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V Praze dne

Renata Kopečná
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Abstract:

We present a novel method for sorting events according to their shape. In ultrarela-

tivistic collisions, a small drop of quark-gluon plasma, called fireball, is produced. The

shape of the fireball is determined by the different initial conditions of the collisions,

there are hotter and colder places in the fireball. Anisotropies present in the fireball

evolve up to the freeze-out and are reflected by anisotropies in azimuthal angle particle

distributions. Our goal is to sort events according to their history using the whole

particle distribution rather than one variable.

We implemented the code ESSTER that uses iterative algorithm to automati-

cally sort the events. The algorithm is based on Bayesian concept of probability.

We present results of this method on data simulated by AMPT motivated by PbPb
√
sNN = 2.76 TeV collisions at the LHC.

We propose several practical application of this method. It can be used for more ex-

clusive experimental studies of flow anisotropies that can then be compared more easily

to theoretical calculations. It may also be useful in the construction of mixed-events

background for correlation studies or in the determination of initial orientation of ions

in collisions of asymmetric nuclei such as UU collisions at RHIC.

Key words: Quark-gluon plasma, heavy-ion collisions, transverse flow anisotropies, ellip-

tic flow, Event Shape Engineering, ESSTER, AMPT, particle fluctuations, distribution

theory
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Abstrakt:

V této práci popisujeme novou metodu pro tř́ıděńı event̊u podle jejich tvaru. V

ultrarelativistických jaderných srážkách se produkuje kapička kvark-gluonového plaz-

matu, které se ř́ıká fireball. Tvar fireballu se lǐśı podle r̊uzných počátečńıch podmı́nek,

ve fireballu jsou tepleǰśı a studeněǰśı mı́sta. Anizotropie fireballu se vyv́ıjej́ı až po

vymrz-nut́ı a projevuj́ı se ve formě azimutálńıch anizotropíı v distribuci částic. Našim

ćılem je tř́ıdit srážky na základě jejich historie za použit́ı celé distribuce azimutálńıho

úhlu částic.

Naimplementovali jsme program ESSTER, který použ́ıvá iterativńı algoritmus k au-

tomatickéu setř́ıděńı srážek. Tento algoritmus je založen an Bayesovské teorii pravděpo-

dobnosti. Předkládáme výsledky źıskané za pomoci AMPT modelu, motivované srážka-

mi PbPb na LHC při
√
sNN = 2.76 TeV.

Dále navrhujeme několik praktických aplikaćı této metody. Může být použita pro

detailněǰśı studie anizotropíı toku a tedy i pro lepš́ı srovnáńı s teoretickými výsledky.

Dále ji lze použ́ıt při konstrukci mixovaných pozad́ı, nutných pro r̊uzné korelačńı studie,

nebo při určováńı orientace jader při srážkách asymetrických jader, jako jsou např́ıklad

srážky UU na RHIC.

Kĺıčová slova: Kvark-gluonové plazma, těžko-iontové srážky, anizotropie př́ıčného toku,

eliptický tok, Event Shape Engineering, ESSTER, AMPT, fluktuace částic, distribučńı

teorie
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Introduction

Since the beginning of history, humans have wondered how the Universe began. One method

of how to investigate the conditions just a fraction of a second after the Big Bang is to collide

heavy ions at high energies. For that purpose, powerful facilities such as the Large Hadron

Collider at CERN or the Relativistic Heavy Ion Collider at Brookhaven were built. At those

facilities, heavy ions are being collided at very high energies. Those collisions are called

ultrarelativistic, because the velocity at which researchers collide the heavy ions is very close

to the speed of light in vacuum c.

These collisions produce the Quark Gluon Plasma (QGP), a state of matter being present

a few microseconds after the Big Bang. This matter is very hot and very dense. The name

comes from the similarity with regular plasma, but instead of ions and electrons being freed

out of an atom, QGP consists of almost free quarks and gluons. This drop of hot and dense

medium, the fireball, cools down, quarks and gluons are recombined into hadrons, which are

later being registered by a detector.

In this thesis, we investigate this state of matter via the anisotropy of the azimuthal angle

distribution of those particles. We present a novel method that automatically sorts events

according to the whole azimuthal angle distribution.

First chapter briefly describes QGP and explains the origin of azimuthal angle anisotropies.

In the second chapter we introduce basic terms and explain the motivation of our study.

Differential flows are defined. Furthermore, we suggest several cases where this method is

applicable. A short subsection is dedicated to a study of rapidity distribution.

The third part describes our program ESSTER, explains its properties and its usage.

The structure of the algorithm is described in detail. Moreover, we propose several possible

extensions of the algorithm.

The AMPT model is described in the fourth chapter. Its structure, basic properties and

parameters are presented. The choice of AMPT parameters is explained.
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Last part is dedicated to the results we obtained via AMPT. We present results for three

different centrality classes, thoroughly studying collisions corresponding to the centrality class

of 0 - 20%. We analyzed sorted events using principal component analysis method a present

the results of this method at the end of this chapter.

In the appendix, we include ESSTER documentation. We attach a complete list of pa-

rameters used in AMPT. Moreover, we add published and soon-to-be-published publications

done while working on this thesis.
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1 QUARK GLUON PLASMA

1 Quark gluon plasma

Recent results from experiments at facilities such as Relativistic Heavy Ion-Collider (RHIC)

or the Large Hadron Collider (LHC) suggest the existence of an ultra-dense state of matter,

the quark-gluon plasma (QGP). This state of matter may provide us information about the

early stages of the Universe, the behavior of compact stars and much more. We are not able

to study QGP directly, but via analyzing produced hadrons at experiments at RHIC and the

LHC, using computer simulations or using mathematical models and simplifications. Then

we investigate its properties, namely in this work we focus on azimuthal angle anisotropies.

Quark-gluon plasma was present just a few microseconds after the Big Bang. It is present

in the hypothetical quark stars and possibly neutron stars [1]. In terrestrial conditions, it is

present during the first fm/c of high-energy heavy-ion collisions. Small drop of QGP, called

fireball can be created during these collisions. Due to the analogy with the expansion of the

hot universe, these collisions are called Little Bangs.

In classic plasma, neutral atoms are dissolved into ions and free electrons. In QGP,

hadrons are dissolved into quarks and gluons which are free to move over distances larger

than size of a hadron (we say they are deconfined).

First theoretical predictions of QGP appeared in the 1970’s. Few years later, the idea

of studying it via heavy-ion collisions emerged. Promising results, such as strangeness en-

hancement, were obtained in the 1990’s at the SPS (CERN) [2], supported later by RHIC

results in 2000’s. Today, all the big LHC experiments, this year also including LHCb, are

also measuring PbPb collisions, proving the importance of QGP studies.

Despite the early predictions, QGP seems to be behaving as an almost perfect fluid. The

lower limit for its shear viscosity, using natural units (~ = 1, kB = 1), η/s is 1/4π. This limit

was established using AdS/CFT theory [3]. We focus at the ratio of viscosity and entropy

density because in the case of natural units η/s is a dimensionless quantity.

3



1.1 Studying quark-gluon plasma
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Fig. 1: QGP phase diagram. Dependence of the critical

temperature T on baryon chemical potential µB. Taken

from [5].

The conditions needed to create

QGP are rather extreme. Hadrons

need to be very close to each other,

requiring high energy density or

high baryon chemical potential µB.

Temperature which is required for

the phase transition from hadrons

to QGP at µB = 0, denoted Tc, the

critical temperature, is estimated at

140 - 175 MeV [4]. One of the the-

oretical predictions of the depen-

dence of the critical temperature

on the baryon chemical potential is

shown in Fig. 1. As can be seen in

the figure, baryon chemical poten-

tial much smaller than the proton

mass mp corresponds to the conditions created at LHC or RHIC, while in neutron stars we

expect the baryon potential to be more than the mp. The transition from confined hadrons to

QGP for small µB appears to be smooth: looking at the energy density expressed as a func-

tion of temperature ε = ε(T ), all the derivatives are continuous. We speak about cross-over

transition.

1.1 Studying quark-gluon plasma

It is impossible to study QGP directly due to its properties as well as its very short presence

in the collision point. The only way to examine QGP is studying the hadrons originating

from the fireball. Transverse momentum distribution or hadron yields and their correlations

are usually studied.
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1 QUARK GLUON PLASMA

We focus on the anisotropic expansion of the fireball. The fireball is produced in vacuum,

so there is a big pressure gradient. The distribution of these gradients is anisotropic due to

the presence of hotter and colder places. Those initial anisotropies lead to flow anisotropies,

because the system tends to flow in the direction towards the lowest pressure. The non-

zero viscosity of QGP comes into importance now. Since the viscosity is small, only small

dissipative effects are present and initial fluctuations are not erased during the freeze-out

stage. They survive in the form of anisotropic flow. Anisotropic flow can be measured and

is strongly connected to the initial conditions and the evolution of the system.

Moreover, one has to take into account the fact that the fireball travels towards the

detector: blue shift is present. Blue shift influences the final hadron distribution: it is

responsible for higher multiplicities and higher mean pT in the stronger flow direction.

Our goal is to separate events according to their azimuthal angle distribution. As men-

tioned above, azimuthal angle distribution is strongly connected to the initial conditions and

the event evolution. Events with similar shape have similar initial conditions and evolution.

Our approach is to sort events according to their overall shape rather than one variable.

Simply said, we are sorting out events according to their similar history.

5



2 Motivation

First in this section, we mention our first motivation: verifying if Event Shape Engineering

provides the best possible observable that can be used for selecting events with similar shape.

Besides the general idea of sorting events with similar azimuthal angle distribution, there exist

several purely practical applications of our method. We describe why and how it is useful to

apply our method in the construction of mixed-events background for correlation studies or

in the determination of mutual orientation of asymmetric nuclei in UU collisions. Lastly, we

shortly mention the possible application of studying rapidity distributions using our method.

2.1 Event Shape Engineering

Event Shape Engineering is one of the existing methods how to select events with similar ini-

tial conditions. It was proposed in 2012 by J. Schukraft, A. Timmins and S. A. Voloshin in [6].

It studies azimuthal angle anisotropies. The usual treatment is to expand the distribution

into the Fourier series:

dN

dyd2pT
=

dN

2πpTdydpT

[
1 +

∞∑

n=1

2vn cos(n(Φ− Φn))

]
. (1)

The notation follows usual convention; N is the number of particles, pT transverse momen-

tum, y rapidity, Φ azimuthal angle, Φn is the nth reaction plane azimuthal angle, vn’s are nth

differential flows. The flow coefficients vn are the parameters we are going to focus on. An

example of their role in the azimuthal angle distribution is depicted in Fig. 2.

Event Shape Engineering works in the following way: first, one divides events into two

subevents. One (subevent a) is used for event selection. Second one, denoted subevent b, is

used for the physical analysis. These two subevents are selected in a given momentum region

or randomly. This helps to reduce nonphysical biases due to nonflow effects [6]. More about

the biases caused by nonflow effects can be found for example in [7].

6



2 MOTIVATION

Fig. 2: Radial distributions with nth differential flow vn behaviour illustration.

The measure used for distinguishing events in this approach is usually the magnitude of

the reduced flow vector qn. Usually, second order flow vectors are used. The reason for this

is that flow vectors determine the direction where most of the particles are emitted. Hence,

there is a strong connection to flow. Well known fact is that elliptic flow v2 dominates in

the most heavy-ion collisions (besides the very central collisions where triangular flow v3 is

comparable). Therefore, the analysis is done via q2.

First, flow vectors are defined via the following equation:

~Qn =

(
M∑

i=1

cos(nφi) ,
M∑

i=1

sin(nφi)

)
. (2)

M denotes multiplicity of the subevent, φi is ith particle azimuthal angle. Second, one

calculates the reduced magnitude as

qn = Qn/
√
M . (3)

The multiplicity normalization is necessary since ~Qn clearly scales with multiplicity. The

analysis is usually done over a broad range of multiplicity.

In this analysis, two particle correlation can be also used. The magnitude of flow vector

qn can be also obtained as follows

q2
n = 1 + (M − 1) 〈cos[n(φi − φj)]〉i<j .

7



2.2 Femtoscopy

The angular brackets denote average over all particles in the given subevent. The condition

i < j eliminates self-correlations and double counting of correlations (correlating particle i

with particle j is the same as correlating particle j with particle i).

As stated in [6], the performance of this method is rather good. Our motivation was to

verify that statement and investigate what happens if we take into account the whole shape

of the azimuthal angle distribution rather than one variable, in this case q2.

2.2 Femtoscopy

One of the possible future applications of our method are femtoscopy studies. Following

the laws of quantum mechanics, the amplitude of production of a pair of bosons contains

two symmetrical terms, as illustrated in Fig. 3. Simply speaking, the total amplitude of

production of two particles produced at points x1 and x2 with momenta k1 and k2 consists of

two amplitudes: probability of particle being produced at x1 with momentum k1 and particle

being produced at x2 with momentum k2 and probability of particle being produced at x1

with momentum k2 and particle being produced at x2 with momentum k1.

Fig. 3: Symmetrization of the two-boson amplitude.

Schematically, the amplitude of such a process consists of a sum of two symmetric am-

plitudes:

A(p1, p2) =
1√
2

(A(x1 → k1, x2 → k2) + A(x1 → k2, x2 → k1)) .

The probability A∗A contains mixed element of the two processes in Fig. 3. Since we want to

obtain plain two-boson spectra, we need to get rid of the interference term in the amplitude

8



2 MOTIVATION

and preserve the symmetrization effect. We simply factorize the interference out using single-

boson probabilities P1(k1), P1(k2):

C(k1, k2)
def
=

E1E2d
6N/dk3

1dk
3
2

(E1d3N/dk3
1)(E2d3N/dk3

2)
=

P2(k1, k2)

P1(k1)P1(k2)
. (4)

Notation is usual, k is particle momentum, E energy and N particle yield. P2(k1, k2) is the

two-boson probability, P1(k) is one-boson probability.

Rewriting k1 and k2 in terms of q = k1 − k2 and K = (k1 + k2)/2 significantly simplifies

further manipulation. With these variables we can use the relation

qµKµ = 0 .

This immediately implies that only three components of q are independent. Since q0 =

~q · ~β and ~β = ~K/K, only the spatial components of q become relevant. We denote those

components in a suitable coordinate system qout, qside and qlong, there qout is the component

in the direction of transverse component of ~K, qlong is in the beam axis direction and the

orthogonal complement is qside. For further simplification, we assume the reference frame is

moving longitudinally with velocity βl.

We presume the fireball is azimuthally symmetric with respect to the longitudinal axis as

well as the region producing particles with some transverse momentum is symmetric in the

sideward direction. Then, one can obtain the famous Bersch-Pratt parametrization:

C(q,K)− 1 = exp
(
−q2

outR
2
out (K)− q2

sideR
2
side (K)− q2

longR
2
long (K)

)
.

This leaves us with information about the size of the system Rout,Rside and Rlong.

