11− 2

3
nf . (1.39)

The constant C2 is the uncertainty coming from the Fourier transformation that was
used to derive this result and is usually fit to data [44]. The constant nf corresponds
to the number of flavors that are active, and is usually set to a value of 3 in the light
flavor quarks approximation.

Λ2
nf

is called the QCD scale parameter and its value depends on the value of nf in
the variable nf scheme. When heavier quark flavors are active (charm and beauty
quark) 1.3.2, its value needs to be calculated from the relation [21]

Λnf−1 = (mf )
1−

β0,nf
β0,nf−1 (Λnf )

β0,nf
β0,nf−1 . (1.40)

To determine the value of Λ5, the experimentally measured value of αs(MZ) =
0.1196± 0.0017 at the Z0 mass MZ = 91.18 GeV [67] and the Eq.1.38 can be used.
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Figure 1.10: A schematic area distribution of validity for different evolution equations
[45].

Value of nf are set for values of r2 for which the momentum scale is heavier then
the heaviest quark considered. This condition can be expressed as

r2 <
4C2

m2
f

. (1.41)

Since all dipole sizes are accounted for in the BK evolution equation, there is a need
to reduce the coupling after a certain value is reached, so that the maximal value
of coupling constant would not exceed a set limit [21, 44]. The modified running
coupling takes into account the next to leading two loop expressions [33].

In order to compute the Balitsky Kovchegov evolution equation and get the cross
section of the whole interaction or a structure function of a hadron, one must start
with certain initial conditions. One of the frequently used initial conditions is the
GBW initial condition Eq. 1.42 [44].

NGBW (r, x = x0) = 1− exp
(
−(r2Q2

0)γ

4

)
(1.42)

Another typical initial condition for the BK equation is a MV initial condition
1.43 [68]
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fit Q2
0 C Λ2

nf
γ σ0

GBW 0.241 2.46 0.241 0.971 32.357

MV 0.165
√

6.5 0.241 1.13 32.895

Table 1.1: A possible values of the initial condition parameters [21].

NMV (r, x = x0) = 1− exp
(
−(r2Q2

0)γ

4
ln

(
1

rΛ
+ e

))
(1.43)

Where Λ represents the infrared cutoff of the dipole cross section and does not have to
be equal to Λ2

nf
introduced earlier [44], Q2

0 is the scale for the biggest Bjorken x that
is considered in the computation and γ is a parameter that controls the slope of the
fall of the dipole amplitude when r is decreased. However the BK evolution equation
does not incorporate the quantum fluctuations of the gluon field and therefore its
saturation scale is not entirely accurate. The fluctuations are not accounted for in
the fixed coupling approach. The running coupling approach shown in Eq. 1.38 evens
its effects out [45]. Table 1.3.2 shows possible values for the initial parameters.
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Chapter 2

Numerical methods

2.1 Runge-Kutta method

The Runge-Kutta method is a commonly used method of solving linear differential
equations such as 2.1. Let us consider following notation, y(x) is the desired function,

y′(x) = f(x, y) (2.1)

and the initial condition is

y(a) = ϕ (2.2)

The next step of this method is calculated as follows [69]

K(x, y, h) = w1k1 + w2k2 + w3k3 + ...+ wsks (2.3)

where

ki = f

(
x+ αih, y + h

i−1∑
j=1

βi,jkj

)
, i = 2, ..., s. (2.4)

where αi and βi,j are constants that we match to the Taylor’s expansion as accurately
as possible. Solving an equation according to the Runge-Kutta method, one must
compute the right side of equation 2.1 in multiple points but does not need to make
any additional derivatives. The constants w1k1, w2k2, w3k3, ..., wsks fulfill a condition

w1k1 + w2k2 + w3k3...+ wsks = 1 (2.5)

but they vary for different orders of the Runge-Kutta method. The way a new step
in the RK method is computed is shown in Eq. 2.6.
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yn+1(xn+1) = yn + hKn(x, y, h) (2.6)

2.1.1 First order - Euler Method

The Euler method is a way to compute a linear first order differential equation.
Strictly speaking, the Euler method is a first order Runge-Kutta method. The sim-
plicity of this method comes from the fact that for the computation of the next
step yn+1 one needs to know only the function behavior on a neighborhood of the
coordinate xn. The Euler method reads:

yn+1 = yn + f(xn, yn), n = 0, 1, 2...xn ∈ [a, b] (2.7)

This method is discrete. That means that its solution will be found only in certain
selected coordinates xn where n = 0, 1, 2, 3..., N. Equidistant selection of xn simplifies
the solution. In this approach we can introduce the integration step of the Euler
method h as in Eq. 2.8.

xn = a+ nh, n = 0, 1, 2... (2.8)

an analogous approach to the problem of solving this kind of differential equation
would be Picard’s method which integrates the whole equation 2.1 and then solves
it as in Eq. 2.9 [69].

y(x) = ϕ+

∫ x

a

f(t, y(t))dt (2.9)

If the right side of equation 2.1 fulfills the conditions of being defined and continuous
for a a ≤ x ≤ b and −∞ ≤ y ≤ ∞ and if there exists a constant L for which it holds
that

| f(x, y)− f(x, z) |≤ L | y − z | (2.10)

for every x ∈ [a, b] and for arbitrary y and z, the solution of such equation exists on
the whole interval [a, b] [69].

The graphical interpretation of the Euler method is simple. The method takes the
slope of the desired function at its initial point and linearly interpolates this function
to get the next point after the length of integration step h. This process is repeated
until the approximated function is obtained.

The total error of the Euler method is not easy to compute and confine because it
accumulates as the method continues and depends only on one parameter of this
method and that is the integration step h. It is easier to state the local discrete error
which states the error of this method after one step assuming that all the previously
used values are correct, see Eq. 2.11 [69].
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L(y(x), h) = y(x+ h)− y(x)− hf(x, y(x)) (2.11)

The total error is then given by the multiple local errors piling up with the fact that
the starting values of next steps are already shifted from the original function. If
this accumulation does not reach too high values, the method is said to be stable.

2.1.2 Second order - Ralston method

As an example of the Runge-Kutta method of second order we can take the Ral-
ston method [69]. This method is more accurate then just the simple Euler method
because it takes into account the behavior of the function not only on the neighbor-
hood of the xn but as well on the neighborhood of xn + 2

3
h. The next step and its

coefficients k1 and k2 are calculated as follows.

yn+1 = yn + h

(
1

4
k1 +

3

4
k2

)
k1 = f(xn, yn)

k2 = f

(
xn +

2

3
h, yn +

2

3
hk1

) (2.12)

2.1.3 Fourth order

One of the very often used types of Runge-Kutta methods is the Runge-Kutta
method of fourth order for which the setup is as shown in Eq. 2.13

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4)

k1 = f(xn, yn)

k2 = f

(
xn +

1

2
h, yn +

1

2
hk1

)
k3 = f

(
xn +

1

2
h, yn +

1

2
hk2

)
k4 = f(xn + h, yn + hk3)

(2.13)

This method is by far the most common of the Runge-Kutta methods, so often
when referred to RK method without further specification, this particular setup is
considered. Similar to the Euler method, to get the total error of the Runge-Kutta
method, we need to know the local discrete error for a single step with correct initial
parameters.

