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Abstract: Femtoscopic measurements of two-particle correlations at small relative momenta provide
means to study space-time extents of the system created in high-energy heavy-ion collisions. The
correlations result from quantum statistics and from interaction in the final state (Coulomb and
strong). The strenght of the correlation depends on the size of the particle-emitting region. It has
been predicted that correlations due to the strong final-state interaction in a system with a narrow
near-threshold resonance will be especially sensitive to the source size in the region of the resonance.
Pair of unlike-sign kaons are idealy suited for such a measurement, since the system contains a narrow
φ(1020) resonance. This work presents first systematic study of unlike-sign kaon correlation function,
including the region of the resonance, using STAR data from Au+Au collisions at

√
sNN = 200 GeV.

The experimental results are compared to a theoretical calculations which include the treatment of
resonance formation due to the final-state interaction. Additional insight in to the interpretation of
results is provided by a comparison with predictions from hydrodynamic-based models.
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Abstrakt: Femtoskopická měření dvoučásticových korelací v oblasti malých relativních hybností umožňují
studium časoprostorových rozměrů systému vytvořeného při vysokoenergetických srážkách těžkých
iontů. Korelace jsou výsledkem kvantové statistiky a interakce částic v koncovém stavu (Coulombická
a silná interakce). Síla korelace je úměrná velikosti oblasti, ze které byl daný pár častic emitován.

Bylo předpovězeno, že v systému s resonancí, která se nachází blízko kinetického prahu, budou
korelace způsobené silnou interakcí působící skrz resonanci obzvláště citlivé na velikosti zdroje právě
v této oblasti. Vzhledem k tomu, že systém neidentických kaonů obsahuje φ(1020) resonanci, jsou
páry kaonů vhodnými kandidáty pro tato měření.

V této práci je představena první systematická studie korelačních funkcí neidentických kaonů,
které obsahují oblast resonance. Pro měření byla použita data ze srážek Au+Au při

√
sNN=200 GeV

na experimentu STAR. Výsledky jsou porovnány s teoretickými výpočty obsahující φ(1020) resonanci
díky interakci v koncovém stavu. Výpočty založené na hydrodynamických modelech poskytují detail-
nější pohled na interpretaci výsledků.
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Preface
Ultrarelativistic heavy-ion collisions provide means to study properties of nuclear matter under ex-
treme conditions. It is expected that a new state of nuclear matter called Quark-gluon plasma is
created in the initial stages of the collisions. However this system exists only for a very brief period
of time with typical space-time extents on the order of 10−14 m. Femtoscopic measurements of two-
particle correlations at small relative momenta reveal information about the space-time characteristics
of the system at the moment of particle emission.

It has been predicted that correlation due to the strong final state interaction in a system where
a narrow, near threshold, resonance is present will be sensitive, in the region of the resonance, to
the source size and momentum-space correlations. Such measurements can provide complementary
information to the measurements at very low relative momenta. This thesis introduces femtoscopic
analysis of unlike-sign kaon correlations in Au+Au collisions from STAR experiment at a center-of-
mass energy of 200 GeV. The system of non-identical kaon is of interest since it contains φ(1020)

resonance.
A brief introduction in the physics of heavy-ion collisions is given in Chapter 1. The observables

related to the formation of the Quark-gluon Plasma are discussed in the context of recent experimental
results from the STAR experiment. Chapter 2 introduces the STAR detector, one of the experiments
at RHIC.

Theoretical backgrounds of femtoscopic measurements are discussed in Chapter 3. The derivation
of the two-particle correlation function as well as construction of th experimental correlation function is
shown. Then the extraction of space-time extents from the experimental correlation function together
with model treatment of space-time evolution of the considered system is present. Experimental
results from systematic femtoscopic measurements are briefly discussed.

The rest of the thesis is dedicated to my own femtoscopic analysis of unlike-sign kaon correla-
tions. While the used data set and applied selection criteria for construction of correlation functions
are discussed in Chapter 4. The most important corrections applied in the presented analysis are
introduced in Chapter 5. Here the correction for misidentification of particles and momentum res-
olution have been used. In order to compare the experimental unlike-sign correlation functions to
model predictions, the space-time extents of the source were extracted from like-sign one-dimensional
as well as three-dimensional correlation functions. The measured HBT radii and kaon spectra were
fitted by blastwave model obtaining parameters which describe the kaon source at the freeze-out.
This parametrization of the source was afterwards used for calculation of the theoretical correlation
function by theoretical model that includes the treatment of the resonance formation due to the final-
state interaction. The measured unlike-sign correlation functions were also compare to hydrodynamic
model predictions, namely to HYDJET++ and THERMINATOR 2. Such model comparison provides
additional insight into the interpretation of the results. Finally, the obtained results are summarized
in the last chapter of this thesis.





CHAPTER

ONE

HEAVY-ION COLLISIONS AND QUARK-GLUON PLASMA

Experiments with high-energy heavy-ion collisions provide means to study properties of nuclear matter
under the extreme conditions and its transition from hadrons to a state of deconfined quarks and
gluons called the Quark-gluon plasma. This chapter introduces a brief overview of the particle physics
focusing mainly on heavy-ion collisions which are a promising tool for the creation of the Quark-gluon
plasma.

1.1 Standard Model

The Standard Model (SM) [1] is a quantum field theory classifying all known particles and summarizing
their interaction.

1.1.1 Fundamental particles

There are three classes of elementary particles in the SM. The group of particles, which have a spin of
1/2 and respect the Pauli exclusion principle, are noted as fermions. According to the their interaction,
the fermions can be further divided into two groups - quarks and leptons. There are six quarks and
six leptons.

The quarks are distinguished according their flavor as up (u), down (d), strange (s), c (charm),
b (bottom) and top (t) and can be grouped into 3 generations. Each quark carries a fraction of the
elementary charge, specifically Q = 2/3 or Q = −1/3 and one of the three colors: red, green or blue. In
nature the quarks have never been observed individually, but only inside bounded colorless strongly
interacting particles called hadrons. The hadrons consisting of a quark-antiquark are mesons and
baryons are the bounded states of three quarks. The latest experimental results from the Large Hadron
Collider (LHC) and the Fermilab Tevatron collider indicate existence of pentaquark [2], bounded state
of four quarks and one antiquark and the tetraquark, hadronic state with valence quarks of four
different flavors [3], respectively.

The leptons form, similarly as the quarks, 3 generations. Each generation consists of lepton and
its corresponding neutrino, i.e. electron (e−), electron neutrino (νe), mion (µ), mion neutrino(νµ),
tau (τ) and tau neutrino (ντ ). Each quark and lepton have a corresponding antiparticle, the particle
with the same mass and opposite charge.
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Another class of elementary particles contains gauge bosons, namely gluon (g), photon (γ), Z boson
(Z) and W boson (W±). These vector particles with a spin of 1 are mediators of the fundamental
interactions. The massive electrically neutral Z boson and electrically chargedW± bosons mediate the
weak interaction, while the massless electrically neutral photon is associated with the electromagnetic
interaction. The gluons carrying the color charge are mediators of the strong interaction.

The last fundamental particle which remains is a recently discovered Higgs boson H [4], [5]. This
scalar particle gives mass to other fundamental particles.

Figure 1.1 shows the overview of all previously discussed fundamental particles and their properties.

Figure 1.1: Fundamental particles in the Standard model and their properties. Taken from [6].

1.1.2 Fundamental interaction

The SM contains three fundamental interactions, namely strong, weak and electromagnetic. Each
of these interactions is characterized by the corresponding gauge theory with a symmetry group and
can be explained as exchange of mediators, the already discussed gauge bosons. Table 6.1 shows
the summary of the fundamental interactions, their mediators, the range and the relative force with
respect to the strong interaction.

Interaction Mediator Range Relative force

electromagnetic photon +∞ 10−2

weak W± and Z bosons 10−18m 10−7

strong gluon 10−10m 1

Table 1.1: Fundamental interactions in the Standard model and their properties.

The mediator of the electromagnetic interaction is the photon and this interaction is described by
the Quantum Electrodynamics. Since the photon has zero mass, the range of this force is infinity. On
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the other hand, the weak interaction is mediated by the massive W± and Z bosons, and therefore the
the range of this force is very short. These two forces can be united into the electroweak interaction.
The mass difference of their mediators is caused by the spontaneous symmetry breaking, O(4)→
U(2)×U(1), when Z and W± bosons obtain masses by the interaction with the Higgs boson.

The last fundamental force, which is contained in the SM, is the strong interaction with gluons as
the mediators. Although the gluons are also massless particles like the photons, the strong interaction
can reach up only units of fermi - 10−15 m. This behavior is quite interesting and can be explained
by the Quantum Chromodynamics (QCD), which will be discussed in detail in the following section.

Although the SM does not contain the gravitation force and its mediator, the graviton, and can
not give an explanation of some phenomena, such as the non-zero mass of neutrino, it is one of the
most widely accepted theoretical models in the particle physics.

1.2 Quantum Chromodynamics

The QCD is the gauge theory describing the strong interaction with the corresponding SU(3) symmetry
group. The mediators of this force are the massless gluons that carry color charge. As already said,
the corresponding symmetry group for the QCD is SU(3) with eight generators, hence there are eight
different gluons. Unlike photons, gluons can interact among themselves. Such a property of gluons
leads to interesting behavior of the strong interaction.

1.2.1 Asymptotic freedom

The running coupling constant αs describes the strength of the force between quarks. David Gross,
David Politzer and Frank Wilczek predicted in 1973 [7] that the αs depends on the four momentum
transfer q and changes like [7]

αs(q) ∼
1

ln q2

Λ2
QCD

, (1.1)

where the ΛQCD is a constant introduced by the renormalization process and is approximately equal
to 200 MeV. The left panel of Figure 1.2 shows overview of measurements of the running coupling
constant αs as a function of q from electron-positron, electron-proton, and proton–(anti)proton collider
experiments [8]. The four momentum transfer q is inversely proportional to distance r and therefore
at very short distances r and at large transverse momentum q respectively, the coupling constant
decreases and it leads to weakened of the strength of the interaction. For a sufficiently very small αs,
quarks start to behave almost as the free particles. This phenomenon is known as asymptotic freedom
[7]. In such region of value of q the perturbative QCD (pQCD) calculation can be used.

1.2.2 Color confinement

While in the previous case, for short distance the QCD predicts asymptotic freedom, in normal
conditions the strength of the strong interaction is so high that quarks and antiquarks are bound in
colorless strongly-interacting objects. The effective quark-antiquark potential is described by [10]

V (r) = −αs
r

+ kr, (1.2)

where αs is the coupling constant, r is the distance between quarks and k is the string tensor repre-
senting the strength of the quark confinement force. As can be seen, the potential has two parts. The
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10 100 1000
Q [GeV]
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αs(MZ ) = 0.1171±0.0075
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αs(MZ ) = 0.1185± 0.0006 (World average)
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LEP
PETRA
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Figure 1.2: Left: The overview of measurements of the running coupling constant αs as a function
of transverse momentum q. Taken from [8]. Right: Temperature dependence of quark-antiquatk
potential scaled by the string tensor

√
σ. Taken from [9].

first part evokes the well-known Coulomb potential depending on 1/r. The second part is a string
potential and it can explain the fact that quarks are never seen in isolation under normal conditions,
but only bound with hadrons. The right panel of Figure 1.3 shows the comparison of the potential
between a quark and an antiquark as a function of their distance and the Coulomb potential. While
the Coulomb potential is almost constant for the large distance r and can be neglected, thanks to
the linear term kr, the potential energy between a quark and an antiquark increases linearly until
the moment, when the energy is so high that the pair of quark-antiquark is created from vacuum.
Immediately they are bound together with previous quark and antiquark. Thus finally there are two
quark-antiquark pairs. This feature is shown schematically in the right panel of Figure 1.3.

QCD

Coulomb

V(r)

r

Figure 1.3: Left: The comparison of potential between a quark and an antiquark as a function of
their distance (blue line) and Coulomb potential (green line). Right: Illustration of color confinement.
Red and green cycle represent a quark and an antiquark, respectively.
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1.3 Quark-gluon plasma

Based on the asymptotic freedom, the QCD predicts a phase transition from a confined matter into
a new state of matter, in which the quarks and gluons are deconfined. This novel state of nuclear
matter is the so-called Quark-gluon plasma (QGP) [10]. There are two possible methods, how it can
be formed - by high temperature T or by high baryon chemical potential µB corresponding a net
baryon density.

With increasing temperature, the system can reach up the certain values of energy density ε,
when the hadronic matter dissociate and the QGP is established. This fact is also predicted by
the calculation of the lattice QCD as shown in Figure 1.2. The effective quark-antiquark potential
changes with increasing temperature and in the vicinity the critical temperature the linear term in
the potential, which is responsible for confinement of quarks in hadrons, vanished. The temperature
of the systems that is related to this phase transition is referred as a critical temperature Tc.

Earlier theoretical calculation based on thermodynamic and hydrodynamics predicted the initial
energy density ε ≈ 1− 10 GeV/fm3 [11] and that any phase transition will take place for the temper-
ature around the T ≈ 150− 200 MeV [11]. These values were put more precisely by the lattice QCD
and nowadays it is expected for the critical temperature to be around the Tc ≈ 170 MeV.

The other possibility how the QGP can be established is during the adiabatic compression of
nuclear matter at the temperature T ≈ 0 MeV. Since it is believed that the system can reach such a
high baryon chemical density µB , where the binding between the quarks will be broken up and the
QGP will be formed.

It is expected that in early Universe, a few microseconds after the Big Bang, the temperature and
the density of matter were so high, that the QGP was formed. Nowadays these extreme conditions
allowing the formation of the QGP are very hard to find in nature, but there are still places, where
the QGP should exist. One of these places is the center of the neutron and compact stars. However
more suitable tool for studying the properties of the QGP are the ultra relativistic heavy-ion collisions.
Here it is expected that the QGP is early of the collisions.

1.3.1 Phase diagram of hadronic matter

The schematic drawing of the phase diagram of the QCD matter is presented in Figure 1.4 in the
plane of temperature T and the baryon chemical potential µB .

At moderate temperature and baryon chemical potential µB , the quarks are confined in hadrons.
At very high temperature, the mesons and the baryons "melt" and hadron matter undergoes phase
transition into the QGP. The actual type of the phase transition depends on where we are in the phase
diagram.

Both the temperature T and the baryon chemical potential µB vary as function of the collision
energy

√
sNN and therefore experimentally different regions of the phase diagram can be accessed by

changing the beam energy. This is the strategy adopted in the Beam Energy Scan (BES) [13] program
at the Relativistic Heavy Ion Collider (RHIC) where scan with Au+Au collisions over beam energy in
range of 7.7 ≤ √sNN ≤ 200 GeV was employed in 2010, 2011 and 2014. Table 1.2 shows the overview
of the RHIC BES energies with corresponding T and µB . The lowest energies, specifically 3.0, 3.5
and 3.9 GeV were obtained from the beam and beam-pipe collisions during the RHIC BES run. This
data set was extended by the 3.9 GeV collisions from the STAR Fixed Experiment performed in 2014
when the the gold target was inserted into the beam pipe during the 14.5 GeV run.
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Figure 1.4: Phase diagram of QCD with boundaries that define various state of QCD matter. Taken
from [12].

The purpose of the RHIC BES program is to search for threshold energies for the QGP formation,
since it is known that the QGP is already well established at the top RHIC energy - 200 GeV. Another
main goal is to investigate signatures of the order phase transition and to find the critical point.

√
sNN [GeV] µ [MeV] T [MeV]
200.0 24 165.9
130.0 36 165.8
62.4 73 165.3
39.0 112 164.2
27.0 156 162.6
19.6 206 160.0
14.5 262 156.2

√
sNN [GeV] µ [MeV] T[MeV]
11.5 316 151.6
7.7 422 139.6
4.9 562 118
4.5 589 111
3.9 633 101
3.5 666 93
3.0 721 76

Table 1.2: BES energies and corresponding temperature and baryon chemical potential. Taken from
[13].

1.4 Heavy-ion Collisions

In this section, heavy-ion collisions will be introduced since it is the only way how to create and study
the QGP in the laboratory. In ultrarelativistic heavy-ion colliders, two nuclei are accelerated to speed
close to that of light. Therefore these nuclei are Lorentz contracted in the direction of their motion
and the thickness of them is 2R/γ, where R is the radius of nucleus and γ is the Lorentz factor as is
shown in Figure 1.5.
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1.4.1 Geometry of heavy-ion collision

The dynamic properties of the created system are strongly affected by the initial geometry of the
colliding nuclei. The most important variable characterizing the collisions is the centrality, which is
defined [14] as

c =

∫ b
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dσ
db′ db

′
∫∞

0
dσ
db′ db

′ =
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∫ b

0

dσ

db′
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where σAA is the nucleus-nucleus cross-section and the b is the impact parameter.
The impact parameter b indicates the distance of the centers of two nuclei in the transverse plane

during the collisions. If b ≈ 0, the collisions are head on and all nucleons participate in the collision.
While for 0 < b < 2R the peripheral collisions take place. In this case, the number of participant
of the collision, which consequently create a new system is equal to Npart = 2A − Nspec, where A
is the total number of nucleons in the nucleus and Nspec is the number of nucleons, which do not
participate in the collision. These nucleons are noted as the spectators. The extreme case of collision
is for b > 2R, when two colliding nuclei do not overlapped and interact just via electromagnetic force.
These collisions are called as ultra-peripheral.

Figure 1.5 schematically describes heavy-ion collisions, where the participants are colored by yellow,
while the blue nucleons are the spectators. As can be seen, the volume of overlapped region depends
on the number of participants and spectators, respectively.

2R
γ

b
2R

Figure 1.5: High-energy collisions of two Lorentz contracted nuclei with the impact parameter b.
The participants are colored by yellow and non-interacting spectators are blue.

The impact parameter b can not be directly measured and the experimental observables related
to the centrality are the multiplicity of the charged particle and the energy carried by the spectators,
that are detected by the zero degree calorimeters. To obtain information about the geometry of the
collisions such as the impact parameter and the centrality, the Monte Carlo simulators have to be
employed. One of the widely used Monte Carlo simulator for determination of the geometry of the
collisions is the Glauber model [15] which works on a simple principle - decomposition of the collisions
of two nuclei into many nucleus-nucleus collisions.

1.4.2 Space-time evolution of the collision

Figure 1.6 illustrates the heavy-ion collisions and different moments of the space-time evolution of the
created system. The Lorentz contracted nuclei collide and the pre-equilibrium stage starts [10].

During this phase, the nucleons of incoming nuclei scatter several times and loose part of their
energy. Quarks and gluons are created from the vacuum excitation. After a very short time, t ≤ 1fm/c,
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Figure 1.6: Schematic diagram of the space-time evolution of the heavy-ion collision.

the system reaches thermal equilibrium by the re-scattering of the quarks and the gluons. In case
that the collision energy

√
sNN was sufficiently high, the quarks and gluon are liberated and QGP is

established [10].

Since then the created system starts to behave collectively and can be described by the hydrody-
namics. This behavior depends on collision energy

√
sNN and with increasing energy, the properties

of the formed medium look more and more like the behavior of the perfect liquid.

While the system expands, it cools down until the moment, when it undergoes the phase transition
from the de-confined stage of matter to hadrons. The temperature of such a system is now around
the critical temperature Tc [16]. At this temperature, the quarks and the gluons can not exist as the
free particle anymore and start to return in the confined phase of hadronic matter. This moment of
the space-time evolution is called the hadronization and takes place t ≈ 5fm/c [17] after the heavy-ion
collisions.

The expansion and cooling down of the system continue, but the temperature is still so high, that
the hadron species can change by the inelastic collisions. The system further cools until it reaches the
chemical freeze-out (t ≈ 10fm/c) [17], the number of hadrons is fixed. After the chemical freeze-out,
the particles interact only elastic until the thermal freeze-out, when the emission of the particle starts.

As can be seen, the created system exists for a very short time to our time-scale. However in
comparison to typical physical process of the strong interaction it is long-lived system. The information
about the space-time evolution of the system can be inferred only from the measured particles, which
fly out from the system and are measured by the detector.

The above mentioned time and temperature can be extracted from the hydrodynamic and the
statistical model, which are able to describe the particle spectra and ratio.

1.5 Signatures of the Quark-gluon plasma

As already said, the heavy-ion collisions are a promising tool for creation of the QGP. The ultra-
relativistic heavy ion collisions and their evolution are dynamic processes with typical space-time
extends of order tens fm and the QGP exists in the initial stages of the collisions for a very short
time. Therefore, the QGP cannot be studied directly, but only via so-called the QGP signatures. In
the following subsections, the QGP signatures and their relation to results from BES [13], [18] will be
discussed.
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1.5.1 Jet quenching

One of the most promising QGP signatures is the phenomenon known as the jet quenching. In heavy
ion collisions, partons with the large transverse momentum pT are created in the hard scattering of
nucleons constituents in the initial stage of the collisions. These high momentum partons traverse
through a dense hot medium formed in heavy-ion collision and because of that they start to loose
energy and can be absorbed. The energy loss should be proportional to the initial gluon density and
the lifetime of the system. To quantify the high-pT suppression, a comparison of the particle yields
in central d3N cen

AA /dηd2pT and peripheral d3Nperi
AA /dηd2pT collisions presented in terms of a nuclear

modification factor, which is defined as

RCP =

〈
Nperi
bin

〉
d3N cen

AA /dηd2pT

〈N cen
bin 〉d3Nperi

AA /dηd2pT
(1.4)

is done. The number of hard processes should rise linearly with the number of binary collisions 〈Nbin〉.
Hence each particle yield is scaled by corresponding number of collision. More precise comparison can
be done when the particle yields in peripheral collisions in denominator are replaced by the particle
yields from proton+proton collisions. In such cases the RAA is constructed. The importance of such
a comparison when the RAA factor is constructed arising from the presence of the cold nuclear effects
that can still play crucial role in the peripheral collisions. However reference proton+proton collisions
for corresponding BES energies are not available, thus the RCP was studied.