Experimentally, the product P1(k1)P1(k2) in eq. (4) is not used. Instead, background

function B(k1, k2) is constructed. It is obtained using pairs, where each particle of a pair is

taken from a different event. This procedure is called event mixing. This guarantees that

particles are not correlated due to symmetrization of the wave function. However, for proper
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establishment of the background function, one should use different but still somewhat similar

events. It is nonsense to mix different events with different single-particle distributions. As

we will describe later, our method might distinguish similar events that can be later used for

such an analysis. Possibly, it could lead to even single event femtoscopy which is unreachable

using customary methods.

This method is often referred to as Hanbury Brown-Twiss (HBT) method. It was proposed

in [8], where they used similar approach for measurement of the angular size of the star Sirius,

using the correlation between photons in coherent beams of radiation [8].

2.3 Two-particle correlations in relative angle

Another nice example of using our method are two-particle correlation studies in relative

angle. Correlations of produced hadrons in pseudorapidity ∆η and azimuthal angle ∆φ can

be investigated. This study is a valuable probe of collective effects in collisions. Originally,

this study was done in heavy-ion collisions, since the collective effects are expected to play a

crucial role in QGP. However, recent measurements evince unexpected long-range correlations

also in high-multiplicity pp collisions. Long range correlations are such correlations where

∆η & 2 [9].

Similar to previous case, the final distribution is calculated as a ratio of signal over

background. Background is obtained using event-mixing. Again, we state that our method

can be used for better event selection in the event-mixing procedure.

We briefly describe the method mostly used by experimentalists [9].

The signal distribution S (∆η,∆φ) is defined as:

S (∆η,∆φ) =
1

Ntrig

d2Nsame

d∆ηd∆φ
. (5)

The number of trigger particles Ntrig denotes the number of all particles in the given pT and

multiplicity bin. Nsame means the correlation between tracks from the same event.

10
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The background distribution B (∆η,∆φ) is evaluated, similar to the eq. (5), as

B (∆η,∆φ) =
1

Ntrig

d2Nmix

d∆ηd∆φ
. (6)

This time, Nmix stands for the number of particle pairs obtained by combining a trigger

particle from one event with all the tracks from similar events. In order to normalize this

distribution, B (∆η,∆φ) is divided by the zeroth bin B (0, 0). Given this normalization,

background distribution can be understood as a pair-acceptance efficiency.

Finally, the correlation function itself is obtained as a ratio of signal distribution and

background distribution:

1

Ntrig

d2Npair

d∆ηd∆φ
= B (0, 0)× S (∆η,∆φ)

B (∆η,∆φ)
. (7)

2.4 UU collisions

Fig. 4: Different UU collisions geometries. Taken

from [10].

Let us move from PbPb collision to colli-

sions of asymmetric nuclei. The RHIC

facility has been studying uranium-

uranium collisions. 238U is very asymmet-

ric nucleus [10]. Hence, there are many

different possibilities of the overlap ge-

ometry during the collision. Three basic

examples of the collision geometry are in

Fig. 4. There were many attempts how

to establish initial orientations of the nu-

clei from the data. Simulations suggest

that there are differences in pseudorapid-

ity, pT and elliptic flow distributions for

different nuclei orientations [10]. Another

11



2.5 Rapidity distribution

example is a method that uses the signal from ZDC to investigate the number of spectators

in the most central collisions [11].

Our method could potentially distinguish tip-tip collisions from the body-body ones

within a wide centrality range and/or distinguish small differences in the initial geometry

of the collision, for instance differentiating between non-central body-body collisions and

central tip-tip collisions.

2.5 Rapidity distribution

In [12], we were interested in the influence of fireball fragmentation on rapidity distribution.

This may happen in heavy-ion collisions studied at future NICA facility. NICA (Nuclotron-

based Ion Collider fAcility) is a future accelerator facility located in Dubna, Russia, designed

for studying QGP. NICA operates at lower energies (4-11 GeV [13]). Fireball created there

may find itself in the region of the phase diagram, where it can undergo a first-order phase

transition. Moreover, the fireball is rapidly expanding. This results in supercooling and

spinodal decomposition. The final hadron distribution consists of hadrons produced from

the fragments and those produced from the matter present between the fragments. The

presence of fragments should be reflected in the rapidity distribution. However, the task

to disentangle the events with similar fragment structure is rather complicated: rapidity

distributions fluctuate from event to event. Our approach could help to identify the first-

order phase transition and distinguish events with similar fragment structure.

12



3 ESSTER

3 ESSTER

For the purpose of testing the algorithm, we implemented a simple program called ESSTER:

Event-Shape SorTER. The documentation of this program is in Appendix A. Here, we will

shortly introduce main functions of the program. ESSTER consists of two main parts: Toy

Model Monte Carlo generator and Event Shape Sorter. We used a simple Monte Carlo model

for the purpose of initial testing of the algorithm and for obtaining several promising results.

This motivated further the use of more advanced Monte Carlo models such as AMPT.

3.1 Toy Model

The azimuthal angle distribution can be expressed using Fourier decomposition (see eq. (1)).

Hence, we generated particles with azimuthal angle φ according to

dN

dφ
∝ 1 +

∞∑

n=1

2vn cos(n(φ−Ψn)) . (8)

The vn parameters for each event depend quadratically on multiplicity M :

vn = aM2 + bM + c ,

where a, b and c are coefficients obtained from the fits to PbPb LHC data [14, 15], actual

values are in Appendix A. Then, they are smeared according to Gaussian distribution. Fur-

thermore, the event plane angle Ψn is set randomly for every event and is independent for

every n.

3.2 Event Sorting

The sorting method applied here is based on Bayesian probability. Short description of the

algorithm can be found in [16]. For our purposes, two main relations are applied. First

one is the Bayes’ theorem. It makes it possible to rewrite conditional probability of event A

given event B, denoted as P (A|B), using the probability of event B given event A, P (B|A).

13



3.2 Event Sorting

Mathematically, denoting probabilities of events A and B as P (A) and P (B)

P (A|B) =
P (B|A)P (A)

P (B)
. (9)

The second important relation is expanding probability of event B using a set of different

independent events {A1, . . . ,An} which fulfills the condition
∑n

i=1 P (Ai) = 1:

P (B) =
n∑

i=1

P (B|Ai)P (Ai) . (10)

3.2.1 Algorithm

The algorithm was inspired by [17] and [18]. The authors used this algorithm for distinguish-

ing between good a bad scientists. They took their citation record, made a histogram out

of the distribution of citation counts and compared the shapes of those distributions. They

also tried to find a good variable for the determination of a good scientist1.
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[rad]φ
0 1 2 3 4 5 6

0

50

100

150

200

250

Fig. 5: Azimuthal angle histogram ex-

ample.

Since our algorithm compares whole distribu-

tions, first, one needs to draw histograms of the

desired distribution. Hence, we make azimuthal an-

gle histogram. Let us denote the number of bins in

this histogram k. We will refer to these bins using

Roman letters, meaning we have k bins denoted as

1, . . . , i, . . . , k. An example of such an event can

be seen in figure 5. This event is described the az-

imuthal angle distribution of charged particles {208,

163, 177, 146, 162, 158, 171, 146, 181, 226, 240, 216,

182, 196, 127, 160, 160, 187, 209, 238}. The total

charged multiplicity of this event is 3653.

1Interesting result is that the correlation of scientific quality and Hirsch index is comparable to the
correlation of scientific quality and number of papers per year.
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3 ESSTER

Next step is to organize events according to some good measure. The advantage of this

algorithm is the fact that it is an iterative process, as is shown later. Hence, even if one

organizes the events randomly, the algorithm eventually sorts them. This means that the

initial sorting does not bring any bias to our study. Moreover it allows us to study different

measures and separate the good ones from the bad ones. In our case, we started with events

organized according to q2 or a random number.

Then, we make event bins from the organized events. In order to distinguish the event

bins from the azimuthal angle bins, event bins are denoted using Greek letters: we have ω

event bins 1, . . . , µ, . . . , ω. For simplicity, we will use quantiles as bins (meaning we have

ω-quantiles).

Now, we want to obtain the probability that the event with record {ni} belongs to an

event bin µ, shortly denoted as P (µ|{ni}). Using Bayes’ theorem (9) and eq. (10), we can

rewrite P (µ|{ni}) using the probability P ({ni}|µ) that an event in the bin µ has an angle

record {ni}:
P (µ|{ni}) =

P ({ni}|µ)P (µ)

P ({ni})
=

P ({ni}|µ)P (µ)∑
µ′ P ({ni}|µ′)P (µ′)

. (11)

The probability P ({ni}|µ) can be calculated using the probability P (i|µ) that particle is

in the ith bin given the event is in the event bin µ:

P ({ni}|µ) = N !
∏

i

P (i|µ)ni

ni!
, (12)

N denotes total number of particles (multiplicity). This formula takes into account all

the possible permutations of particles among their angle bins. We will address the case of

weighted events later in this section. Substituting for P ({ni}|µ) in eq. (11) leads to canceling

all factorials. This significantly simplifies the computation.

The probability P (i|µ) is the number of particles in ith bin for all events in µ divided by

the number of all particles in all events in µ:

P (i|µ) =
# of particles in ith bin for all events in µ

# of all particles in all events in µ
. (13)
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3.2 Event Sorting

Now we can rewrite eq. (11) in the terms of P (i|µ):

P (µ|{ni}) =

∏
i P (i|µ)niP (µ)∑

µ′
∏

i P (i|µ′)niP (µ′)
. (14)

P (µ) (as well as P (µ′)) denotes the prior. Now it is clear why we used quantiles: the prior

is always 1/(number of quantiles). Worth noticing is also the fact, that this formula uses

all the available data. Hence, if there are any exceptional or rare events, their statistical

influence is highly suppressed.

Since we know how to obtain the probability P (µ|{ni}) that an event with the record

{ni} belongs to the event bin µ, one can easily obtain the mean event bin number

µ̄ =
∑

µ

µP (µ|{ni}) . (15)

Once we calculate the mean bin number for every event, we sort the events according to

µ̄. This means we obtain new µ bins, we do the bayesian analysis again, obtain new µ̄. We

repeat this until the events assigned into event bins µ remain unchanged.

For readers comfort, we add simple bullet overview of the algorithm with Fig. 6 depicting

the structure of the algorithm.

1. For every event make azimuthal angle dN
dφ

histogram.

2. Order events and divide them into ω event bins.

3. For each angle bin i and event bin µ calculate the probability that particle is in the ith

bin given the event is in the event-bin µ according to eq. (13):

P (i|µ) =
# of particles in ith bin for all events in µ

# of all particles in all events in µ
.

4. Calculate the probability that an event in bin µ is described by a set of numbers {ni}
denoting ni particles belong to ith bin, reducing the factorials in eq. (12), (14)

P ({ni}|µ) ∝
∏

i

P (i|µ)ni .
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3 ESSTER

5. For each event with record {ni} calculate the probability that it belongs to the bin µ

according to eq. (11):

P (µ|{ni}) =
P ({ni}|µ) p(µ)

P ({ni})
=

P ({ni}|µ) p(µ)∑
µ′ P ({ni}|µ′) p(µ′)

.

6. For every event calculate mean bin number (eq. (15)):

µ̄ =
∑

µ

µP (µ|{ni}) .

7. Sort according to µ̄.

8. Repeat from the third step until the content of µ bins remains unchanged.

dN

d
histogram

Initial sorting

P(i| )

P({n }| )i

P( |{n })

Average 

Sort 

-

i

Fig. 6: Algorithm flowchart.
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3.2 Event Sorting

3.2.2 Initial assignment error

We are not only interested in sorting the events, we also want to find the variable that would

be good for sorting itself. If such a variable exists, one could directly sort events according

to it and not use this rather long iterative algorithm. To verify if a variable is good, one

can obtain the error of original bin assignment. Keeping the previous approach, we want to

calculate the probability P (α|β) that an event originally assigned to bin β (’before’) ends up

in bin α (’after ’) after applying the sorting algorithm. We will calculate this probability as

an average of the probability P (α|{ni}) for all events {ni} in bin β:

P (α|β) =
1

Nβ

∑

{ni}∈β

P (α|{ni}) (16)

If the original sorting variable was good, we expect the values of P (α|β) to be approx-

imately one around diagonal, and approximately zero elsewhere. We do not expect a clear

diagonal tough, there are fluctuations and we have only limited sample of events and limited

size of bins. This is also reflected by the fact that the probability that an event {ni} belongs

to some event-bin is normalized as

N∑

µ=1

P (µ|{ni}) = 1 ,

but the probability that an event in any of the event-bins has an angle record {ni} is not

necessarily one:
N∑

µ=1

P ({ni}|µ) 6= 1 .

3.2.3 Events rotation

Since we are studying an azimuthal angle distribution, we can rotate all events along the

beam axis arbitrarily. As is shown later, different initial rotation yields slightly different

results. Considering the fact that v2 is apparently dominant constituent in eq. (1), our first
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3 ESSTER

choice of rotation is in the way that the second-order event plane Ψ2 = 0. As shown later,

this introduces a bias in our algorithm, since it leads to smearing of other flow coefficients.

The sorting is then clearly dominated by v2.

Since the second biggest coefficient is v3, it is reasonable to study such a rotation where

Ψ3 = 0. Results obtained by toy model [16, 19] suggests that sorting is then clearly dominated

by v3. Furthermore, this makes another problem visible: parity symmetry. We have a free

choice of choosing a mirror image of the event or not. This was not visible in the previous

case since |Ψ2| < π/2. Our solution to the problem of eliminating the parity symmetry was

to perform the sorting first. Once the events are sorted, we made a mirror image of the

second half of the sorted events. Then, we sorted the events again. This reduces the effects

of the parity symmetry to a minimum since the algorithm initially sorts the events in a way

that mirror images are in the opposite bins (meaning bins 1-10, 2-9, . . . ).

One way how to reduce such effects is to take into account both Ψ2 and Ψ3 while putting

a constraint on the parity. For this purpose, we introduce the angle Ψ2−3. This angle is the

bisector between Ψ2 and Ψ3, while Ψ2 is less than π/2 away counterclockwise from Ψ2−3.

Second way how to remove such a bias is to look at two-particle correlations. This

eliminates the trouble with initial rotations as well as parity. The toll for that is a loss of

information, since we look at correlations in one event, meaning we convolute an event with

itself.

3.2.4 Normalized histograms

The histograms described so far were normalized to the number of particles. In this case,

events with higher multiplicity influence the sorting more than the ones with smaller mul-

tiplicity. To prevent that, some kind of normalization is necessary. A probability density

function f(x) is normalized as ∫ +∞

−∞
f(x)dx = 1 .

In our case, we want the content of the histograms to be normalized in a way it is as

close as possible to the probability density. Considering we have an angle distribution and
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3.2 Event Sorting

denoting the width of a bin ∆

∫ 2π

0

f(x)dx ≈
ω∑

i=1

ni ·∆ = N ·∆ !
= 1 .

This means we have to divide the number of particles in each bin by (N · ∆), resulting in

having a record for an event {ni/N}. First, we again calculate the probability P (i|µ)norm

as 2

P (i|µ)norm =

∑
{ni}∈µ ni/N∑

i

∑
{ni}∈µ ni/N

=
∑

{ni}∈µ

ni/N .