If in a neighborhood of point (xn, yn) holds

| f(x, y) |< M,

∣∣∣∣ ∂i+jf∂xi∂yj

∣∣∣∣ < Li+j

M j−1
, i+ j ≤ p (2.14)
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then the error of the method of fourth order is [69]

| L(y(xn), h) |< (16 | b1 | +4 | b2 | + | b2 + 3b3 | + | 2b2 + 3b3 | +
| b2 + b3 | + | b3 | +8 | b4 | + | b5 | + | 2b5 + b7 | + | b5 + b6 + b7 |

+ | b6 | + | 2b6 + b7 | + | b7 | + | 2b8 |)h5ML4

(2.15)

where the constants bi, i = 1, 2, 3, 4, 5, 6, 7 are as follows:

b1 =
1

120
− 1

2
(α4

2w2 + α4
3w3 + w4),

b2 =
1

20
− 1

2
(α2α

2
3β32w3 + (α2β42 + α3β43)w4),

b3 =
1

120
− 1

6
(α3

2β32w3 + (α3
2β42 + α3

3β43)w4),

b4 =
1

30
− 1

2
(α2

2α3β32w3 + (α2
2β42 + α2

3β43)w4),

b5 =
1

120
− 1

2
α2

2β32β43w4,

b6 =
1

40
− 1

2
(α2

2β32w3 + (α2β42 + α2
3β43)2w4),

b7 =
7

120
− α2(1 + α3)β32β43w4,

b8 =
1

120
.

(2.16)

For the often used version of Runge-Kutta method of fourth order given by Eq.2.13,
the expression for an error after a single step is

| L(y(xn), h) |< 73

720
h5ML4 (2.17)

where L is a constant. Since this local error is strongly step dependent, it is in
principle possible to consider Runge-Kutta methods with variable integration step
length, that is chosen in every point on the grid so that the local error is constant
everywhere. This can be achieved by the equation 2.18, where computing the local
error simultaneously with the main computation in every other step slows the whole
program down approximately by 50% [69].

φ(xn, y(xn))hp+1 =
1

2p+1 − 1
(yn+1 − y∗n+1) (2.18)

where yn+1 is a solution with the integration step h at xn+1, y∗n+1 is a solution with
integration step 2h at x = xn−1 and p is the order of of the local discrete error. It is
the largest integer for which holds that

L(y(x);h) = O(hp+1). (2.19)
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2.2 Simpson method

Simpson method is a numerical way of computing an integral of a function if the
values of the integrated function are known over the interval we want to integrate it
over. This method is a method composed [69], which means that another method is
used for its construction, in this case it is the Newton-Cotes integration formula.

These formulas approximate the integral

I(f) =

∫ a

b

f(x)dx (2.20)

by adding values of the integrated function in certain points on the x-axis multiplied
by a factor Hi as shown in Eq. 2.21 [69].

In+1(f) =
n∑
i=0

Hif(ai), (2.21)

where ai are distributed in the interval [a, b]. The Newton-Cotes integration formula
is a method that uses equidistant spacing of these ai points and values of Hi are
chosen so that the order of this method (maximal order of a polynomial that is
integrated without error) is maximal.

Simpson method divides the interval [a, b] into m/2 subintervals [a2i, a2i+2] where i
= 0,1,2...m/2 - 1, and uses the closed Newton-Cotes formula on each one of them
separately. The approximate integral is then given by the Eq. 2.22 [69].

∫ b

b

f(x)dx =
h

3
(f(a0) + 4f(a1) + 2f(a2) + 4f(a3) + ...+ 4f(am−3)

+ 2f(am−2) + 4f(am−1) + f(am)) + E(f),

(2.22)

where h is the integration step given by h = (b−a)
m

, m is an even integer and E(f) is
the error of the method given by [69]

E(f) =

∫ a

b

f(x)dx−
n∑
i=0

Hif(ai). (2.23)

The error of Simpson method can be determined using expression 2.24 [69]

E(f) = −(b− a)

180
h4f (4)(ζ), (2.24)

where f (4) is the fourth derivative of the f function and ζ is a number from the
interval [a, b].
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2.3 Lagrange interpolation

Lagrange formula is a way to compute a polynomial interpolation of any order for
a fixed set of points. The interpolation is given by formula 2.25 [69]

Ln(x) =
n∑
i=0

f(ai)li(x) (2.25)

where the factor li(x) is given by expression

li(x) =
(x− a0)...(x− ai−1)(x− ai+1)...(x− an)

(ai − a0)...(ai − ai−1)(ai − ai+1)...(ai − an)
. (2.26)

The error of Lagrange interpolation formula can be computed by equation 2.27 [69]

E(x) =
(x− a0)(x− a1)...(x− an)

(n+ 1)!
f (n+1)(ζ). (2.27)

Lagrange interpolation coefficients li(x) for a polynomial of third order that will be
used later on will then be

l0(x) =
(x− a1)(x− a2)(x− a3)

(a0 − a1)(a0 − a2)(a0 − a3)

l1(x) =
(x− a0)(x− a2)(x− a3)

(a1 − a0)(a1 − a2)(a1 − a3)

l2(x) =
(x− a0)(x− a1)(x− a3)

(a2 − a0)(a2 − a1)(a2 − a3)

l3(x) =
(x− a0)(x− a1)(x− a2)

(a3 − a0)(a3 − a1)(a3 − a2)
.

(2.28)

The simple linear interpolation is a Lagrange interpolation of first order and the
coefficients then are

l0(x) =
(x− a1)

(a0 − a1)

l1(x) =
(x− a0)

(a1 − a0)

(2.29)
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Chapter 3

Solving the rcBK equation

3.1 Impact parameter independent rcBK equa-

tion

The Balitsky-Kovchegov equation unfortunately does not have an analytic solution,
so it has to be solved numerically such as in [19–21]. A usual way of solving this
equation involves the Simpson method for integration, a linear interpolation for
acquiring values of N(r) for intermediate positions and the Runge-Kutta method
for solving the differential equation.

Since both the Simpson method and the Runge-Kutta method use points in grid
and not continuous functions, the initial condition is computed on an equidistant
grid with step h. We choose to set a logarithmic grid over the dipole distance vector
~r (and later also for the impact parameter ~b) To obtain the next step in rapidity
evolution, one must use the RK method and therefore compute the integral

∫
d~r1K

run(r, r1, r2)(N(r1, x) +N(r2, x)−N(r, x)−N(r1, x)N(r2, x)). (3.1)

This integral depends on the value of r, so it is necessary to compute it for every
value of r on the whole considered interval separately. To compute this integral,
Simpson method was used. That means that for every value of r, a cycle has been
run for the whole interval integrating the function over ~r1, where the value of r2 was
computed according to

r2 =
√
r2 + r2

1 − 2rr1cos(θrr1) (3.2)

where θrr1 is the angle between ~r and ~r1. If the point r2 does not match exactly one
of the grid points on which the values of the initial condition has been computed, it
is necessary to interpolate. Lagrange interpolation of first or third order is consid-
ered since even values of interpolations order tend to inaccurately interpolate linear
regions.
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For every point r1 inside the integral 3.1, integral over θrr1 has been computed. This
variable goes from 0 to 2π but since cosine is an even function, we can simplify this
by integrating over [0, π] instead and multiplying the result by a factor of two. Once
the function is integrated over θrr1 in every point r1, it is possible to integrate these
integrated functions and determine the final integral. This integral can be split in
three separate terms:

Kernel =

∫
d2~r1K

run(r1, r2, r)

Split =

∫
d2~r1K

run(r1, r2, r)(N(Y, r1) +N(Y, r2))

Recomb =

∫
d2~r1K

run(r1, r2, r)(N(Y, r1)N(Y, r2)),

(3.3)

which allows us to speed up the Runge-Kutta method as described in the Appendix
A. These three terms are then used to compute the next step in the rapidity evolution
and this step is then added to the initial condition in every point of r. The obtained
function be used as an input to this process until the desired rapidity is reached.