Figure 1.7 shows the nuclear modification factor for charged hadrons for different BES energies
[19]. As can be seen, while at high beam energies the strong suppression is observed, at low beam
energies the situation is opposite and the strong enhancement exhibits. The suppression of high-pT
partons can be interpreted by the presence of the QGP. On the other hand, the measured enhancement
at low beam energies has ambiguous explanations and the origin of the enhancement can be Cronin
effect [20], cold matter effects and/or strong radial flow [13].

Figure 1.7: Charged hadron RCP for RHIC BES energies. Taken from [19].
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1.5.2 Strangeness enhancement

In elementary particle collisions, the effect of associated production of the hadrons containing strange
quark is suppressed due to relatively high mass of the strange quark. In case that the QGP is
formed, the pairs of strange and anti-strange quarks may be also produced the gluon fusion, since the
threshold for such a reaction is about 200 MeV and the strangeness enhancement should be observed
[10]. Therefore, the important QGP signatures are the particle yields and ratio of strange mesons and
baryons at different beam energies. The particle yield at chemical freeze-out Tch can be calculated
by the statistical model and the number of particle species Ni in a system of volume V is given by
following formula [10]

Ni/V =
gi

(2π)
3 γ

Si
S

∫
1

exp
(
Ei−µBBi−µSSi

Tch

)
± 1

d3p, (1.5)

where gi is the spin degeneracy, Bi is the baryon number, Si is the strangeness number, Ei is the
particle energy, µB is the baryon chemical potential, µS is the strangeness chemical potantial and γS is
the strangeness suppression factor. The values of Tch and µB can be obtained from the experimentally
measured particle yields.

The previous theoretical prediction will be now compared with results on φ mesons which is of
particular interest for this work. The φ(1020) consists of pair of the strange and anti-strange quarks.
Figure 1.8 shows results [21] on the φ meson yield per number of participants as a function of the
number of participants Npart for 5 different collisions system and the φ/π− ratio also for five different
collisions energies. Both results exhibit energy and system size dependence. As can be seen, the φ
yields increase slightly with collision energy for the same Npart. The yield ratio φ/π− also rises with
the collision energy in Au + Au collisions and p + p collisions. These results show that the yield of
the φ mesons increases faster than the yield of the π− mesons. The measured enhanced production
of the φ meson in heavy-ion collision can indicate the QGP formation.
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Figure 1.8: L: The φ meson yield per number of participants as a function of the number of partic-
ipant Npart for 5 different collisions systems. R: the φ/π− ratio for five different collisions energies as
a function of the number of participants. Taken from [21].
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1.5.3 Elliptic flow

Another QGP signature which will be discussed is the elliptic flow [22]. In non-central collisions, the
formed system has asymmetric shape elongated in the out-of-plane direction. As demonstrated by
the hydrodynamic calculations, if the system thermalizes quickly, the initial spatial anisotropy and
interactions among the constituent result in pressure gradients that are larger in the direction of the
reaction plane. This leads to subgradient expansion and results in the elliptical azimuthal particle
distribution. Since the pressure gradient is related to the equation of state (EoS), the elliptic flow can
provide information about the QGP pressure in the early state.

Experimentally, the elliptic flow can be obtained from the Fourier expansion of the azimuthal
distribution of particle, which is expressed by

E
d3N

d3p
=

d2N

2πpT dpT dy

(
1 +

∞∑

n=1

2vn cos [n (φ− Φr)]

)
, (1.6)

where φ is the azimuthal angle of the particle and the Φr is the azimuthal angle of the reaction plane in
the laboratory frame. The coefficients vi in the Fourier expansion are related to flow. While the first
coefficient, v1 is called the direct flow and quantifies the strength of direct flow, the second coefficient,
v2 is the already discussed the elliptic flow.

Systematic study of v2 of hadrons as the function of the transverse mass for 6 different BES energies
are presented on Figure 1.9. This measurement was performed for the most abundant hadrons like
pions and kaons as well as for the multi-strange particles like φ (ss), Ω−(sss) and Ξ−(dss).
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Figure 1.9: The results of the identified hadron elliptic flow from BES energies. Taken from [23].

Figure 1.9 shows that the v2 coefficients are ordered according to hadron mass. The lighter hadrons
have a larger v2 in comparison to heavier hadrons. While for the low pT , the values of v2 of hadrons are
almost the same, for the values above pT ≈ 2 GeV/c significant difference in v2 of lighter mesons and
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baryons can be observed. Such characteristic baryon-meson splitting is explained by a hadronization
via recombination and it is connected to the existence of partonic collectivity and the formation of
the QGP.

There are a lot of other signatures, which serve as a probe for the formation of QGP in ultra-
relativistic heavy-ion collisions. These signatures will not be discussed in more detail, but some of
them are listed in following summary [10] [24].

• Space-time characteristic of the system at the kinetic freeze-out measured by the two-particle
correlation

• Quarkonia (J/ψ, Υ and their excited states) suppresion due to the Debye screening in the QGP
[25]

• Enhanced production of anti-particle in the QGP

• Enhancement of direct photons and dileptons due to the QGP thermal radiation

As can be seen from the previous discussion, the properties of nuclear matter such as the equation of
state, the order of the phase transition, the value of critical temperature etc. are not known well and
they are still intensively studied by many experiments focusing on heavy-ion physics.



CHAPTER

TWO

RHIC AND THE STAR EXPERIMENT

In this chapter, the Relativistic Heavy Ion Collider, facility dedicated to the high-energy heavy-ion
collisions, is introduced. The STAR detector, one of the experiments at RHIC, will be also described.

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) located at Brookhaven National Laboratory (BNL) in
Upton, New York, is the second most powerful heavy-ion collider in the world. The primary goal
of the physics program at RHIC is to produce and to study a deconfined state of nuclear matter,
Quark-gluon Plasma by the high-energy heavy-ion collisions.

RHIC has the capability to accelerate a variety of particle species to ultrarelativistic speed and
since its commission in 2000 RHIC has successfully collided Au + Au, p + Au, d + Au, 3He + Au,
Cu + Au, Cu + Cu, U + U , p + Al and p + p. In particular, the most important for the study of
phase-space diagram of nuclear matter is the RHIC’s capability to accelerate to and collide ions at
different energies. This has been applied in the RHIC Beam Energy Scan, when scan with Au+Au
collisions over beam energy in a range of 7.7 ≤ √sNN ≤ 200 GeV was performed in 2010, 2011 and
2014. In addition to the heavy-ion program, RHIC can also collide polarized protons and hence
provides opportunity to study the nucleon spin structure.

RHIC consists of two 3.8 km intersecting superconducting storage rings with six interaction points.
Nowadays two of them are occupied by the STAR and PHENIX experiments, but in the past, there
were also BRAMS [27] and PHOBOS [27] detectors on other interaction points. BRAMS and PHOBOS
experiment operated from 2000 and successfully completed their physic programs in 2006 and 2005,
respectively.

Protons and heavy-ions can not be injected directly into the RHIC, and therefore they are preac-
celerated by the supporting accelerators. The acceleration of proton starts in the linear accelerator
(LINAC), where they obtain energy of 200 MeV and then they are sent through the Booster into the
Alternating Gradient Synchrotron (AGS). The heavy-nuclei are first of all partially stripped of their
electrons and then injected into Booster by the Electron Beam Ion Source (EBIS). The remaining
electrons are stripped in Booster and AGS, where the ions or protons are bunched together and con-
sequently they are sent into RHIC with energy of 10 GeV per nucleon. RHIC can be completely filled
within one minute. The typical beam in Run11 consisted of 111 bunches and each bunch contained
1.45 · 109 ions [28].

14
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Figure 2.1: The Relativistic Heavy Ion Collider. Taken from [26] .

In RHIC storage rings, two circulating beams are focused and accelerated by the superconducting
magnets. When the beams achieve the required energy, they are crossed in the interaction points
where collision occurs. The maximum collision energy for heavy-ions is

√
sNN = 200 GeV, while

protons are accelerated to
√

s = 500 GeV.

2.2 STAR Experiment

The Solenoidal Tracker at RHIC (STAR) [29] is a multi-purpose detector, which excels in tracking and
identification of charged particles at two units of pseudorapidity around mid-rapidity (−1 < η < 1)

with full coverage in azimuthal angle (0 < φ < 2π). Figure 2.2 shows schematic picture of STAR
detector. As can be seen, STAR detector contains various subsystems.

The innermost detector of STAR is the Heavy Flavor Tracker (HFT) [30] installed in 2014. It
consists of four layers of silicon detectors divided into three subsystems: a double sided strip detector
(SSD) and a silicon pad detector (IST). The last subsystems of HFT are two layers of pixel detectors
based on the monolithic active pixel sensors technology (MAPS). It is expected that the HFT will
provide excellent primary and secondary vertex position measurements and provide opportunity to
measure more precisely the charm mesons like D±, D0, etc. [31]

The heart of the STAR detector is the Time Projection Chamber (TPC), which is surrounded
by the Time of Flight detector (ToF) and the Barrel Electromagnetic Calorimeter (BEMC). These
subdetectors cover full azimuthal angle at mid-rapidity. There are also forward detectors, such as
the Beam-Beam Counter (BBC) and the Endcap Electromagnetic Calorimeter (EEMC). The central
subsystems sit in the STAR magnet, which has an outer radius of 3.66 m and a length of 6.85
m and is capable to produce a uniform magnetic field of 0.5 T along the beam axis. The Muon
Telescope Detector (MTD) is situated around the STAR magnet and covers 45% of azimuthal angle
with (−0.5 < η < 0.5).

The MTD, the primary Vertex Position Detector (pVDP) and the Zero Degree Calorimeter (ZDC)
are located outside of the magnetic field.
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Figure 2.2: The STAR detector. Taken from [26] .

The most important subdetectors for analysis presented in this thesis are the TPC and ToF. The
trigger system used for event selection was based on the pVPD and ZDC. These detectors are detailed
discussed in the following subsections.

2.2.1 Time Projection Chamber

The TPC, 4.2 m long cylinder with 4 m in diameter, is the primary tracking detector in the STAR.
It records tracks, measures momentum and identifies charged particles via the ionization energy loss
in full azimuthal angle 0 < φ < 2π and it covers pseudorapidity at −1.8 < η < 1.8.

The schematic picture of the TPC is shown in Figure 2.3. The thin conductive central membrane
which is held at a voltage of -28kV separates the east and the west halves of the TPC. In combination
with the grounded readout endcap system, there is a well-defined uniform electric field of 135 V/cm,
which is required for precise tracking.

The readout endcap system is based on Multi-Wire Proportional Chambers (MWPC) and consists
of 12 sectors. Each sector is divided into the inner and outer subsector with 13 and 32 pad rows,
respectively. While the outer subsection has continuous pad coverage for better dE/dx resolution and
contains in total of 3942 pads with dimensions 6.2 × 19.5 mm, the inner subsection is designed for
precise tracking and consists of 1750 pads with size of 2.85 × 11.50 mm. The inner subsection has
small pads arranged in widely spaced rows, since each pad in row 1 through 8 and in row 8 through
13, respectively is separated by the 48 mm and 52 mm space. The detailed schema can be found in
the Figure 2.4, which shows one sector.

The TPC is filled with the P10 gas, a mixture of 10% methane and 90% argon. The pressure
of the gas is 2 mbar above the atmospheric pressure and the gas circulates with rate of 36,000 l/h
(full volume of the TPC is 50,000 l). Since a stable and fast drift velocity is required, the TPC has
to operate on such value of the electric potential where the curve describing dependence of the drift
velocity on the electric potential has required properties. In case of the STAR’s TPC, it operates on
the peak value which is broad, flat and situated at the low electric potential. Such a value makes the



17 2.2. STAR EXPERIMENT

Figure 2.3: The Time Projection Chamber. Taken from [32] .

drift velocity stable and insensitive to small variations in temperature and pressure.

When the charged particles traverse the volume of the gas, they ionize atoms in the P10 gas.
The ionization electron drifts towards the endcaps at a constant velocity of ∼ 5.45 cm/µs and hence
maximum drift time in the TPC is ∼ 40µs. The signal from ionization electrons is amplified in front of
the anode on the readout endcap system by the electron avalanches. It is created by the high electric
field that is at distance of the 20 µm in front of the anode on the readout endcap system and enable
to amplify the signal by the factor of 1000-3000. The induced charges from the avalanche are then
collected by the several read-on pads.

Figure 2.4: A full sector of the anode pad plane from the TPC. Taken from [32] .
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Tracking

The position of hits from the pads are used for the tracking. The (x, y) position of the track is
determined by the charge measured on the pads, while the z position is obtained by measuring the
drift time of ionization electrons relative to the start of the collision divided by the drift velocity,
which is very precise measured. To remove uncertainties arising from fluctuations of the value of the
drift velocity, the drift velocity is monitored every hour by the laser calibration system [33].

The STAR uses the Kalman filter that starts from the outermost layers of the TPC where hits
density is smaller. Figure 2.5 shows a distribution of the last hits of the reconstructed track in the
TPC from Au+Au collisions at

√
sNN = 200 GeV.

Figure 2.5: The spatial distribution of last hits in the TPC which were used to track reconstruction.

First, the Kalman filter begins with a track seed, which is identified as a collection of a few hits and
consequently extrapolates inwards along the approximate direction and curvature. Nearby hits are
associated with the track, if they pass the χ2 test. The tracking algorithm ends, when the innermost
layer is reached. In case that the information from the inner tracking system is available, the hits from
the TPC are combined with them. Figure 2.7 shows reconstructed Au+Au collisions at

√
sNN = 200

GeV recorded by the STAR detector. The blue lines represent measured tracks by the TPC.
After the initial tracking is completed, the filter refits tracks again and tries to reduce effects of

track splitting, track merging and ghost tracks. Newly resulting tracks are denoted as global tracks
and determine the vertex primary position. This is done by extrapolating the global tracks to the
point with the distance of the closest approach (DCA) to the beam pipe. The tracks with the DCA
smaller than 3 cm are connected with the primary vertex and refitted. These tracks are denoted as
primary tracks.

Maximum possible number of hits of one track can leave in TPC is 45. However, in practice, this
value is smaller, since the maximum of hits depends on the transverse momentum and pseudorapidity
of the track as well as on the detector effects. Therefore, for precise tracking reconstruction and
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Figure 2.6: The trajectories of particles, which was reconstructed by TPC. Taken from [26] .

relatively high efficiency, tracks with at least 10 hits are required.

The transverse momentum pT of a track is obtained by fitting a helix through the (x, y) coordinate.
In combination with the azimuthal angle ϕ and the polar angle θ that are determined from track motion
with respect to the z-direction, the total momentum can be then calculated.

Particle Identification

The particle identification is based on measurement of the ionization energy loss dE/dx determined
from the charge collected by the TPC pad rows. The energy loss for charged particles as a function of
momentum is shown in Figure 2.9. As can be seen in Figure 2.9, for hadrons the energy loss decreases
with increasing momentum until it reaches a minimum and then it starts to slightly increase. The
energy loss is also mass ordered i.e. the heavier hadrons lost more energy in comparison to lighter
hadrons with the same momentum.

The energy loss of charged particle by ionization is calculated by the Bethe-Bloch formula [34]

〈
−dE

dx

〉
= 2πNAr

2
emc

2ρ
Z

A

z2

β2

[
ln

(
2mc2γ2β2WMAX

I2

)
− β2 − δ2

2

]
, (2.1)

where NA is Avogadro’s number, re is classical electron radius, m is mass of particle, c is speed
of light in vacuum, ρ is density of material, Z and A are atomic number and weight of material,
WMAX is maximum energy transfer in a single collision, I is mean excitation energy and δ is density
correction. In practice, the Bichsel function [34], which is modified version of the Bethe-Bloch formula
and predicts the most probably energy loss, is being used. This function is shown in Figure 2.7, where
the expected energy loss for various particle species are represented by the lines of different colors.
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Figure 2.7: The TPC dE/dx versus momentum p and charge q. The colored lines represents the
expected value for various particle species from the Bichsel function.

2.2.2 Time of Flight detector

The ToF was developed to improve particle identification and was fully installed in 2010. The detector
is based on Multi-gap Resistive Plate Chamber (MRPC) technology. Each tray, which has dimensions
of 95 × 8.5 × 3.5 inches, contains 32 MRPC modules and covers 6 degrees in azimuthal angle and
one unit in pseudorapidity. In total, the ToF consists of 120 trays that cover full azimuthal angle at
−1 < η < 1. The ToF uses event timing information from the VPD and hit timing in tray to calculate
the time of flight for the measured particles.

Particle Identification

Information from TPC and ToF can be combined in order to identify charge particles up to ∼3 GeV/c
momentum. Firstly, only tracks reconstructed in the TPC, have to pass following track quality cut
[35]

• 0 < flag < 1000, where flag indicates the fit quality of the track

• number of TPC fit points ≥ 15

• number of TPC fit points / number of possible TPC fit points ≥ 0.52,

to be able to be connected with the hits in the ToF. The information from the ToF is stored in
StMuBTofPidTraits class containing among others matchFlag function. This function takes four
integer values: 0, 1, 2 or 3. If a track is not associated with any hit in the ToF, the matchFlag is
equal to 0. While for a track connected with one hit, the matchFlag is equal to 1. It can also happen,
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that one hit in the ToF is associated with two or three tracks. For such cases, the matchFlag is equal
to 2 or 3, respectively.

Based on the information from ToF relative particle speed β is calculated as

βToF =
L

cτ
, (2.2)

where L is the track length from the primary vertex position to the matched ToF channel and τ is
the time of flight. Then from the relation for particle momentum

p2
TPC =

m2c2βToF
2

1− βToF 2 , (2.3)

where pTPC is momentum measured by the TPC, the only unknown parameter, particle mass m, can
be expressed as

m =
pTPC
c

√(
1

βToF

)2

− 1. (2.4)

The ToF excels in particle identification of charged hadrons as illustrated in Figure 2.8, where the
1/β distribution is presented for charged hadrons. Figure 2.8 shows, that the ToF provides very good
identification of charged hadron, pions, kaons and protons up to p ∼ 1.5 GeV/c and separates protons
from other hadrons up to p ∼ 2.9 − 3.1GeV/c. It also improves electron identification at p = 0 − 1

GeV/c.

Figure 2.8: The ToF 1/β versus momentum p and charge q. The dotted lines illustrate the theoretical
value for various particle species

2.2.3 Trigger System

The STAR trigger system [36] is based on the fast detectors to control the event selection and makes
decision about whether to record the given collision. It can be divided into four layers - Level 0 up
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to Level 3. While the Level 0 is the fastest and is based on signal from the ZDC, the BBC and
the VDP, the Level 1 and Level 2 are more complex and therefore they take more time. The final
Level 3 performs simplified online reconstruction of the events. The minimum bias collisions used in
this analysis are collected with trigger based on the ZDC and the VPD. Hence they will be briefly
described below.

Zero Degree Calorimeter

The ZDC detectors [36] are located at distance of 18.25 m on the East and West sides from the
collisions region, outside of the RHIC dipole magnets. Since the charged particles are deflected by
the dipole magnets from the zero degree region, they are not measured in the ZDCs. Therefore ZDCs
measure the energy of the neutral particle, mainly the spectator neutrons, which travel in the forwards
direction from the collisions. Left panel of Figure 2.9 shows the signal coincidence from the East and
West ZDC. With increasing centrality of the collisions, the measured energy in the ZDCs decreases.
The measured energy corresponds to the number of neutrons. In case of the peripheral collisions,
the measured energy in the ZDC is small due to the fact that the spectator neutrons are bound with
protons in the fragments, which are consequently bend by the dipole magnets.

Each ZDC contains three modules and each of them consists of the tungsten layers with the
scintillator wave shifter, which direct the Čerenkov light to a photo multiplier.
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Figure 2.9: Left: The coincidence of the signal from the signal from the East and West ZDCs. Right:
The distribution of the hits in the East and West VPDs.

Vertex Position Detector

The VPD detectors [37] are situated at a distance of 5.7 m from the center of the STAR detector. Each
VPD detector uses nineteen subdetectors composed of the Pb converter with the plastic scintillator
followed by the read out photomultiplier tube. The VPDs detect photons from the π0 decays, which
travel from the primary vertex position at the speed of light and very close to the beam pipe. The
arrival times are used to determine the z-components of the primary vertex position via the equation

Vz =
1

2
c(Teast − Twest), (2.5)
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where Teast and Twest are the arrival times measured by the East and West VPD, respectively. The
right panel of Figure 2.9 shows the distribution of the hits in the East and West VPD in Au+Au
collisions at

√
sNN = 200 GeV. The resolution of the primary vertex location measured by the VPDs

is ∼ 1 cm.
The VPD detectors are also important for the particle identification since they provide a starting

time tstart for the ToF and MTD detectors. The starting time is given via the relation

tstart = (Teast + Twest) /2− L/c, (2.6)

where L is the distance the VPD subdetectors to the center of the STAR detector. Consequently, the
time of flight measured particle is given by

τ = tstop − tstart, (2.7)

where tstop is measured by ToF or MTD.

2.2.4 Future Upgrade of STAR detector

Since 2000, when the RHIC has started to operate, thanks to progress in accelerator and detector
technologies, the average achieved luminosity is almost fifteen times higher than designed and the
STAR detector has provided excellent data for analysis covering a wide range of physics topics such as
heavy flavor physics, jets, spectra, correlations, flow and event-by-event fluctuation. In the following
years, the STAR physics program will be focused on heavy flavor physics, since the newly installed
HFT and MTD detectors in combination with increasing statistics allow more precise measurements
for heavy flavour physics.

Nowadays the STAR is being upgraded and prepared for the RHIC Beam Energy Scan II planned
in 2019-2020. The inner sector of the TPC will be rebuilt and equipped with a continuous coverage
of the read-out pads for better dE/dx resolution. The acceptance of the TPC will be extended to
−1.5 < η < 1.5. For better identification, the Endcap Time of Flight (EToF) will be also installed
which will provide excellent PID at the forward rapidity. Together with the upgrade of the TPC,
STAR will be able to identify the particle with pT > 60 MeV/c, instead of current 150 MeV/c.

Event Plane Detector (EPD), which is going to replace BBC, will allow a better and independent
reaction plane measurement, which are critical to BES physics.