We can happily ignore the weight ∆ describing the width of a bin. It is the same for every

event, and it will be factorized out similarly as in (11). However, the next step requires a

power to the number of particles in bins without the normalization. Since our probability

P ({ni}|µ) still describes that an event in bin µ is characterized by a set of numbers {ni},
one needs to calculate it as

P ({ni}|µ)norm = N !
∏

i

P (i|µ)ni
norm

ni!
.

The latter steps are performed as in the Sec. 3.2.1. Again, the factorials are not an issue

since they are factorized out.

3.2.5 Weighted events

In experiments, one has to deal with several detector effects. Main corrections applied are

acceptance correction, efficiency correction and reconstruction software corrections. This

leads to non-integer values in histograms. We will denote a weight for every event {ni} as

w{ni}. The modification of the algorithm is straight-forward.

First, we simply obtain P (i|µ):

P (i|µ) =

∑
{ni}∈µ niw{ni}∑

i

∑
{ni}∈µ niw{ni}

.

2Note that P (i|µ)norm 6= P (i|µ).
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Now, one has to deal with the fact that there are non-integer numbers of particles in each

bin. Considering simple assumption that given the probability of rolling six twice on a dice

is 1/36, the probability of rolling six once is
√

1/36 and thrice (1/36)3/2, we expand eq. (11)

as follows:

P ({ni}|µ) = (Nw{ni})!
∏

i

P (i|µ)niw{ni}

(niw{ni})!
.

The problem of non-integer factorials can be solved with a help of a Γ-function:

z! = Γ(z + 1), z ∈ R .

This formal requirement for factorials is, however, still factorized out as in eqs. (12, 14).

Hence, rather complicated calculation of Γ-functions is not necessary. The rest of the calcu-

lations is the same as in the Sec. 3.2.1.

As mentioned in the beginning of this section, we have tested this algorithm using a toy

model (see Appendix A). The results obtained from this were very promising. However,

a simple toy model does not provide a sufficient physics insight. Therefore, we have used

AMPT. AMPT is a Monte Carlo model used for simulating relativistic heavy-ion collisions,

providing us more realistic data and a better insight in the underlying physics.

21



4 AMPT

As mentioned in the previous section, AMPT is a Monte Carlo model widely used for sim-

ulating relativistic heavy-ion collisions. It was released for public use in 2004. The name

stands for A Multi-Phase Transport Model. It includes both initial and final hadronic in-

teractions as well as the transition between confined and deconfined phase of matter [20].

AMPT is a model used for generating pA and AA collisions with CMS energy roughly

from 5 GeV to 5500 GeV. In this region, initial interactions are dominated by strings and

minijets. Final interactions are, however, also important. AMPT starts with HIJING

(Heavy Ion Jet Interaction Generator), used for modeling initial conditions. It is followed

by ZPC (Zhang’s Parton Cascade) used for modeling partonic scatterings. Next step is

hadronization: Lund string fragmentation model or quark coalescence is used. Since we

used quark coalescence for our study, from now on we will consider only the later. Finally,

hadron scattering is treated by ART (A Relativistic Transport model). The final results

Fig. 7: AMPT Flowchart with string melting

included. Taken from [20].

are obtained at so-called cutoff time tcut. At

this time, hadron interactions do not signifi-

cantly change the observables.

We used the version 2.26t5 (released on

April, 2015) accessible at [21]. The model is

written in Fortran 77 language. The main ad-

vantage of this code language is its fast perfor-

mance, which is crucial for such a complicated

Monte Carlo Model.

As mentioned before, AMPT consists of

four parts: the initial conditions, parton cas-

cade, the hadronization, and hadronic interac-

tions. Now we briefly describe each part [20].

A flowchart of the AMPT structure is in Fig. 7.
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4.1 Initial conditions

As mentioned, this part is based on the HIJING model. For the colliding nuclei density,

Wood-Saxon shape is used. Multiple scatterings among nucleons are described by the eikonal

formalism. The hard and soft components of particle production processes are treated sep-

arately. Hard component is calculated using perturbative QCD, soft component using the

formation of strings. The cutoff momentum p0 used for distinguishing between soft and hard

process is equal to 2 GeV.

Since the energy density in very central collisions is really high even at RHIC energies,

not including the string melting mechanism would underestimate the partonic effects: using

string fragmentation only, partons would coalescence back to the original hadron since they

would pair-up with the closest partner at the same freeze-out time. The position of partons

originating from string melting is obtained using straight-line trajectories from their parent

hadrons. The formation time tf is introduced. It represents the time needed for production

of the partons from strong color fields. This ensures all the partons coming from the same

parent hadron have the same formation time. It is defined as tf = EH/m
2
T,H , where EH

denotes the energy of the parent hadron and mT,H is transverse mass of the parent hadron.

The advantage of this approach is that those initial conditions can be directly obtained from

HIJING with partonic and hadronic interactions turned-off.

4.2 Partonic interactions

The interaction is treated as equations of motions for partons’ Wigner distribution functions.

They can be approximated by Boltzmann equations, resulting (for two-body interaction) in

pµ∂µf (x,p, t) ∝
∫
σf (x1,p1, t) f (x2,p2, t) dp1dp2 ,

where the integral is evaluated over the momenta of other three partons. σ is the cross section

for partonic two-body scattering, f (x,p, t) is the partonic distribution function dependent

on the time t and phase space x,p.
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These equations are solved by Zhang’s parton cascade (ZPC). In this approach, two

partons are scattered anytime they get closer to each other than
√
σ/π . ZPC can solve

only two-body scatterings such as gg → gg, cross sections obtained from pQCD. One crucial

parameter is needed here: the Debye screening mass µ. It characterizes the lowest momentum

exchange with the medium [22].

Worth mentioning is the fact that jet-quenching in AMPT is effectively replaced by ZPC.

However, only two-body interactions are implemented, higher-order contributions are absent

in AMPT.

4.3 Hadronization

There are strings remaining from the initial conditions. String systems are gluons connected

with their partner quarks or diquarks. Those strings are converted to soft partons. Later,

soft partons are turned into hadrons using quark coalescence model. This model is similar

to the ALCOR (Algebraic Coalescence Rehadronization) model [23]. The hadronization

is simply done by combining two or three nearest quarks or antiquarks. Since the invariant

mass of combined partons is discrete, 4-momentum is not conserved during coalescence. This

problem is solved using 3-momentum conservation and determination of hadron species using

the invariant parton mass and flavor. In case of pseudo-scalar vector mesons with the same

flavor, the meson with invariant mass closest to coalescing qq̄ pair is formed. The baryons are

treated accordingly. In case of flavor-diagonal mesons (e.g. π0 and η with ρ0 and ω in SU(2)

flavor space), AMPT calculates probability Pπ0 of π0 formation via the average numbers of

π− and π+ and total number of uū, dd̄ pairs. Similarly, Pρ0 is obtained. After that, the uū

and dd̄ pairs are sorted according to their mass and the lightest one are assigned as π0. The

rest of the pairs forms ρ0 with the probability Pπ0/ (1− Pπ0) and is equally divided between

ω and η mesons.

Since hadronization is spread over time in the parton cascade, there are hadrons and

partons coexisting at the same time during hadronization.

Several states are excluded: η′,Σ∗,Ξ∗, K0
L and K0

S.
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4.4 Hadronic interactions

AMPT includes π, ρ, ω, η,K,K∗, φ,N,∆, N∗(1440), N∗(1535),Λ,Σ,Ξ and Ω with all possible

charges or antiparticles. Several other resonances are implicitly implemented as intermediate

states in scattering among the previously listed particles.

ART Model (A Relativistic Transport model) was implemented for the simulation of

heavy-ion collisions at AGS energies [24]. It includes baryon-baryon, meson-baryon and

meson-meson scatterings, both elastic and inelastic. It was successfully used for studying

isospin effects since it treats explicitly the isospin degrees of freedom.

Explicit inclusion of K∗ mesons is added to AMPT, even tough K∗ is implicitly

implemented in ART (in the πK scattering). It is done by adding several scattering channels.

This is due the fact that K∗ becomes significant for the strange particle production.

Baryon-antibaryon annihilation and production needs to be added to AMPT. Ini-

tially, only NN̄ annihilation was included. Now, also (N∆N∗)(N̄∆̄N̄∗) is included. More-

over, baryon-antibaryon production from mesons is included.

Multistrange baryon production from strangeness-exchange reactions is im-

plicitly included. Multistrange baryons are produced via the strangeness-exchange reactions

(such as (K̄)Ξ↔ πΩ). Since there are no experimental data about the cross section of these

reactions, an approximation using N and Σ instead of Ξ and Ω is applied. These cross sec-

tions are similar to those obtained by the coupled-channel calculations based on the SU(3)

invariant hadronic Lagrangian. However, the strange baryons only interact with mesons, the

implementation of their baryon annihilation is missing.

φ meson production and scattering is built in AMPT. Inelastic scattering includes

baryon-baryon and meson-baryon channels. The elastic scattering of φ and meson (5 mb) or

N (8 mb) is estimated from quark counting and φ photoproduction.

Other interactions are explicitly added. This includes ∆̄, N̄∗ with their creations,

decays and scatterings, several inelastic meson-meson interactions (such as ππ ↔ ρρ), elastic

scattering of π and ρ, ω, η inelastic scattering. Moreover, more recent versions include

deuteron interactions [25].
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Results from our Toy Model generator can be found in [16, 19]. Briefly summarized, we

proved that the final sorting does not depend on initial sorting as well it does not depend on

multiplicity. Furthermore, we found that the sorting of events is neither determined solely

by q2, v2 or v3. Higher harmonics are however negligible. The sorting depends also on the

mutual position of the second and third event plane Ψ2 and Ψ3. Moreover, in simple cases

where we neglected all harmonics but v1 and v2, it turned out that v2 is better sorting variable

than q2.

Here we preset data from AMPT simulation. We set the AMPT parameters to reflect the

LHC data [26]. We were interested in PbPb collisions at
√
sNN = 2.76 TeV. The parameters

we used are listed in Appendix B. For easier result analysis, we set the reaction plane not to

be random.

We simulated three sets, each consisting of 5000 events. Each set was generated with

a different impact parameter range, 0 fm< b < 7 fm, 7 fm< b < 10 fm, 10 fm< b < 12 fm,

corresponding to 0-20%, 20-40% and 40-60% centrality classes [27]. We will refer to these

sets as central, mid-central and peripheral, respectively.

5.1 Analysis methods

Azimuthal angle distributions of all charged particles were studied. We were interested in

various rapidity regions. Rapidity is calculated as

y =
1

2
ln

(
E + pz
E − pz

)
,

where E is the energy of a particle, pz is the momentum component parallel to the beam

direction. We made three rapidity cuts: |y| < 1.5, |y| < 1 and |y| < 0.5. However, there was

no significant change in the algorithm results. Hence, we present the cut |y| < 1 unless it is

specified differently.
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5 RESULTS

To see the relation of initial shape of the fireball and the final distribution of sorted events,

we also analyzed the initial parton distribution generated by AMPT. It was done calculating

spatial eccentricity moments εn. The eccentricities εn in initial energy densities describe

inhomogeneities in the fireball in a similar way as v2 describes the anisotropies in the final

hadron distributions and eventually lead to flow anisotropies. It was done as follows:
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Fig. 8: Integrated area energy density ε

of the fireball in the transverse plane for

a central event.

First, we made a |y| < 1 cut for all the par-

tons. Then, we calculated the integrated area en-

ergy densities ε in the transverse plane. One of

examples of such a fireball is in Fig. 8. From that,

we calculated spatial eccentricity moments εn as

εn =

√
〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 ,

where 〈·〉 denotes energy-density weighted aver-

age, r and φ are polar coordinates in the trans-

verse plane [28].

We used two methods for the flow analysis of

hadron azimuthal angle distributions: event plane

method and cumulant method.

Event plane method [7] uses estimation of the reaction plane - event plane. It is defined

as the direction of maximum final-state particle density. This is done using event flow vector

~Qn = (Qn,x, Qn,y), being defined as

Qn,x =
∑

j

pT cos(nΦj) = | ~Qn| cos(nΨn) ,

Qn,y =
∑

j

pT sin(nΦj) = | ~Qn| sin(nΨn) .

The sum goes over all particles, Φj denotes azimuthal angle of jth particle. We can use pT as

a weight in the low pT region since vn ∼ pT .
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5.1 Analysis methods

The event plane angle Ψn is defined as the azimuthal angle of ~Qn in the polar coordinate

system:

Ψn =
arctan(Qn,x, Qn,y)

n
.

The nth differential flow is then calculated as

vn = 〈cos(Φj −Ψn)〉 ,

where the brackets 〈·〉 represent average over all particles in one event.

Cumulant method [7] estimates the nth differential flow directly using particle correla-

tions. Two-particle studies are done as

vn {2}2 = 〈cos [n(φi − φj)]〉 = 〈un,i, u∗n,j〉 . (17)

Pair-brackets 〈·〉 this time denotes an average over all particle pairs (i 6= j). un,j is jth

particle’s unit flow vector 3;

un = einφ . (18)

Four-particle cumulant method is done in a similar fashion:

v4
n{4} = −〈〈un,iun,ju∗n,ku∗n,l〉〉 ≡ 2〈un,i, u∗n,j〉 − 〈un,iun,ju∗n,ku∗n,l〉 . (19)

This time, 〈〈·〉〉 denotes cumulants, while 〈·〉 is again average over all pairs or quartets of

particles. The cumulant method can be also pT wighted as in the case of event plane method.

There are advantages and disadvantages of both of these methods. Nonflow effects are

mainly due to low multiplicities. Therefore, four-particle cumulant method reduces those

effects stronger than two-particle cumulants. However, statistical errors of four-particle cu-

mulants are bigger than those of event plane method [7].

We wanted to see the difference of those methods once we applied our sorting. In

3Asterisk denotes complex conjugate.
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Fig. 9 we see correlations of average bin number µ̄ defined in eq. (15) with v2 obtained using

four-particle cumulant method, two-particle cumulant method, event plane method with pT

weighting and without pT weighting. Each point represents one event. For better illustration

of the event distribution among bins we assign different color to every event-bin. There are

several lines around integers. Those lines are caused by a big difference between bins (it will

be explained in detail later).
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Fig. 9: Flow analysis method comparison. Central events, rotated according to Ψ2.

There are differences between the used methods. However, this does not reflect on the

final shape of the µ̄ = µ̄(v2) dependence. Hence, from now on, v2 from the event plane

method with pT weighting only will be shown. This is due to fact that we also obtained Ψn

using this method.

For the event analysis, we also applied Event Shape Engineering, as described in Sec. 2.1.

We calculated the magnitudes of reduced flow-vectors up to n = 5.
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5.2 Central collisions

5.2 Central collisions

Since the energy density is highest in the most central collisions, we started our analysis there.

As mentioned in Sec. 3.2.3, rotation of events along the beam axis can be arbitrary. Therefore

we had to take care of initial rotation of events. This was usually done by estimating nth

event-plane Ψn and rotating the events in a way that Ψn was zero. Since v2 is dominant in

central collisions, the first step was rotating the events according to Ψ2.