To speed up this process, it is useful to create a three-dimensional array in the very
beginning of the computation that will hold the values of Krun(r, r1, r2) for every
combination of r, r1 and r2 so that they don’t have to be computed over and over.
Same principle was used to hold the values of r2(r, r1, θrr1).

To determine the values of αrun(r2), equation 1.38 is used on a region, where r >
rrun holds. The value of rrun is chosen so that the total value of αrun(r2) would never
exceed the value of 0.7 [21].

For some choices of r, r1 and θrr1 the value of Krun(r, r1, r2) diverges. It is then neces-
sary to exclude these points from the whole integral, because whereas in continuous
integration a diverging singularity does not necessarily mean divergence of the entire
integral, in the discrete approximation an infinite value added to the integration sum
changes the result irreversibly.

3.2 Geometric Scaling

The solution of the BK evolution equation exhibits a phenomenon called Geometric
scaling [24]. After a few units of rapidity, the initial condition is ”forgotten” by the
evolution and the solution propagates independently. Moreover, as rapidity increases,
its geometric properties do not change, the solution only shift towards lower values of
r. This then allows us to either predict future values of the evolution, or ”rewind”back
the evolution and hope to obtain a new initial condition to this integro-differential
equation, that would require less parameters and that would be obtained solely from
the intrinsic properties of the BK equation. The evolution of the solution to the BK
equation is shown in Fig. 3.1 where we can see the effect of geometric scaling.

The evolution equation itself forgets the shape of the initial condition in the evolution
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in few units of rapidity. Even if we choose to start with dramatically different initial
conditions, by the rapidity Y = 8 the solution yields its usual shape.

Figure 3.2 shows the evolution for a simple linear initial condition that has a value
of 0 for all dipole sizes below 1, linearly grows to one in the (1,10) interval and has a
value of 1 elsewhere. Even more extreme initial condition was considered in Figure
3.3, that shows the evolution for an initial condition that exceeds the value of 1 for
N(r, Y ). It has a value of 0 for r smaller then 1, linearly grows up to the value of
1.5 at the dipole size of twenty, and is set to 1 for larger dipole sizes. Final initial
condition that was tested is shown in Fig. 3.4. It does not reach the value of one for
N(r, Y ) anywhere on the interval and is set to 0 for the dipole sizes smaller than one,
grows linearly to the value of 0.5 at r = 5 and stays at that value for the remaining
part of the interval. Note that the dipole size axis is in the logarithmic scale.
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Figure 3.1: The shape of the solution to the BK equation shows geometric scaling
properties.

We can see that these extreme initial conditions seem not to affect the later evolution
and that the evolution equation itself shapes the curve into a predetermined shape.
In all of these cases we can see that by rapidity of about 10, the shape of the initial
condition is suppressed and that the evolution than continues similarly for all initial
conditions.

For obtaining the geometrically scaled solution, we ran the MV initial condition to
high rapidity (Y = 100) where the integro-differential equation ”forgot” the shape
of the initial condition and then re-scaled it to the starting value.
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Figure 3.2: Evolution of N(r,Y) when a simple linear initial condition is used.

First, we found r100
s according to the condition.

N(r100
s , Y = 100) = 0.5, (3.4)

and then we computed the value of r0
s from the saturation scale as

Qs0 = 1/r0
s . (3.5)

The saturation scale Q2
s0 is a free parameter that needs to be fitted from the data.

Since for such obtained value of r0
s stands

N(r0
s , Y = 0) = 0.5, (3.6)

we then calculated the shift in the r-axis in logarithmic scale according to

∆r = ln(r100
s )− ln(r0

s) (3.7)

and then re-scaled the solution to the rcBK equation as

N(ln(r), Y = 0) = N(ln(r)−∆r, Y = 100). (3.8)

We linearly interpolated when the values of ln(r)−∆r got of the precomputed grid.

The initially considered value for the saturation scale was set as Q2
s0 = 0.07 GeV2.

The values of F2data
F2rcBK

were evaluated and fitted with a constant to determine the new
value of σ0 since the original value obtained with MV initial conditions can differ.
A second propagation to Y = 100 and re-scaling of the initial condition was carried
out to determine the validity of the assumption that by Y = 100, the rcBK equation
”forgot” its initial condition.
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Figure 3.3: Evolution of N(r,Y) when an atypical initial condition is used, that
exceeds the value of one.
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not reach one.
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3.3 Impact parameter dependent rcBK equation

A frequent approach to solve the BK evolution equation is to suppose the indepen-
dence of the solution on the impact parameter as done in Section 3.1. That is to
assume homogeneous distribution of partons inside the hadron. The computation
then simplifies and CPU time is dramatically reduced. However knowing the scat-
tering amplitude behavior when the impact parameter dependence is not neglected
proves to be a viable source of information on the saturation effects. Heterogeneously
distributed partons within the hadron can contribute to saturation effects differently
and the dynamics of various processes can be altered.

In this approach, the original approximation∫
N(x, r,~b)d~b = σ0N(x, r) (3.9)

has to be discarded and the dipole cross section has to be calculated as

σ(r, x) = 2

∫
d~bN(x, r,~b), (3.10)

where for N(x, r,~b), we have assumed a nontrivial b-dependence. This approach
makes the computation much more demanding. While maintaining same precision
as in the last case, one run would take 60 hours instead of few minutes. In the b-
dependent BK equation computation, it is also necessary to include the integration
over the full interval [0, 2π] of θrr1 rather then restricting ourselves to [0, π] and
multiplying the result by a factor of two since this angle is used to compute the
absolute values of the impact parameters that are necessary for the computation.
During the computation and for a single step in rapidity for a chosen value of r, the
values of b, θrb and of course r are constants. θrr1 is a parameter of the computation
that we run an integration over so its value is also known. The scheme of this
geometry is shown in Fig.3.5. The value of r2 is computed according to

r2 =
√
r2 + r2

1 − 2rr1cos(θrr1). (3.11)

Then we can compute the value of the angle θrr2 as shown in Eq. 3.12, this parameter
stands for the angle between ~r and ~r2.