The remote future of the RHIC facilities is the upgrade on the electron-ion collider, which is being
planned and known as eRHIC [38] with the main physics program focused on study of the structure
of the gluon-dominated matter.



CHAPTER

THREE

FEMTOSCOPY

Femtoscopy, measurements of two particle correlations at small relative momenta, is a unique tool for
measuring the space-time characteristics of the particle emitting source. In this chapter, the theoretical
background of this technique known as femtoscopy and its application in heavy ion collisions will be
introduced.

3.1 Historical background of femtoscopy

In 1950’s Robert Hanbury Brown and Richard Q. Twiss invented a novel technique based on the
photon intensity interferometry [39], which allowed to measure space characteristics of stellar objects.
It was alternative to Michelson interferometry, which was one of the most popular and widely used
techniques in astronomy. This novel method was tested [40] in Australia during summer 1955, where
Brown and Twiss setup two telescopes facilities as shown in the left panel of Figure 3.1. Each of them
consisted of the mirror with diameter of 156 cm, which focused light from the measured star to the
cathodes of the photomultipliers.

Figure 3.1: Left: Two-telescopes facility used for photon intensity interferometry. Right: Results
from the measurement of the photon correlation performed for four various distances of the telescopes.
The dotted line represents the theoretical calculation. Taken from [40].

24
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The output signals from both of the multipliers were amplified together in the linear mixer and then
the readout system directly measured the correlation between the intensity of the photons received at
the both mirrors.

The first measurement was performed with Sirius, a star of spectral type A1 and photovisual
magnitude -1.43 [40], which had never been measured directly at that time. The performance of the
experiment was divided into two stages. During the first stage of the measurement, the distance of the
mirrors was fixed and the experimentalist tried to ensure that observed correlation had not been due
to noise in the equipments and to estimate contributions from the night-sky background and other
stellar objects. In the second stage of the experiment, the observations were performed for different
values of the distance of the telescopes.

Their precise measurement took four months, however a total observation time of 18 hours was
achieved. The right panel of Figure 3.1 shows results from their pioneering measurements. The dotted
line represents predicted value from the astrophysical theory for star with angular diameter 0.0063′′.
As can be seen, the experimental values does not significantly differ from the theoretical calculations.

As a reference to R. Hanbury Brown and R. Q. Twiss and their pioneering measurement, the
terms like "HBT" and "HBT radii" are being used in femtoscopy, however their observation, photon
intensity interference, is not of a quantum origin and has nothing to do with the correlations in particle
physics. The measured correlations in their experiments came from the interference of the two classical
electromagnetic fields and persist the limit of quantum mechanics, when ~→ 0.

A few years later, in 1960, a similar technique was used in particle physics by G.Goldhaber, S.
Goldhaber, W.-Y. Lee and A. Pais [41]. They observed in proton-antiproton annihilations an excess
of pairs of identical pions produced at small relative momenta,

p̄+ p→ π± + π± + nπ0 + . . . . (3.1)

They showed that the probability of like-sing pairs emitted at small angles were larger than for
unlike-sign pions as shown in Figure 3.2. The observed correlations, as they correctly asserted, came
from a quantum statistics.

Figure 3.2: The excess of pairs of identical and non-identical pions at small relative momenta in
p+ p̄ collisions. Taken from [41] .
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Based on this observation the theoretical background of two particle correlation was developed
by G.I. Kopylov and M.I.Podgoretsky in the 1970s [42] who developed mathematical formalism and
introduced a new term: correlation functions. They also demonstrated that the correlation function
provides information on the phase-space distribution of the emitted particles from the source with a
typical space and time extents of order tens fermi. Because of these characteristic sizes, two particle
interferometry is very often called femtoscopy, the name introduced by Richard Lednický.

As it is usually presented by Lednický, the Fermi function was the first function, which provided
excess to spacial extents of the source in particle physics. Already in 1934 [43], when the β+ decay was
discovered, it was observed that the Coulomb final-state interaction modifies the relative momentum
distribution k of e± and nucleus in the β-decay. Hence almost 40 years earlier than Kopylov and
Podgoretsky defined the correlation function, there were the Fermi function F (k,R, Z) that was
sensitive to nucleus radius R, if its charge Z � 1.

3.2 Two-particle correlation function

The two-particle correlation function in the most general case, as used for non-identical interacting
particles, is expressed as

CF (p1,p2) =

∫
d3rS (r, k∗) |ψ1,2 (r, k∗)|2 , (3.2)

where S (r, k) is source function describing emission of two particles at a relative distance r with a
relative momentum q = p1 −p2 = 2k∗. The interaction of these particle is encoded into two-particle
wave function ψ1,2 (r, k∗). The basic derivation of two-particle correlation function will be present
below [17].

The probability of the detection of single particle with four-momentum p = (E,p) emitted from a
position x = (t,x) is related to a single particle emission function S(x, p). The total probability P (p)

arises from integration over the whole source

P (p) =

∫
d4xS(x, p) |p0=Ep . (3.3)

where the emission function is evaluated on-shell, i.e. p0 = Ep =
√
m2 + p2. The probability of

detecting two particles can not be simply written as a product of single-particle probabilities, because
are not independent processes. The likelihood of detecting the first particle emitted with momentum
p1 from position x1 is modified by the second emitted particle with momentum p2 from the position
x2. Hence the total probability of emission of two particle is expressed as

P (p1, p2) =

∫
d4x1d4x2S(x1, p1)S(x2, p2) |ψ (q, r)|2 , (3.4)

where the ψ (q, r) is the wave function for the two particles reflecting their interaction.
Then the two-particle correlation function can be defined as a ratio of the probability of the

emission of two particles to the product of the single-particle emission probabilities. Experimentally,
the correlation function is constructed as a ratio of the measured two-particle inclusive spectra to the
single-particle inclusive spectra [44]. Mathematically, these two definitions can be written as

CF (p1, p2) =
P (p1, p2)

P (p1)P (p2)
=

∫
d4x1d4x2S(x1, p1)S(x2, p2) |ψ (q, r)|2∫

d4x1S(x1, p1)
∫

d4x2S (x2, p2)
=

=
dN12/

(
d3p1d3p2

)

(dN1/d3p1) (dN2/d3p2)
.

(3.5)
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3.2.1 Identical non-interacting particles

The first femtoscopic measurements were performed with the identical pions because they are the
most abundant particle produced in the heavy-ion collisions. Although pions interact by a Coulomb
and the strong force, for the first order of approximation, these interactions can be neglected and only
quantum statistics can be used for a description of their interaction. In such cases, the relative wave
function is express as

ψ =
1√
2

[
e
i
(
x1
′−x1

)
p1e

i
(
x2
′−x2

)
p2 ± ei

(
x1
′−x2

)
p1e

i
(
x2
′−x1

)
p2

]
, (3.6)

where xi are the emission points and x
′

i are the points where the particles were detected. The fact
that they are identical particles implies that they are also indistinguishable. Therefore, the emitted
particle from the position x1 can be detected at x

′

1 or it can be equally likely measured at x
′

2. This
situation is illustrated by Figure 3.3, where the source emits two particles from the position x1 and
x2, which are consequently detected at x

′

1 and x
′

2, respectively.

𝑝"

𝑝#

𝑥"'

𝑥#'
𝑥#

𝑥"

Figure 3.3: The basic principle of the femtoscopy with identical particles. The source emits two
particles with momenta p1 and p2 from the position x1 and x2, respectively. Since the particles are
indistinguishable, the first/second particle can be detected at x

′

1 as well as x
′

1.

Hence the wave function has to be either symmetric or antisymmetric. Since the pions are bosons
and they do not obey the Pauli exclusion principle, their interaction is characterized by the Bose-
Einstein statistics and the wave function Eq 3.6 has to be symmetric (+ sign). While fermions are
particles with half-integer spin obeying the Pauli exclusion principle, the Fermi-Dirac statistic is used
for their description (- sign in Eq 3.6).

By squaring the wave function and applying relations for the relative pair momentum q and the
relative distance r, the following relation is obtained

|ψ|2 = ψψ∗ =
1

2
(2± 2 cos ((p1 − p2) (x1 − x2))) =

= 1± cos ((p1 − p2) (x1 − x2)) = 1± cos (q · r) .
(3.7)
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Putting Eq. 3.7 in Eq. 3.4,

P (p1,p2) =

∫
d4x1S (x1, p1) d4x2S (x2, p2) |ψ (q, r)|2 =

=

∫
d4x1d4x2S (x1, p1)S (x2, p2) (1± cos (q · r)) =

=

∫
d4x1d4x2S (x1, p1)S (x2, p2)±

∫
d4x1d4x2S (x1, p1)S (x2, p2) cos (q · r) =

= P (p1)P (p2)±
∫

d4xd4rS
(
x+

r

2
,K +

q

2

)
S
(
x− r

2
,K − q

2

)
cos (q · r) =

= P (p1)P (p2)±
∫

d4r cos (q, r)

∫
d4xS

(
x+

r

2
,K +

q

2

)
S
(
x− r

2
,K − q

2

)
,

(3.8)

where the relations for the average pair momentum

K =
p1 + p2

2
=
P

2
. (3.9)

and the average pair position

x =
1

2
(x1 + x2) (3.10)

were used. Now one of the most common approximation in femtoscopy, the smoothness assumption,
is applied here. The smoothness assumption is based on the expectation that the emission function
has a smooth dependence on the relative momentum and therefore it is possible to rewrite it as

S
(
x+

r

2
,K +

q

2

)
S
(
x− r

2
,K − q

2

)
≈ S

(
x+

r

2
,K
)
S
(
x− r

2
,K
)
. (3.11)

This approximation is valid only for small relative momentum q.
Since two emitted particles are on-shell, the components of the four vector q are not independent,

but they are related by
q0 = β · q, (3.12)

where
β =

K

K0
≈ K

Ek
=

K√
m2 +K2

. (3.13)

Hence, Eq. 3.8 can be modified as
∫

d4r cos (qr)

∫
d4xS

(
x+

r

2
,K
)
S
(
x− r

2
,K
)

=

=

∫
d3r cos (q · r)

∫
dt

∫
d4xS

(
x+

r + βt,

2
,K

)
S

(
x− r + βt,

2
,K

) (3.14)

and the relative two-particle source function can be defined as

SK (r) =

∫
dt

∫
d4xS

(
x+

r + βt,

2
,K

)
S

(
x− r + βt,

2
,K

)
(3.15)

describing emission of two particles at relative distance r. Finally, introducing Eq. 3.8 and Eq. 3.14
into Eq. 3.5, two-particle correlation function can be written as

CF (P , q) = 1±
∫

d3r cos (q · r)SK (r)
∣∣∫ d4xS (x,K)

∣∣2 . (3.16)

In a case, when the total probability defined by Eq. 3.3 is normalized to the unity, the previous
relation simplifies to

CF (P , q) = 1±
∫

d3r cos (q · r)SK (r) . (3.17)
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As can be seen, the correlation function for identical non-interacting particles is a Fourier trans-
formation of the relative source function, into which the time information is convoluted. The decon-
volution of the t and r can only be done by employing a model describing four-dimensional particle
emission. Hence, the experimental measurements of the correlation function goes hand in hand with
model treatment of space-time evolution of the considered system.

Since the correlation function is a Fourier transformation of the relative source function, it is very
useful to parametrize the source by a function for which its Fourier transform has an analytic form.
One of the most common parametrization is by a Gaussian,

S (x, p) =
1

π2R3
inv

e
−
(

r
Rinv

)2

, (3.18)

where Rinv is the source radius. In such a case the Fourier transform exists and it is an analytical
function

CF (q) = 1± e−q2R2

. (3.19)

Figure 3.4 presents a correlation function for which the source has been parametrized by a Gaussian
according to Eq. 3.18. As can be seen, the correlation function is sensitive to the source size. In the
case of large source the particles are emitted at larger average distance and therefore the correlation
is weaker in comparison with the smaller source.
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Figure 3.4: The correlation function constructed according to Eq. 3.19 for three values of the source
radius.

3.2.2 Identical interacting particles

The previous derivation dealt with non-interacting particles. Pair of identical pions can be, to a certain
degree, treated as pair of identical non-interacting particles. However this approximation cannot be
used when Coulomb and possibly even strong interaction has to be taken into account.

While for like-sign particles, the Coulomb force is repulsive and causes a suppression of the mea-
sured correlation function at low q, the unlike-sign particles are being attracted by the Coulomb
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interaction and an enhancement of the experimentally constructed correlation function at low q can
be observed. The particles can interact also via a strong final-state interaction. In some cases such as
for identical pions and kaons, the strong interaction can be neglected. However, for unlike-sign kaons
or proton-antiproton correlation the strong interaction plays important role and can not be neglected.

Both interactions affect the correlation function at low q. Figure 3.5 shows the theoretically
calculated like-sign kaons correlation function of identical kaon with individual contribution from the
quantum statistics, Coulomb FSI and strong FSI, respectively. The strong interaction is also present
at the low q, but in our cases it is beyond our scale of y-axis. Experimentally, the correlation function,
which is a combination of these functions, is measured. This function is also presented in Figure 3.5.
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Figure 3.5: The theoretical like-sign kaon correlation function constructed with the wave function
which describes Quantum statistics, Coulomb interaction and/or Strong interaction.

In order to take into account the Coulomb and strong FSI, the interaction should be introduced into
the wave function, as used in the theoretical calculation. The detailed description, how to introduced
FSI into the wave function and how to derive the correlation function with such a wave function can
be found in [45].

Another was how to tak care of the Coulomb FSI is to seperately evaluate its contribution using
so called Coulomb factor KCoul (qinv)

The Coulomb wave function, as a solution of the Schrödinger equation [17], can be written in terms
of the confluent hypergeometric function F as

ψc(q, r) = Γ(1 + iη±)e−
1
2q·rF (−iη, 1, z±) , (3.20)
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where
z± =

1

2
(qr ± q · r) =

1

2
qr (1± cosθ) . (3.21)

Here θ it the angle between q and r. The η± are the Sommerfeld parameters depending on the particle
mass m and charge e as

η± = ±me
2

4πq
, (3.22)

where the minus sign is for like-sign pairs, while the plus sign is for unlike-sign particles. Then the
symmetrized Coulomb wave function can be written as

ψr (q, r) =
1√
2

(ψc (q, r) + ψc (q,−r)) . (3.23)

Now, by putting square of Eq. 3.23 into Eq. 3.4, the Coulomb contribution to the probability of the
emission of two particles can be calculated as

Pc (p1, p2) =
1

2

∫
d4x1d4x2S(x1, p1)S(x2, p2) |ψr (q, r)|2 . (3.24)

Finally, the Coulomb factor will be defined as the integrated Coulomb wave function over a Gaus-
sian source

Kcoul (qinv) =

∫
d3rρ (r) |ψr (r, q)|2 . (3.25)

It has been shown in [46] that the Coulomb factor depends on source size Rinv as R−1
inv and vanish

with increasing qinv as

(
1− 2

aRinv (qinv/2)
2

)1/2

≈ 1− 1

aRinv (qinv/2)
2 , (3.26)

where a is the pair Bohr radius [46].
As it will be shown in the following chapter, a correction using the Coulomb factor can be used

during the fitting procedure of the experimentally measured correlation function.

3.2.3 Coordinate system and parametrization

Considering the typical symmetries of nucleon collisions and resulting emission functions, the standard
Cartesian system is not optimal. The most common system for femtoscopic measurement is the
so called Bertsch-Pratt coordinate system [44], often known as the "out-side-long system". This
coordinate system is connected with emitted pair of particles and is characterized by three axis, namely
longitudinal, outward and sideward axis, which are defined the following way. The longitudinal axis
is parallel to the beam direction which typically coincides with z-axis (or beam directon) as shown in
Figure 3.6. The direction of the outward axis is parallel to pair transverse momentum kT . The last
axis, the sideward axis, is chosen so that it is perpendicular to the longitudinal and outward axes. As
can be seen from the choice of the outward axis, the Bertsch-Pratt coordinate system is unique for
each pair of particles. The components of any vector V are projected as

Vlong = Vz

Vout = (PxVx + PyVy) /PT

Vside = (PxVy − PyVx) /PT ,

(3.27)

where P = (P0, Px, Py, Pz) is pair momentum and P 2
T = P 2

x + P 2
y .
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Figure 3.6: The decomposition of q vector in Bertsch-Pratt coordinates system.

While the femtoscopy with identical particles is most commonly performed in the longitudinally co-
moving system (LCMS) of the emitted pair where the components of pair momentum in long direction
vanishes, the correlations of non-identical particles are studied in the pair’s rest frame (PRF).The
LCMS frame can be obtained by the boost from the laboratory frame along the longitudinal axis
(beam direction). Additional boost of the LCMS frame in the out direction provides the PRF. In the
PRF, both particles have the same momentum

k∗ = k1 = −k2 (3.28)

and hence the relative pair momentum is

q = 2k∗. (3.29)

To extract physical understanding of the space-time structure of the measured source, it is useful
to describe the source with a few a parameters. The simplest parametrization of the single parti-
cle emission function, as shown by Eq. 3.18, is a Gaussian. The Gaussian is most commonly used
parametrizaton Although it is known that realistic sources, especially pion source, deviate from Gaus-
sian. The observed deviations were studied by the sophisticated method known as source imaging [47]
and it was shown that the relative source function deviates from the Gaussian. This can be ascribed
to resonance decays.

The simplest correlation function is constructed only in one dimension as a function of qinv which
is defined

qinv =
√

(E1 − E2)2 − (p1 − p2)2. (3.30)

Then the most common parametrization of the source is via parameter Rinv and the one-dimensional
correlation function can be written as

CF (qinv,K) = 1 + λ (K) exp
(
−q2

invR
2
inv(K)

)
, (3.31)

where λ is the lambda parameter and Rinv is the Gassian source radius. Disadvantage of such a
parametrization is the fact that all spacial and temporal information are convulated into Rinv. On
the other hand for low-statistics measurements this can be the only way how to extract space-time
extents.
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Three-dimensional correlation function in LCMS is often parametrized by

C(q,K) = 1 + λ(K) exp
(
−R2

o(K)q2
o −R2

s(K)q2
s −R2

l (K)q2
l

)
, (3.32)

where the interpretaion of the HBT radii is following [48]:

R2
o(K) =

〈(
x̃− βT t̃

)2〉

R2
s(K) =

〈
ỹ2
〉

R2
l (K) =

〈(
z̃ − βlt̃

)2〉
.

(3.33)

Here, βl and βT are the components of the pair velocity. The symbol x̃ denotes the 〈∆x〉 and
〈〉 denotes an average. An important observation resulting from this parametrization, which was
extensively experimentally studied, is that the ratio of R2

o/R
2
s is sensitive to the lifetime βT of the

measured source. The lifetime is also often studied via a difference [48]

R2
diff = R2

o −R2
s = β2

T

〈
t̃2
〉
− 2βT

〈
x̃t̃
〉

+
(〈
x̃2
〉
−
〈
ỹ2
〉)
, (3.34)

where the first term representing the lifetime of the source is dominant [49].
Thanks to increasing statistics in combination with improving detectors which enable to measure

event-plane the correlation function can be parameterized in the most general cases by

CF (q,K) = 1 + λ (K) exp


−

∑

i,j=o,s,l

R2
ij (K) qiqj


 . (3.35)

Here the correlation function depends on the 6 HBT radii, R2
ij and allows azimuthal-sensitive femto-

scopic measurements.

λ parameter

During parametrization of the correlation function, the λ parameter has been introduced. Its im-
portance arises from the fact that the experimentally measured correlation functions are significantly
smaller then the theoretical ones. The λ parameter controls the magnitude of the measured correla-
tion function. The λ factor was initially introduced to account for the partially coherent emission of
particles, but it has been shown that the particle source is completely chaotic. The reason for λ being
smaller than the unity is a contamination of the studied particles with misidentified particles. It is
also influend by decay of long-lived resonance.

3.2.4 Non-identical interacting particles

Femtoscopy with non-identical particles provides additional information about the source, emission
asymmetries [50]. The asymmetries are results of the dynamic evolution of the created system and can
be of both spacial and temporal origin. This is especially interesting for multi-strange baryons which
can be emitted earlier than other hadrons and baryons due to their relatively small cross section with
hadronic matter.

In the case of non-identical particles, the correlation occurs due to Coulomb FSI and/or Strong
FSI. The technique used here to construct the correlation function is the same as in the previous
case except for one difference. According to the value of the k∗, the pairs are divided in two groups.
While the first group contains pairs with positive k∗out, the pairs with negative k∗out are in the second
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ground. The case when k∗out is positive correspond to situation when the slower particle is emitted
closer to the edge of the source and the faster particle catch up with the slower particle. Also earlier
emission of the slower particle and consequently catching up with the faster particle can results in
positive k∗out. In these two cases, the correlation effect is stronger and the duration of the interaction is
longer. Hence the constructed correlation function for positive k∗out are denoted as CF+. The situation
when the faster particle is emitted earlier and/or closer to the edge of the system is characterized by
negative k∗out. Since one particle flies away from the other, the correlation is weaker and the time of
the interaction is shorter. Hence the correlation function are denoted as CF−.

Then these asymmetries can be studied by the "double-ratio" defined as CF+/CF−. In case of the
azimuthal symmetry and symmetry about mid-rapidity, the asymmetries in long and side-direction
should be equal to unity i.e.

〈∆rside〉 = 〈∆rlong〉 = 0. (3.36)

Thus CF+/CF− defined with respect to the signs of k∗side and k∗long should not deviate from unity.
This fact can be employed as a quality-check of the non-identical correlation function.

Only asymmetries which can be observed is in out-direction as a result of [51]

〈r∗out〉 = 〈γ (〈∆rout〉 − β⊥ 〈∆t〉)〉 . (3.37)

As can be seen the observed asymmetry is a superposition of the spacial and temporal asymmetry.
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Figure 3.7: Results on measured pion-kaon correlations. Top panel: correlation function C( ~k∗) for
various pair combinations. Middle and botton panel: double ratio of correlation function C+( ~k∗) and
C−( ~k∗). Taken from [52].