We applied the sorting on the events and the algorithm naturally ordered the events from

events with smaller v2 to those with higher v2. This can be seen in Fig. 10 (bottom). In this

figures, each histogram represents an average event bin: it is a sum of 500 histograms (since

we have 5000 events and deciles) divided by 500. The y-axis captions are removed for readers

comfort, it depicts number of particles in each bin, there was no weight or any normalization

applied. For illustrating the power of the algorithm, we add the average azimuthal angle

histograms before the sorting was applied in Fig. 10 (top). Since the initial sorting was

random and events were rotated according to Ψ2, the fluctuations in individual events are

smeared and v2 is the only flow coefficient clearly visible.

We study possible correlations of µ̄ with several variables. The correlation coefficient of

µ̄ and v2 after the sorting is 0.77. However, there is a visible influence of higher harmonics.

This is shown in Fig. 11. Again, each point represents one event and each color represents

one event bin. Worth noticing is the strong correlation of v2 and q2 with µ̄, which is expected.

However the q2 dependence is broader than the v2 one, the correlation of µ̄ and q2 is 0.75.

Apparently, v3 is not a good variable for sorting events, neither is impact parameter b, number

of participants Npart or multiplicity of charged particles. Moreover, in the region of µ̄ < 7,

v2 fails to satisfactory describe the shape. There is no apparent correlation of any studied

variable with µ̄. This suggest that event shape is indeed a complex problem.
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Fig. 10: Average azimuthal angle histograms of central collisions. Top figure: average az-

imuthal angle histograms before sorting was used. Lower figure: average azimuthal angle

histograms after sorting was used. Events were rotated according to Ψ2.
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Fig. 11: Correlation of µ̄ with q2 (top left), v2 (top right), v3 (middle left), Npart (middle

right), b (bottom left) and M (bottom right) for central collisions. Events were initially

rotated according to Ψ2.
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Next step was rotating events according to Ψ3. The situation in the case of Ψ2 is not

very clear, especially in the region of µ̄ < 7 (Fig.11), where no apparent correlation of µ̄

with any variable is visible. In the ultra-central collisions, triangular flow v3 becomes more

significant than v2 in the very central collisions, therefore the dominant axis in the event is

Ψ3. It is clear from Fig. 12 that the linear shape of µ̄ = µ̄(v2) is lost. However, we can see a

W - shape structure there, suggesting v2 is still significant. Moreover, even v3 is clearly not a

good sorting variable neither in this case.
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Fig. 12: Correlation of µ̄ with v2 (left) and v3 (right) for central collisions. Events were

initially rotated according to Ψ3.

Since in the case of roatiton according to Ψ3 the parity symmetry becomes important,

we tried to flip the events, as described in Sec. 3.2.3. Now it is obvious from Fig. 13 that v2

plays a crucial role in the shape sorting. However, events with v2 ∼ 0.35 ended up either in

the first two or last two bins. This suggests that one indeed needs to take into account both

v2 and v3 as well as mutual orientation of Ψ2 and Ψ3.
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Fig. 13: Correlation of µ̄ with v2 (left) and v3 (right) for central collisions. Events were

initially rotated according to Ψ3. Events were flipped after first convergence.

Therefore, we rotated events according to Ψ2−3, defined in Sec. 3.2.3. The correlations of

µ̄ with v2 and v3 are shown in Fig. 14. v2 is still dominant as well as the sorting does not

depend on v3. Even in this case the correlation of µ̄ and v2 is better than correlation of µ̄ and

q2, −0.689 compared to −0.669. This time the correlation is negative. Since we started with

randomly sorted events, the algorithm arranges them in some way. Sometimes, events are

sorted from the one with biggest v2 to the smallest v2, sometimes from the smallest to the

biggest v2. The final arrangement in those two cases is just an inverse image of each other.
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Fig. 14: Correlation of µ̄ with v3 (left) and v2 (right) for central collisions. Events were

initially rotated according to Ψ2−3. Events were flipped after first convergence.
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More interesting were the results for particle correlation histograms. The algorithm strug-

gled to converge even after 10000 steps. The overall shapes of the pair distributions are in

Fig. 15. For better visual comparison, the bins are divided by the number of pairs in each

event bin µ. Events were initially sorted according to q2. This is reflected in the figure by de-

creasing number of pairs present. However, after sorting the events, multiplicity dependence

is lost, as seen from Fig. 16. It seems that the sorting strongly depends on v2 only and any

other variable dependence is smeared, since two-particle correlations are a convolution of an

event with itself, hence we lose some information about the events. It seems that events can

be sorted using v2 or q2. The correlation between µ̄ and v2 is 0.932, µ̄ and q2 is 0.922.

The lines around integers are very pronounced now, meaning the bins are distinctly given.

If µ̄ is an integer, there is a big probability that it indeed belongs to this bin, while values

such as µ̄ = 2.5 indicate the bin belongs to bin 2 or 3 or even anywhere else, assuming the µ̄

is uniformly distributed. This is not a necessarily true assumption: we sort events according

to µ̄. In case of all events having µ̄ ∈ (5, 6), the algorithm can converge. However, this would

require rather identical events and the events would fluctuate from bin to bin. Hence, this is

very unlikely to happen.

If we have a look at the initial assignment error matrix (Fig. 16, bottom right), defined

by eq. (16), we see that the probability that an event from bin β ends up in bin α is almost

uniformly ∼ 0.1 with tiny fluctuations. Within the computational precision those fluctuations

are negligible. This is caused by the multiplicity independence of the algorithm, while q2

depends also on multiplicity, the shape does not.

Nonetheless one phenomenon is obvious: if he have a closer look at, for example, µ̄ = µ̄(v2)

dependence, we see that several events from the 10th bin have µ̄ around 9, leading to problems

with convergence. This is caused by the fact that we use quantiles. The bins are rather

distinct and it seems that last two bins should be in the same bin, while the other bins

division might be even finer. Hence, we tried to make finer division of the azimuthal angle

histograms. We increased the number of φ bins4 from 20 to 40. The results are in Fig. 17.

4Do not confuse azimuthal angle bins with event bins!
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5.2 Central collisions

The problem with error matrix has not disappeared and the results have not changed much

compared to Fig. 16. This suggest the events in the last two bins are very similar and they

indeed belong to one event bin.
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Fig. 15: Average azimuthal angle histograms of central collisions before sorting was used

(sorted according to q2) (top) and after sorting was used (bottom).
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Fig. 16: Correlation of µ̄ with on q2 (top left), v2 (top right) and number of pairs M (bottom

left) and error assignment matrix (bottom right) for pair distribution in central collisions.
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Fig. 17: Correlation of µ̄ with v2 (left) and error assignment matrix (right) for pair distribu-

tion in central collisions with fine azimuthal angle binning.
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5.3 Comparison of central, mid-central and peripheral collisions

Now, we study the differences between event-bins for different centralities.

First, we studied events oriented according to Ψ2. Average histograms can be seen in

Figs. 18, 19 and 20. Notice the differences in the number of particles. There are also differences

in v3 influence on the events. In Fig. 18, there is v3 visible in all the event bins including the

last two bins - they appear to be a symmetric image of each other. Per contra, in Fig. 19 the

third bumb is clearly visible in the last bin only as well as in Fig. 20. This reflects the fact

that v3 is bigger than v2 in the most central collisions as well as the fact that for small v2, v3

becomes visible in all the centrality classes.

The dependencies of µ̄ on v2 and v3 are in Figs. 21, 22 and 23. It is clear that v2 is dominant

in peripheral collisions and its dominance decreases with centrality. For peripheral collision,

the correlation between µ̄ and v2 is -0.891 (with q2 it is -0.836). However, v3 is still not

significant.

The role of both v2 and v3 is even more visible in the results for Ψ3 rotation (Figs. 24, 25

and 26). Once again, events were flipped after the first convergence of algorithm. It is

clear that rotating the events smeared the influence of v2 in the mid-central and peripheral

collisions. Since the influence of v2 is still visible for central collisions, this rotation appears

as arbitrary and it is not a good choice. This agrees with our expectations since v3 is most

significant in ultra-central collisions while v2 being the biggest in central collisions.

Similar behavior can be seen in Figs. 27, 28 and 29, reflecting the results for Ψ2−3 rotation.

v3 is not a significant variable in all three cases, the v2 dependence is enhanced in the

peripheral collisions, suggesting the importance of Ψ3. In the case of central and mid-central

collisions, the dependence of µ̄ on v2 is more clear than in the case of Ψ2 rotation (Figs. 21, 22

and 23). This is due to the fact that this rotation eliminates the parity symmetry and

pronounces the influence of v3, which is small in mid-central and peripheral collisions.
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Fig. 18: Average azimuthal angle histograms of central collisions after sorting was used.
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Fig. 19: Average azimuthal angle histograms of mid-central collisions after sorting was used.
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Fig. 20: Average azimuthal angle histograms of peripheral collisions after sorting was used.
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5.3 Comparison of central, mid-central and peripheral collisions
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Fig. 21: Correlation of µ̄ with v2 (left) and v3 (right) for central collisions. Events were

initially rotated according to Ψ2.
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Fig. 22: Correlation of µ̄ with v2 (left) and v3 (right) for mid-central collisions. Events were

initially rotated according to Ψ2.
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Fig. 23: Correlation of µ̄ with v2 (left) and v3 (right) for peripheral collisions. Events were

initially rotated according to Ψ2.
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Fig. 24: Correlation of µ̄ with v2 (left) and v3 (right) for central collisions. Events were

initially rotated according to Ψ3 and flipped.
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Fig. 25: Correlation of µ̄ with v2 (left) and v3 (right) for mid-central collisions. Events were

initially rotated according to Ψ3 and flipped.
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Fig. 26: Correlation of µ̄ with v2 (left) and v3 (right) for peripheral collisions. Events were

initially rotated according to Ψ3 and flipped.
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Fig. 27: Correlation of µ̄ with v2 (left) and v3 (right) for central collisions. Events were

initially rotated according to Ψ2−3.
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Fig. 28: Correlation of µ̄ with v2 (left) and v3 (right) for mid-central collisions. Events were

initially rotated according to Ψ2−3.
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Fig. 29: Correlation of µ̄ with v2 (left) and v3 (right) for peripheral collisions. Events were

initially rotated according to Ψ2−3.
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5.4 Study of rapidity cuts

We also looked at narrow mid-rapidity region |y| < 0.5 and in the wider region of rapidity

|y| < 1.5. We present results from central collisions. The results are fairly similar, however,

the correlation of µ̄ with v2 is even less pronounced for |y| < 0.5, the correlation coefficient

of µ̄ and v2 is 0.724. On the other hand, the correlation of µ̄ and v2 for |y| < 1.5 is 0.771

(for |y| < 1 it is 0.770). The average histograms after sorting in Fig. 30 suggest also a non-

negligible influence of v3 in the region |y| < 0.5. In comparison with Fig. 31 and Fig. 32,

where the v3 is smeared, there is a visible presence of three bumps. Thus, v3 appears as a

more local effect.

This is confirmed by the µ̄ = µ̄(v3) dependence. In Figs. 33, 34 and 35 we present depen-

dence of µ̄ on v2 and v3. In the |y| < 0.5 region, there is a hint of weak linear dependence of

µ̄ on v2 in the first two bins. This corresponds to the fact that in the most central collisions,

v3 starts to dominate. This comparison also tells us a lot about the algorithm behaviour: it

is apparent that in the case of |y| < 1.5, the events are fairly different while in the case of

|y| < 0.5 the difference between event bins is small. Hence, for our needs, regardless of any

physical motivation, the condition |y| < 1 may be an ideal choice, considering the case of

|y| < 0.5 being very unclear for µ̄ < 8 and events being very disting in the case of |y| < 1.5,

leading to similar trouble as in the case of two-particle correlations.

The results do not change significantly in case of Ψ2−3 rotation, results for v2 and v3 are

in Figs. 36, 37 and 38. Once again, the case of |y| < 1.5, the events are fairly different while

in the case of |y| < 0.5 the difference between event bins is small, proving our previous point.

43



5.4 Study of rapidity cuts

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

[rad]φ

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

Fig. 30: Average azimuthal angle histograms (central), after sorting was used, |y| < 0.5.
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Fig. 31: Average azimuthal angle histograms (central), after sorting was used, |y| < 1.
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Fig. 32: Average azimuthal angle histograms (central), after sorting was used, |y| < 1.5.
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Fig. 33: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2, |y| < 0.5.
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Fig. 34: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2, |y| < 1.
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Fig. 35: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2, |y| < 1.5.
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Fig. 36: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2−3, |y| < 0.5.
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Fig. 37: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2−3, |y| < 1.
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Fig. 38: Final sorting dependence µ̄ on v2 (left) and v3 (right) for central collisions. Events

were initially rotated according to Ψ2−3, |y| < 1.5.
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5.5 Correlations of variables

Since the previous results suggest that the shape of the collisions is determined by an interplay

of several variables, we tried to determine some variable that would be good for sorting the

events.

First, we were interested in the overall correlations among all studied variables, where

the sample were all events. For that, we obtained a correlation matrix for each of the central

events, |y| < 1, rotated according to Ψ2. This rotation choice is because the difference in

variables characterizing the events with µ̄ < 7 is not clear (Fig 11). Correlation matrix is a

matrix, where each element is a correlation coefficient of two variables, each row and each

column represents one variable. The diagonal is always equal to 1: correlation of a variable

and itself is always 1. The correlation coefficients are in the Fig. 39. For viewers comfort we

removed lower half of the matrix as well as the diagonal.
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Fig. 39: Multi-dimensional correlation matrix of variables for all events (left) and for one

event bin (right). Mch is number of charged particles, Mtot is number of all particles. b

denotes impact parameter, qn nth reduced flow vector, vn is nth flow coefficient, Ψn is nth

event plane angle, εn is nth partial eccentricity moment.

It is clear from the Fig. 39 that, as we expected, qn and vn are strongly correlated in all

cases. There is a clear correlation between b, Mch and Mtot. Looking at one bin correlations
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5.5 Correlations of variables

only, it is clear that all variables are correlated. This is a clear sign of the power of the

algorithm: considering the azimuthal shape only, we selected truly similar events. Another

expected fact is that the rotations of nth event planes are less correlated with other variables.

For the reasons stated above, we excluded q1 . . . q2, b, Mtot. This also helped significantly

reduce (by factor of 10000) the condition number. It is defined as the ratio of the largest and

smallest eigenvalue of the correlation matrix. This number describes the difference between

the input and output change. If this number is big, small change in input results in huge

change in the output. This is best understood using a an example: imagine a system of

equations Ax = b. If the condition number of the matrix A is large, small change of x leads

to big change in b. If the condition number of the correlation matrix is high, there are two or

more variables that are highly correlated. Since we are interested in the variables describing

the shape, we want to reduce these correlations and focus on uncorrelated set of variables.

Now, we want to obtain a suitable variable for sorting events. For this purpose, we use

so called Principal component analysis (PCA). This method allows us to reduce the number

of variables suitable for this analysis. The components have the largest variance possible,

therefore they account most for the data variability. PCA can provide us the best linear

combination of the variables to describe our dataset. Even tough the problem is most likely

more complex, linear approximations are usually a good first approximations and higher

orders vanish at the limit of small perturbations. The PCA is executed as follows: first,

calculate the correlation matrix C. The matrix is symmetric and its dimension is n. Then

calculate its eigenvectors b1, b2 , . . . , bn. The eigenvectors are sorted in a way, that b1 has

the largest eigenvalue, b2 the second largest, . . .. The eigenvectors are a new base of the n-

dimensional space, each vector points in direction of the largest (second largest,. . .) variance.