θrr2 = arccos

(
r2

2 + r2 − r2
1

2rr2

)
(3.12)

With these relations, we are able to compute the two missing pieces necessary for the
computation of the integral of the right hand side of the BK equation. The values
of b1 and b2 can then be obtained from

b1 =

∣∣∣∣~b+
~r2

2

∣∣∣∣ =

√
b2 +

r2
2

4
+ br2cos(θbr2) (3.13)
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and

b2 =

∣∣∣∣~b− ~r1

2

∣∣∣∣ =

√
b2 +

r2
1

4
− br1cos(θbr1), (3.14)

where the angles θbr1 and θbr2 are obtained from the fact that

θbr1 = θbr + θrr1 (3.15)

and
θbr2 = θbr + θrr2 . (3.16)

Of course, the values of the impact parameters computed this way do not always fall
on the precomputed grid of values. Therefore it is necessary to add another linear
interpolation to the one in the dipole size dimension. Every time the value of b2 gets
off the grid, we need to carry out two linear interpolations in the r axis for obtaining
the values of the scattering amplitude in two points in the b axis and then we can
finally interpolate to obtain the desired value of N(r2, b2, Y ). These relations give us
all the parameters we need to carry out the integration and compute the next step
of the Runge-Kutta method to obtain the scattering amplitude at higher values of
Y .

One of the possible initial conditions for this computation is

N(r, b, 0) = 1− exp[−cr2exp(−db2)], (3.17)

where the usual testing setup of parameters is c = 10 and d = 1/2 [29]. The Balitsky-
Kovchegov evolution equation in this approach reads

∂Nx0x1

∂Y
=

∫
d2x2

2π
K(x01, x12, x02)θ

(
1

m2
− x2

12

)
θ

(
1

m2
− x2

02

)
·

· (Nx02 +Nx21 −Nx01 −Nx02Nx21),

(3.18)

where Nxij equals N(rij = xi − xj, ~bij =
xi+xj

2
, Y ) and m is a cutoff parameter

that takes into account the confinement of strong interaction, its value was set to
m = 0.35 GeV [29]. It restricts the dipoles to emit dipoles with dipole distance
greater then rmax = 1

m
. The kernel of this BK equation then reads

K(x01, x12, x02) =
Ncαs(x

2
01)

π2
·(

1

x2
02

(
αs(x

2
02)

αs(x2
12)
− 1

)
+

1

x2
12

(
αs(x

2
12)

αs(x2
02)
− 1

)
+

x2
01

x2
12x

2
02

)
.

(3.19)

The variables xij determine vectors between the quarks in the color dipoles as shown
in Fig. 3.5.

In order to carry out the computation, it is convenient to transform the equation
into the form similar to 1.36. The corresponding transformation reads

~r = ~x2 − ~x0

~r1 = ~x1 − ~x0

~r2 = ~x1 − ~x2

(3.20)
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Figure 3.5: The color dipole triangle shows variables that are used in the BK equation
[29].

and

~b =
~x2 + ~x0

2

~b1 =
~x1 + ~x0

2

~b2 =
~x1 + ~x2

2

(3.21)

therefore, if we transform the vector ~x2, we get

~x2 = ~b1 +
~r1

2
= ~b− ~r2

2
+
~r1

2
= ~b− −~r + ~r1

2
+
~r1

2
= ~b− ~r

2
+ ~r1 (3.22)

and since ~b and ~r
2

are treated as constants in the single step for a given position in
|~r|, we can transform this equation into a more convenient form

∂N(r,~b, Y )

∂Y
=

∫
d~r1K

run(r, r1, r2)θ

(
1

m2
− r2

1

)
θ

(
1

m2
− r2

2

)
·

· (N(r1, ~b1, Y ) +N(r2, ~b2, Y )−N(r,~b, Y )−N(r1, ~b1, Y )N(r2, ~b2, Y ))

(3.23)

Running coupling is then calculated in a similar manner as in the case with neglected
b-dependence. The shape of the solution differs significantly from the solution ob-
tained without the impact parameter dependence and is shown in Fig. 3.8 for the
values of b = 0.2 GeV−1 and b = 5 GeV−1. If we add the impact parameter de-
pendence, the evolution starts decreasing the value of the initial condition for large
dipole sizes. This can be due to the fact that large dipoles do not interact with the
hadron as easily, which is shown in Fig. 3.6. This figure depicts the two configura-
tions that exhibit small scattering amplitude with a small value of impact parameter
(Fig. 3.8 left). In the small dipole distance limit, the dipole can be treated as a white
object which does not interact with the hadron and in the large dipole distance limit,
the quarks are too far to interact at all.
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Figure 3.6: The two dipole configurations for which the cross section of the interac-
tion is small. [29].

The introduction of the impact parameter to our computation introduces two addi-
tional parameters that need to be taken into account in the numerical solution. In
previous computation, we considered only the dipole size and rapidity as the com-
putation parameters. Now we also add the absolute value of the impact parameter
and the angle between the dipole and the impact parameter vector as shown in Fig.
3.7. This then prolongs the computation significantly since we consider the same
grid size and step for the impact parameter as we did for the dipole size.

Figure 3.7: Schematic view of the angle between the impact parameter and the dipole
distance vector [28].

In order to compute the structure function, we need to add the large dipole contri-
bution that was taken out from the previous computation. This is then parametrized
as

F soft
2 =

Q2

2παem
σ0

∫
2
m

∫ 1

0

dz(|ΨL|2 + |ΨT |2), (3.24)
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Figure 3.8: Solution to the rcBK equation with the b-dependence [28].

so the total structure function then is

F tot
2 = FBK

2 + F soft
2 . (3.25)

The FBK
2 is the structure function obtained by the BK equation computation with

cutoff parameter m.

A more physical initial condition that can be also used for the computation reads [29]

NGM(r, b, Y ) = 1− exp
(
− π2

2Nc

r2xg(x, η2)T (b)

)
(3.26)

where

T (b) =
1

8π
exp

(
−b2

2BG

)
. (3.27)

The value of BG is then chosen to be 4 GeV−2, η2 = C
r2

+ η2
0 where C = 4 and η2

0 =
1.16 GeV2 [29]. The function xg(x, η2) is the integrated gluon density distribution.

These initial conditions simplify the full nature of this problem by ignoring the
dependence on the angle between the impact parameter and the dipole. This depen-
dence later emerges from the computation itself.
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Chapter 4

Results

4.1 The Optimal Setup

To find the optimal setup of parameters that are used throughout the computa-
tion, their influence on the result has been analyzed [23]. For each parameter, it
was necessary to find a reasonable ratio between precision and running time of the
computation. Therefore each parameter has been varied and the amount of change
to the resulting function was studied.

As a default computation setup, the MV initial condition with the value of param-
eters shown in Tab. 4.1 were used in the Runge-Kutta method of fourth order, 25
steps over each order of magnitude in r, 10 steps in the interval of [0, π], 10000 steps
in the integration over the interval [0,1] of z in the photon wave function compu-
tation, linear interpolation method and a step of 0.01 over Y in the Runge-Kutta
method.

The variations of the type of method where the Runge-Kutta method of fourth
order, the Ralston method and the Euler method have been compared. We showed
that the difference between results obtained by the Euler and RK2 methods is about
twice as high as the difference between the RK2 and RK4 methods and is of the
order of one percent of the total value. However the difference between the running
times for the Euler method and the RK4 method is not as significant and therefore
we will restrict ourselves to the RK4 in the following computations.