Good example of the femtoscopic measurements with non-identical particles are pion-kaon corre-
lations [52] shown in Figure 3.7. Within statistics errors, the double ratios of the correlation function
defined with respect to the signs of k∗side and k∗long are equal to unity. The observed deviation of the
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double-ratio for out-direction at low k∗ indicates the spacial and/or temporal asymmetry in emission
of kaons and pions which is a typical consequence of collective transverse expansion.

3.3 Hydrodynamic models and femtoscopy

The measured HBT radii, as it was mentioned in the previous subsection, non-trivially mix spatial
and temporal information on the studied source. In addition, the correlation function is sensitive
to the relative source function SK (r) depending on the relative distance of two measured particles
r. If there exists a correlation between emission points and particle momenta then it is important
to understand that the measured radii can not be simply identified as the size of the whole system.
The two-particle correlations provide information about the region of the source from which pair of
particles with given relative momentum can be emitted. This region is called the homogeneity region
and its size is the homogeneity length.

The sizes of the homogeneity regions are influenced by the expansion and space-time evolution
of the measured source. As a results of the collective flow, there is the correlation of the total
pair momentum and position of the emission, noted as x-p correlations. Therefore HBT radii, the
homogeneity lengths, depend on the pair momentum and carry information about the dynamical
properties of the source. The dependence of the HBT radii on the pair momentum is illustrated in
Figure 3.8 showing homogeneity regions for different magnitudes of pair momenta.

Figure 3.8: Homogeneity regions for different pair transverse momenta.

For this reason, to obtain complete insight into space-time evolution of studied source, it is neces-
sary to compare experimental results to models of the heavy-ion collisions which are able to produce
the particles with space-time coordinates at the moment of their freeze-out. Hydrodynamical calcula-
tions are able to satisfactorily describe the evolution of the created system during heavy-ion collisions.
However it is more common and easier to use a family of simplified models which work with hydro-
inspired parametrization of the particle emitting source. There are many such models. Some of them
can be quite sophisticated, including such effect as resonances and particle decays. Example of this
model can be a HYDJET++ [53] or THERMINATOR 2 [54].

3.3.1 Blast-wave parametrization

One of the most commonly used model in femtoscopy is the blast-wave parametrization [55]. The
blast-wave parametrization is based on the hydrodynamic calculations aiming to describe the system
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at the freeze-out with a minimal set of parameters. This parametrization allows to calculate at the
same time bulk properties such as spectra, elliptic flow as well as HBT radii. In contrast with the
full hydrodynamics calculations, the blast-wave model is very fast thus it can be effectively used for
simultaneous fitting of experimentally measured observable which are connected with the configuration
of the bulk of the system.

In this thesis, the blast-wave parametrization [55] developed by Retiere and Lisa will be used.
The model employs eight independent parameters to characterize the source. These parameters are
T, ρ0, ρ2, Ry, Rx, as, τ0 and ∆τ and their physical meaning will be given below. As can be seen,
the parameterization provides insight into the final configuration of the system, rather than the initial
conditions and evolution of the studied system.

The source is parametrized in the Cartesian coordinate system, where the x − z plane is the
reaction plane. The model assumes infinite freeze-out configuration in the z(beam) direction, while
in the transverse (x − y) plane there is elliptical distribution controlled by the radii Rx and Ry. The
system is divided into the source elements and their spatial weighting is given by

Ω (r, φs) = Ω (r̃) =
1

1 + e(r̃−1)/as
, (3.38)

where the normalized elliptical radius is defined as

r̃ (r, φs) ≡
√

(r cos (φs))
2

R2
x

+
(r sin (φs))

2

R2
y

. (3.39)

The r̃ hence corresponds to a given elliptical sub-shell within the solid volume of the freeze-out
distribution. The emission source has a surface diffuseness parametrized by the density profile as.
The box profile of the surface can be realized by setting as = 0, while the Gaussian shape of the
density profile is for as = 0.3

The momentum spectrum of emitted particles from the source element at (x, y, z) is given by a fixed
temperature T of the thermal kinetic motion at the rest frame of the elements. It is then boosted by a
transverse rapidity ρ (x, y). The boost strength depends on the centrality of the collisions. Authors of
the models assumed that for central collision the rapidity profile linearly changes with the normalized
elliptical radius r̃. Hence in absence of the azimuthal dependence of the flow all source elements on
the outer edge of the source would be boosted with the same transverse rapidity ρ0 in the outward
direction. To account for azimuthal flow in non-central collisions, the boost strength is connected with
the azimuthal angle φs. The dependence of the strength of the flow boost and the azimuthal angle
φs is realized via a parameter ρ2. Its physical meaning is the strength of the second-order oscillation
of the transverse rapidity. The left panel of Figure 3.9 illustrates such dependence. Based on these
assumptions the resulting flow rapidity is

ρ (r, φs) = r̃ (ρ0 + ρ2 cos (2φb)) , (3.40)

where φb is the azimuthal direction of the boost and φs is the spacial azimuthal angle. In particular,
this part of the parametrization produces the source anisotropy and therefore its important for un-
derstanding the measurements of the elliptic flow and azimuthal sensitive HBT. The ρ2 > 0 produces
the positive elliptic flow and the boost is stronger in the in-plane direction. On the other hand, the
positive elliptic flows can be generated when ρ2 = 0, however in addition Ry>Rx is needed.

As it was discussed the source is the longitudinally boost-invariant and the freeze-out occurs with
the Gaussian parametrization

dN

dτ
∼ exp

(
− (τ − τ0)

2

2∆τ2

)
, (3.41)
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Figure 3.9: Left: Sketch of the dependence the flow boost (represented by the arrows) on the spacial
azimuthal angle φs and the azimuthal direction of the boost φb. Right: Schematic illustration of the
source compounded of two homogeneity regions. The arrows indicate the direction of the particle
emission. Taken from [55].

in longitudinal proper time of the source τ =
√
t2 + z2. The τ0 corresponds to a proper average

emission time and the emission duration is equal to ∆τ . Within this model the time dependence of
the emission function enters only via Eq. 3.41. In reality one would naturally expects that all other
parameters such Rx, Ry, ρ, etc. would also depend on the time. However such time dependence is
beyond spirit of this model and for its inclusion a true dynamic model is needed.

In a summary a single particle emission function in the blast-wave model is parametrized as

S (x, p) = S (r, φs, τ, η) = mT cosh (η − Y ) Ω (r, φs) e
−(τ−τ0)2

2∆τ2

+∞∑

n=1

(∓1)
n+1

e−np·u/T , (3.42)

where the Y is rapidity and u is the four-velocity. The bulk properties of the studied system like
spectra, elliptic flow or HBT radii can be calculated from the single particle emission function. For
example it can be mentioned that azimuthally integrated transverse particle spectra is given by

dN

pTdpT
=

∫
dφp

∫
d4xS (x, p) . (3.43)

and the elliptic flow as

v2 (pT ,m) =

∫ 2π

0
dφp {cos (2φp)}0,0 (p)
∫ 2π

0
dφp {1}0,0 (p)

. (3.44)

Detailed discussion on how these observables change with different values of the used parameters can
be found in [55].

For the purpose of this thesis, the most important are the conclusions from discussion on how the
HBT radii depend on parametrization of the source. Therefore they will be discussed in more detail.

As authors have noted, their model is in agreement with previous work [48], which also show that
R2
l carries information about the lifetime of the source and can be parametrized as

R2
l (mT ) = τ2

0

T

mT
× K2 (mT /T )

K1 (mT /T )
, (3.45)

whereKn is the n-th modified Bessel function. In combination with the spectra providing temperature
T , this relation can serve to obtain the emission duration of the measured source. Since the R2

s contains
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only spacial information and the value of R2
o is sensitive to the temporal extents of the source, the

dynamical properties of the measured system can be described by the ratio of R2
o to R2

s as well as the
difference R2

o and R2
s.

Finally, the effect of the flow included in the blast-wave model and the temperature on the ho-
mogeneity regions will be discussed. These effects result into a shift between the average freeze-out
space-time point of different particle species as well as different homogeneity lengths for different
particle species.

Due to the radial flow the particles’ emission points and momenta are correlated so that the
particles with higher momenta are emitted more on the outside of the source. This is the effect of
the collective expansion. The size of the emission region is controlled by the transverse flow which
competes with the thermal motion.
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Figure 3.10: The homogeneity region and the average emission points for various particle species
emitted at the same transverse velocity βx = 0.907 on the left-hand side and βx = 0.974 on the
right-hand side. Top panel is for pion, middle panel for kaons and bottom for proton. Taken from
[55].

While the transverse flow decreases the homogeneity length due to the increasing correlation be-
tween position and momentum, the thermal motion is superimposed on the flow and increases the size
of the homogeneity region by random thermal motion of the emitted particles over a volume of the
system. Such phenomenon known as thermal smearing effect makes the particle velocity a sum of the
flow velocity βf and the thermal velocity βt. Thus in the case of non-identical particles with the same
momenta, the average emission points are different.The average emission point of the lighter particle
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is closer to the center of the system and the homogeneity length corresponds more closely to the size
of the studied source. To sum up previous discussion, it can be briefly said that the homogeneity
region decreases with the particle mT , while the shift of average emission point increases with the mT .
Such dependence is illustrated in Figure 3.10 where the homogeneity regions are shown for different
particle species( pions, kaons and protons) emitted with the same velocity. The freeze-out conditions
such as temperature, flow profile, freeze-out time and position are the same for all particle species.
The dashed lines show the shift of the mean emission position of the homogeneity region.

3.4 Overview of femtoscopic results

One of the first femtoscopic measurement of the heavy-ion collisions was performed by the NA35
Collaboration about thirty years ago [56]. Since then, increasing statistics of the data sets allowed
three dimensional correlation measurements with small statistical errors. In combination with the
development sophisticated methods which reduced the systematics errors to the level of ∼ 5% [44],
the femtoscopy has became one of the most precise tool for measuring the space-time extents in heavy-
ion collisions. In the following part of this section the overview of femtoscopic measurements will be
presented.

3.4.1 Collective dynamics and mT dependence

As was already discussed, the dynamical evolution structure of the source over its lifetime is encoded
into its space-time extensions at the freeze-out via space-momentum (x− p) correlations. The ex-
pansion and evolution of the measured system is characterized by the collective flow which generates
a typical falling off the HBT radii with increasing mT of the measured pair. Figure 3.11 shows the
collection of results on the mT dependence of the HBT radii from the π± − π± correlations from
central Au+Au or Pb+Pb collisions. Although the collision energy has changed over the magnitude
of two orders, the observed dependence is surprisingly similar for all energies.
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Figure 3.11: World data set of mT dependence of HBT parameters from π − π femtoscopics mea-
surements. Taken from [44].



3. FEMTOSCOPY 40

As can be seen in Figure 3.12, the mT scaling is the ubiquitous property of the HBT radii. Figure
3.12 presents results on measured Rinv for various particle species with different masses at the same
collisions energy. For not so abundant strange particles such as Λ, only one dimensional correlation
functions are accessible. However all of the particle species follow the typical mT scaling. Such
behavior is typical sign of the collection expansion of the system created in heavy-ion collisions.
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Figure 3.12: The universality of mT dependence of Rinv for different particle species. Taken from
[57].

3.4.2 Hydrodynamic predictions and ”HBT puzzle”

One of the first theoretical prediction based on the hydrodynamic models assumed that in case that the
system created in heavy-ion collisions undergoes the first order phase transition the emission duration
will be prolonged due to rapid increase of the entropy. Such behavior should appear in the sudden
change of the Ro/Rs ratio, since this ratio is sensitive to the lifetime of the source. The prediction
hoped that the magnitude of the ratio will increase of the one order [58]. Hence it was the one of the
most promising candidate for a "smoking gun" for discovery of the first order phase transition.

The collection of the results from these measurement, when the collision energy changes over the
three orders of magnitude is shown in the left panel of Figure 3.13. No sudden change of Ro/Rs has
been observed so far by these systematic studies. Within statistic and systematic errors, the ratio of
Ro/Rs varied from 1.0 to 1.3 . While the Rl and Rs shows change in behavior with increasing energy,
the Ro is almost constant. The observed decrease and ensuing rising of Rl and Rs is related with the
volume of the created system and the particle species which dominated in the created source at the
given collision energy. At low energies the system is dominated by the baryon matter, while at higher
energies there is larger pion multiplicity, hence the source has the larger freeze-out volume.

The right panel of Figure 3.13 provides a detailed view on the results from the π − π femtoscopy
from the BES. The bottom panel presents the ratio of Ro/Rs, while the difference of these HBT radii
is shown in the top panel. In both cases, the significant peak can be observed. It is argued that
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such a behavior is connected with the phenomenon known as the softening of the equation of state
in the vicinity the critical point. Its location in the phase-space diagram can be determined by the
critical divergences of some source parameters. The difference of the R2

o and R2
s is sensitive to the

susceptibility κ and non-monotonic patterns for HBT radii can indicate such divergence of κ [60]. So
far, the location of the critical point is still an open question in the heavy-ion physics.

The detailed comparison of prediction of dynamic models heavy-ion collisions to the experimental
data becomes increasingly more important as experimental data become more precise and include
larger variety of particle species. The hydrodynamical calculation are successful in description of the
momentum observables such as particle spectra and flow in soft sector i.e. pT < 2GeV/c. However
they usually fail in fully reproducing the femtoscopic results as shown in the left panel of Figure 3.14.
As can be seen in Figure 3.14, the various hydrodynamical and hybrid models can not reproduces
at the same time all the HBT radii. Experimentally measured radii from the π − π correlation
are significantly differ than those predicted by models. This discrepancy of the model prediction
and historical lack of evidence for the first order transition was often called the "HBT puzzle". For
resolving the HBT puzzle more realistic models of heavy-ion collisions must be used. It shows that the
necessary components of these models include a viscous hydrodynamics and proper initial conditions.
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Figure 3.14: Left: The comparison of the hydrodynamics calculation to the experimentally measured
HBT radii from the STAR, PHENIX and PHOBOS experiments. Right: Constraining the equation
of state by the femtoscopy. Taken from [57].

The systematic femtoscopic measurements provide excellent test of the dynamical evolution of the
created system in heavy-ion collision as predicted by the hydrodynamic calculations. Its power is
demonstrated in the right panel of Figure 3.14. The speed of the sound c2s controls the expansion of
the system created in heavy-ion collisions. The left sub-part of the right panel of Figure 3.14 shows
theoretical prediction by hydrodynamical models which are unconstrained by measured HBT radii.
As can be seen, the predictions in general do not follow any trend. In case that hydrodynamical
predictions are compared to the femtoscopic results, the predictions are constrained, and all of them
follow one preferred trend.

3.5 New opportunities in femtoscopy

The first femtoscopic measurements were statistically challenges and hence they had to be performed
with the most abundant particles, pions. Therefore the results presented in the previous section come
primarily from the π − π correlations. However the increased luminosity which is achieved nowadays
by the RHIC and LHC brings new possibilities in femtoscopy.

3.5.1 Particle interaction measurement

Since the correlation function calculated in Eq. 3.6 depends on the source function and the two-
particle relative wave function, the problem can be turned around and the particle interaction can be
goal of our study.

Increasing statistics in combination with more detailed knowledge of the spacial and temporal
extensions of the source permits to perform such measurement. One of the first such measurements
has been recently performed by the STAR [61] when the interaction between two antiprotons has been
studied. In this analysis, the scattering length f0 and effective range d0 of the antiproton interaction
were measured. The scattering length is related to the cross section at low energy limit via

σ = 4πf2
0 . (3.46)

For a short range potential, f0 and d0 are related to the s-wave scattering phase shift δ0 and the
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collision momentum k by

k cot (δ0) ≈ 1

f0
+

1

2
d0k

2. (3.47)

The measured correlation functions with the best fits are shown in the left panel of Figure 3.15. The
experimentally measured function was corrected for particle misidentification and residual correlations
which are caused by antiprotons from the weak decays of already correlated primary particles. The
parameters of the interaction was extracted using the Lednický and Lyuboshitz analytic model [45]. As
can be seen in the right panel of Figure 3.15, within systematics errors, the experimentally measured
f0 and d0 for the antiproton-antiproton interaction are consistent with the ones of the proton-proton
interaction.
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3.5.2 Measurements in the region of a narrow resonance

Increasing statistics have already enabled to perform the first femtoscopic analyses with non-identical
interacting particles. In addition to π − π correlations, such studies can provide a new point of view
on the created system in the heavy-ion collisions since the various particle species can be sensitive to
different effects and different collision stages. However due to lower abundances of these particles, only
one dimensional correlation functions have been usually constructed. A solution to these difficulties
can be femtoscopy with pairs of particles which contain a narrow, near-threshold, resonance.
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It has been predicted that correlations due to the strong final-state interactions in a system where
a narrow resonance is present will be sensitive, in the region of the resonance, to the source size and
momentum-space correlations [45]. It is expected that the correlation function will be more sensitive
in the region of the resonance where the strength of the correlation should change with the source
size r as ∼ r−3 [45] in comparison with measurements at the very low relative momenta, where the
correlation function depends on r−2 or r−1. In addition, these measurements will be statistically
advantageous, since the two-particle spectra fall rapidly at low relative momenta. Therefore such
a measurement can provide complementary information to the measurements at very low relative
momenta.

The sensitivity of the correlation function in the region of the resonance have been already observed
at low energy experiments. The left panel of Figure 3.16 shows triton - alpha particle correlation
function from measurements which were performed for 40Ar-induced reactions on 197Au at energy
E/A = 60 MeV [62]. The triton - alpha particle correlation function exhibits several sharp structures
resulting from a high lying excited state of 7Li which decays into the triton-alpha channel. The
theoretical description of such correlation functions can be considerably complicated, nevertheless
authors of this analysis [62] made the first estimation. The experimentally constructed deuteron -
alpha particle correlation functions, where resonance can be observed, were compared to theoretical
correlation function for different source size as is shown in the left panel of Figure 3.16. These functions
were predicted by the final-state interaction model and it proved that the correlation function are
sensitive to source size in the region of resonance.

Figure 3.16: Left: Triton - alpha particle correlation function from 40Ar-induced reactions on 197Au

at energy E/A = 60 MeV. The peaks correspond to excited state of 7Li, which decay into the triton-
alpha particle channel. Right: Measured deuteron - alpha particle correlation function are compared
to theoretical predictions which takes into account the final-state interaction. Taken from [62].

At high-energy heavy-ion collisions, the similar sharp structure of the correlation function can be
also expected. As an example of such function, Figure 3.17 presents the theoretical unlike-sign kaons
correlation function calculated by EPOS model. As can be seen, several resonances are visible in the
correlation function. In EPOS all resonances, especially the φ (1020) which is of particular interest for
this work are thermally produced. The difference between the thermal production and the previously
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mentioned production via the final-state interaction had been widely discussed in [63] and for a case
of sudden freeze-out their equivalence had been proved [64].

Figure 3.17: Theoretical calculated unlike-sign kaons correlation function calculated by the EPOS.
Taken from [62].

The femtoscopy in the region of a narrow, near-threshold, resonance brings challenges for the
femtoscopics formalism which has been developed for the measurements at low relative momenta. The
classical assumptions such as the smoothness approximation and the equal-time approximation will be
pushed to the limits. The approach proposed by Lednický [45] extends the femtoscopic formalisms to
higher relative momenta between the two emitted particles in a system where the final-state interaction
contains a narrow, near-threshold, resonance. The Lednický’s FSI model includes the treatment of the
φ(1020) resonance for unlike-sign kaons correlation function and the Ξ∗(1530) resonance for unlike-sign
π − Ξ correlation. The Lednický model has so far been only to results

The Lednicky model has so far been compared only to results from unlike-sign kaon correlation
measured by NA49 collaboration [65] and the preliminary STAR results on π − Ξ correlations [66],
[67].

In the analysis of π − Ξ correlations, the three-dimensional correlation functions have been de-
composed in the spherical harmonics. The advantage of such method is the fact that the correlation
function [68]

C(k∗, θ, ϕ) =
√

4π

∞∑

l=0

l∑

m=−l
Al,m(k∗)Y ∗l,m(θ, ϕ), (3.48)

is linear combination of the coefficients Al,m(k∗) and the spherical harmonics Y ∗l,m(θ, ϕ). All space-
time information about the source is then encoded into the coefficients. While the monopole - A0,0 -
describes the size of the source, the shift of the mean emission points in out direction is controlled by
the dipole A1,1.

The preliminary STAR results are presented in the right panel of Figure 3.18. Although this
analysis was statistically challenged, the extracted correlation function shown a strong centrality
dependence in the region of the resonance. Figure 3.18 shows the comparison of the coefficients to the
model predictions. It can be seen that none of the used model, FSI, blast-wave neither HYDJET++,
did not successfully describe the measured data.
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Figure 3.18: Experimental π − Ξ correlation function decomposed into spherical harmonics is com-
pared to FSI calculations with gauss, blast-wave and HYDJET++. Taken from [69].
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FUNCTION

The analysis presented in this work is deal with the femtoscopics correlations of unike-sign kaon,
including the narrow φ(1020) resonance. The φ(1020) resonance with the lifetime of ∼ 42 fm/c is
characterized by the decay width Γ = 4.3 MeV and the decay momentum in the rest frame k∗ = 126

MeV/c. A detailed description of the analysis procedure is presented in this chapter. Consequently
the data set, event selection, track selection and kaon identification are described. All these cuts lead
to construction of two-particle correlation function that is shown in the last section of this chapter.

4.1 Data set

The data presented in this work was taken in the year 2011 in Au+Au collisions at
√
sNN = 200

GeV with the minimum bias trigger by the STAR experiment at RHIC. The minimum bias trigger
required a coincidence between the East and West ZDC and VPD detectors, respectively. The data
are protected against the pile-up. This pile-up occurs when there is such a high rate of collisions that
the TPC and other detectors do not have enough time to readout all tracks before the next collision
takes place. Therefore it could happen that event would contain a contamination of particles coming
from the subsequent events. The detailed information about the used data set in STAR notation is
listed below.