The vectors b1, b2 , . . . , bn are used as a new base for the variables.

Looking back at the overall correlation of the events (Fig. 39), we can do the reduction

of variables also using PCA. The reduction of parameters is usually done by selecting the

largest eigenvalue of the covariance matrix and finding its eigenvector. However, when using

different variables with different units, it is better to use correlation matrix since it uses
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standardized data. Looking at all rotations (Ψ2, Ψ3 and flipped, Ψ2−3), several eigenvalues

have small value ∼ 0.7 (can be excluded), however, dominance of any eigenvalue is not clear,

the highest eigenvalue is ∼ 2.5. If we included q1, . . . , q5, b and Mtot, the eigenvectors in

direction of those variables would have small eigenvalues. Hence, our assumption above to

exclude them was right.

We calculated the correlation matrix for each event bin. The matrices are in Fig. 40.

From that, we obtained the new basis of the space of variables M , v1, . . . , v5, Ψ1 , . . . , Ψ5,

ε1, . . . , ε5. There was always one largest eigenvalue ∼ 10 times bigger than the rest of them.

The associated vector should define the largest variance in the data. Those eigenvectors are

in the Tab. 1. It turns out that the direction of this vector strongly fluctuates from bin to bin

and the main direction is usually in the direction of Ψ5. This suggests there is no apparent

linear dependence of the shape on any of the variables mentioned above and that each event

bin is very different.

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 bin 9 bin 10
M 0.019 -0.049 -0.157 0.189 -0.201 -0.133 0.098 -0.050 -0.030 -0.063
v1 -0.045 0.040 -0.017 -0.174 -0.091 0.044 -0.011 0.028 0.073 0.149
v2 -0.491 0.384 0.566 -0.204 -0.353 0.357 0.002 0.161 0.423 -0.493
v3 -0.186 -0.191 0.134 0.116 -0.188 -0.150 -0.048 -0.287 -0.342 0.190
v4 -0.084 -0.126 0.119 0.391 -0.201 0.210 0.388 0.196 0.198 -0.066
v5 -0.027 0.148 0.046 -0.280 -0.312 -0.275 0.077 0.204 0.101 0.097
ψ1 0.277 -0.128 0.405 0.171 -0.096 -0.261 0.155 -0.446 -0.126 0.074
ψ2 0.063 0.144 0.069 0.085 -0.200 0.016 -0.054 0.119 -0.166 -0.292
ψ3 -0.063 -0.165 0.197 0.481 -0.150 0.609 0.402 0.307 0.273 0.118
ψ4 0.253 -0.572 -0.057 -0.270 0.049 -0.023 0.675 -0.067 -0.413 -0.064
ψ5 -0.506 -0.430 -0.440 0.194 0.672 0.320 0.116 -0.609 -0.483 -0.392
ε1 -0.487 -0.315 -0.311 0.416 -0.021 -0.016 0.146 -0.121 -0.172 0.321
ε2 -0.094 -0.049 -0.003 0.079 0.037 0.251 -0.136 -0.064 -0.027 0.319
ε3 -0.018 -0.099 -0.221 0.041 0.072 0.002 -0.252 -0.205 0.138 0.347
ε4 0.012 0.155 0.076 -0.162 -0.243 -0.201 0.089 0.014 -0.114 0.179
ε5 -0.251 -0.249 -0.254 0.253 0.250 0.253 -0.249 -0.253 0.254 -0.245

Tab. 1: Eigenvectors corresponding to the largest eigenvalue of correlation matrices for central
events, Ψ2 rotation. The bold numbers are the largest contributions to the size of the vector.
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Fig. 40: Multi-dimensional correlation matrix for each event-bin. M is number of charged

particles, vn is nth flow coefficient, Ψn is nth event plane angle, εn is nth partial eccentricity

moment. For viewers comfort we excluded lower part of the matrix, the diagonal and we do

not include the last bin.
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5 RESULTS

Conclusions

In this thesis we presented a new study of the event shape. We described the algorithm used,

we discussed its possible applications and proposed possible ways of extension of the method.

We present our program called ESSTER.

The method was applied on data obtained from AMPT [20]. We presented a study of the

data in different centrality and rapidity bins, we discussed different rotations of events and

its influence on the results.

The results suggest strong importance of elliptic flow in the event shape analysis. We

conclude that v2 describes the shape of an event better than q2. Nonetheless, the results

confirm that the shape is a complicated interplay of more variables. So far, there is no

conclusive answer to the question of what variables influence the event shape.

The power of the algorithm is confirmed by calculating the correlation matrices for every

event bin. In each bin, all the variables are strongly correlated, proving the fact that our

method indeed sorts the events according to their overall similarity. We applied PCA analysis

on each bin. The result is that event-bins are very distinct to each other and there is no

apparent linear combination of variables determining the shape of events. This issue needs

to be investigated in greater detail.
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A ESSTER DOCUMENTATION

A ESSTER documentation

Event-Shape SorTER is a Toy Model Monte Carlo generator and Event Shape Sorter. Its

main functions were described in Section 3. ESSTER is written in C++, it was implemented

using Linux operating system. It also uses ROOT [29], LLAPACK [30] and Numerical

Recipes [31] functions.

For comfortable compilation, we include a makefile.

All parameters are stored in parameters.h. This header file includes basic constants,

Toy Model parameters described in Section 3, three sorting algorithm parameters (number

of event-bins (quantile), number of azimuthal angle bins (NoBins) and the number of itera-

tions when the algorithm gets killed (MAX steps). Moreover, basic cuts values (rapidity y,

transverse momentum pT and multiplicity M) are defined there.

There are 13 source files:

main.cpp contains functions used for understanding user commands and connects all the

functions from the rest of the source files.

additional.cpp Several additional functions are defined there, such as help output for

the user, int↔string conversion or mathematical functions such as factorial. Furthermore,

the main file names and paths are specified in additional.h.

ampt.cpp This source file is used for merging partial files obtained via the AMPT model.

It merges and performs basic cuts on the files containing both parton and final hadron

function. Moreover, it copies those merged files from the input folder to the folder where the

ESSTER analysis takes place.

analyze.cpp includes all basic analysis functions. Methods for cumulant method (two-

particle, four-particle and four-particle pT weighted [32]), event plane method (with or with-

out pT weight [7]) and Event Shape Engineering [6] are performed here.

bins.cpp is the main source file for the whole algorithm. Classes for storage of the

bins and event info are defined here as well as calculations used for equations (13) - (16).

Moreover, sorting algorithms are implemented here. For the first iteration, we use quicksort.
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For the rest, insertion method is used. The reason is that first order of events is expected to

be random, the performance of quicksort is ≈ O(n log n). After that we assume the events

to be approximately sorted. In that case, quicksort ≈ O(n2), while insertion sort ≈ O(n).

Moreover, the memory requirements of insertion sort is O(1) only, while worst case quicksort

is O(n).

cuts.cpp contains functions used for event or particle selections, such as type of the

analyzed particles or rapidity range.

eigenvalues.cpp enables us to obtain a correlation matrix. It is also able to calculate

matrix eigenvalues using LLAPACK and perform basic matrix operations.

generator.cpp includes several functions taken from [31]. Few random number genera-

tors are implemented there. Namely, uniformly distributed from 0 to 1 double random number

generator, consequently uniform azimuthal angle and multiplicity generators, random integer

generator and final the normally distributed random number generator.

list.cpp defines one-way linked list and its basic operations used for this purpose. Linked

lists are used for the analysis of the events.

my root.cpp uses several ROOT methods to create, store and plot histograms.

toymodel.cpp is where the toy model functions are implemented. It generates azimuthal

angle distribution and pT distribution motivated by the LHC data [14, 15]. The equation

dN

dφ
∝ 1 +

∞∑

n=1

2vn cos(n(φ−Ψn))

is used for generating azimuthal angles φ. The vn parameters are set for each event depending

quadratically on multiplicity M :

vn = aM2 + bM + c

and smeared according to Gaussian, where a, b and c are hard-set coefficients. The values of

the coefficients are in Tab. 2. Those values were obtained by fitting ATLAS measurements

of vn in the pT bin 2-3 MeV and using [15]. The result of the fit is in Fig. 41. Then, the vn
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A ESSTER DOCUMENTATION

coefficients are smeared according to Gaussian distribution with σ = 0.025. This value can

be simply modified in the parameters.h. Event plane angles Ψn are set randomly and do

not depend on each other for any event.

n a/10−8 b/10−5 c

1 0 0.01667 –0.000680
2 –7.098 20.06 0.07874
3 –2.083 6.658 0.0424
4 –96.38 2.621 0.04897
5 –71.76 2.236 0.01673

Tab. 2: Parameters used for generating multiplicity dependent vn: vn = aM2 + bM + c.
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Fig. 41: Flow dependence on centrality and multiplicity. Data points are obtained from [14]

and [15]. The data points are fitted with a quadratic function, fit coefficients are in the

Tab. 2.

For pT generation, we use the equation

dN

dpT
= CpT e

− pT
T ,
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A.1 Program running

where we set the parameter T as 400 MeV, C is a normalization constant. This is motivated

by the LHC data. We generate those values using an iterative calculation of the Lambert

function [33].

zpc analysis.cpp includes functions analyzing the parton distributions generated by

AMPT. In particular, we calculate the energy density of the fireball and obtain the eccen-

tricity coefficients [28] from the density.

A.1 Program running

For building the program, the user goes to the directory where ESSTER is stored and type

make . /ESSTER

This creates the executable ESSTER.

For running the program, the user is required to provide several specifications. They are

listed in the Tab.3.
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A ESSTER DOCUMENTATION

REQUIRED

-help Writes out help report. Does not require additional input.
-ampt/-toy Specifies the type of generator used. For generating/analyzing

ToyModel events, use -toy, for analyzing AMPT events, use
-ampt

-central/-mid/-peripheral Centrality specification.
OPTIONAL

-merge Merges files produced by AMPT.
-merge -zpc Merges parton files produced by AMPT.
-zpc Analyses parton file.
-gen NoEvents Generates NoEvents events.
-cml Analyses generated events via cumulant method.
-cml4 Analyses generated events via four-particle cumulant method.
-cml4+ Analyses generated events via pT weighted four-particle cu-

mulant method.
-epm Analyses generated events via event plane method.
-epm+ Analyses generated events via event plane method (with pT

weighing).
-ESE Analyses generated events via Event Shape Engineering.
-root

-psi 0 / -psi n Rotates events according to maximum/ nth event plane.
-y Makes rapidity y histograms.
-corr Makes angle-correlation histograms.
-mul Normalizes events according to multiplicity.

-bin
-q0/-qn Initially sorts the events randomly/according to qn.
-y Sorts rapidity y histograms (initial sorting is random).
-corr Sorts angle-correlation histograms (initial sorting is random).
-mul Sorts multiplicity-normalized histograms as described in 3.2.4.
-flip Flips half of the events after sorting and sorts them once more.

-fig Draws histogram figures in an eps format. Specifications same
as -bin.

-in Plot every 50th azimuthal angle histogram.
-art Plot fancy looking histograms.

-movie Makes an average histogram figure after every iteration in a
png format.

-eig Outputs correlation and covariance matrices into correspond-
ing folder. Specifications same as -bin.

Tab. 3: Program ESSTER commands.
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A.2 Output File organization

A.2 Output File organization

The files are organized according to parameters specified in additional.h. All files are the

same data type specified by FILE TYPE.

The file hierarchy is best explained using an example. One is in the Fig. 42. In the

figure, we show an example of a file hierarchy used for mid-central events, rapidity cuts

−0.5 < y < 0.5 (y0.5) and −1 < y < 1 (y1), pT cuts pT ∈ (0, 5) GeV (pT0 5) and no pT

limitations (pT0 0). In the GEN FOLDER the information from AMPT or ToyModel is stored,

the names of the files are specified in additional.h as GEN, GEN AMPT, GEN ZPC, GEN ADD.

Similarly, results from event analysis is stored in AN FOLDER. In ROOT FOLDER, histograms

obtained from ROOT are stored. The results from the algorithm are in BIN FOLDER.

The algorithm used events with the following setting: there were 20 azimuthal angle

bins (bins20). There are three cases, all initially sorted according to q2(init2): events

rotated according to ψ2 (psi 2) without flipping the events (flip0) or using normalized

events (norm0); events rotated according to ψ3, flipped (flip1), not normalized (norm0) and

finally events rotated according to ψ3, flipped (flip1) normalized (norm1).
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A ESSTER DOCUMENTATION

Fig. 42: Folder tree description.
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B List of AMPT parameters

760 ! EFRM
√
sNN in GeV if FRAME is CMS)

CMS ! FRAME
A ! PROJ
A ! TARG
208 ! IAP (projectile A number)
82 ! IZP (projectile Z number)
208 ! IAT (target A number)
82 ! IZT (target Z number)
500 ! NEVNT (total number of events)
0./7.0/10.0 ! BMIN (mininum impact parameter in fm)
7.0/10.0/12.0 ! BMAX (maximum impact parameter in fm)
4 ! ISOFT (D=1): select Default AMPT or String Melting (D=4)
1000 ! NTMAX: number of timesteps (D=150)
0.2 ! DT: timestep in fm (hadron cascade time= DT*NTMAX) (D=0.2)
2.2 ! PARJ(41): parameter a in Lund symmetric splitting function
0.5 ! PARJ(42): parameter b in Lund symmetric splitting function
1 ! (D=1,yes;0,no) flag for popcorn mechanism(netbaryon stopping)
1.0 ! PARJ(5) to control BMBbar vs BBbar in popcorn (D=1.0)
1 ! shadowing flag (Default=1,yes; 0,no)
0 ! quenching flag (D=0,no; 1,yes), turns off jet quenching.
2.0 ! quenching parameter -dE/dx (GeV/fm) in case quenching flag=1
2.0 ! p0 cutoff in HIJING for minijet productions (D=2.0)
2.097 ! parton screening mass in fm−1 (D=2.265d0)
0 ! IZPC: (D=0 forward-angle parton scatterings; 100,isotropic)
0.47 ! α in parton cascade (D=0.33d0), see parton screening mass
1d6 ! dpcoal in GeV
1d6 ! drcoal in fm
11 ! ihjsed: take HIJING seed from below (D=0)or at runtime(11)
13150909 ! random seed for HIJING
8 ! random seed for parton cascade
0 ! flag for K0s weak decays (D=0,no; 1,yes)
1 ! flag for phi decays at end of hadron cascade (D=1,yes; 0,no)
0 ! flag for pi0 decays at end of hadron cascade (D=0,no; 1,yes)
1 ! optional OSCAR output (D=0,no; 1,yes; 2&3,more parton info)
0 ! flag for perturbative deuteron calculation (D=0,no; 1or2,yes)
1 ! integer factor for perturbative deuterons(¿=1 & ¡=10000)
1 ! choice of cross section assumptions for deuteron reactions
-7. ! Pt in GeV: generate events with ¿=1 minijet above this value
500 ! maxmiss (D=1000): maximum number of tries to repeat a HIJING event
3 ! flag to turn off initial and final state radiation (D=3)
1 ! flag to turn off Kt kick (D=1)
0 ! flag to turn on quark pair embedding (D=0,no; 1,yes)
7., 0. ! Initial Px and Py values (GeV) of the embedded quark (u or d)
0., 0. ! Initial x & y values (fm) of the embedded back-to-back q/qbar
1, 5., 0. ! nsembd(D=0), psembd (in GeV),tmaxembd (in radian).
0 ! Flag to enable users to modify shadowing (D=0,no; 1,yes)
1.d0 ! Factor used to modify nuclear shadowing
0 ! Flag for random orientation of reaction plane (D=0,no; 1,yes)
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Abstract. We propose a novel method for sorting events of multiparticle production according to the
azimuthal anisotropy of their momentum distribution. Although the method is quite general, we advocate
its use in analysis of ultra-relativistic heavy-ion collisions where a large number of hadrons is produced.
The advantage of our method is that it can automatically sort out samples of events with histograms that
indicate similar distributions of hadrons. It takes into account the whole measured histograms with all
orders of anisotropy instead of a specific observable (e.g., v2, v3, q2). It can be used for more exclusive
experimental studies of flow anisotropies which are then more easily compared to theoretical calculations.
It may also be useful in the construction of mixed-events background for correlation studies as it allows to
select events with similar momentum distribution.