A variation for the integration step over the parameter θrr1 has been done. Steps of
5, 10, 20 and 40 have been compared at various rapidities to determine the optimal
speed/precision ratio. The variation of the scattering amplitude when five steps over
the interval of [0, π] are considered instead of 10 reaches up to 25% for the rapidity
of Y = 10 and decreases slowly with rising dipole size r. The change of the resulting

Fit Q2
0 C Λ2

nf
γ σ0

MV 0.165 2.52 0.241 1.135 32.895

Table 4.1: Parameters for the default MV initial condition [21].
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function when 20 steps are introduced instead of 10 over [0, π] starts with a value of
about 1% for the rapidity of 10 but decreases rapidly with increasing r. As we will see
further in the thesis, the small values of r are not as important for the comparison to
the experimental data because of the behavior of the wave function term. Increasing
the steps further results in an even smaller variation of the scattering amplitude.

A variation over the integration step r has been done. The values of 10, 25, 50 and 100
per order of magnitude were compared. We have shown that the difference between
the result obtained by the method using 10 steps per order of magnitude and 25
steps exceeds the value of 2% on the central part of the interval for the rapidity
of 10. This region is particularly important for the precision of the obtained result
as shown in the following section. When we use 50 steps per order of magnitude,
the difference between the results obtained with 25 is less than 1% for most of the
interval with the exception of values of r smaller then 10−6. The scattering amplitude
variation when 100 steps per order of magnitude are introduced has also less then
1% difference when compared to the previous 50 steps method.

Various methods of interpolation have been tested. As it turns out, the cubic inter-
polation is not good for this computation since it does not describe well the regions
where the slope changes rapidly and an error is introduced into the evolution. For
the evolution with the use of cubic interpolation, we have shown that in some re-
gions, the value of N(r, y) exceeds the value of one, which is violating the fact that
its value have to fall within the [0,1] interval.

The step of the Runge-Kutta method has also been varied. The obtained scattering
amplitude can differ by 4% at rapidity Y = 10 when steps of 0.05 and 0.01 are
compared, for further interval splitting (from 0.01 to 0.005) the scattering amplitude
variation does not exceed the value of 0.6% at the rapidity of 10.

Therefore we conclude that for our case, we will restrict ourselves to use the set
of computation parameters for the impact parameter independent rcBK as follows.
Runge-Kutta method of fourth order, linear interpolation, a step in rapidity of 0.01,
25 steps over the order of magnitude in r and 10 steps over the interval [0, π] in the
integration over θrr1 . We will assume that the b-dependent rcBK equation would
exhibit a similar behavior since the methods and numerical complexity of the com-
putation does not change.

4.2 rcBK solutions without impact parameter de-

pendence

The Balitsky Kovchegov evolution equation was used to obtain the following results
combined with Simpson’s rule for integration and the Runge-Kutta method of fourth
order for solving the differential equation. The optimized implementation of Runge-
Kutta method for the special case of the BK evolution equation is described in the
Appendix B.

The properties of the photon wave function | ψT,L |2 weighted with several factors

42



that are needed to compute the proton structure function and reduced cross section
are shown in the following figures as well as the evolution of N(r, Y ) with respect
to rapidity and r. Fig. 4.2 shows the dependence of | ψT,L |2 on r for different values
of Q2.
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Figure 4.1: The dependence of N(r, Y ) on Y for various values of r.

To obtain the structure function F2(x,Q2) for the b-independent case, it is only
needed to integrate the function shown in Fig. 4.3 and multiply it by a constant
factor. This function reaches a value of 10−8 at r = 0.01 GeV−1, which is below its
maximum value by a factor of 10−4. Similar situation occurs at r = 40 GeV−1. So
the region of the main interest and desired precision for obtaining an accurate value
of F2(x,Q2) is r ∼ (0.1, 30) GeV−1.

Figures 4.4 and 4.5 show the predicted values of the structure function and the re-
duced cross section for the b-independent case compared with the data from HERA.
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Figure 4.2: The photon wave function | ψT,L |2 integrated over z.
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4.3 Geometric scaled solutions

In this section, I will discuss the process of finding a geometrically scaled initial
condition. First, we took the MV initial condition with parameters described in
previous sections and ran the evolution to Y = 100. For larger values of rapidity, the
solution does not change its shape with further evolution, but just shifts along the
r-axis. By the rapidity of Y = 100, we assumed that the evolution already forgot the
MV initial condition since as was shown in the previous section, even dramatically
different initial conditions converge to the usual shape by the rapidity of 8. This
scaled solution was then taken and re-scaled to higher values of r to obtain a new
initial condition that would be more physical and require less parameters that need
to be fitted from data.

In the re-scaling process, we had to come up with a parameter, that would char-
acterize the amount of shift in the values of r. This parameter is called Q2

s0 and it
determines the amount of shift according to the equation by the relations

Qs0 = 1/r0 (4.1)

and
N(r0) = 0.5. (4.2)

The initially considered value was Q2
s0 = 0.07 GeV2 which was later varied. For this

re-scaled initial condition, we ran the evolution again to Y = 10 to get the observable
values that can be compared to the data measured at HERA.

Figure 4.6 compares the geometrical scaled initial condition to the MV initial con-
dition. We can see that the geometric scaled initial condition is different to the MV
initial condition that was obtained by fitting the data in the range that is of the
most importance.

Since we now used a different initial condition, the previously used value of σ0

which parametrizes the integral over b in the approximation of a trivial black disc
b-dependence might have a completely different value and needs to be fitted from
data again. To obtain this fit, we computed the values of FData

2 /F Theory
2 for values

of Q2 varying from 0.2 to 150 GeV2 (see Fig. 4.7). For each value of Q2, we fitted
the ratio of structure functions with a constant to determine the correction factor
for the previously used value of σ0.

This ratio then showed a nontrivial Q2 dependence. Its value obtained from the
constant fit was decreasing in a logarithmic-like decrease see Fig. 4.9. We then varied
the initial re-scaling parameter Q2

s0 from the values of 0.03 to 0.13 GeV2 to determine
the dependence of this logarithmic decrase on the shift of the intial condition. The
results for the values of Q2

s0 = 0.04, 0.07, 0.10 and 0.13 GeV2 are shown in Fig. 4.8,
4.9, 4.10 and 4.11 respectively. As we can see, the slope of the logarithmic decrease
remains the same, only a constant shift towards the lower values of the ratio is
observed, when we go to higher values of Q2

s0.