• Trigger: vpd-zdc-mb-protected

• Offline Trigger ID: 350003, 350013, 350023, 350033, 350043

• Production: P11id (library: SL11d)

• FileCatalog Command: trgsetupname=AuAu200_production_2011,filetype=daq_reco_MuDst,
filetype=daq_reco_MuDst,filename∼st_physics,collisions=AuAu200,sanity=1,
available=1,tpx=1,tof=1,storage!=HPSS

• Number of Events (before event cuts): ∼730M

The total number of ∼730M events entered the analysis was on which the event cuts were then
applied.
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4.2 Event selection

In order to select events that occurred in the center of the TPC, a cut on the position of the primary
vertex along the beam direction (z-axis) was applied. The events were required to have |Vz| < 30 cm,
where Vz is the z-coordinate of the primary vertex position measured by the TPC. Such event cut
assures that detector acceptance does not change significantly with Vz. The primary vertex position
is reconstructed from TPC tracks. Even though, the events are protected against the pile-up which
removes large part of the effect, an additional cut on this phenomenon was also applied. This selection
criteria uses that fact that the Vz can be calculated from the measured tracks in the TPC as well as
by VPD detector that determines Vz of the event on which was triggered. Therefore, the difference
between the vertex position measured by the TPC and VPD detectors

∣∣Vz − V V PDz

∣∣ were required to
be smaller than 5 cm. Both of applied event selection criteria are shown in Figure 4.1.
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Figure 4.1: Left: The distribution of the z-coordinate of the primary vertex position measured by
the TPC versus the z-coordinate of the primary position on which VPD triggered. The red lines
represent applied cut. Right: The distribution of the z-coordinate of the primary vertex position after
applied cut.

4.2.1 Centrality definition

There are multiple possible ways how to experimentally define event centrality. The most common
method is via the multiplicity of the charged particles. Other observables which are connected to the
unobserved impact parameter are the signal from the both of the ZDC detectors and the number of
hits recorded by the ToF detector. Correlation between the multiplicity of tracks in TPC and the
signal from the ZDC detectors and the ToF Tray multiplicity, respectively is shown in Figure 4.2.

In case that the centrality definition is based on multiplicity, the number of charged tracks in TPC,
it brings some disadvantages. One of them is a possible dependence of the multiplicity on the primary
vertex position. The standard method for removal of this dependency used in the STAR experiment
is via a StRefMultCorr class. This method is based on the Glauber model and uses information
about the ZDC coincidence rate and the z-coordinate of the primary vertex position. The corrected
multiplicity is then calculated as

refMult_corr = (reftMult_raw + gRandom→ Rndm()) · correction_luminosity · correction_Vz,

where the correction_Vz is the correction on the z-coordinate of the primary vertex position and
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Figure 4.2: Left: The correlation between the measured signal by ZDC detectors and TPC multi-
plicity. Right: The distribution of the reference multiplicity and the ToF tray multiplicity.

correction_luminosity is related with the ZDC coincidence rate. These correction are calculated
in a following way:

correction_Vz =
zpar0 + zpar7

zpar0 + zpar1 · Vz + zpar2 · V2z
,

and

correction_luminosity =
1

1 + lpar1
lpar0

· zdcCoincidenceRate
1000

.

The values of the parameters lpari and zpari can differ for each recorded event and have to be
experimentally obtained. The values of these parameters in the StRefMultCorr class which was
used in the presented analysis are from STAR internal study for Run11. Then StRefMultCorr class

allows to recalculate and correct the measured (uncorrected) multiplicity. With the newly obtained
corrected multiplicity the centrality can be determined based on the corrected multiplicity. Table 4.1
lists the multiplicity boundaries used in the centrality definition.

centrality Multiplicity
0-5% >466
5-10% >396
10-15% >335
15-20% >281
20-25% >234
25-30% >193

centrality Multiplicity
30-35% >156
35-40% >125
40-45% >98
45-50% >76
50-55% >58
55-60% >43

centrality Multiplicity
60-65% >31
65-70% >22
70-75% >15
75-80% >10

Table 4.1: Multiplicity boundaries used in the centrality definition.

For the analysis presented in this work, events are divided into 5 bins corresponding to 0-5%,
5-10%, 10-30%, 30-50% and 50-75% centrality. Figure 4.3 shows the multiplicity distribution of the
corrected multiplicity divided into these 5 centralities bins. This binning is used for construction of
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one-dimensional correlation function. Since the first two bins are statistically limited they are later,
in construction of the three-dimensional correlation function, merged into one bin.

Mean    505.3
RMS     27.11

Multiplicity
0 100 200 300 400 500 600 700

C
ou
nt
s

1

10

210

310

410

510

610

710
Mean    505.3
RMS     27.110-5%

5-10%10-30%30-50%
50-75%

Figure 4.3: The corrected multiplicity distribution and corresponding centrality.

In order to remove all non-femtoscopics correlations and to obtain uncorrelated two-particle dis-
tribution which is used as the denominator of the experimentally constructed correlation function,
mixed pairs from similar events are required. The mixed pairs are constructed in such a way that
each particle from one event is mixed with all particles from events belonging to a sub-class of similar
events. The division into the subclasses of similar events is done according to the position of the
z-coordinate of the primary vertex and uncorrected multiplicity. In total, events were divided into 10
bins in the primary vertex position (1bin per 6 cm) and 7 bins in the multiplicity distribution (1 bin
per 100 units of multiplicity).

4.3 Particle selection

4.3.1 Track quality cuts

From the events satisfying the event selection criteria good-quality tracks, particle trajectories, were
selected. Only primary tracks with pseudorapidity |η|<1.0 were accepted. Such cut makes sure that
the measured particles fall into the detector acceptance. Then primary tracks were required to have
the distance of the closest approach to the primary vertex smaller than 3 cm. The application of these
track quality cuts is shown in Figure 4.4. This way only primary particles were used.

Another standard cut which is usually used for the track quality selection is based on the minimal
number of reconstructed hits in TPC and the criterion on the ratio of fitted hits to maximum number
of hit points. The purpose of these quality cuts is to reduce effects such as track merging or imprecisely
reconstructed tracks. Track were required to have minimal 15 fit points in TPC and the ratio of fitted
hits to maximal possible hits in TPC was more than 0.52 . There are also criteria which were used
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Figure 4.4: Left: The distribution of the pseudorapidity of tracks. Right: The distribution of the
DCA of tracks. In both cases, the red dotted lines represents applied cuts.

by tracking system in order to associate track in TPC with a hit in the ToF.

4.3.2 Kaon identification

From the tracks which passed the quality cuts described in the previous section, kaon tracks are
selected. In presented analysis, the kaon identification is based on a cut on specific ionization energy
loss in the TPC and a cut on mass squared measured by the ToF. These selection criteria are described
in more detail below. Since the TPC enables to identify particles with the transverse momentum pT

larger than 0.15 GeV/c, in addition a cut on the transverse momenta of the reconstructed tracks was
applied. Hence only tracks with pT > 0.15 GeV/c which fulfilled both of the identification cuts were
identified as kaons.

TPC cut

As was already discussed in the Chapter 2, charged particles are identified via the specific energy loss
dE/dx in the TPC gas. Due to a finite resolution of the TPC, the measured energy loss deviates from
the theoretically expected value calculated using Bichsel function [34]. In case that the measured
distribution of the specific energy loss has a Gaussian distribution with the mean value determined
by the theoretical value of dE/dxtheo and with the standard deviation σK , the normalized energy loss
for kaon can be defined as

nσK = ln

(
dE/dxmeas

dE/dxtheo

)
/σdE/dx, (4.1)

where dE/dxmeas is the measured value of the energy loss. The normalized energy loss is scaled by
the resolution σdE/dx.

In this work, the tracks were required to have nσK in the range between -3 and 3. As can be seen
in Figure 4.5, by applying this cut the hadron contamination can be eliminated up to momentum p

< ∼0.55 GeV/c. However there is a significant presence of the pions at negative nσK and protons
at positive nσK for higher momenta. The reason for this contamination is the fact that areas of the
specific energy loss of pions, kaons and protons overlap for higher momenta as can be seen in Figure
2.7. In order to remove the remaining hadron contamination, the ToF cut had to be used as shown
in the right panel of Figure 4.5
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Figure 4.5: Left: The distribution of the nσK versus momentum p of tracks in TPC. Right, Top:
The distribution of nσK versus momentum p without ToF cut. Right, Botton: The distribution of
nσK versus momentum p with ToF cut.

ToF cut

The ToF measures the time of flight β. When this information is combined with the measured
momentum in TPC, the particle mass m can be calculated by Eq. 2.4. As can be seen in the right
panel of Figure 4.5, in comparison with TPC, the ToF enables to separate charged kaons from other
hadron up to momentum ∼ 1.55 GeV/c. Therefore tracks were required to have momenta in the range
0.15 < p < 1.55 GeV/c. Since for kaons m2

K = 0.2437 GeV2/c4, the last identification cut requires the
track to have the mass squared in the range 0.21 < m2 < 0.28.

The applied identification selection criteria enable to obtain very pure sample of kaons as is shown
in Figure 4.6.

Figure 4.6: The distribution of mass square of particle vs nσK . Red lines represent nσK cut and
black lines represent cut on particle mass.
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4.4 Pair cuts

Despite very clean kaon sample the two particle distribution is affected by detector defects arising
from the tracking reconstruction imperfections. The influence of these imperfections exhibits at the
low relative momentum qinv, where the measured correlation function is the most sensitive to space-
time extents of the source. These effects are track splitting and track merging. In the following two
subsections, the cuts which eliminate these effects will be described and tested.

4.4.1 Track splitting

The case, when track from single particle is reconstructed as two very close tracks, is called the track
splitting [17]. The measured tracks then have very similar momenta, hence their relative momentum
qinv is small. Therefore the track splitting causes an enhancement of pairs at low relative momentum
qinv. In order to remove these split tracks the locations of the hits for each track in the pair in the
pad-rows of the TPC were studied. It was performed via the so-called "Splitting level" (SL) calculated
as

SL =

∑
i Si

NHits1 +NHits2
, (4.2)

where

Si =





+1. . . one track leaves a hit on pad-row

-1. . . both tracks leave a hit on pad-row

0 . . . neither track leaves a hit on pad-row,

(4.3)

where i is the pad-row number of the TPC, and NHits1 and NHits2 are the total number of hits
associated to each track in the pair. The main principle of the splitting level is shown in Figure 4.7,
where the SL is calculated for four possible cases. As can be seen in Figure 4.7, for two clearly distinct
tracks the splitting level takes value equal to -0.5. On the other hand, in case of the possibly split
track the splitting level is equal to unity.

SL	  =	  -‐0.5 SL	  =	  0.4 SL	  =	  1 SL	  =	  1

Figure 4.7: The description of the anti-splitting cut, which is applied on four possible cases. Red
circles are hits assigned to one track, blue circles are assigned to the other.
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To remove split tracks, every pair has to fulfilled anti-splitting cut. The value of the anti-splitting
cut is determined from the experimentally measured correlation function for different SL. Figure 4.8
shows like-sign kaon correlation functions constructed for different values of the SL. As can be seen
the effect of the track splitting is not present. The absence of the splitting tracks was also confirmed
for unlike-sign kaon correlation functions.
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Figure 4.8: One-dimensional like-sign kaon correlation function for different values of SL.
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Figure 4.9: The distribution of real pairs versus relative momentum qinv and splitting level SL.

As a cross-check of no influence of the track splitting, the distribution of real pairs versus relative
momenta qinv and splittting level were constructed. From the first femtoscopic measurements [17],
one would expect to observe the enhancement at low qinv and at higher value of the SL. However,
Figure 4.9 does not show any enhancement. Similarly, no presence of the track splitting has been
recently reported in [70]. One of the possible explanation is the selection criterion on the number of
hits in TPC. In the past, track reconstruction was performed with lower number of the hits in TPC
and therefore the track splitting was more frequent. Nevertheless thanks to high available statistics
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it was possible to apply standard SL < 0.6 cut to real and mixed pairs and remove whatever possible
evidence of the track splitting.

4.4.2 Track merging

Besides of track splitting, it can happen that two particles with similar momenta are reconstructed
as only one track. It happens when two particles leave hits in the TPC so close to each other that
it is beyond the resolution of the read-out pads in the TPC. Two hits are considered merged if the
probability of separating them is less than 99% [17]. To determine the maximum fraction of merged
hits which eliminates the effect of track merging, the correlation function were constructed for different
values of the fraction of the merged hits. Figure 4.10 shows the one-dimensional like-sign correlation
functions for different values of the maximum fraction of merged hits. As can be seen, the correlation
function is affected by the fraction of merged hits. This effect can be reduces, when the pairs were
required to have a fraction of merged hits smaller than 10%.
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Figure 4.10: One-dimensional like-sign correlation function for different values of fraction of merged.

4.4.3 kT cuts

Finally, the last applied cut is on the average pair transverse momentum kT defined as

kT =

(
p1 + p2

2

)

T

, (4.4)

where p1 and p2 are the momenta of the first and second particle in the given pair, respectively. As
was already discussed, homogeneity regions are expected to depend on the pair transverse momentum.
Hence such cut enables to change the size of the measured volume at the constant centrality and
temperature of the system. The average transverse momentum can be rewritten in the term of the
transverse mass of the pair as

mT =
√
k2
T +m2

0, (4.5)

where m0 is the particle’s mass. This relation is suitable for study of the mT dependence of the
measured HBT radii which reflects the dynamics of the systems.
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In our analysis, the pairs were required to have the average transverse momenta in the range from
0.05 GeV/c to 1.25 GeV/c. This range was consequently divided into four bins: 0.05-0.35, 0.35-0.65,
0.65-0.95 and 0.95-1.25 GeV/c. Figure 4.11 shows the kT distribution of real like-sign pairs.
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Figure 4.11: The distribution of real pair transverse momentum.

4.5 Raw one-dimensional correlation functions

Finally, the correlation function CF (qinv) can be constructed as a ratio of the correlated two-particle
distribution from the same event, Nsame (qinv) and the uncorrelated two-particle distribution from
mixed events, Nmixed (qinv):

CF (qinv) =
Nsame (qinv)

Nmixed (qinv)
=

real pairs

mixed pairs
. (4.6)

Figure 4.12 presents results on the unlike-sign kaons correlation function from Au+Au collisions
at
√
sNN = 200 GeV. The left panel of Figure 4.12 presents unlike-sign correlations for 4 kT bins and

centrality 30-50%. Centrality dependence of unlike-sign correlation functions, which are integrated
over kT is shown in the right panel of Figure 4.12. While at the low qinv the attractive Coulomb
interaction and strong interaction in s-wave can be observed, in the region of qinv ∼ 0.25 GeV/c the
strong interaction in p-wave via φ(1020) resonance in FSI is present.

As can be seen, the correlation function is sensitive to the source size. In particular, a strong
dependence on collisions centrality and on the pair kT is observed in the resonance region. The height
of the φ peak decreases significantly with the centrality as well as with kT .

Similarly also the like-sign correlation functions were constructed, separately for positively and
negatively charged pairs of kaons. The like-sign kaon correlation functions are also sensitive to the
space-time extents as shown Figure 4.13. At the low qinv, the repulsive Coulomb interaction which
competes with Bose-Einstein statistics can be observed. However the region of the low qinv is strongly
effected by the statistical uncertainties resulting from the rapidly falling two-particle spectra at low
relative momenta.
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Figure 4.12: Top: One dimensional unlike-sign correlation functions for centrality 10-30% and for 4
kT bins. Bottom: One dimensional unlike-sign correlation functions for 5 centralities.
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Figure 4.13: Top: One dimensional like-sign correlation functions for centrality 10-30% and for 4
kT bins. Bottom: One dimensional like-sign correlation functions for 5 centralities.
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FUNCTIONS

Even when very strict selection criteria have been applied, there are additional effect that can alter the
strength of the correlation function. They can decrease the strength of the experimental correlation
function and affect the extracted HBT radii. One of the main sources of these imperfection is the
particle misidentification, when selected the kaon was not actually a kaon. Another effect is related
to finite detector momentum resolution.Corrections for both of these effects are introduced below. In
this chapter the Coulomb correction required for fitting like-sign correlation functions together with
the fitting procedure is also discussed.

5.1 Purity correction

Although the single particle cuts were strict and required identification by the ToF in combination
with the TPC, it can not be ruled out that some pions or protons could be inaccurately identified as
kaons. The misidentified particles then weakened the measured correlation function.Therefore experi-
mental correlation function has to be corrected for misidentification of particles. Since the correlation
function depends on the relative momentum qinv, the purity correction denoted as PairPurity has to be
calculated as a sum of the product of the single particle purities weighted by the probability that two
given particles with momenta p1 and p2 form pair with the relative momentum qinv. Mathematically
it can be expressed as

PairPurity (qinv) =
∑

p1,p2

Purity (p1)Purity (p2)Prob (qinv|p1p2) . (5.1)

The purity of the particle with momentum pi is calculated as

Purity (pi) = PurityTPC (pi)PurityToF (pi) , (5.2)

where PurityTPC (pi) is the purity of particles which fulfilled nσK cut at the given momentum
pi, while the purity of particles with momentum pi which met requirement on their mass squared
is referred as PurityToF (pi). The PairPurity has been studied on fraction of the whole sample,
ca ∼ 150M events.
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5.1.1 TPC purity

The TPC purity of the particle sample which fulfilled all selection criteria but without applying the
nσK cut was extracted from the nσK distributions as a function of particle momenta p. Figure 5.1
shows example of the two nσK distributions of positively charged particles with momenta 0.59 < p <

0.61 GeV/c and 0.99 < p < 1.01 GeV/c for centrality 10-30%. While for the lower momenta, the
three Gaussians distribution are clearly observed, with increasing momenta the Gaussians are merged
and finally only one Gaussian remains. The Gaussian centered at zero corresponds to kaons. This
Gaussian is gradually contaminated by the pion Gaussian coming from the negative value of the nσK
and for very high momenta also by the proton Gaussian from the right side. Such behavior is in
agreement with presented Figure 4.5 where nσK as a function of momenta p was shown.

The purity was calculated as the ratio of the kaon Gaussian integrated from -3 to 3 from which
the pion’s and proton’s contributions were subtracted and multi Gaussian also integrated from -3 to
3 expressed as

PurityTPC =

∫ 3

−3
NK (σ) dσ −

∫ 3

−3
Nπ (σ) dσ −

∫ 3

−3
Np (σ) dσ

∫ 3

−3
Nall (σ) dσ

, (5.3)

where N(σ) is Gaussian distribution. The boundaries of the integral are equal to the range of the
applied nσK cut.
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Figure 5.1: The distribution of nσK for 0.59 < p < 0.61 GeV/c and 0.99 < p < 1.01 GeV/c for
positively charged kaons for centrality 10-30%. Blue line represents kaon Gaussian, magenta line
represents pion Gaussian and green line if for proton Gaussian. Their sum is represented by red
dotted line.

It is apparent that the fitting becomes complicated with increasing particle momenta p since the
Gaussians start to overlap. In order for the fits to convergence, some of the fit parameters their value
have to be constrained. There are two possible ways how to limit parameters of the pion Gaussian.
The first is based on the theoretical calculation, when the distance between the mean of pion and
kaon Gaussian for given momentum is calculated from Bichsel function [34]. However such approach
does not take into account detector effects. In our analysis, the identification cuts were changed to
select pions and the mean of the pion Gaussian distribution was studied as a function of nσK . This
additional study provided information on how to restrict the maximal and minimal values of the mean
of the pion Gaussian at the moment when it was overlapped by the kaon Gaussian.

Figure 5.2 shows extracted purity as a function of particle momentum for positively charged kaons
for centrality 10-30%. As can be seen, the contaminations of pions and protons is removed by the
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ToF cut hence the TPC purity is very high, around ∼ 98% and slightly decreases with increasing p.
Similarly high purity was also observed for all centralities. The same applies for negatively charged
kaons.
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Figure 5.2: The TPC purity as a function of momentum p.

5.1.2 ToF purity

Similar method was employed to extract the purity of the kaon sample for the ToF cut. The ToF purity
was extracted from the mass squared distribution. Unlike in previous cases, now the distributions were
fitted by Student’s t-probability distribution defined as

N Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)
(

1 +
(x− µ)

2

ν

)− ν+1
2

, (5.4)

where ν is the variance, µ is the mean and N is the constant. All of these parameters were free
parameters of the fit. Figure 5.3 shows the distribution of the mass squared for 0.95 < p < 1.03

GeV/c and 1.43 < p < 1.51 GeV/c for positively charged kaons for centrality 30-50%. As can be seen
in Figure 5.3, now the mean of the distribution is well-defined in contrast to the previous TPC cases.
The means should be equal to squared values of pion and kaon masses, respectively. The disadvantage
of this procedure is that even after fitting there is some remaining residual background that was fitted
by the third-order polynomial functions. In our analysis, it is assumes that the contamination from
protons can be neglected.

The ToF purity as a function of the momentum p is shown in Figure 5.4. Similarly as for the TPC
purity, also the ToF purity is very high.

5.1.3 Probability matrix

Finally the PairPurity is calculated according to Eq. 5.1 where the probability that two given particles
with momenta p1 and p2 form pair with the relative momentum qinv is determined by the probability
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Figure 5.3: The distribution of the mass squared of positively charged kaons for 0.95 < p < 1.03

GeV/c and 1.43 < p < 1.51 GeV/c for centrality 30-50% measured by ToF. Red lines represent pion
and kaon Student’s t-probability distributions. Blue line is for Multi-Student’s t-probability and the
background is represented by the green lines.
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Figure 5.4: The ToF purity as a function of momentum p.

matrix obtained from measured data. Figure 5.5 shows probability matrix for positively charged pairs
of kaons for centrality 10-30%.

The PairPurity for positively charged kaons for centrality 30-50% is shown in Figure 5.6. As can
be seen, the purity is very high. Similarly high purity was measured for all centralities as well as for
negatively charged kaons, even for unlike-sign kaons. Hence the applied correction on raw correlation
function CF raw (qinv) via relation

CF corr (qinv) =
CF raw (qinv)− 1

PairPurity (qinv)
+ 1 (5.5)

was rather small.
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Figure 5.5: The probability matrix distribution of two particles with momenta p1 and p2 forming
pair with the relative momentum qinv.
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Figure 5.6: The PairPurity for positively charged kaons for centrality 30-50%.