1 Introduction

Hot matter which is created in ultra-relativistic heavy-ion
collisions expands very fast in both longitudinal and trans-
verse directions [1–4]. The expansion is always anisotropic.
This is true even in most central collisions, where one
would expect symmetry in azimuthal angle due to circu-
lar shape of the initial overlap region [5]. In non-central
collisions, the overlap of the two colliding nuclei has el-
liptic shape and thus naturally second-order (and higher
even orders) anisotropy in the fireball expansion builds
up. On top of this —at any centrality— energy deposi-
tion in the interactions of the incoming partons fluctuates
and this leads to all orders of anisotropy in the transverse
expansion of the fireball. Therefore, even within carefully
selected centrality class flow anisotropies vary from event
to event [5, 6].

Even more degrees of freedom are offered by colli-
sions of deformed nuclei, like uranium. There, the initial
anisotropy will also depend on the way the colliding nuclei
are oriented.

This makes the comparison of experimental data to
theoretical simulations more complicated, because one has
to take into account that every event starts with different
initial conditions and evolves differently. Simulations are
compared to data in order to pin down the properties of
the matter which is being modelled. Initial conditions are
unknown, however, although recent hydrodynamic results
indicate that their fluctuations can be directly mapped
onto measured fluctuations of hadron distributions [7, 8].

a e-mail: boris.tomasik@cern.ch

Comparison of theory to data must be done with great
care so that the spectra of theoretical and experimental
fluctuations match each other. Experimentally, events are
distributed into centrality classes according to multiplic-
ity. There is a problem with this procedure on the side
of theory if very narrow centrality class is demanded, e.g.
ultra-central collisions corresponding to 0–0.2% centrality.
Events with the same multiplicity may evolve from ini-
tial states with different impact parameters1. Moreover,
all those events would differ by the quantum fluctuations
in initial energy and momentum deposition [10]. There-
fore, events from a class selected according to multiplicity-
based centrality may have evolved from different initial
conditions and experienced quite different evolution his-
tory. It would be useful if there was a more selective
method to choose events that are more likely to have

1 This can be seen, e.g., in fig. 2 of [9], where the procedure
that is used by ALICE Collaboration to determine central-
ity is explained. Within the used Monte Carlo Glauber model
if the impact parameter is fixed, then the number of partici-
pants may still fluctuate. On the other hand, from the overlap
of centrality classes in Npart histogram it is clear that fixed
Npart corresponds to an interval of impact parameters. As the
experimental multiplicity is determined from multiplicity in a
chosen detector, there is yet another source of fluctuation that
comes from the uncertainty between multiplicity and Npart. In
summary, if we fix the multiplicity —even in perfectly spher-
ical nuclei like Pb or Au— there is still some freedom for the
impact parameter to fluctuate which we estimate of the order
1 fm. Even more fluctuations can be expected in collisions of
non-spherical nuclei, like U.
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evolved similarly. In addition to this, in collisions of de-
formed nuclei the multiplicity itself is definitely not a suf-
ficient selection criterion since the same multiplicity may
result from events with very different initial orientations
of the colliding nuclei and thus very different flow patterns.
Again, the situation calls for a selection method like the
one presented here.

It would thus be advantageous if one could select a
collection of events among all measured events (which may
or may not belong to the same centrality class) which
show very similar distribution of the produced hadrons.
For such events one can assume that they also evolved
similarly.

The word “similar” when talking about distributions
or histograms can be understood in layman’s terms so that
they have similar shapes when one rotates them appropri-
ately. There is a possibility how to quantify this with the
help of the distance measure in the Kolmogorov-Smirnov
test, but this will not be used here because it does not au-
tomatically provide a way for sorting. We rather use the
Bayesian framework where we basically ask the question:
how would the events be grouped, based on the shapes of
their histograms.

A method aiming for such event selection has been
proposed in [11] and is commonly referred to as “Event
Shape Engineering”. It usually employs the size of the
flow vector qn defined on a selection of hadrons from a
given event (usually referred to as subevent) as

qn =
1√
Ms

(
Ms∑

i=1

cos(nφi),

Ms∑

i=1

sin(nφi)

)
, (1)

where Ms is the multiplicity of the subevent and φi are
the azimuthal angles of the individual hadrons from the
subevent. Events are then selected based on their values
of qn (in most cases q2). However, only the subevents not
used in qn determination can be used in further studies in
order to avoid bias.

It is not clear, moreover, whether selecting events ac-
cording to the value of qn provides the best possible selec-
tion method aimed at collecting similar events. It actually
may not be the case, as we demonstrate below.

In this paper we propose the use of a novel method for
comparing, sorting and selecting events according to simi-
larity with each other. The method is adopted from [12,13]
and was previously used in a different context [14]. Its
uniqueness consists in not fixing a single observable which
would then be used for sorting of the events. It rather
compares complete histograms (e.g. azimuthal angle dis-
tributions) of individual events and it sorts the events in
such a way that events with similar histogram shapes end
up close together. After such a sorting has been performed
one simply selects similar events just by choosing a group
of events which follow each other in the created series.

On the selected groups of events one could measure
various observables (vn’s, qn’s, radial flow, temperature,
. . . ) which should fluctuate much less than in the whole
measured event sample.

A natural application of the method is in construction
of correlation functions. There, one often needs a reference

distribution which is constructed via the mixed events
technique. If events used in mixing are different, this may
introduce unwanted artificial effects into the correlation
function. Therefore, the mixed events sample is always
constructed with aligned event planes. (For application at
intermediate energy nuclear collisions see, e.g., [15, 16]).

With the help of the proposed method it would be in-
teresting to perform femtoscopic studies where oscillations
of radii in azimuthal angle in both second and third order
together at the same time should be visible.

We comment more on the applications in the Outlook
section.

In the next section we shall explain the method and in
sect. 3 we illustrate its use on Monte Carlo data from a
toy model. The method is applied on more realistic Monte
Carlo data generated by a transport model in sect. 4. We
conclude in sect. 5 and give an Outlook about possible
applications of the method and its next development.

2 The method

Suppose that we have a sample consisting of a large num-
ber of events. Initially, we can sort and divide those events
into N percentiles according to the value of a single ob-
servable which can be measured in every event. This can
be the value of q2, v2, multiplicity or any other observable.
Generally, we shall refer to this observable as Q. For the
sake of clarity let us explain the method with a particular
choice: choose N = 10 event bins (deciles) and the observ-
able according to which we sort data is Q = q2 = |q2|. Let
us stress at this point that the method is universal and
will not depend on the choice of N and Q.

In each of the event bins we can now produce the his-
togram of hadron distribution in azimuthal angle summed
over all events in the event bin. There is no physics in how
the two nuclei are oriented when they collide, and so we
have a free choice of how to rotate individual events before
adding them to the angle histogram. For the introduction
of the method let us align each event according to the sec-
ond order event plane. Note, however, that the choice of
alignment is a sensitive issue which we shall discuss later.

Thus each event is characterized by the bin record of
its distribution in azimuthal angle2 {ni} and belongs to
one of the N event bins which we number with µ. (We
shall use Latin letters for angle bins and Greek letters for
event bins.)

2.1 Basic relations

Imagine that we take a random event from our big sample
and ask an unbiased observer, in which event bin he or she
thinks that this event belongs. More specifically, we can
ask the question in the framework of Bayesian probability:

2 We denote ni the number of particles in angle bin i and
the whole record of an event is referred to with the help of
braces. Thus summation of all angle bin entries gives the event
multiplicity

P

i ni = M .
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What is the probability3 P (µ|{ni}) that an event with bin
record {ni} belongs to the event bin µ?

This probability will be evaluated with the help of
Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)
, (2)

where P (A|B) is the conditional probability of the event
A given event B. The probability of event B can be de-
termined

P (B) =
∑

A

P (B|A)P (A), (3)

where the sum runs over all possible events A. Definitions
of symbols P (B|A) and P (A) are analogical.

With the help of Bayes’ theorem we can express

P (µ|{ni}) =
P ({ni}|µ)P (µ)

P ({ni})
. (4)

Here, P ({ni}|µ) is the probability that if one randomly
draws an event from the distribution function given by
average histogram of event bin µ, the result will be the
bin record {ni}. The prior P (µ) = 1/N takes the value of
0.1 now. The denominator contains the overall probability
of drawing the event {ni} from any of the event bins. It
can be determined according to eq. (3)

P ({ni}) =
N∑

ν=1

P ({ni}|ν)P (ν). (5)

The advantage of using the latter formula comes from the
fact that we are able to determine P ({ni}|ν) for each bin
record {ni} and every event bin ν

P ({ni}|ν) = M !
∏

i

P (i|ν)ni

ni!
. (6)

Here M is event multiplicity, the product goes over all
angle bins i and P (i|ν) is the conditional probability that
random particle falls into angle bin i given that the event
to which it belongs stems from event bin ν. It can be
determined when we take the number of particles from all
events in event bin ν falling into angle bin i. This number
is divided by the total number of all particles from events
in event bin ν, denoted Mν

P (i|ν) = nν,i

Mν
. (7)

When the formula (6) is inserted into (5) and (4) we
obtain the practically usable relation from which the large
factorials drop out

P (µ|{ni}) =
∏

i P (i|µ)niP (µ)∑
ν

∏
i P (i|ν)niP (ν)

. (8)

3 Obviously, the event must belong to one of the event bins
so that the probabilities must be normalised

N
X

µ=1

P (µ|{ni}) = 1.

With the help of this conditional probability we can
determine for an event with angle bin record {ni} its mean
event bin number

µ̄ =
∑

µ

µP (µ|{ni}). (9)

2.2 The algorithm

Now we are able to describe the algorithm which is used
for sorting of the events.

1) First, all events are sorted according to the observable
Q.

2) Events are divided into N event bins according to cur-
rent sorting.

3) For each event and all event bins the probability
P (µ|{ni}) is determined that the event with record
{ni} belongs to event bin µ. The mean event number
µ̄ is calculated for each event according to (9).

4) Events are sorted again according to their values of µ̄.

5) Events are divided into N event bins according to cur-
rent sorting.

6) If the new sorting changed assignment of any events
into event bins, the algorithm returns to step 3. Oth-
erwise it converges.

The construction of the algorithm is such that once con-
verged, the events are sorted so that those ending up close
to each other are characterized by similar angular his-
tograms. This is the best possible experimental approach
to the selection of events that have undergone similar evo-
lution. This is as good working definition of what similar
events are as it can be.

In the present formulation the average histograms
are more strongly determined by high-multiplicity events.
Note, however, that the algorithm is independent of event
multiplicity. Of course, if in particular physics analysis
certain multiplicity is demanded, one can easily use it for
event selection and then use the present method for more
refined selection of the events.

The final sorting of events also does not depend on
the initial sorting. Hence, this method can also be used
for a judgment if the particular observable Q, e.g. q2 or
v2, is a good measure for selecting similar events. If the
initial ordering according to Q is correlated with the final
ordering, then the observable Q is good for this purpose.
This may not always be the case, as we will show later.

Although the final result does not depend on initial
ordering, a good initial ordering can lead to faster conver-
gence of the algorithm.

There is a caveat, however, which has been discussed
only shortly so far. The algorithm works well for sorting
histograms in observables that are not periodic, e.g. rapid-
ity. However, the azimuthal angle of particle momentum
is a periodic observable, i.e. we can always arbitrarily ro-
tate the events. Practically, two angular histograms may
be almost identical when they are both aligned properly,
but might appear quite different for the proposed algo-
rithm if they are rotated in random directions. Thus the
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Table 1. Parameters used for generating multiplicity-depend-
ent vn.

n an × 108 bn × 105 cn

1 0 0.01667 −0.000680

2 −7.099 20.06 0.07874

3 −2.083 6.658 0.04236

4 −96.38 2.621 0.04897

5 −71.76 2.236 0.01673

way how events are aligned initially plays a crucial role
and we observed that it strongly biases the final sorting
of the events. At the moment we do not have recommen-
dation for an automatic algorithm which would align the
events in the best way. Instead, we tested a few reasonable
choices for the initial alignment in our toy model studies.
With the simple toy model, quite naturally that initial ro-
tation aligning the second-order event planes ψ2 will lead
to sorting characterized by v2. Analogically, with align-
ing the third-order event planes ψ3, final sorting is given
by v3. In the next section we present results which take
into account a combination of both these orderings. That
feature was, however, weaker in AMPT-generated events.

3 Illustration of the method

3.1 Elliptic flow

Let us first demonstrate the action of the sorting algorithm
on a simple case of events with only first- and second-
order anisotropic flow. We generated the azimuthal angles
of pions from the distribution

P2(φ) =
1

2π
(1 + 2v1 cos(φ− ψ1) + 2v2 cos(2(φ− ψ2))) .

(10)
The parameters v1 and v2 depend on the multiplicity of
the event M as

vn = anM
2 + bnM + cn, (11)

and parameters an, bn, and cn for each n can be found
in table 1. They have been determined from experimental
data as we discuss in sect. 3.2. In addition to eq. (11),
flow anisotropy parameters vn are Gaussian-smeared with
a width of 0.25. For each event, the directions of event
planes ψ1 and ψ2 are random and uncorrelated.

We generated 5000 events with multiplicities between
300 and 3000. Directed flow is practically negligible and
the dominant anisotropy is of second order. Thus the most
reasonable choice of initial event rotation is the alignment
of second-order event planes defined from the generated
Monte Carlo data for each event via

q2e
2iψ2 =

M∑

j=1

e2iφj . (12)

To show the power of the method we first ordered the
events fully randomly. The algorithm converged after 65
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Fig. 1. Top: correlation of the resulting sorting variable µ̄ with
the initial ordering. Every dot represents one event. Bottom:
correlation of µ̄ with v2 determined for each event via the event
plane method.

iterations. In fig. 1 top one can see that the initial order-
ing indeed has nothing to do with the final ordering of
events. In the bottom panel of that figure we show the
correlation of final sorting variable µ̄ with the value of v2
determined in each event via the event-plane method (re-
sults from cummulant method are practically identical).
One can clearly see that the ordering is given by the el-
liptic anisotropy of the particle distribution.