Of course in this approach, we assumed that there is no dependence of the ratio
FData

2 /F Theory
2 on rapidity. In other words, that the geometrical scaled initial condi-
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Figure 4.6: MV initial condition and geometrically scaled initial condition withQ2
s0 =

0.07 GeV2.

tion predicts the measured values of the structure function correctly and that there
are no other effects to be accounted for except for the normalization of the integral
over the impact parameter. Therefore next, we focused on determining quantita-
tively the quality of the fits of FData

2 /F Theory
2 . To determine this ”validity” of the fit,

we used the value of χ2 which is defined by the following expression

χ2 =
1

ndf

∑
i

(Xi − f(Xi))
2

σ2
i

, (4.3)

where Xi are the measured values and f(Xi) is the value of our fit for the data
point Xi. Here σi represents the error corresponding to the measured value Xi and
ndf stands for the number of degrees of freedom of the fit. The value of χ2 should
be about one for a good fit. If the value is too big, it means that the experimental
values are off the describing function and the fit might be incorrect. If the values of
χ2 are too small, it can mean that the errors of the measurement are in fact much
smaller than the values used in the computation. The error that we used for our
computation was

σi = Eri%
FData

2i

F Theory
2

· 0.01, (4.4)

where Eri% is the error of the HERA data point i in percent. The values of χ2 for
the values of Q2

s0 = 0.04, 0.07, 0.10 and 0.13 GeV2 are shown in Fig. 4.12, 4.13, 4.14
and 4.15 respectively.
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The fits FData
2 /F Theory

2 exhibit rather large values of χ2 for all possible setups of
Q2
s0. If we go towards lower values of Q2

s0 (at about 0.04 GeV2), the fits get better
in the region of high Q2 - above Q2 = 30 GeV2, but reach higher values of χ2 for fits
with lower values of Q2. On the other hand, if we set Q2

s0 to higher values (at about
0.13 GeV2), the fits get worse in the region of high Q2, but better in its lower values
see Fig.4.12, 4.13, 4.14 and 4.15. The studied χ2 values for the re-scaling parameter
spanning from Q2

s0 = 0.03 GeV2 to 0.13 GeV2 lead us to the conclusion that the
optimal value lies around the value of 0.07 GeV2, where the lower values of Q2 still
exhibit reasonable values of χ2 and the peak forming at higher values does not grow
too much to start influencing the values of Q2 in its proximity.

Even the fits in this region are not perfect constants and the values of FData
2 /F Theory

2

show a slight dependence on rapidity. The dependence of the ratios proves to be
slightly linearly growing with increasing rapidity, and it may tell us that there are
some effects that were not yet accounted for in this approach. This slight growing
tendency of the ratios with higher rapidity values is distorting the fits and therefore
increasing the resulting value of χ2. The fact that a small variation from the constant
behavior can produce high values of χ2 is given by the decreasing trend of the
errorbar value of the measured data from HERA at higher values of Q2. As was
shown, this behavior cannot be easily singled out by another choice of the re-scaling
parameter Q2

s0.

Of course since the evolution is carried out to such high values of rapidity, more error
would come from the numerical implementation of the equation (rounding errors,
repeated linear interpolation and extrapolation etc.). In order to determine whether
the evolution itself can introduce errors that would change the behavior of the scaled
initial condition, we took the already scaled initial condition and ran it to Y = 100
again. Then we re-scaled it back to the initial position and analyzed its properties
in the same manner as was described above for the once-scaled initial condition.
The initial condition scaled after running to Y = 200 exhibits the same behavior as
the initial condition scaled at Y = 100. It gives the same logarithmic decrease in
the structure function ratio with respect to Q2 and the χ2 plots for various values
of Q2

s0 are almost identical. The only difference is a slight constant shift of about
0.06 towards lower values of the fit of the structure function ratio which is due to
rounding errors and inaccurate interpolations within the computation. It gives us an
information on the inaccuracies that are introduced to the solution by computing it
up to the rapidity of Y = 100.

In order to determine whether this scaled initial condition is of a more physical nature
than the initial condition obtained by fitting the data, a prediction of the observables
has been made. In Figures 4.16 and 4.17, we can see structure functions computed
with both the scaled initial condition and the MV initial condition. The correction
factor for σ0 has been incorporated into the structure function computation for
the geometrical scaled case. In these figures we can see the structure function for
Q2 = 0.25 and 22 GeV2 and we can see that they differ in the regions where data has
not yet been measured. A future measurement, possibly at the LHC, can determine
the validity of this approach to the dipole model and the rcBK evolution equation
in particular.
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2 /F Theory
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4.4 Impact parameter dependent rcBK solutions

The solution to the running coupling Balitsky-Kovchegov evolution equation with
the b-dependent approach is shown in the following figures.

For the b-dependent BK equation, a step of 0.1 in rapidity was used, Simpson’s
method for the integration over r and b was used with 25 steps per order of magnitude
in both dipole distance and impact parameter. The grid sizes were chosen to be the
same for these two variables, and the considered interval was [10−7, 102] GeV−1.
There were 20 steps per interval of [0, 2π] in the integration over θrr1 .

We derived the Runge-Kutta method for the b-dependent rcBK equation in order
to determine its validity for this approach as well as to simplify the general Runge-
Kutta computation. This derivation is summed up in the Appendix A, Runge-Kutta
method for the impact parameter dependent rcBK equation derivation.

We have to introduce a cutoff to the initial condition in a similar manner as we
did for the impact parameter dependent rcBK equation in Section 3.3. If we set the
cutoff as θ( 1

m
− r) just as for the b-dependent version of kernel, the initial condition

does not fully cover the area of the evolution. That is because we fix the maximal
length of the vectors r1 and r2 to 1

m
but since ~r = ~r1 + ~r2, the evolution then runs

for the values of r lower than 2
m

. In other words, the cutoff imposed by the so called
gluon mass m is restricting solely the daughter dipoles r1 and r2. The mother dipole
consisting of these dipoles can therefore reach sizes twice as high as the cutoff limit.
The solutions for the initial condition fixed with θ( 1

m
− r) are shown in Fig. 4.18

and 4.19 for the values of b = 1 and b = 5 respectively. Fig. 4.20 shows this solution
integrated over b for various values of rapidity according to

N(r, Y, cos(θrb)) =

∫
N(r, b, Y )bdb (4.5)

The solutions obtained with the initial condition constrained with θ( 2
m
−r), that was

set so that it would cover the whole interval on which the evolution is carried out,
are shown in Fig. 4.21 and 4.22 for two values of impact parameter. The integrated
solution of such initial condition is shown in Fig. 4.23. For these solutions we assumed
the value of θrb = π

2
, which means that the mother dipole orientation is perpendicular

to the impact parameter vector.

The initial condition used for these computations is shown in Eq. 3.17 with param-
eters c = 0.0643 and d = 1

8
.

Figures 4.27 and 4.28 show the scattering amplitude as a function of dipole distance
and impact parameter at the same time. Fig. 4.27 shows the initial condition that was
used for the computation and Fig. 4.28 shows the scattering amplitude at rapidity
of Y = 10. We can see that both the initial condition and the scattering amplitude
at rapidity of Y = 10 steeply fall after reaching certain value of impact parameter
(at about 10 GeV−1). For values of impact parameter lower than this, the scattering
amplitude is more or less unchanged. If we take a look at the dipole distance axis, we
can see that the evolution here raises the front of the scattering amplitude in a similar
manner as in the impact parameter independent case. The scattering amplitude
however rapidly falls after reaching the cutoff value of r = 2

m
.
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We can see that unlike the unintegrated scattering amplitude, the integrated scatter-
ing amplitude 4.20 and 4.23, can exceed the value of one on part of the considered
interval. In the b-independent approach where the scattering amplitude N(r, Y )
never exceeded this value, we multiplied the scattering amplitude by the constant
σ0 which comes from the integration of a b-profile given by the Heavyside function.∫

d~bN(r, Y,~b). (4.6)

The value of the parameter σ0 was set to the value of 32.895 mb, so the integrated
scattering amplitude N(r, Y ) also reached values that were higher on most of the
considered interval.