5.2 Coulomb correction of like-sign correction function and fit-

ting procedure

In case of the unlike-sign correlation function, there is no analytical parametrization that could be
used for fitting. Nevertheless these functions can be fitted numerically. One of the most sophisticated
fitting program enabling fitting without the knowledge of the exact form of the correlation function
is CorrFit [71] developed by Adam Kisiel. In the presented work, the CorrFit has not been employed
so far due to its inherent difficulty. In future it is possible that it will be used.

Instead of unlike-sign correlation function, the like-sign correlation function can be fitted. Hence
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the source parameters such as the sizes of the source and the λ parameter can be obtained so far and
used for calculation of the unlike-sign correlation function. The kaons are charged particles, hence
the correlation function can not be simply fitted by Eq. 3.31 or Eq. 3.32 because of the dominant
Coulomb interaction at the low qinv. The Coulomb interaction is repulsive for like-sign kaons and
causes a suppression of the correlation function at the low qinv.

In presented analysis the Bowler-Sinyukov fitting procedure was used [72]. This method is based on
separation of the Coulomb interaction from the Bose-Einstein correlations. Then the one-dimensional
correlation function, which is normalized to unity at large qinv is fitted to:

CF (qinv) =
[
(1− λ) + λKCoul (qinv)

(
1 + e−q

2
invR

2
inv

)]
N , (5.6)

where N is the normalization and KCoul is the Coulomb factor defined by Eq. 3.23. The free
parameters of the fit are Rinv, λ and N . The fit region is for qinv < 0.4 GeV/c.

The normalization has to be calculated in the region where there is no correlations. Therefore the
first estimation of the normalization was calculated in the range from qinv = 0.6 GeV/c to qinv = 1.0

GeV/c. In this region, the measured correlation function is already flat since the Bose-Einstein
statistics as well as Coulomb interaction are dominated at the low qinv.

In case of the three-dimensional correlation function, the fitting function is expressed as

CF (qo, qs, ql) =
[
(1− λ) + λKCoul (qinv)

(
1 + e−q

2
oR

2
o−q2

sR
2
s−q2

lR
2
l

)]
N . (5.7)

Also here the correlation function is corrected by the Coulomb factor that depends on qinv. However,
in our cases, due to low statistics, the normalization N was fixed on the value calculated at the region
0.3 < qi < 0.5 GeV/c. Similarly to the fitting of one-dimensional correlation function, the fitting
range is from qi = 0 GeV/c to qi = 0.4 GeV/c.

In both cases, the best fit is determined on the principle of maximum log-likelihood minimization
function [73] defined as

χ2 = −2

[
A ln

(
C (A+B)

A (C + 1)

)
+B ln

(
A+B

B (C + 1)

)]
, (5.8)

where C is the ratio of the numerator A to denominator B. Although no significant difference between
the log-likelihood method and the classical χ2 fitting was observed during fitting one-dimensional
correlation function, the implementation of this procedure was motivated by the nonconvergence of
the χ2 method in fitting three-dimensional correlation functions. This procedure is more adequate
for lower statistics, where the χ2 test converges with difficulty. The divergence of the χ2 is caused by
the fact that the ratio of two Poisson distribution is not Poisson distribution itself, especially when
taking the ratio of small numbers [44]. The log-likelihood method is described in [73] where the full
derivation of the minimization function can be found.

The systematic errors related with the fitting procedure were studied by varying fit range and the
normalization region.

The results of fitting, the extracted HBT radii and the λ parameters, are intentionally not presented
in this section since the correlation functions are still uncorrected on the momentum resolution.
However, the procedure providing correction for momentum resolution needs a first estimate of the
HBT radii and the λ parameters. This procedure will be presented in following section. Only after
application of all corrections on experimental correlation functions, the final HBT radii and the λ
parameters will be extracted and presented.
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5.3 Momentum resolution correction

Due to the finite particle momentum resolution of the TPC, there is a systematic uncertainty in the
determination of qinv which leads to decrease of the strength of the measured correlation function.
The effect is stronger in low qinv hence it has significant influence on the extracted radii. Therefore
these effects of the momentum resolution have to be corrected.

The magnitude of this effect can be estimated by Monte-Carlo simulations when the simulated
particle is embedded into the real event and passed through whole reconstruction process. Such sim-
ulation can provide information about the momentum resolution and its influence on the measurable
variables.

The components of the real momentum p can be expressed in the term of the measured transverse
momentum pT , the azimuthal angle ϕ and the polar angle θ as

px = pT cos (ϕ)

py = pT sin (ϕ)

pz =
pT

tan (θ)
.

(5.9)

However, these components are reconstructed with following deviations:

δpx = px
δpT
pT
− pyδϕ

δpy = py
δpT
pT

+ pxδϕ

δpz = pz
δpT
pT

+ pT
δθ

sin2 (θ)
.

(5.10)

where the δpT
pT
, δϕ and δθ are during the data analysis unknown and have to be extracted from the

simulations. Here the kaon embedding for run of 2011 was used. The Monte Carlo simulations contains
in total 144 164 positive kaons and 145 383 negative kaons.

Figure 5.7 shows the extracted distribution of the δpT
pT
, δϕ and δθ as the function of the pT . These

distributions were then parametrized by the Gaussian and its mean and width were studied as the
function of the pT . In Figure 5.8 there are the mean and width of the δpT

pT
, δϕ and δθ, respectively.

The data are fitted with the same functions which were used in [69], [17] and [74]. While the mean of
the δpT

pT
is fitted with

f (pT ) = a+ bpαT + cpT , (5.11)

the others are fitted with
f (pT ) = a+ bpαT , (5.12)

where a, b, c and α are the free parameters of the fits. These functions do not have any deeper physical
motivation, they just describe well the asymptotic behavior at the low and high pT . It has been shown
that the momentum resolution does not depend on the collision centrality and is almost similar for
positively and negatively charged kaons. Therefore it was possible to merge both datasets and study
the effects of the momentum resolution for all centralities.

To estimate the effect of the momentum resolution, two correlation function have to calculated.
While the first is the ideal one, the second on is constructed from particles with their momenta
randomly smeared. The method how to construct these functions is described below.

First of all, the source was parametrized by a Gaussian in the CMS with a parameter Rinv. Here
the individual Rinv were those extracted from fitting like-sign correlation function discussed in the
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Figure 5.7: Monte Carlo simulations for kaons. Top: The distribution of δpT
pT

as a function of pT .
Bottom, Left: The distribution of δθ as a function of pT . Bottom, Right: The distribution of δϕ as a
function of pT

previous section. Hence the distribution of the position for x, y and z-direction is Gaussian. The
momentum distribution of kaons was obtained from analyzed data from different events.Each pair in
the numerator in the correction function was weighted according to the following formula

weight = (1− λ) + λKCoul (qinv)
(

1 + e−q
2
invR

2
inv

)
, (5.13)

where the λ parameter was the same one as obtained from fitting like-sign correlation function (see
Figure 6.2). The second part of the weight factor KCoul (qinv)

(
1 + e−q

2
invR

2
inv

)
was calculated by the

Lednický-Lyuoboshitz model. These pairs then formed the numerator of the correlation function. Now
the theoretical correlation function can be constructed. In comparison with experimentally measured
correlation function, such constructed function is not influenced by any detector effects.

To obtain function that corresponds to the measured one, the momenta of particles had to be
smeared according to the extracted momentum resolution (see Figure 5.8). Then the pairs are weighted
with the same factor ( Eq. 5.13) which was already used for unsmeared pairs. This procedure causes
that the pairs with smeared momenta and the given weight have slightly different qinv. This function
was denoted as the smeared one and include the effect of momentum resolution. The left panel of
Figure 5.9 shows the clean and smeared correlation function constructed by the process discussed
above. As can be seen the effect momentum resolution is dominant in the region of the low qinv,
especially in the region where the Coulomb interaction is dominant. In Figure 5.9 the smeared
correlation is also compared to the experimentally measured one. The observed small disparity in the
shape of the correlation function can come from using the Bowler-Sinyukov method. The measured
function is fitted by Bowler-Sinyukov approximation, while the calculated function was obtained from
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Figure 5.8: The µ and σ of the Gaussian distribution of the δpT
pT
, δϕ and δθ as a function of the

transverse momentum.

the exact Lednický-Lyuboshitz analytical model.
To quantify the magnitude of the momentum resolution on the correlation function, the correction

factor is constructed as

K (qinv) =
CF ideal (qinv)

CF smear (qinv)
=

A(pidea1 , pidea2 )
B(pidea1 , pidea2 )

A(psmear1 , psmear2 )
B(psmear1 , psmear2 )

, (5.14)

where the CF clean and CF smear are the ideal and smeared correlation function, respectively. Example
of the correction factor for like-sign kaon correlation function for centrality 30-50% and 0.35 < kT <

0.65 GeV/c is shown in the right panel of Figure 5.9.
In order to remove the effect of the momentum resolution on experimentally measured correlation

function CF raw (qinv) and to obtain corrected experimental function CF corr (qinv), the correction
factor is applied as

CF corr (qinv) = CF raw (qinv)K (qinv) . (5.15)

The same correction is also used in the case of the three-dimensional correlation function.
Such corrected correlation functions can be refitted by the same method as was described in the

previous section. In our analysis, the effect of this correction is an increase on the HBT radii between
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Figure 5.9: Left: The smeared correlation function is compared to the clean theoretical function
and the experimental correlation function. Right: The correction factor as a function of qinv.

5% and under up to 10% for the highest kT bin. In case of the largest changes of the HBT radii, this
method can be used iteratively until the moment when the difference of newly extracted radii and
the ones used for calculation is smaller than a required value. However this iterative method can be
significantly time consuming.

One of the possible improvements which will be performed in the future is parametrization the
source by the three Gaussian: Ro, Rs and Rl.

5.4 Cross-check of correlation function sensitivity on detector

acceptance

The unlike-sign kaons correlation function contains a significant peak in region of qinv ∼ 0.252 GeV/c.
This peak corresponds to strong interaction in p-wave between unlike-sign kaons via resonance in FSI.
Since the qinv is directly connected with the invariant mass Minv by

qinv =
√
M2
inv − 4m2

K , (5.16)

where mK is kaon mass, it is clean that this peak is really φ(1020) resonance with mass mφ = 1.019

GeV/c2 [75]. The φ(1020) resonance [75] with the lifetime of ∼ 42 fm/c is characterized by the decay
width Γ = 4.3 MeV and the decay momentum in the rest frame k∗ = 126 MeV/c. The most likely
hadronic decay mode is via unlike-sign kaons channel with branching ratio of 49.2%. Figure 5.10
shows the invariant mass Minv of φ(1020) resonance as a function of its transverse momenta pT .

In the standard femtoscopics measurements when the correlation function is sensitive to the per-
tinent physics at the low qinv, the detector acceptance has no influence on the correlation function.

In the presented analysis the effect of the detector acceptance on the height of the resonance had
been tested. The height of peak should scale with the ratio of number of kaons from the decayed
φ (1020) resonance to number of all kaons. Hence any detector influence should be canceled out. In
order to test this effect, the analysis was performed for two different values of the cut on particle’s
pseudorapidity. In the first case, the kaons were required to have pseudorapidity η from -1 to 1. The
same cut was used in the whole presented analysis. The second cut was more strict and was set on
−0.25 < η < 0.25. It made sure that fewer kaons passed this cut and hence fewer kaons originated
from the decay of the φ (1020) resonance. The left panel of Figure 5.11 shows raw signal of the φ (1020)

after background subtraction. As can be seen, different cuts provides different raw yield of φ mesons.



Figure 5.10: The invariant massMinv of φ(1020) resonance as a function of its transverse momentum
pT .

The same pairs that had been used for calculating invariant mass were also used for construction
of the correlation function. The constructed correlation function in Figure 5.11 clearly demonstrates
that in both cases the constructed correlation function is the same even though the number of kaons
coming from φ(1020) resonance differs significantly.
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Figure 5.11: Cross-check of correlation function sensitivity on the detector acceptance. Left: The
invariant mass Minv of φ(1020) resonance for 2 different cut on the pseudorapidity. Right: The
unlike-sign kaon correlation functions for 2 different cuts on the pseudorapidity.





CHAPTER

SIX

RESULTS

In the previous two chapters the construction of experimental correlation function and applied cor-
rections were discussed. In this chapter the corrected correlation functions are studied in detail.

In the first part of this chapter the results from like-sign kaon correlation function are presented.
The like-sign correlation function is used to extract space-time extents of the source. Using the
obtained radii it is possible to compare the unlike-sign kaon correlation functions to Lednický model
[45]. This model contains treatment of the φ (1020) resonance due to the final-state interaction. A
detailed study of sensitivity of the unlike-sign kaon correlation functions in the region of the φ (1020)

resonance is presented. The experimental correlation functions are also compared to model predictions
from different models. Finally, three-dimensional unlike-sign correlation functions are presented.

6.1 Like-sign kaon correlation function

The measured raw like-sign kaon correlation functions were corrected for misidentification of particle
and momentum resolution. While the purity correction was applied according to Eq. 5.5, the effect of
the momentum resolution was restored via Eq. 5.15. Then the one-dimensional corrected correlation
functions were fitted by Eq. 5.6. Figure 6.1 shows example of one-dimensional correlation function
for 0.35 < kT < 0.65 GeV/c and centrality 10-30%. The left panel of Figure 6.1 presents the corrected
correlation function for positively charged kaons and the correlation function constructed for the
negatively charged kaons is shown in the right panel of Figure 6.1. The lines represents the best fits
to the data by using Eq. 5.6. As can be seen, in all cases the fits well describe the experimentally
measured and corrected correlation functions.

Results from fits of correlation function for different centralities and kT bins are presented in Figure
6.2. Here the λ parameter, source radius Rinv and the normalization factor N are shown as a function
of the centrality and pair transverse momentum kT .

As can be seen the source radii Rinv increase with the centrality. The falling of the Rinv with the
pair transverse momentum kT qualitatively agrees with the effects expected from a system undergoing
a transverse expansion where pairs with the larger transverse momentum are emitted from a smaller
effective source than the pairs with the smaller kT , as it was already discussed in the Chapter 3. The
behavior of the λ parameter is not monotonic. In most cases the λ parameter slightly increases for
two lower kT bins and then decreases.
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Figure 6.1: One dimensional like-sign correlation function for positive (left) and negative (right)
kaons for centrality 10-30% and 0.35 < kT < 0.65 GeV/c. The lines represent the best fit to the data
by using Eq. 5.6.
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Figure 6.2: Fit results: λ parameters, source radii Rinv and normalization factors N as a function
of kT and centrality.

The errors of the fit results are dominated by systematic uncertainties which were estimated by
varying the fit ranges. Within presented errors, no significant difference between source radii Rinv
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from positive and negative kaons is observed.
More information about the kaon source can be obtained from a three-dimensional correlation

function. Similar procedure as for the one-dimensional correlation functions was used for correction of
the three-dimensional correlation functions on misidentification of particle and momentum resolution.
The fitting was performed by the parametrization given in Eq. 5.7. An example of fitted three-
dimensional correlation function for centrality 10-30% and 0.35 < kT < 0.65 GeV/c is shown in Figure
6.3.
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Figure 6.3: Projection of the three-dimensional correlation function and corresponding fits according
Eq. 5.7 for positive kaons for centrality 10-30% and 0.35 < kT < 0.65 GeV/c.

Figure 6.4 shows the HBT parameters λ, Rout, Rside and Rlong for four centralities as a function
of the pair transverse momentum kT , separately for positively and negatively charged kaons. The
extracted HBT radii decrease as a function of kT . While the observed decrease of the Ro and Rl is
produced by the transverse flow, the falling of Rl radii is ascribed to the longitudinal expansion of
the source. The λ parameter slightly increases with kT . For most measured values there is a good
agreement between the parameters extracted from the positively and negatively charged kaons. The
first and the last kT bin for centrality 50-75% is statistically limited, therefore the fits for these bins are
unstable. Recently, the femtoscopy with the like-sign kaon in Au+Au collisions at energy

√
sNN = 200

GeV was also performed by the PHENIX experiment [76]. Figure 6.5 shows the comparison of the
extracted HBT radii by the PHENIX collaboration for the 0-10% most central events with those
obtained in this analysis at the same beam energy, collision system and centrality. In general, the
same trend of the HBT radii is observed, however our results are slightly lower. The presented results
contains only the statistic errors.
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Figure 6.5: Comparison of extracted HBT radii Rout, Rside and Rlong from Au+Au collision at
√
sNN = 200 GeV to PHENIX results [76] for the same beam energy, collision system and centrality.

6.1.1 Blast-wave parametrization

It was already discussed that in order to obtain complete space-time extents of the source it is necessary
to employ a model describing four-dimensional particle emission. One of the most standard tools in
femtoscopy for such a purpose is the blast-wave parametrization [55] (see Chapter 3) which is designed
to describe the freeze-out configuration with minimal set of parameters. The same blast-wave model
which was described in detail in Chapter 3 is also used in this section. The extracted space-time
extent by the blast-wave parametrization will be used in the next section for the parametrization of
the source in more sophisticated hydrodynamical models and theoretical calculations.

Since the significant difference between the extracted HBT radii from the measured pairs of positive
and negative kaons was not observed, it was possible to combine the measured pairs of kaons to decrease
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statistics uncertainties. Then the blast-wave parametrization was used for fitting the obtained kaon
HBT radii and the particle spectra with a single set of free parameters. The combined particle spectra
of pions, kaons and protons were simultaneously used in the fit to constrain the temperature and the
flow velocity. Here, the data on pT spectra are taken from [77]. Contrary to the most general case
when the blast-wave model employs eight independent parameters to describe the studied system, in
this analysis due to the unavailability of the event plane only five parameters were used: the freeze-out
temperature T , the maximum transverse rapidity ρ0, the radius of the source R, the system proper
time τ and the emission duration ∆τ . The combined kaon HBT radii with the blast-wave fits are
presented in Figure 6.6. As can be seen the blast-wave parametrization is able to successfully describe
the measured HBT radii, however some deviations are observed for the lowest centrality 50-75%.

]c [GeV/Tk
0.0 0.5 1.0

 [
fm

]
o

u
t

R

1

2

3

4

5

6
Out

]c [GeV/Tk
0.0 0.5 1.0

 [
fm

]
si

d
e

R

1

2

3

4

5

6
Side

]c [GeV/Tk
0.0 0.5 1.0

 [
fm

]
lo

n
g

R
1

2

3

4

5

6
Long

-
 K

-
 & K+ K+K

Data

Blastwave fit

  0-10%

  10-30%

  30-50%

  50-75%

]c [GeV/Tk
0.0 0.5 1.0

λ

0.2

0.3

0.4

0.5

0.6

λ

Figure 6.6: Comparison of extracted kaon HBT radii Rout, Rside and Rlong with the blast-wave fit
represent by colored lines for four centrality and four kT bins.

Centrality[%] T [MeV] ρ0 R[fm] τ [fm/c] ∆τ [fm/c]
0-10 104±3 1.02±0.01 11.1±0.3 6.8±0.3 2.8±0.1
10-30 106±3 1.00±0.02 8.8±0.2 4.9±0.3 2.8±0.2
30-50 111±6 0.91±0.05 7.5±0.3 4.4±0.3 1.6±0.1
50-75 115±10 0.89±0.08 3.4±0.3 3.0±0.2 0.7±0.1

Table 6.1: Extracted parameters from a blast-wave fit to kaon HBT radii and pion, kaon and proton
transverse momentum spectra at

√
sNN = 200 GeV.

The extracted parameters from the blast-wave model are shown in Table 6.6 for four centrality.
Most of the parameters and their dependence on the collisions centrality agree with the expectations.
While the temperature T decreases with the increasing centrality, the maximum transverse rapidity ρ0
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increases with increasing centrality. Such behavior of these parameters reflects increasing source size
with the centrality. The expansion of the larger system takes longer time as shown by the decreasing
system evolution time τ and the emission duration ∆τ with the decreasing the centrality.

It is especially interesting to compare our extracted blast-wave parameters with the parameters
from pion femtoscopy [78]. Figure 6.7 presents the comparison of the obtained blast-wave parameters
from this work and from the STAR analysis of pion femtoscopy [78]. The results are also compared
to PHENIX results on blast-wave fit of the kaon HBT radii [76].
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Figure 6.7: Comparison of extracted blast-wave parmeters from fits to HBT radii. The red stars rep-
resents results from fit π−π HBT radii, the green diamond is for PHENIX results on KK femtoscopy
and the blue stars represents blast-wave parameters obtained in this analysis.

As can be seen the blast-wave parameters from kaon femtoscopy seem to slightly differ from those
parameters obtained from the STAR pion HBT radii [78]. For given centrality, the temperature T of
the system obtained in our analysis is higher than for pion femtoscopy. The measured radius R of
the source, system evolution time τ and emission duration ∆τ are also smaller than those obtained
from the previous pion femtoscopy [78]. All of these observed differences would suggest that the kaons
could be emitted earlier than pions due to their relative smaller cross section [79] with hadronic matter
in comparison with pions. However one has to be very careful, because this conclusions need to be
further tested and especially systematic errors have to be carefully evaluated.
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6.2 Unlike-sign kaon correlation function

In this section experimental correlation function for unlike-sign kaon is studied in detail. The measured
raw functions were corrected for misidentification of particle in a same ways as like-sign kaon correlation
functions via Eq. 5.5. The correction for the momentum resolution has not been applied so far. In
the future when the unlike-sign kaon correlation function is fitted, the momentum resolution will be
useful for fitting in the region of the low qinv. The corrected unlike-sign kaon correlation functions
for centrality 0-5% and centrality 30-50% for 4 kT bins are shown in Figure 6.8 and Figure 6.9. The
correlations functions for other centralities can be found in Appendix A.