Note that when we started the sorting algorithm with
initial ordering according to the value of q2 in each event,
the final correlation was just a mirror image of fig. 1 bot-
tom. Small values of v2 corresponded to small µ̄ and high
values of v2 to high values of µ̄. This illustrates that the al-
gorithm always converges to a sorting of events according
to their similarity but the direction how they are ordered
along µ̄ may be different.
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Fig. 2. Average histograms of the azimuthal angles for event bins 1–10, with event bins indicated in the panels. Events with
only v2 and v1.

There is a congestion of events seen at µ̄ = 9 and 10
in the upper panel of fig. 1 and a step in the same place
in the lower panel of that figure. This actually shows that
the sorting was very clear for these two event bins. The
congestion is made out of events for which when evaluating
µ̄ according to eq. (9), the sum has one clearly dominant
term. The probabilities that the event might belong to
other event bins are very small.

For illustration, in fig. 2 we show average histograms
of the events in the individual event bins. We see that the
relative amplitude of the second-order variation (i.e. the
amplitude divided by the mean value of the bins) decreases
from event bin 1 to event bin 10.

The method is thus able to distinguish different shapes
of hadron distributions and sort events according to them.
In this simple case, this might not look like a big advantage
as we could have sorted the events simply by measuring v2.
Therefore, we proceed with a more complicated example
where the algorithm demonstrates its full power.

3.2 Anisotropic flow

We parametrised the dependence of vn’s on multiplicity
through a fit to data from ALICE and ATLAS Collabo-
rations [17, 18]. Coefficients vn for n = 1 through 5 are
parametrised according to eq. (11) with parameters sum-
marised in table 1.

Then we generated 5000 events with multiplicities
between 300 and 3000 pions and angular distributions

according to

P5(φ) =
1

2π

(
1 +

5∑

n=1

2vn cos(n(φ− ψn))

)
. (13)

The vn’s for every event are set by eq. (11) and then
smeared with Gaussian distribution with the width of
0.25. The phases ψn are selected from uniform distribution
and are not correlated with each other.

Now we have to address the question how to rotate the
events so that the comparison of individual events to the
event bin histograms yields the most reasonable sorting.
There are two symmetries at play here: rotational symme-
try and parity symmetry. We can rotate an event around
the collision axis, and we can also flip it so that we get its
mirror image. We have observed that both these symme-
tries influence the result.

The two dominant components of flow anisotropy are
second and third order. Hence, in our tests we focused on
the corresponding event planes. If events are all aligned
into the direction of second-order event plane, the algo-
rithm becomes sensitive to the second-order anisotropy
and to large extent ignores the third order. Analogically,
alignment according to third-order event plane enhances
the sensitivity to third-order anisotropy. Thus the result-
ing sorting is rather sensitive to this choice. Furthermore,
in both cases the algorithm distinguishes events which
look like mirror images of each other (i.e. have opposite
parity). This must be taken into account when designing
the sorting algorithm.
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Fig. 3. Correlation of various observables with final sorting variable µ̄. Simulated are events with anisotropies up to 5th order
and initial rotation is according to ψ2−3. Correlation with a) v2, b) v3, c) q2, d) event multiplicity.

The shape of hadron distribution is never solely deter-
mined by v2 or by v3. It rather follows from their com-
bination which is different in every event due to varying
phase difference of second and third-order event plane.
In order to take into account both these components of
anisotropy we rotated all events according to the angle bi-
sector between ψ2 and ψ3. We denote its azimuthal angle
ψ2−3. Also, in order to take care of the parity symmetry
the events were oriented so that ψ2 is less than π/2 away
from ψ2−3 counterclockwise.

The initial sorting of the events was random and the
algorithm converged after 121 iterations.

From fig. 3 it is clearly seen that in this case sorting of
the events is neither determined by q2, nor by v2, nor by
v3. Higher-order terms also do not play a big role at all.
The event shape is complex and results from an interplay
of all its simple characteristics. The message of the figure

is that q2 may not be a good variable to select events ac-
cording to their shape because panel (a) shows that it is
not correlated with the overall shape of the event as soon
as more flow harmonics are involved. Note that in our toy
model there is neither correlation between the flow har-
monics nor between the event planes of different order.
This may not be so in real events and then the correla-
tion between sorting variable µ̄ and some of the measured
quantities may appear. What we show is thus rather an
extreme case. It calls, however, for attention: the overall
shape of an event and thus the evolution dynamics running
in that event cannot be simplified into a single measured
variable. There might be a counterargument that variables
like e.g. q2 which are used in Event Shape Engineering are
proved to be good at event sorting, because events with
different values of q2 show different values of other mea-
sured quantities. However, in addition to this, our method
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Fig. 4. Average histograms of the azimuthal angles for event bins 1–10, with event bins indicated in the panels. Events with
anisotropies up to 5th order.

optimizes the sorting so that events which are placed close
to each other share as many event shape characteristics as
possible. Figure 3 shows that such a sorting may not be
connected with any of the commonly used variables.

In fig. 3 we again observe that the resulting values of
µ̄ are grouped around integers. This actually means that
the assignment of the events into event bins is very clear,
because in determining the value of µ̄ from eq. (9) the
probability P (µ|{ni}) is (close to) one for certain µ and
(nearly) zero elsewhere. The event then clearly belongs to
the event bin µ.

When we tried to start the sorting algorithm with ini-
tial ordering according to the value of q2 it failed to con-
verge within reasonable time (5000 iterations). This hap-
pens sometimes when unfavourable initial ordering is used.
On the other hand, in other occasions we have checked
that also with different initial ordering of events the algo-
rithm converged to identical final sorting. The only differ-
ence could arise from the feature that the algorithm does
not follow any specific condition in which direction the
events should be sorted. Thus different initial orderings
may end up in mutually reversed final orderings.

In fig. 4 we show the resulting average angular histo-
grams after the sorting. The events indeed differ by their
shape, not just only by the value of one of the flow har-
monics. Since the second and third-order anisotropies are
dominant and due to the initial rotation of the events,
higher-order harmonics are washed out by averaging over
the event bins and not seen in the figure.

A question may appear to what extent the algorithm
would sort the events even if they would be drawn from
the same distribution. It would still try to place closer
together events with similar histograms, and further apart
those events with more different histograms. Then —if in
doubt— one can test the hypothesis that events are drawn
from the same distribution e.g. with the method proposed
in [19] or with the help of Kolmogorov-Smirnov test.

4 Application to AMPT events

After we have established and tuned the sorting algorithm,
we now use it in a more realistic setting with events gen-
erated by the AMPT model [20].

The model was used as commonly distributed with two
modifications which are recommended for realistic simu-
lation of Pb + Pb collisions at the LHC collision energy√
sNN = 2.76TeV: the parton screening mass was re-set

to 2.097 fm−1 and the string melting was turned on in or-
der to avoid the underestimation of partonic effects [20].

We have generated 2000 events which correspond to
the 0–20% centrality class. On the generated particles we
have applied rapidity cut |y| < 1 in order to roughly sim-
ulate the acceptance of central tracking detectors. For the
first rough analysis we have taken all charged hadrons and
run the sorting algorithm on them.

The event shapes are dominated by the second-order
anisotropy, but it is not the only feature that determines
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Fig. 5. Correlation of the final sorting variable µ̄ with v2 of individual events for events generated by AMPT. a) Initial alignment
of the events according to ψ2, b) initial alignment according to ψ2 and v2 evaluated with pt weight, c) initial alignment according
to ψ3, d) initial alignment according to ψ2−3.

the shape of the fireball. When running our sorting al-
gorithm, we have tried three different initial alignments:
according to ψ2, ψ3 and ψ2−3. In all three cases only v2
and q2 of the events show any pattern of correlation with
the final sorting. This is shown in fig. 5. Surprisingly, even
in the case of ψ3 initial alignment we have found no cor-
relation of final ordering with v3. On the other hand, as
seen in fig. 5, there is a pattern that shows that also here
the sorting of events is strongly influenced by the second-
order anisotropy. It will be interesting in the future to see
if this dominance of second-order anisotropy survives also
in other centrality classes, particularly in more exclusively
selected central event.

It is also interesting to see that in realistic simula-
tion, alignment with respect to ψ2 does not automatically
lead to such a clear correlation of v2 and µ̄ as it was the
case with our toy model. This is seen in the upper two
panels of fig. 5. Such a correlation exists for the two or

three event bins with highest µ’s. There, higher µ cor-
responds to a higher value of v2. However, for µ̄ below
7 there seems to be no correlation between the ordering
of the event and v2. There is slightly more correlation in
case weighted v2 evaluation, as seen in fig. 5. We would
like to understand where the difference between the events
shapes comes from, which forces them into different event
bins. To this aim, we show in fig. 6 the average histograms
in individual event bins after the sorting procedure has
converged. In event bins 8, 9, and 10 the gradual growth
of v2 is evident. In the other event bins the histograms
show a more complicated structure, where higher-order
anisotropies also give an important contribution. We re-
call, however, that no clear correlation of any higher vn
with the obtained µ̄ is observed.

The next suspected cause of the difference of events is
the relative angle between the directions of q2 and q3. We
thus studied the correlation between µ̄ and the relative
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Fig. 7. The correlation of the angle between the flow vectors
q2 and q3 and the average bin number of the event µ̄. Events
aligned according to ψ3.

angle. In most cases, no correlation was observed. There
is a hint of correlation, though, in case that the events are
aligned according to ψ3. This is shown in fig. 7. Indeed,
there seems to be a slight correspondence between the as-
signment to an event bin and the angle between q2 and
q3. The interpretation is at hand, that for the event shape
the relative phase is decisive. Unfortunately, this correla-

tion is gone when we align the events differently. Thus,
there are hints that the relative angle is important, but
the assignment of an event to an event bin appears to be
given by more complicated interplay of various individual
features.

5 Conclusions and outlook

It is very useful to have a method able to sort events
in such a way that it is possible to select those with
very similar momentum distribution. One can then assume
that they must have undergone similar evolution and this
makes it possible to study the dynamics of hot expanding
matter more exclusively.

We tested this method on artificial events generated
with AMPT. It showed that dividing the events into
classes according one selected variable, usually q2, does
not really correspond to selecting event with the same
shapes. It still seems that the main role in determining
the event shape —at least for the studied centrality class
0–20%— is played by the second-order anisotropy. Never-
theless, other features are important as well. In one case
we could identify the difference ψ2 − ψ3 to co-determine
the assignment to event bins, but this observation is not
universal for any initial event alignment and any way of
evaluation of qn’s.

In addition to the explanation of the method of Event
Shape Sorting, we thus gave a first superficial study of
realistic events with the proposed method. The study of
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event shapes generated by AMPT for various centralities
which would include thorough analysis of all features that
influence the final shape and their physics interpretation
would go beyond the scope of this work and we plan to
publish it in a separate paper.

As was mentioned already in the introduction, the pre-
sented method allows to select groups of events with simi-
lar momentum distributions. If used in data analysis, one
can then measure various quantities on such events and
study how they are related to the event shape.

The method might even allow to get as close to single-
event femtoscopy as possible. First, when doing fem-
toscopy with a single event one would run into difficul-
ties with the uncorrelated reference distribution which is
usually constructed through the event mixing technique.
Event shape sorting could provide a selection of events
with similar momentum distributions which would make
a suitable sample for event mixing. Second, the statistics
in a single event would be too small to perform a 3D anal-
ysis. However, one could take a sample of events with sim-
ilar momentum distributions and reasonably expect that
they also have the same sizes and undergo the same dy-
namics. Then, one could analyse the correlation function
integrated over the whole selected event sample. The fea-
sibility of such studies will be investigated in the future.

An interesting application appears to be the classifi-
cation of events from U +U collisions. Due to deforma-
tion of the colliding nuclei one expects large fluctuating
anisotropies of the transverse flow. Surprisingly, a pre-
liminary study of azimuthally sensitive correlation radii
showed no dependence on the value of q2 [21]. The latter
was employed for the selection of events with different final
state anisotropy. A short inspection of our fig. 3c would
suggest that this is no surprise at all! As soon as there are
other harmonic components of the anisotropy, the shape
of the events is more complex. The “proper” partition of
events into various classes by the type of anisotropy should
be done differently. Our algorithm can do such a proper
classification.

Let us also comment again on the interesting though
perhaps academic question, how the proposed algorithm
would proceed if all events were indeed generated from
the same underlying probability distribution and the only
differences between them would be due to statistical fluc-
tuations. The algorithm would be sensitive to the differ-
ences whatever their cause might be. Thus it would sort
the events so that typical fluctuations within one event
class would be below the normal statistical ones. Such a
situation could be detected with the help of standard sta-
tistical tests, like e.g. the Kolmogorov-Smirnov test. In
real data we do not expect this to happen, however.

Also, there are still technical issues which require some
discussion and will be addressed in the future. Most im-
portant is the ambiguity if initial rotation of the events
for which we do not yet have optimised rules. Another is
the rather high requirement on CPU time for even mod-
erately large event samples. Note however, that we have
not tried any fancy computational optimisation of the al-
gorithm so far, and hence we would expect some room for
improvement here.

In fact, we also work on a well optimized routine that
can readily be taken and applied directly in data analysis.
Integration into standard packages like ROOT or HistFit-
ter [22] will be addressed, as well.

In spite of this, we believe that the Event Shape Sort-
ing is worthwhile to apply in real data analysis and carries
potential to gain us better insight into nuclear dynamics
in heavy-ion collisions.
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Event shape analysis in ultrarelativistic nuclear collisions.∗
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Czech Republic
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We present a novel method for sorting events. So far, single variables
like flow vector magnitude were used for sorting events. Our approach
takes into account the whole azimuthal angle distribution rather than a
single variable. This method allows us to determine the good measure of
the event shape, providing a multiplicity-independent insight. We discuss
the advantages and disadvantages of this approach, the possible usage in
femtoscopy, and other more exclusive experimental studies.

PACS numbers: 25.75.-q Relativistic heavy-ion collisions 25.75.Gz Particle

correlations and fluctuations 02.50.Ng Distribution theory and Monte Carlo studies

1. Introduction

Initial conditions in heavy ion collisions fluctuate from event to event:
there are different impact parameters and different initial energy-density dis-
tributions. Hot matter created in those collisions expands very fast in both
longitudinal and transverse directions, initial inhomogeneities are translated
into all orders of anisotropy of this expansion. The analysis of event shapes
can help us identify events with similar initial conditions undergoing simi-
lar evolution. We present a novel study of event shapes using the algorithm
proposed in [1]. This algorithm studies the shape of the distribution rather
than a single variable. It compares, sorts and selects events according to
similarity with each other.

2. The method

The method is thoroughly described in [2]. Here it will be briefly de-
scribed using a simple example. We generated 5000 events from a toy model.