The fact that the integrated scattering amplitude shows similar geometric behavior
to the unintegrated one at low values of the impact parameter is a result of the
unchanging shape of the scattering amplitude for most of the values of b. When the
integration is carried out, these parts dominate the integral and its shape is therefore
similar. The parts in which the exponential suppression of the scattering amplitude
comes into effect (at higher values of impact parameter) do not contribute as much
to the resulting function.

The dependence of the scattering amplitude evolution on the angle between the
dipole distance vector and the impact parameter vector was also studied. We have
shown that the effects of this angular variation on the resulting function are small.
In Fig. 4.24 and 4.25, the scattering amplitude was calculated with θrb = 0, which
corresponds to the color dipole being aligned parallel to the impact parameter vector.
We can compare these figures to the ones obtained with θrb = π

2
4.21 and 4.22. The

difference between these plots is almost negligible, even though we can see a few
minor differences in the curve of the scattering amplitude’s peak. The dependence
of the angle θrb on the scattering amplitude was tested for 8 different values and
they all exhibit similar behavior. Fig. 4.26 shows the ratio of scattering amplitudes
N(Y, r, cos(θrb) = 0) and N(Y, r, cos(θrb) = 1). We can see that their difference is
well below one percent for most of the considered interval over r.

The fact that the scattering amplitude is almost unchanged for different θrb setups
enables us in the future to restrict ourselves solely to the computation of the integral
over the impact parameter size and approximate the integral over this angle as∫

d~bN(r, Y,~b) =

∫
bdbdθrbN(r, Y,~b) = 2π

∫
bdbN(r, Y, b). (4.7)

This then speeds up the computation dramatically because we no longer have to
calculate the evolution for all the θrb setups but a single value would suffice. The
introduction of the impact parameter dependence to the computation then elongates
the running time solely by a factor of 225 instead of a factor of 225×20 (for 20 steps
in θrb over [0, 2π] and 225 steps in the impact parameter size).

In our approach, we were able to use several methods to significantly decrease the
running time (see Appendix A and B as well as section Optimal Setup) of the
computation. The computation of the scattering amplitude up to the rapidity of
Y = 10 takes about 10 hours on a regular personal computer for a fixed θrb setup in
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this approach with the use of the Runge-Kutta method with the step of ∆Y = 0.1
and 25 steps per order of magnitude in both r and b.

The obtained scattering amplitude then describes the strong interaction process
within the collision and it can be recomputed into the measured structure function.
The computed structure function F2(x,Q2) obtained with the use of 4.7 from the
impact parameter dependent solution to the rcBK equation is shown in Fig. 4.29.
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Figure 4.27: 3-D plot of the initial condition of the scattering amplitude with respect
to b and r.

Figure 4.28: 3-D plot of the scattering amplitude with respect to b and r at Y = 10.
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Conclusion

There are several models that predict the effect of saturation of partons in high
energy collisions. The Balitsky Kovchegov evolution equation does that by modifying
the BFKL equation with recombination processes that occur in hadrons at high
energies. These are expected to be reached in large accelerators such as LHC, HERA
or RHIC. The solution to the BK equation including running coupling effects and a
b-independent amplitude can predict correctly the values of structure functions of
protons or DIS reduced cross section in four orders of Q2. It is an integro-differential
equation and it typically cannot be solved analytically.

The Balitsky-Kovchegov evolution equation was numerically solved using the Runge-
Kutta method of fourth order, Simpson’s rule and Lagrange interpolation. Various
methods were tested and their initial parameters compared to obtain the best ratio
of precision and computing speed since the program for solving the BK evolution
equation is time demanding.

The optimal parameters to compute the BK equation for the case without impact
parameter dependence prove to be the Runge-Kutta method of fourth order with a
step of 0.01 in rapidity, Simpson’s rule for the integration with step of 20 over the
interval over θrr1 and 25 steps per order of magnitude of the dipole size r. A simple
linear interpolation (in the log-scale) has been determined to give the best results
since higher orders are not precise in certain regions and misshape the computed
function. For the computation of the photon wave function, 10000 steps per the
interval of [0, 1] over the parameter z were chosen. This setup then enables us to
compute the structure function up to the rapidity of Y = 10 in about 90 seconds on
an average personal computer with a mean square error of 1.5 %.

The shape of the photon wave functions was calculated and plotted with various
factors that also take part in the final structure function computation. It was shown
that the largest numerical contribution to the final value of the cross section and the
structure function comes from the dipole size in interval r ∼ (0.1, 30) GeV−1 since
the photon wave functions weighted by the solution of the BK evolution equation
show negligible values outside this region and thus do not affect the final integral over
r as much. The structure function F2 and reduced cross section σT,L were computed
from the obtained solutions given by the rcBK equation for various values of Q2 and
compared to data measured at HERA.

The effect of geometric scaling, which is observed in solutions to the BK equation
was also studied. Since the shape of the solutions changes only in the first few units of
rapidity and then solely shifts towards lower values of r as the evolution propagated
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towards higher values of Y , we were able to establish a new initial condition from
the intrinsic properties of the BK equation itself. This geometrical scaled initial
condition would then require less parameters that need to be fitted to data than the
MV initial condition and could better reflect the physical nature of the system.

The geometrically scaled initial condition was obtained by running the computation
up to the rapidity of Y = 100 and then re-scaling it back to the initial position.
The functionality of this initial condition was then tested and the dependence of the
results on the re-scaling parameter was studied. Its initial value was set as Q2

s0 = 0.07
and the variation of this parameter later span from Q2

s0 = 0.03 to Q2
s0 = 0.13.

We searched to obtain a new value for the parameter σ0 since in this approach,
we are using a new initial condition and its value that was obtained in previous
fits might not be accurate anymore. For this reason, values of FData

2 /F Theory
2 were

studied in order to obtain a correction factor for this constant. However the ratio of
FData

2 /F Theory
2 showed a logarithmically decreasing dependence on Q2 for all choices

of the re-scaling parameter. The slope of this decrease proved to be identical for all
setups (−0.07log(Q2)), just the added constant lowered as the saturation scale Q2

s0

increased (from 0.7 to 0.45 GeV2). This effect has not yet been reported by other
groups and its origin needs further explanation.

The quality of these fits was also tested by determining the value of χ2. Its depen-
dence on Q2 was studied for various values the of re-scaling parameter. The lower
values of Q2

s0 exhibited worse χ2 behavior in the regions with lower Q2 than the fits
obtained with higher Q2

s0. Its values reached up to χ2 = 3 in the region Q2 ∼ (1, 10)
for Q2

s0 = 0.04 GeV2. The regions higher than Q2 = 30 showed high values of χ2 for
all sets of re-scaling parameters, which might be caused by the fact that at these
values of Q2, the ratio FData

2 /F Theory
2 has a non-trivial dependence on rapidity and

that it cannot be fitted with a constant. This can mean that in this approach, there
are still some softly contributing effects that have not yet been accounted for by the
theory.

For Q2
s0 = 0.04 GeV2, the value of χ2 reached the values of 7 at the highest at

Q2 ∼ 50GeV2. As the re-scaling parameter increases, the value of χ2 in this region
further increases up to the maximal value of 14 when Q2

s0 is set as 0.14 GeV2. The
values of χ2 reach high values towards higher Q2, even though the growing trend
of the ratio with respect to rapidity is slow, partly because the errorbars of the
measured values decrease towards higher values of Q2. In the intermediate values of
Q2, the values of χ2 decrease with the increase of Q2

s0 at first, but as we approach
higher and higher values of Q2

s0 its values are also distorted, so the optimal choice
of the re-scaling parameter indeed proved to be Q2

s0 = 0.07 GeV2.