6.2.1 Comparison of unlike-sign one-dimensional correlation to Lednický
model

The experimental results of the unlike-sign one-dimensional correlation function are compared to the
theoretical prediction from Lednický model [45] in Figure 6.8 and Figure 6.9. The theoretical functions
were calculated accord to Eq.3.6. Similarly, in the case of the one-dimensional correlation functions,
the source was characterized by one-dimensional Gaussian in the PRF with a parameter Rinv. Here
the individual Rinv are those extracted from fitting like-sign kaon correlation function (see Figure
6.2). The Lednický FSI model [45] includes the treatment of φ(1020) resonance in the final state. The
extended femtoscopics formalism, which contains generalized form of the smoothness approximation,
is included in this model. As authors of the models claim, the generalized smoothness assumption
is needed for correct description of the correlation function in the region of the resonance. Since the
theoretical function does not include effects contained in the experimental λ parameter, it is scaled
for correct comparison according to

CF =
(
CF theo − 1

)
λ+ 1, (6.1)

where λ parameter was obtained from the fit to the like-sign kaon correlation function (see Figure
6.2).

Example of comparison of unlike-sign kaon correlation function to model calculations is shown
in Figure 6.8 and Figure 6.9. The measured unlike-sign kaon correlation functions for the most
central collisions and for 4 kT bins are shown in Figure 6.8. Figure 6.9 presents the comparison of
the theoretical function to experimentally measured functions for mid-peripheral collisions, centrality
30 - 50%. The comparisons of model calculations to experimental correlation functions for other
centralities are presented in Appendix A.

As can be seen, the model reproduces well the overall structure of the measured correlation func-
tions. At the region of the low qinv where the well-known attractive Coulomb interaction and the
strong interaction in s-wave are present, the model is able to describe the strength of the correlation.
For most central collisions and low kT mid-peripheral, the Lednický model is also able to predict the
measured correlation function in the region of the resonance region.

However, with decreasing source size (decreasing centrality and higher kT ) the model starts to
underestimate the strength of the correlation function. Even when the correlation function is under-
estimated by Lednický model in the region of the resonance, the model still describes the correlation
at the low qinv. The small difference in the low qinv can be ascribed to effect of the smearing and/or
possibly residual correlations.



79 6.2. UNLIKE-SIGN KAON CORRELATION FUNCTION

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

1.0

1.2

1.4

1.6

1.8

2.0
Centrality 0-5%

data

Lednicky model

c < 0.35 GeV/Tk0.05 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

1.0

1.2

1.4

1.6

1.8

2.0 Centrality 0-5%

data

Lednicky model

c < 0.65 GeV/Tk0.35 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

1.0

1.2

1.4

1.6

1.8

2.0

2.2 Centrality 0-5%

data

Lednicky model

c < 0.95 GeV/Tk0.65 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6 Centrality 0-5%

data

Lednicky model

c < 1.25 GeV/Tk0.95 < 

Figure 6.8: Comparison of experimental unlike-sign kaon correlation function to theoretical calcu-
lation for centrality 0-5% centrality for 4 different kT bins.
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Figure 6.9: Comparison of experimental unlike-sign kaon correlation function to theoretical calcu-
lation for centrality 30-50% centrality for 4 different kT bins.

It was predicted by Lednický [45], that the strength of the correlation should change with the
source size Rinv as R−3

inv The right panel of Figure 6.10 shows the height of the peak of the resonance
as a function of the measured like-sign source size Rinv.

The dependence of the height of the peak on the R−3
inv is shown in the left panel of Figure 6.10. As
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Figure 6.10: Left: The dependence of the height of the peak as a function of measured source
radii Rinv from like-sign kaon correlation function. Right: The dependence of the height of the peak
as a function of inverse volume of the system ∼ R−3

inv, where the source size Rinv is obtained from
one-dimensional like-sign correlation functions.

can be seen, the peak height scales with source size as R−3
inv. In particular, it is especially interesting

to note that the same source sizes Rinv were obtained from different correlation functions. The Rinv
is the same for higher centrality and higher kT as well as for lower centrality and lower kT . Within
errors arising from the extraction of the source radii by fitting like-sign kaon correlation function,
the height of the peaks are consistent. It indicates that the correlation function in the region of the
resonance is indeed connected to the source size and does not depend for example on temperature.

In the following two subsections the experimental correlation functions are compared to hydrody-
namic model predictions, namely to HYDJET++ and THERMINATOR 2. Such a model comparison
can bring additional insight into the interpretation of the results.

6.2.2 Comparison of unlike-sign one-dimensional correlation with HYD-
JET++

HYDJET++ (HYDrodynamics plus JETs) is Monte Carlo heavy ion event generator for simulation
of relativistic heavy ion AA collisions [53]. It is considered as a superposition of the soft, hydro-type
state and the hard state resulting from multi-parton fragmentation. The soft part of HYDJET++
is based on the parameterization of relativistic hydrodynamics with present freeze-out conditions
used for the chemical and thermal freeze-out hypersurfaces during generating the thermal hadronic
state. HYDJET++ includes the longitudinal, radial and elliptic flow effect and the decays of hadronic
resonances. However, HYDJET++ does not include any interactions.

HYDJET++ contains default setup of input parameters for describing system created in Au+Au
collisions at energy

√
sNN = 200 GeV. This setup was tuned for description of the spectra, v2 and

HBT radii of the most abundant particles, pions [53]. HYDJET++ can also successfully reproduce
the particle ratios. The used input parameters are summarized in Table 6.2.

The unlike-sign kaon correlation function was obtained by applying the same kinematic cuts that
were used in analysis. Since HYDJET++ does not contain Coulomb interaction and Strong final-state
interaction, only the peak in the region of the φ (1020) resonance is presented. This peak corresponds
to the thermal production of the φ (1020) resonance. The experimental correlation functions were
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Parameter Value Parameter Value
Tch (GeV) 0.165 µI3 (GeV) -0.001
Tth (GeV) 0.100 τ (fm/c) 8
µB (GeV) 0.0285 4τ (fm/c) 2
µs (GeV) 0.007 R (fm) 10
µc (GeV) 0 γS 1

Table 6.2: Input parameters of the HYDJET++ model used in the presented simulations.

scaled by the λ parameters according to

CF corr =
CF raw − 1

λ
+ 1, (6.2)

where λ parameters was obtained from the fit to the like-sign kaon correlation function (see Figure
6.2). Figure 6.11 shows the comparison of experimental unlike-sign kaon correlation function with the
correlation function obtained from HYDJET++.
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Figure 6.11: Comparison of experimental unlike-sign kaon correlation function with HYDJET++
calculation for centrality 10-30% for 4 different kT bins.

As can be seen, the correlation functions from HYDJET++ show similarly strong sensitivity in
the region of the resonance. The sensitivity of the correlation function in the region of resonance is
qualitatively the same as already observed in the experimentally measured function, but for higher
kT bins the height of the peak is overestimated for higher transverse pair momentum. The observed
overestimation of the correlation function in region of the resonance can be related with imprecise
reproducing of the transverse mass spectra of the φ(1020) mesons in the model as shown in Figure
6.12. It should be noted that comparison with HYDJET++ with standard tune for RHIC energy may
be a bit problematic. The scaling by the λ parameter is questionable. This will be object of further
studies as well as tuning HYDJET++ to correctly reproduces φ spectra.
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Figure 6.12: Measured transverse mass spectra of the φ(1020) mesons [21] compared to HYDJET++
predictions.

6.2.3 Comparison of unlike-sign one-dimensional correlation with THER-
MINATOR 2

The experimentally constructed unlike-sign kaon correlation functions were also compared with pre-
diction by THERMINATOR 2 [54]. It is thermal heavy-ion generator dedicated to studies of the
statistical production of particles in ultra-relativistic heavy-ion collisions [54]. THERMINATOR 2
includes various shape of the freeze-out hypersurface and the expansion velocity field, including 2+1
as well as 3+1 dimensional profiles. Behind the statistical approach, it contains hadronic resonances
which significantly contribute to the observables.

The freeze-out configuration of the source emitting particles was characterized by Blast-wave model
with following set of parameters: temperature T , barion chemical potential µB , strangeness potential
µs, third component of isospin µI , transverse velocity vT , maximal transverse radius ρmax and the
proper time at freeze-out τ . As can be seen, it is quite different blast-wave model than the one
which was used for fitting kaon HBT radii was discussed in the previous section. Compared to the
Gaussian parametrization of the source, the blast-wave parametrization is more realistic and inherently
introduces kT dependence of radii as well as r − k correlations [45]. The relative distance of emission
point of two particles is correlated with relative pair momentum. Such phenomena should reflect in
the height of the peak.

In the presented analysis, the setup [80] for collision energy
√
sNN=200 GeV was used. The interac-

tion between particles was calculated by the already discussed Lednický model [45]. Figure 6.13 shows
the comparison of experimental unlike-sign correlation function for the most central collisions with
calculations where the source was parametrized by the Gaussian as well as blast-wave parametriza-
tion from THERMINATOR 2. As can be seen, both of the used source parameterizations successfully
reproduces the shape of the correlations and describe the strength of correlations in the region of the
resonance.

However, the blast-wave parametrization used in THERMINATOR model is different from the
previously employed and includes natively λ parameter, this comparison provide the first look on case
when the theoretical calculation is performed with more realistic source parametrization. In future the
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Figure 6.13: Comparison of experimental unlike-sign kaon correlation function to two model calcu-
lations for centrality 0-5% and 4 different kT bins. The blue lines represent the case when the source
is parametrized by the Gaussian. The open blue circle shows correlation function calculated f by
THERMINATOR 2.

similar calculations will be done with same blast-wave model, which was used for fitting. It enables
to compare experimental correlation function for other centralities.

In the future model like HYDJET++ or THERMINATOR 2 can be used for estimation of the
effect of residual correlations. These effect arise from the presence of particles which come from weak
decays of already correlated particles. THERMINATOR has been specially develop for such studies
and has been commonly employed by experiment at RHIC [81], [82] and LHC[83]. Figure 6.14 shows
contribution of two resonance decays to kaon transverse momentum.
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Figure 6.14: The transverse momentum spectra of positive kaon with two resonance decay contri-
bution.
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6.2.4 Three-dimensional unlike-sign kaon correlation function

Finally, the three-dimensional unlike-sign kaon correlation functions were constructed by the method
already described in section 3.2.4 . The measured function depends on k∗, hence the observed reso-
nance is present in the region of k∗ ∼ 126 MeV/c. Figure 6.15 shows the three-dimensional unlike-sign
kaon correlation function for different centralities and integrated over kT . As can be seen, the φ(1020)

resonance is still present and exhibits similar strong sensitivity to the source size in all three projec-
tions.
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Figure 6.15: Three-dimensional non-identical kaon correlation function for five centralities. The blue
50-75%, the green 30-50%, the red 10-30%, the magenta 5-10% and the black stars are for centrality
0-5%. Top panel is for out direction, middle for side and bottom panel for long direction.

The common cross-check which can be done is the "double ratio" of three-dimensional non-identical
kaon. As was discussed in chapter 3, the "double ratio" serves as a quality check of the measured
functions as well as an indicator of space and time asymmetry in the emission between the two particle
species. Figure 6.16 shows the "double ratio" for measured non-identical kaon correlation function
for the centrality 0-5%. As can be seen, due to an azimuthal symmetry and symmetry in rapidity,
the "double ratio" of measured correlation functions for direction side and long is within statistics
errors equal to unity. Also, the last "double ratio" for out direction is equal to unity. It confirms our
previous results when extracted HBT radii were the same for positively and negatively charged pairs
of kaon and shows that there is no emission asymmetry between kaons and anti-kaons.
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Figure 6.16: Double ratio of three-dimensional non-identical kaon correlation function for centrality
0-5%. Top panel is for out direction, middle for side and bottom panel for long direction.



Conclusions and Outlook

The main purpose of the analysis introduced in this work is a femtoscopic study of two-particle
correlation function in a system where narrow near-threshold resonance is present. The correlation
function is predicted to be highly sensitive to the source size and momentum-space correlations in
the region of the resonance. System of unlike-sign kaons is ideally suited for such a study since it
contains the φ(1020) resonance. The presented analysis was performed on minimum bias data from
Au+Au collisions at

√
sNN =200 GeV collected by the STAR experiment. It is the first high-statistics

systematic study of unlike-sign kaon correlation function in heavy-ion collisions. The preliminary
results of the analysis have already been presented at several conferences (Appendix B).

The available statistics and selection criteria allowed to construct one dimensional correlation func-
tions for pairs of unlike-sign kaons for five collision centralities and four different kT bins. First results
for kT -integrated three dimensional correlation functions were also obtained. All measured unlike-
sign kaon correlation functions (Figure 4.12) exhibit strong centrality and transverse pair momentum
dependence in the region of the φ resonance.

In order to compare the experimentally measured correlation functions with theoretical predictions
and model calculations a femtoscopic analysis with like-sign kaons was performed using the same
centrality classes and kT bins. The extracted space-time extents were then used for parameterizing
the source in the theoretical calculations of the unlike-sign kaon correlation functions. This like-sign
analysis uses the highest available dataset and is hence the most precise measurement of kaon HBT
radii at RHIC. The preliminary results on the HBT radii (Rout, Rside, Rlong) obtained from three
dimensional correlation functions (6.4) follow characteristic trends in the centrality and kT confirming
the presence of the collective expansion of the system. The comparison with recently published
PHENIX results (6.5) shows small systematic difference towards smaller values. The measured radii
and kaon spectra were fitted by blast-wave model obtaining parameters which describe the kaon source
at the kinetic freeze-out. The larger available statistics at STAR has resulted in a larger number of
kT bins for each centrality and allowed better constraints of the blast-wave fits. The extracted blast-
wave parameters and their dependence on collision centrality agree with the expectations, following
similar trends as for pions. The comparison with STAR pion blast-wave results (Figure 6.7) reveals
systematically smaller size, higher temperature and smaller transverse velocity. This may indicate
possible earlier emission of kaon from the system. However, this conclusions need to be further tested
and especially systematic errors have to be carefully evaluated.

After the extraction of source parameters from like-sign correlation function, the experimental
unlike-sign correlation functions were compared to theoretical calculations based on the improved
Lednický model of the final-state interaction. This model includes the treatment of φ(1020) resonance
due to final-state interaction and therefore it should be able to reproduce the structure of the measured
correlations. The results were compared to calculations using simple Gaussian parameterization of
the kaon source as well hydro-based models: HYDJET++ and THERMINATOR 2. All calculations
qualitatively reproduce the measured correlation function, however their quantitative agreement gets
worse for smaller systems. Although the Lednický model contains the generalized smoothness assump-
tion, the observed underestimation of the strength of the correlation in the region of the resonance
for lower centralities and higher kT bins can be probably ascribed to a breakdown of the smoothness



approximation - one of the basic assumption in femtoscopy. Other explanation, supported by the
author of the model, is an interplay between thermally produced resonances and those produced as a
result of the final state interaction. If the thermal production and the production via final-state in-
teraction are not equivalent, the free room which the FSI model leaves should be filled by the thermal
production of the φ(1020) resonance. In such a case, the Lednický model does not properly describe
the correlation function in the resonance region for the most central collisions. Currently there is no
clear consensus on the side of the theory, hence the high-statistics results presented in this thesis can
help to clarify the issue.

The results in this thesis are first systematic study of two-particle correlation function in a system
where narrow near-threshold resonance using the femtoscopic formalism. For this reason there is still
much work that can be done in the future. To strengthen the conclusions detailed study of systematic
errors is under way. Also since radii extraction is at this point dominated by systematic uncertainties
it may be possible to increase the number of kT bins.

One of the most interesting challenges is related to the comparison of the measured correlation
functions with the theoretical calculations and hydrodynamics models. The correct description of
experimental unlike-sign kaon correlation function may need better parametrization of the freeze-
out configuration of the source emitting particle in combination with detailed theoretical study of
femtoscopic formalism in the region of resonace. In future, such analysis can provide additional
insight into the studied system via femtoscopic measurements and bring complementary information
to the standard measurements at very low relative momentum.
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UNLIKE-SIGN KAON CORRELATION FUNCTION

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Centrality 5-10%

data

Lednicky model

c < 0.35 GeV/Tk0.05 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Centrality 5-10%

data

Lednicky model

c < 0.65 GeV/Tk0.35 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Centrality 5-10%

data

Lednicky model

c < 0.95 GeV/Tk0.65 < 

]c [GeV/
inv

q
0.0 0.1 0.2 0.3 0.4 0.5

)
in

v
C

F
(q

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Centrality 5-10%

data

Lednicky model

c < 1.25 GeV/Tk0.95 < 

Figure A.1: Comparison of experimental unlike-sign kaon correlation function to theoretical calcu-
lation for centrality 5-10% centrality for 4 different kT bin.
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Figure A.2: Comparison of experimental unlike-sign kaon correlation function to theoretical calcu-
lation for centrality 20-30% centrality for 4 different kT bin.
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Figure A.3: Comparison of experimental unlike-sign kaon correlation function to theoretical calcu-
lation for centrality 50-75% centrality for 4 different kT bin.
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LIST OF PRESENTATIONS AND PUBLICATIONS

The preliminary results of the analysis have already been presented at several conferences:

• The 4th International Conference on New Frontiers in Physics 2015, Chania, Greece, as a poster
presentation with the title Femtoscopy with unlike-sign kaon at STAR in 200 GeV Au+Au
collisions. Proceedings accepted and will be published in the European Physical Journal Web
of Conferences

• XIth Workoshop on Particle Correlations and Femtoscopy 2015, Warsaw, Poland, as an oral
presentation with the title Femtoscopy with unlike-sign kaon at STAR in 200 GeV Au+Au
collisions. Proceedings accepted and will be published in Acta Physica Polonica B: Proceedigns
Supplement.

• XVth Zimányi Winter School 2015 at Budapest, Hungary, as a part of an oral presentation
about Femtoscopy with kaons at the STAR experiment.
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Abstract

In the collisions of heavy ions the nuclear matter can undergo a phase transition from hadrons to a state of deconfined quarks and gluons, the Quark-Gluon Plasma (QGP). Femtoscopic measurements of two-
particle correlations at small relative momenta reveal information about the space-time characteristics of the system at the moment of particle emission. The correlations result from quantum statistics, 
final-state Coulomb interactions, and the strong final-state interactions (FSI) between the emitted particles. 
It has been predicted [1] that correlations due to the strong FSI in a system where a narrow resonance is present will be sensitive, in the region of the resonance, to the source size and momentum-space 
correlations. Such a measurement can provide complementary information to the measurements at the very low relative momenta. This poster presents a status report of a STAR analysis of unlike-sign kaon
femtoscopic correlations in Au+Au collisions at 𝑠"" = 200	  GeV, including the region of 𝜙(1020) resonances. The  experimental results are compared with HYDJET++ simulations and to a theoretical 
prediction that includes the treatment of resonance formation due to the final-state interactions [1]. 

Faculty	  of	  Nuclear	  Sciences	  and	  Physical	  Engineering
Czech	  Technical	  University	  in	  Prague
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Femtoscopy with	  unlike-‐sign	  kaons at	  STAR	  in	  200	  GeV Au+Au collisions

Motivation
The formalism of femtoscopic measurement at very low 𝑞)*+ is well understood. The formalism 
proposed in [1] allows to use strong FSI going through a narrow resonance at higher 𝑞)*+ .
The system of unlike-sign kaon pairs is ideally suited for testing this extension of femtoscopy
formalism as it contains narrow ϕ(1020) resonance.