We used the obtained scaled initial condition to predict the values of the struc-
ture function F2(Q2, Y ) in regions that were not yet measured and where it differs
from the solutions obtained with the MV initial condition. This prediction can then
be used to determine the validity of this approach to the dipole model and rcBK
equation in particular when new measurements (possibly at the LHC) are carried
out.

The b-dependent BK equation and its solutions were also studied. We were able to
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implement this approach with the use of Runge-Kutta method (the verification of
validity of this approach is shown in the appendix) for the evolution in rapidity and
Simpson’s rule for integration over all intervals. We were able to transform the usual
quark-vector shape of the b-dependent equation into the familiar dipole distance-
vector shape that we used previously in the non b-dependent section. The solution
in this approach then differs dramatically from the one obtained with b-independent
equation. Unlike the b-independent equation, it suppresses the scattering amplitude
in the regions of high dipole distance in the first units of rapidity, which corresponds
to the situation when the dipole is too large with respect to the hadron to interact
with it at all. This decrease is then eventually stopped and reversed as we approach
higher values of Y and more and more partons emerge. These solutions were then
integrated over the impact parameter b for various values of Y and their shape was
shown in previous sections.

The combined advantages of the Runge-Kutta method for the impact parameter
dependent rcBK equation (summed up in appendices A and B) as well as the prop-
erties of the integral over the angle θrb and the optimal setup of the computation that
was adapted from the b-independent case result in a major decrease in the running
time. It was shown that we can obtain the scattering amplitude for all dipole vector
and impact parameter setups in about 10 hours on a regular personal computer up
to the rapidity of Y = 10. This scattering amplitude then gives us the information
about the strong interaction processes within the collision and can be recomputed
into observable values such as structure function or reduced cross section which can
tell us more about the physical nature of QCD systems.

To conclude, in this thesis we managed to explain the concepts of parton saturation
(Section 1.1.2), Color Glass Condensate 1.3 and Color dipole model 1.1.3. We numer-
ically solved the rcBK evolution equation with NLO kernel (4.2 and 4.4). We found
the dependence of its solution on parameters of the numerical computation and on
the considered initial condition (4.1 and 4.3). A prediction of the structure function
in DIS was obtained with the use of rcBK equation (4.2 and 4.3). These were then
compared with the data from HERA 4.2, and the error of the predicted structure
function arising from the numerical computation was analyzed 4.1. All items that
were enlisted in the Diploma thesis assignment were therefore successfully fulfilled.
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Appendix A
Runge-Kutta method for the
impact parameter dependent
rcBK equation derivation

For the derivation and verification of the validity of the numerical approach in this
work, we will use the notation

∂N(Y, r,~b)

∂Y
= f(Y,~r,~b,N(Y,~r,~b). (4.8)

Also, since f(Y,~r,~b,N(Y,~r,~b) has a non-zero partial derivative only for derivative

with respect to N(Y, r,~b), we will denote it f(N(Y )) and N(Y, r,~b) will be denoted

as N(Y ). For brevity we substitute ∂f(N(Y ))
∂N(Y )

for ℘. In further computations, we will

restrict ourselves solely to first derivatives of f(N(Y )).

N(Y+h, r,~b) = N(Y )+hf(N(Y )))+
h2

2

df(N(Y ))

dY
+
h3

6

d2f(N(Y ))

dY 2
+
h4

24

d3f(N(Y ))

dY 3

(4.9)

This then reduces to

N(Y ) + hf(N(Y ))) +
h2

2
℘f(N(Y )) +

h3

6
(℘)2 f(N(Y )) +

h4

24
(℘)3 f(N(Y )) (4.10)

and then

N(Y ) +
hf(N(Y ))

6
+
h

3

(
f(N(Y )) +

h

2
℘f(N(Y ))

)
+
hf(N(Y ))

2
+
h2

3
℘f(N(Y ))

+
h3

6
(℘)2 f(N(Y )) +

h4

24
(℘)3 f(N(Y ))

(4.11)
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and this we can turn into

N(Y ) +
hf(N(Y ))

6
+
h

3
(f(N(Y )) +

h

3

(
f(N(Y )) +

h

2
℘

(
f(N(Y )) +

h

2
℘f(N(Y ))

))
+
h

6

(
f(N(Y )) + h℘

(
f(N(Y )) +

h

2
℘

(
f(N(Y )) +

h

2
℘f(N(Y ))

)))
(4.12)

by substituting the terms we then get

N(Y ) +
h

6
k1 +

h

3
k2 +

h

3
k3 +

h

6
k4 (4.13)

where

N(Y + h) = N(Y ) +
1

6
h(k1 + 2k2 + 2k3 + k4)

k1 = f(N(Y ))

k2 = f(N(Y ) +
1

2
hk1)

k3 = f(N(Y ) +
1

2
hk2)

k4 = f(N(Y ) + hk3)

(4.14)

68



Appendix B
Simplified Runge Kutta method
for the BK equation

If we apply the Runge-Kutta method of fourth order to the Balitsky-Kochegov
equtaion, the general expression

N(Y + h) = N(Y ) +
1

6
h(k1 + 2k2 + 2k3 + k4)

k1 = f(N(Y ))

k2 = f(N(Y ) +
1

2
hk1)

k3 = f(N(Y ) +
1

2
hk2)

k4 = f(N(Y ) + hk3)

(4.15)

gets simplified. If we denote

Kernel =

∫
d~r1K

run(r1, r2, r)

Split =

∫
d~r1K

run(r1, r2, r)(N(Y, r1) +N(Y, r2))

Recomb =

∫
d~r1K

run(r1, r2, r)(N(Y, r1)N(Y, r2))

(4.16)

and

f(N(Y, r)) =

∫
d~r1K

run(r, r1, r2)(N(r1, x) +N(r2, x)−N(r, x)−N(r1, x)N(r2, x))

(4.17)

then we can express the Runge Kutta coefficients as

k1 = f(N(Y )) (4.18)
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k2 = f(N(Y ) +
1

2
hk1) =

∫
d~r1K

run(r, r1, r2)(N(r1, x) +N(r2, x)−

N(r, x) +
1

2
hk1 − (N(r1, x) +

1

2
hk1)(N(r2, x) +

1

2
hk1))

= k1 +
1

2
hk1Kernel −

1

2
hk1Split−

1

4
h2k2

1Kernel

(4.19)

k3 = f(N(Y ) +
1

2
hk2) = k1 +

1

2
hk2Kernel −

1

2
hk2Split−

1

4
h2k2

2Kernel (4.20)

k4 = f(N(Y ) + hk3) = k1 +
1

2
hk3Kernel −

1

2
hk3Split−

1

4
h2k2

3Kernel (4.21)

Which allows us to speed up the whole method since after the initial computation of
Kernel, Split and f(N(Y )), there is no need to integrate the whole function again
for obtaining the Runge-Kutta coefficients of higher order.
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