Like-sign 1D correlation function and fitting
• Used for extraction of kaon emission source size 𝑅)*+ and lambda parameter 𝜆

• Fitting function: 𝐶𝐹 𝑞)*+ = 1− 𝜆 + 𝜆𝐾 𝑞)*+ 𝑒6789:
; <89:

;
𝑁,

where 𝜆 - correlation strength, 𝐾 𝑞)*+ 	  - Coulomb function and 𝑁 - normalization

The Solenoidal Tracker at RHIC (STAR)

Use strong FSI in region of resonance:
• More sensitive
• Statistically advantageous

STAR Experiment at RHIC 

!  STAR detector has: 
!  Magnetic Field 0.5 Tesla 
!  Uniform Acceptance in |η| < 1.0 

and (0,2π) azimuthal angle 

02/07/15 4 

TPC MTD  Magnet BEMC BBC EEMC TOF 

HFT 

Particle Identification  
!  STAR TPC detector: 

!  Pseudo-rapidity:   -1.0 < η < 1.0 
!  Identifies kaon upto p =  0.65 GeV/c 

 

!  STAR ToF detector: 
!  Pseudo-rapidity:   -0.9 < η < 0.9 
!  Identifies kaon for 0.65 < p < 1.6 GeV/c 

Vipul Bairathi 

•  M. Anderson et al., Nucl. Instrum. Meth. A 499 (2003) 659 
•  W. J. Llope et al., Nucl. Instrum. Meth. A522 (2004) 252-273 

Data selection and construction of correlation function
• Au+Au collisions at 𝑠"" = 200	  GeV	   taken in 2011

Track selection
• Primary track with signal from TOF
• 𝜂 < 1 and 𝐷𝐶𝐴 < 3	  cm	  
• 0.15 < 𝑝 < 1.55	  GeV/c
• 0.21 < 𝑚M < 0.28	   GeV 𝑐M⁄ M

• 𝑛𝜎STU* < 3,
where 𝑛𝜎STU*	   is the distance from the   
expected	  𝑑𝐸 𝑑𝑥⁄ for kaons expressed in terms of 
standard deviation units

Unlike-sign 1D correlation function
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momentum-space correlations

CF_0
Entries  118408
Mean   0.2283
RMS    0.1329

 (GeV/c)
inv

q
0 0.1 0.2 0.3 0.4

)
in

v
C

F(
q

0.6

0.8

1

1.2

1.4
CF_0

Entries  118408
Mean   0.2283
RMS    0.1329

/ndf = 1.2372χ

 0.002± = 0.589 λ

 0.003± = 3.295 invR

CF_1
Entries  7586066
Mean   0.2301
RMS    0.1316

 (GeV/c)
inv

q
0 0.1 0.2 0.3 0.4

)
in

v
C

F(
q

0.6

0.8

1

1.2

1.4
CF_1

Entries  7586066
Mean   0.2301
RMS    0.1316

/ndf = 2.7782χ

 0.001± = 0.611 λ

 0.001± = 3.157 invR

CF_0
Entries  230933
Mean   0.2297
RMS    0.1322

 (GeV/c)
inv

q
0 0.1 0.2 0.3 0.4

)
in

v
C

F(
q

0.6

0.8

1

1.2

1.4
CF_0

Entries  230933
Mean   0.2297
RMS    0.1322

/ndf = 0.8772χ

 0.002± = 0.644 λ

 0.003± = 3.435 invR

CF_1
Entries  60309
Mean    0.228
RMS    0.1328

 (GeV/c)
inv

q
0 0.1 0.2 0.3 0.4

)
in

v
C

F(
q

0.6

0.8

1

1.2

1.4
CF_1

Entries  60309
Mean    0.228
RMS    0.1328

/ndf = 2.9632χ

 0.001± = 0.606 λ

 0.001± = 3.155 invR

 (GeV/c)Tk
0 0.5 1

λ

0.4

0.6

0.8
λ 1D Kaon HBT parameters

K+K+
0-5%
5-10%
10-30%
30-50%
50-75%

K-K-
0-5%
5-10%
10-30%
30-50%
50-75%

 (GeV/c)Tk
0 0.5 1

 (f
m

)
in

v
R

2

3

4

5 invR

 (GeV/c)Tk
0 0.5 1

N
or

m

10

12

14

16

18

20

• 2𝜋 azimuthal coverage
• Pseudorapidity 𝜂 < 1

Main subdetectors used for this analysis are:
Time Projection Chamber (TPC)

• Particle identification via specific ionization 
energy loss dE/dx

• Charged particle tracking and momentum 
reconstruction

Time of Flight (TOF)
• Particle identification via 1 𝛽⁄
• Timing resolution < 100	  ps
• Separation of charged kaons from other 

hadrons up to momentum ~1.5 GeV/c

Unlike-sign kaon correlation function:
• 𝜙(1020) resonance:
𝑘∗ = 126MeV c⁄ , 𝛤 = 4.3	  MeV

• Narrow – separation of emission and FSI

Challenges – femtoscopy formalism at higher 𝒒𝒊𝒏𝒗
Possibility of breakdown of basic assumptions
• Smoothness assumption
• Equal-time approximation

Correlation function:

Koonin-Pratt eq.: 𝑪 𝒑𝟏,𝒑𝟐 = ∫𝒅𝟑𝒓𝑺 𝒓,𝒌 𝝍𝟏,𝟐 𝒓,𝒌
𝟐
,

where 𝑆 𝑟, 𝑘 is emission source function and 
𝜓t,M 𝑟, 𝑘 	   is wave function describing interaction

Experimentally: 𝐶 𝑞)*+ = "uvwx <89:
"w8yxz <89:

= {|T}	  ~T){�
�)�|�	  ~T){�

𝑞)*+ = 𝑝t − 𝑝M = 2𝑘∗, 𝑘� =
~�,��~;,�

M

• The source radii 𝑅)*+ increase with the centrality and decrease with pair transverse momentum 𝑘�
• Only statistical errors shown; systematic error is underway

Comparison of unlike-sign 1D correlation function with HYDJET++ simulations

Comparison of unlike-sign 1D correlation function to Lednicky model
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• HYDrodynamics plus JETs – Monte-Carlo heavy ion AA collisions generator [2]
• HYDJET++ contains only thermal production of  𝜙,	   no Quantum statistics, Coulomb, Strong and FSI

• Experimental correlation function is corrected via 𝐶𝐹�U{{ = ���v�6t
� + 1, where 𝜆 parameter is from 

fitting like-sign correlation function
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Lednicky model

• Lednicky model [1] - includes the treatment of 𝜙 resonance due to the FSI as well as generalized 
smoothness approximation 

• Gaussian source sizes 𝑅)*+	   used for calculation of theoretical CF are extracted from fitting like-sign 
CF

• Clean theoretical function is transformed to a raw one via: 𝐶𝐹{T� = 𝐶𝐹�U{{ − 1 𝜆 + 1 , in order to 
compare to an experimental correlation function

Conclusion
• Measurement of K+K- correlation function in Au+Au collisions 
• Extraction of 𝜆	   parameter and source radii 𝑅)*+ from fitting like-sign correlation function
• HYDJET++ model reproduced the correlation functions well especially in the phi-mass region, final 

comparison will be done after the efficiency correction is applied to the data 
• Studies of 3D correlation function underway

K+K+ K+K+

K-K- K-K-

0.05<kT<0.35 GeV/c

0.05<kT<0.35 GeV/c 0.35<kT<0.65 GeV/c

0.35<kT<0.65 GeV/c

0.05<kT<0.35 GeV/c 0.35<kT<0.65 GeV/c

0.05<kT<0.35 GeV/c 0.35<kT<0.65 GeV/c

0.65<kT<0.95 GeV/c 0.95<kT<1.25 GeV/c

STAR preliminary

STAR preliminary

STAR preliminary

STAR preliminary

Event mixing
• To obtain uncorrelated two-particle distributions 
𝑁�)�|� 𝑞)*+ . In order to remove non-femtoscopic
correlations, events are divided into sub-classes 
according to primary vertex position along the 
beam direction and multiplicity
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Centrality dependencekT dependence

• High statistics
• Low feed down
• Source well known from imaging
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Abstract.
In the collisions of heavy ions the nuclear matter can undergo a phase transition from
hadrons to a state of deconfined quarks and gluons called the Quak-Gluon Plasma. Fem-
toscopic measurements of two-particle correlations at small relative momenta reveal in-
formation about the space-time characteristics of the system at the moment of particle
emission. The correlations result from quantum statistics, final-state Coulomb interac-
tions, and the strong final-state interactions between the emitted particles.
It has been predicted that correlations due to the strong final-state interactions in a system
where a narrow resonance is present will be sensitive, in the region of the resonance,
to the source size and momentum-space correlations. Such a measurement can provide
complementary information to the measurements at very low relative momenta. This
paper presents the preliminary results of a STAR analysis of unlike-sign kaon femtoscopic
correlations in Au+Au collisions at

p
sNN=200 GeV, including the region of �(1020)

resonance. The experimental results are compared to a theoretical prediction that includes
the treatment of resonance formation due to the final-state interactions.

1 Introduction

In 1960 Goldhaber and collaborators observed in proton-antiproton annihilations an excess of pairs of
identical pions produced at small relative momenta [1]. These observed correlations, as experimenters
correctly asserted, came as a result of quantum statistics. Based on this observation the theoretical
background of femtoscopy was developed by G. I. Kopylov and M. I. Podgoretsky in the 1970s [2].
Since then the femtoscopic measurements of two-particle correlations at low relative momenta be-
came a standard tool for extracting the space-time extents of particle emitting sources. Nowadays
femtoscopic studies include identical particles, as well as non-identical interacting particles [3–6].

The approach proposed by Lednicky [7] extends the femtoscopic formalisms to higher relative
momenta between the two emitted particles in a system where the final-state interactions (FSI) contain
a narrow, near-threshold, resonance. It is predicted that the correlation function will be more sensitive
in the region of the resonance, where the strength of the correlation should change with the source size,

ae-mail: jlidrych@gmail.com
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r as ⇠ r�3 in comparison with measurements at the very low relative momenta, where the correlation
function depends on r�2 or r�1. In addition, these measurements will be statistically advantageous,
since the particle spectra fall rapidly at low relative momenta.

Pairs of unlike-sign kaons are ideally suited for such femtoscopic analysis as they contain the
narrow �(1020) resonance. The �(1020) resonance is characterized by the decay width � = 4.3 MeV
and the decay momentum in the rest frame k⇤ = 126 MeV/c. The use of kaons is also advantageous
due to the fact that the emission source function is less a↵ected by weak decays of resonances. From
previous STAR source imaging analysis [4], the kaon source function is known to be well-described
by a Gaussian form.

2 Data analysis

The data used for this analysis were collected in Au+Au collisions at
p

sNN = 200 GeV by the
Solenoidal Tracker at RHIC (STAR) in 2011. The STAR [8] is a multi-purpose detector, which excels
in tracking and identification of charged particles at mid-rapidity with full coverage in azimuthal an-
gle. The most important subdetectors for this analysis are the Time Projection Chamber (TPC) [9] and
the Time of Flight (ToF) [10]. The TPC records charged particle tracks and measures their momen-
tum p and identifies them via specific ionization loss dE/dx. For kaon selection, the particles were
required to have |n�K | < 3, where n�K is the distance from the expected mean <dE/dx> expressed in
terms of standard deviation units �K . The ToF measures particle velocity � which is used to calculate
particle mass m according to the relation

1
�
=

q
1 + m2/p2, (1)

where the momentum p is measured by the TPC. Due to a good time resolution, which is less than 100
ps, the ToF is able to separate charged kaons from other hadrons up to p ⇠ 1.55 GeV/c, as shown in
Figure 1. Due to this fact, only primary tracks at mid-rapidity |⌘| < 1 with momentum p 2 [0.15, 1.55]

Figure 1. The relative velocity1/� (from ToF) of charged particle as a function of momentum p (from TPC).
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GeV/c, which have signal from the ToF and satisfy cut criteria on mass: 0.21 < m2 < 0.28 GeV2/c4

were used here.

3 Construction of correlation function

Experimentally, the two-particle correlation function CF(qinv) is constructed as a ratio of the cor-
related two-particle distribution from the same event, Nsame(qinv), and the uncorrelated two-particle
distribution from mixed events, Nmixed(qinv):

CF (qinv) =
Nsame(qinv)
Nmixed(qinv)

=
real pairs

mixed pairs
, (2)

where q2
inv = �(pµ1 � pµ2)2. In the pair rest frame qinv = 2k⇤. The technique of event mixing is used to

obtain the uncorrelated two-particle distribution. The events are mixed within sub-classes with similar
values of the primary vertex position along the beam direction and the multiplicity.

4 Unlike-sign 1D correlation functions

In this analysis, the correlation functions are constructed for 5 centralities and 4 di↵erent bins of trans-
verse pair momentum kT =

�
~p1 + ~p2

�
T /2, where ~p1 and ~p2 are the momenta of the first particle and the

second particle, respectively. In Figure 2 there are the STAR preliminary results of K+K� correlation
functions from Au+Au collisions at

p
sNN = 200 GeV. While at the low qinv, the attractive Coulomb

interaction and strong interaction in s-wave can be observed, in the region of qinv ⇠ 0.25GeV/c the
strong interaction in p-wave via �(1020) resonance in FSI is present. As can be seen, the correlation
function is sensitive to the source size. In particular, a strong dependence on collision centrality and
on the pair kT is observed in the resonance region.

Figure 2. Left: Centrality dependence of one dimensional unlike-sign correlation function from Au+Au col-
lisions at

p
sNN = 200 GeV. Right: kT dependence of one-dimensional unlike-sign correlation function for

centrality 30-50% from Au+Au collisions at
p

sNN = 200 GeV.

Regarding the centrality dependence, where the correlation functions are integrated over all kT , the
height of the � peak decreases significantly with centrality. Similarly a strong dependence is observed
as a function of kT , as shown on right panel of Figure 2 for centrality 30 � 50%, mid-peripheral
events. The kT dependence of femtoscopic correlations reflects the dynamics of the system. The
observed increase in the correlation strength with the kT qualitatively agrees with the e↵ects expected
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from a system undergoing a transverse expansion where pairs with the larger transverse momentum
are emitted from a smaller e↵ective source than the pairs with the smaller kT [11].

For comparison to the theoretical prediction of [7], additional physical e↵ects have to be taken
into account, since they decrease the strength of the measured correlation function. These e↵ects are
contained in the so-called correlation strength, the � parameter. In this analysis, the � parameter is ob-
tained from fitting an experimental correlation function of like-sign kaons. The e↵ects of momentum
resolution, feed-down and residual correlations have not been studied yet.

5 Like-sign 1D correlation functions and fitting

The one-dimensional like-sign correlation functions were constructed by the same method as the
unlike-sign correlation functions introduced in the previous sections. Figure 3 shows STAR prelim-
inary results of K+K+ and K�K� correlation functions from Au+Au collisions at

p
sNN = 200 GeV.

As the pairs consist of two identical particles with the same charge, the repulsive Coulomb interaction
and Bose-Einstein statistics can be observed at low qinv.
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Figure 3. One dimensional K+K+ and K�K� correlation function from 30-50% central collisions for positive(top)
and negative(bottom) kaons for two kT bins: 0.05 < kT < 0.35 GeV/c and 0.35 < kT < 0.65 GeV/c. The lines
represent the best fits to the data by using the Eq. 3.

The source radii Rinv and the � parameters are obtained from fitting experimental correlation func-
tions with a standard Bowler-Sinyukov form of one dimensional correlation function
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Figure 4. Fit results: � parameter and source radius Rinv as a function of kT and centrality.

CF(qinv) =
h
(1 � �) + �K (qinv) e�R2

invq
2
inv
i

N, (3)

where N is normalization and K (qinv) is Coulomb function integrated over source of size Rinv. The
extracted parameters are shown in Figure 4. As can be seen, the source radii Rinv increase with the
centrality and decrease with the pair transverse momentum kT . The errors of fit results are dominated
by systematic uncertainties which were estimated by varying the fit ranges. Study of other systematic
uncertainties is underway.

6 Comparison of unlike-sign 1D correlation function to Lednicky model

The experimental results of the unlike-sign one-dimensional correlation function can be now com-
pared to the theoretical prediction from Lednicky [7] using a relation:

CF (qinv) =
Z

d3rS (r, k⇤)
��� 1,2 (r, k⇤)

���2 , (4)

where S (r, k⇤) is the source function describing emission of two particles at a relative distance r
with the relative momentum k⇤ in the pair rest frame (PRF). The interaction between the two emitted
particles is characterized by their wave function  1,2 (r, k⇤).

Similarly, as assumed for eq. (3), the source is described by one-dimensional Gaussian in the PRF
with a parameter Rinv. Here the individual Rinv are those extracted from fitting like-sign correlation
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functions (Figure 4). The used FSI model of Lednicky [7] includes the treatment of �(1020) resonance
in the final state. The model also introduces a generalized form of smoothness approximation which
is needed for correct description of the correlation function in the region of the resonance. Since the
theoretical function does not include e↵ects contained in the experimental � parameter, it is scaled for
the comparison according to

CF =
⇣
CFtheor � 1

⌘
� + 1, (5)

where � parameter was obtained from the fit to the like-sign correlation function.
Comparison of unlike-sign one-dimensional correlation functions to model calculations for two

collision centralities is shown in Figs. 5 and 6. As can be seen, the model reproduces the overall
structure of the observed correlation functions, both at low qinv where the Coulomb and strong inter-
action in s-wave are present, as well as in the region of �(1020) resonance. The agreement in the
� region is very good for central collisions, however with decreasing source size the height of the
resonance peak is underestimated.
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Figure 5. Comparison of experimental K+K� correlation functions from Au+Au collisions at
p

sNN = 200 GeV
to theoretical calculations for 0-5% centrality for 4 di↵erent kT bins.

7 Summary

In this paper, the preliminary results of a STAR analysis of unlike-sign kaon femtoscopic correlations
in Au+Au collisions at

p
sNN = 200 GeV have been presented. The measured K+K� correlation func-

tion exhibits strong centrality and kT dependence in the region of �(1020) resonance. The obtained
correlation function has been compared to a theoretical FSI model with parameters Rinv, � obtained
from like-sign correlation functions. The Lednicky FSI model reproduces the correlation function in
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Figure 6. Comparison of experimental K+K� correlation functions from Au+Au collisions at
p

sNN = 200 GeV
to theoretical calculations for 30-50% centrality for 4 di↵erent kT bins.

central collisions, but underpredicts the strength of correlation in the �(1020) region for peripheral
collisions.
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Femtoscopy with unlike-sign kaons at STAR in 200 GeV
Au+Au collisions⇤
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In this paper, a status report of a STAR analysis of unlike-sign kaon
femtoscopic correlations in Au+Au collisions at

p
sNN = 200 GeV is pre-

sented. The experimental results are compared to theoretical predictions
that include the treatment of �(1020) resonance due to final-state interac-
tion.

PACS numbers: PACS numbers come here

1. Introduction

Femtoscopy, measurements of two particle correlations at small relative
momenta, is a standard tool to measure the space-time characteristics of the
particle emitting source. Nowadays femtoscopic studies span many di↵erent
particle species and include even non-identical strongly interacting particles
[1, 2, 3].

The approach proposed by Lednicky in [4] extends the femtoscopic for-
malisms to higher relative momenta between the two emitted particles in
a system where the final-state interaction (FSI) contains a narrow, near-
threshold, resonance. It is predicted that the correlation function will ex-
hibit high sensitivity in the region of the resonance, where the strength of
the correlation should scale with the source, r as inverse volume ⇠ r�3.
In addition, such measurements are statistically advantageous, since the
two-particle spectra fall rapidly at low relative momenta.

The non-identical kaons are a good example of such a system, since they
contain a narrow �(1020) resonance in the FSI. The �(1020) resonance is

⇤ Presented at XI Workshop on Particle Correlations and Femtoscopy
† This work was supported by the grant INGO II LG15001 of the Ministry of Education,

Youth and Sports of the Czech Republic.

(1)
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characterized by the decay width � = 4.3 MeV and the decay momentum
in the rest frame k⇤ = 126 MeV/c.

In this paper there are first presented results on correlation functions of
like-sign kaons, which provide information about the source size Rinv and the
� parameter. Consequently with these parameters of kaon emission source,
the theoretical correlation functions of unlike-sign kaons are calculated by
Lednicky model [4] and compared with the experimentally measured ones.

2. Data analysis

The data used for this analysis were collected in Au+Au collisions atp
sNN = 200 GeV by the Solenoidal Tracker at RHIC (STAR)[5] in 2011.

The most important STAR subdetectors for this analysis are the Time Pro-
jection Chamber (TPC) [6] and the Time of Flight (ToF) [7]. The kaons
were required to fullfill two main selection criteria. The tracks were re-
quired to have |n�K | < 3, where n�K is a distance from the expected mean
<dE/dx> in TPC expressed in terms of standard deviation units �K . They
were also required to have a signal from the ToF and satisfy a cut on the
mass: 0.21 < m2 < 0.28 GeV2/c4.

3. Like-sign 1D correlation function

In this analysis, the correlation functions were constructed for 5 central-
ities and 4 di↵erent bins of transverse pair momentum kT = (~p1 + ~p2)T /2.
The experimentally measured like-sign correlation function were corrected
for misidentification and e↵ects of momentum resolution. The source radii
Rinv and the � parameters were obtained from fitting experimental corre-
lation functions with a standard Bowler-Sinyukov form of one dimensional
correlation function [8]

CF (qinv) =
h
(1 � �) + �K (qinv) e�R2

invq2
inv

i
N, (1)

where N is a normalization and K (qinv) is the Coulomb function integrated
over source of size Rinv. The correlation function depends on qinv defined
as q2

inv = �(pµ
1 � pµ

2 )2, where p1
µ and p2

µ are the four-momenta of the
first particle and the second particle, respectively. In the pair rest frame
qinv = 2k⇤.

The extracted parameters are shown in Figure 1. As can be seen, the
source radii Rinv increase with the centrality and decrease with the pair
transverse momentum kT . The errors of fit results are dominated by sys-
tematic uncertainties which were estimated by varying the fit ranges. Fur-
ther study of other systematic uncertainties, such as pair selection cuts, is
underway.
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Fig. 1. Fit results of one-dimensional K+K+ and K�K� correlation functions.

4. Unlike-sign 1D correlation function

Figure 2 shows the STAR preliminary results of K+K� correlation func-
tions from Au+Au collisions at

p
sNN = 200 GeV. While at the low qinv,

the attractive Coulomb interaction and strong interaction in s-wave can be
observed, in the region of qinv ⇠ 0.25GeV/c the strong interaction in p-wave
via �(1020) resonance is present. As can be seen, the correlation function
is sensitive to the source size. In particular, a strong dependence on the
collision centrality and on the pair kT was observed in the resonance region.
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Fig. 2. Left: Centrality dependence of one-dimensional unlike-sign correlation func-

tion from Au+Au collisions at
p

sNN = 200 GeV. Right: kT dependence of one-

dimensional unlike-sign correlation function for centrality 30-50% from Au+Au

collisions at
p

sNN = 200 GeV.

The experimental results of the unlike-sign one-dimensional correlation
function were compared to the theoretical prediction from the Lednicky
model[4] using a relation:

CF (qinv) =

Z
d3rS (r, k⇤) | 1,2 (r, k⇤)|2 , (2)
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where S (r, k⇤) is the source function describing emission of two particles at
relative distance r with the relative momentum k⇤ in the pair rest frame
(PRF). The interaction between the two emitted particles is characterized
by their wave function  1,2 (r, k⇤). The source was parametrized by one-
dimensional Gaussian in the pair rest frame with a parameter Rinv ex-
tracted from fitting like-sign correlation function(Figure 1). The used FSI
model of Lednicky [4] includes the treatment of the �(1020) resonance in
the final state. The model also introduces a generalized form of the smooth-
ness approximation which is needed for correct description of the correlation
function in the region of the resonance. Since the theoretical function didn’t
include e↵ects contained in the experimental � parameter, it was scaled for

the comparison according to CF =
⇣
CF theor � 1

⌘
�+1, where � parameter

was also obtained from the fit to the like-sign correlation function. The com-
parison of the experimental and theoretical calculation is shown in Figure
3.

As can be seen, the model reproduces the overall structure of the ob-
served correlation functions, both at low qinv where the Coulomb and strong
interaction in s-wave are present, as well as in the region of �(1020) reso-
nance. The agreement in the � region is very good for central collisions,
however with decreasing source size the height of the resonance peak is
underestimated.

5. Summary

In this paper, preliminary results of STAR analysis of unlike-sign kaon
femtoscopic correlations in Au+Au collisions at

p
sNN = 200 GeV have been

presented. The measured K+K� correlation function exhibits strong cen-
trality and kT dependence in the region of �(1020) resonance.The obtained
correlation function has been compared to a theoretical FSI model with
parameters Rinv, � obtained from like-sign correlation functions. The Led-
nicky FSI model reproduces the correlation function in central collisions,
but underpredicts the strength of correlation in the �(1020) region for pe-
ripheral collisions.
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