∗ Presented at XI Workshop on Particle Correlations and Femtoscopy, Warsaw 2015
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It generates azimuthal angles of pions from the distribution

P5(φ) =
1

2π

(
1 +

5∑

n=1

2vn cos(n(φ− ψn))

)
. (1)

The parameters vn are quadraticaly multiplicity dependent, details can be
found in [2], multiplicity M ∈ (300, 3000). This choice is motivated by the
LHC data [3, 4].

For each event, we made an azimuthal angle histogram with 20 bins.
Every event is then described by its record {ni}. Since we are studying angle
distribution, the choice of rotating single events is free. We will address this
issue in the next section. The algorithm operates as follows [2]:

1. (Somehow rotate the events)
2. Order events according to a chosen variable
3. Divide the sorted events into quantiles (deciles)

4. For every event calculate the probability that event with record {ni}
belongs to event bin µ: P (µ|{ni})

5. For every event calculate mean bin number µ̄ (values 1 - 10):
µ̄ =

∑
µP (µ|{ni})

6. Sort events according to µ̄

7. If the new sorting changed the assignment of any events into event
bins, return to (3). Otherwise the algorithm converged.

Events with a similar shape are organized by the algorithm so that they end
up close together. There is no specific observable according to which the
sorting proceeds. Moreover, the final arrangement of events is independent
of the initial sorting.

3. Results

First, we tested the algorithm using events which include only v1 and
v2. One of the methods used in event shape studies is Event shape engi-
neering [5]. This method sorts the events according to a chosen observable,
usually q2 = |∑n

j=1 e
2iφj |/M . We were interested in verifying whether q2

is truly a good measure for sorting events. As can be seen in Fig. 1, the
correlation of µ̄ with v2 is clearly better than correlation of µ̄ with q2. This
means v2 is better observable for sorting events than q2 in this simple case.
As mentioned before, the rotation of each event can be arbitrary. Since in
this simple case v2 is clearly dominant, we decided to rotate events in a way
that ψ2 = 0.

In order to test more realistic setting, we then generated events with
all five orders of Eq. (1). The initial event rotation is not as simple as in
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Fig. 1. Left: correlation of µ̄ with q2 determined for each event. Right: correlation

of µ̄ with v2 determined for each event via the event plane method.

the previous case. Interplay of harmonics comes into play. We rotated the
events according to the bisector of ψ3 and ψ2. Moreover, we have to take
care of the parity symmetry. Hence, the events are oriented so that ψ2 is
less than π/2 away from ψ3 counterclockwise. The final event sorting is
shown in Fig. 2. It turns out that v2 is as bad for sorting events as q2 and
the sorting is not even dominated by v3. Higher harmonics do not play any
role at all. This suggests that event shape is determined by an interplay of
several observables.

4. Conclusions and outlook

The proposed sorting algorithm provides a novel method to identify
events which have evolved similarly. Our results confirm the importance of
elliptic and triangular flows for the event shape analysis.

Our approach can be useful in studies including mixed events technique.
One could do, e.g., a femtoscopic study of an exclusive group of events.
This means that we could get as close as possible to singe-event femtoscopic
studies. Event Shape Sorting could provide a selection of events with simi-
lar momentum distributions which would make a suitable sample for event
mixing. In case of statistics in a single event being too small, one could take
a sample of events with similar momentum distributions and reasonably ex-
pect that they also have the same sizes and undergo the same dynamics.
Then, one could analyse the correlation function integrated over the whole
selected event sample. The feasibility of such studies will be investigated in
the future.

On the technical side, the required computational time is rather high,
but since we have not optimised our algorithm yet, we expect the required
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Fig. 2. Average histograms of the azimuthal angles for event bins 1–10, with event

bins indicated in the panels.

CPU time to decrease significantly. We will also scrutinise the initial rota-
tion of events.

Furthermore, we are currently studying a set of events obtained by
AMPT. This will bring an insight into more realistic events. In spite of
these difficulties, we believe that our method is worth applying in real data
and that it will bring more detailed understanding of heavy-ion collisions
dynamics.

Acknowledgement

Supported in parts by SGS15/093/OHK4/1T/14 (Czech Republic), APVV-
0050-11, and VEGA 1/0469/15 (Slovakia)

REFERENCES

[1] S. Lehmann, A.D.Jackson, B. Lautrup: Measures and Mismeasures of Scien-
tific Quality, Arxiv: physics/0512238
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Observables of non-equilibrium phase transition
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Abstract. A rapidly expanding fireball which undergoes first-order phase transition will supercool and
proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as the
left-over matter filling the space between them. Emission from fragments should be visible in rapidity
correlations, particularly of protons. In addition to that, even within narrow centrality classes, rapidity
distributions will be fluctuating from one event to another in case of fragmentation. This can be identified
with the help of Kolmogorov-Smirnov test. Finally, we present a method which allows to sort events with
varying rapidity distributions in such a way, that events with similar rapidity histograms are grouped
together.

PACS. 25.75.Dw 21.65.-f

1 Introduction

Experiments at NICA aim to explore the region of the
phase diagram where highly compressed and excited mat-
ter may undergo a first-order phase transition. It is argued
elsewhere in this volume that such a phase transition in a
rapidly expanding system may bring it out of equilibrium
and end up in its spinodal decomposition. Such a process
then generates enhanced fluctuations in spatial distribu-
tions of the baryon density and the energy density.

In this paper we focus on observables which could help
to identify such processes.

Before we explain various possible observables, we in-
troduce DRAGON: the Monte Carlo tool suited for gen-
eration of hadron distributions coming from a fragmented
fireball [1]. Then, we report on an idea proposed in [2,3]
and further elaborated in [4]: clustering of baryons can be
visible in rapidity correlations of protons. Further, we turn
our attention to the whole rapidity distributions of pro-
duced hadrons and present an idea to search for nonstatis-
tical differences between them with the help of Kolmogorov-
Smirnov test [5]. Finally, we propose a novel treatment
now being developed which also compares momentum dis-
tributions from individual events and sorts events accord-
ing to their similarity with each other [6].

2 Monte Carlo hadron production from
fragments

In order to test the effects of fireball fragmentation into
droplets it is useful to have Monte Carlo tool for the gener-
ation of artificial events with such features included. One

possibility is to construct hydrodynamic models which in-
clude such a behaviour in the evolution [7,8,9,10]. They
allow to link the resulting effects in fireball evolution with
the underlying properties of the hot matter. On the other
hand, they offer less freedom for systematic investigation
of how the fragmentation is indeed seen in data. Interest-
ing questions of this kind are: what is the minimum size
and abundance of fragments that can be seen? What ex-
actly is their influence on spectra, correlations, anisotropies,
and femtoscopy? How are these observables influenced by
the combination of droplet production and collective ex-
pansion?

Such questions can be conveniently explored with the
help of Monte Carlo generator that uses a parametrization
of the phase-space distribution of hadron production. Such
a tool has been developed in [1] under the title DRAGON
(DRoplet and hAdron Generator fOr Nuclear collisions).
All studies presented here have been performed on events
generated with its help.

The bedding of the generator is the blast-wave model.
The probability to emit a hadron in phase-space is de-
scribed by the emission function

S(x, p) d4x =
g

(2π)3
mt cosh(y − η) exp

(
−pµu

µ

T

)

×Θ(R− r) exp

(
− (η − η0)2

2∆η2

)
δ(τ − τ0)

× τ dτ dη r dr dφ . (1)

It is formulated in Milne coordinates τ =
√
t2 − z2, η =

(1/2) ln((t + z)/(t − z)) and polar coordinates r, φ in
the transverse plane. Emission points are distributed uni-
formly in transverse direction within the radius R and
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freeze-out occurs along the hypersurface given by con-
stant τ = τ0. Azimuthal anisotropy has not been used in
studies presented here although the model includes such a
possibility. There is collective longitudinal and transverse
expansion parametrized by the velocity field

uµ = (cosh η cosh ηt, cosφ sinh ηt,

sinφ sinh ηt, sinh η cosh ηt) (2)

ηt = ηt(r) =
√

2ρ0
r

R
. (3)

The fireball is locally thermalized with the temperature
T .

A part of the hadrons, which can be specified in the
model, is emitted from the droplets. The droplets stem
from the fragmentation of the same hypersurface as as-
sumed in eq. (1). The actual picture is that when the fire-
ball fragments, some free hadrons are born between the
produced droplets. The volume of droplets is distributed
according to [11]

PV (V ) =
V

b2
e−V/b . (4)

The average volume of droplets is then 2b. The minimal
mass is practically set by the lightest hadron in simulation:
usually the pion. The probability to emit hadron from a
droplet drops exponentially in droplet proper time τd

Pτ (τd) =
1

Rd
e−τd/Rd , (5)

where Rd is the radius of the droplet. Momenta of hadrons
from droplets are chosen from the Boltzmann distribution
with the same temperature as bulk production. Currently,
neither momentum nor charge conservation is taken into
account in droplet decays, but an upgrade of the model
including these effects is envisaged.

DRAGON also includes production of hadrons from
resonance decays. Baryons up to 2 GeV and mesons up
to 1.5 GeV of mass are included. Chemical composition is
specified by chemical freeze-out temperature and chemical
potentials for baryon number and strangeness. (Chemical
potential for I3 should also be introduced but is practically
very small and thus neglected in the simulations.)

3 Proton correlations

Hadrons emitted from the same droplet will have similar
velocities. This should be seen in their correlations [2,3].
Protons appear best suited for such a study. Their mass is
higher than that of most mesons, so their deflection from
the velocity of the droplet due to thermal smearing will
be less severe. Pions would have better statistics thanks to
their high abundance, but their smearing due to thermal
motion and resonance decays is too big.

Correlation function can be measured as a function of
rapidity difference ∆y = y1−y2 or (better) of the relative
rapidity

y12 = ln

[
γ12 +

√
γ212 − 1

]
(6)

with γ12 = p1 · p2/m1m2.
The correlation function is conveniently sampled as

C12(y12) =
P2(y12)

P2,mixed(y12)
(7)

where P2(y12) is the probability to observe a pair of pro-
tons with relative rapidity y12. The reference distribution
P2,mixed(y12) in the denominator is obtained via the mixed
events technique.

It is instructive to first consider a simple model where
the rapidities of droplets follow Gaussian distribution

ζ(yd) =
1√
2πξ2

exp

(
− (yd − y0)2

2ξ2

)
. (8)

Within the droplet i which has rapidity yi, rapidities of
protons are also distributed according to Gaussian

ρ1,i(y) =
νi√
2πσ2

exp

(
− (y − yi)2

2σ2

)
. (9)

This distribution is normalized to the number of protons
from droplet i, which is denoted as νi.

The resulting correlation function in this simple model
is [3,4]

C(∆y)− 1 =
ξ〈Nd〉〈ν(ν − 1)〉M
〈Nd(Nd − 1)〉〈ν〉2M

√
1 +

σ2

ξ2

1

σ
exp


− ∆y2

4σ2
(

1 + σ2

ξ2

)


 (10)

where 〈Nd〉 is the average number of droplets in one event
and 〈· · · 〉M denotes averaging over various droplets. Natu-
rally, the width of the correlation function depends on σ2,
as might have been expected. However, it also depends on
the width of the rapidity distribution of droplets: through
the factor (1+σ2/ξ2), growing ξ2 leads to narrower proton
correlation function.

As an illustration relevant for NICA we generated sets
of events with the help of DRAGON. On these samples
we studied the influence of droplet size and the share of
particles from droplets on the resulting correlation func-
tions. It turns out that the relative rapidity y12 yields bet-
ter results, so we have mainly used this observable in our
analyses. A more detailed study, though not with specific
NICA fireball settings, can be found in [4].

DRAGON was set with Gaussian rapidity distribution
with the width of 1. Within the rapidity acceptance win-
dow −1 < y < 1 there were about 1200 hadrons; this
number includes all neutral stable hadrons. Momentum
distribution has been set by the temperature of 120 MeV
and the transverse velocity gradient ηf = 0.4. Chemi-
cal composition was according to Tch = 140 MeV and
µB = 413 MeV. Recall that resonance decays are included
in the model. The same kinetic temperature and chemical
composition was assumed for the droplets. Total mass of
each droplet is given by its size and the energy density
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Fig. 1. Proton correlation functions for four different settings
of hadron production from droplets.

0.7 GeV/fm3. Transverse size of the fireball was set to
10 fm and the lifetime τ = 9 fm/c, but these parameters
have no influence on the presented results. Note that we
have imposed acceptance cut in rapidity −1 < y < 1, so
that we do not show results that would not be measurable
due to limited acceptance.

In order to see the effect of droplet formation on the
correlation function we simulated one data set with no
droplets and three sets which differ in droplet settings.
We have sets with: b = 50 fm3 and the fraction of 25% of
hadrons from droplets, b = 20 fm3 and 50%, b = 20 fm3

and 75%. Recall that the mean droplet volume is 2b.
The resulting proton correlation functions in y12 are

plotted in Fig. 1. As expected, without fragmentation the
correlation function is flat. The widths of the correlation
functions are given by the smearing of the momenta of
protons within one droplet, mainly due to temperature.

The level of correlation is expressed in the height of
the peak at y12 = 0. Naturally, this is expected to grow
if a larger number of protons is correlated. This can be
achieved in two ways: by increasing droplet sizes so that
more protons come from each droplet, or by increasing the
number of droplets by enhancing the share of particles pro-
duced by droplets. By coincidence we thus obtained very
similar results for the cases with droplet fractions 25% and
75%, since the latter one assumes smaller droplets.

Note the width scale of the correlation function which
is larger than the typical scale of strong interactions. Thus
any modification due to final state interactions which have
not been included here is expected to be concentrated
around the peak of our correlation functions.

4 Comparison of rapidity distributions

The fragmentation of the fireball actually leads to event-
by-event fluctuations of rapidity distributions. In each event
hadrons are produced from a different underlying rapidity
distribution. In [5] it was proposed to use a standard sta-

Fig. 2. Definition of the distance between two events. The
measured values of variable x are indicated on horizontal axis.
Lines of different thickness represent two different events.

tistical tool for the comparison of hadron rapidity distri-
butions from individual events: the Kolmogorov-Smirnov
(KS) test. The KS test has been designed to answer the
question, to what extent two empirical distributions seem
to correspond to the same underlying probability density.

To apply the test on empirical distributions one first
has to define a measure of how much they differ. For the
sake of clarity and brevity we shall call empirical distri-
butions events and the measure of difference will be their
scaled distance, to be defined later. A distance is defined
in Fig. 2. Consider measuring the quantity x (this may be
e.g. the rapidity) for all particles in two different events.
We mark the values of x on the horizontal axis. Then, in
the same plot we draw for each event its empirical cumu-
lative distribution function. It is actually a staircase: we
start at 0 and in each position where there is measured x
we make a step with the height 1/ni, where ni is the mul-
tiplicity of the event. The maximum vertical distance D
between the two obtained staircases is taken as the mea-
sure of difference between the two events. For further work
one takes the scaled distance

d =

√
n1n2
n1 + n2

D (11)

where n1, n2 are the multiplicities of the two events.
Next one defines

Q(d) = P (d′ > d) (12)

i.e. the probability that the scaled distance d′ determined
for a pair of random events generated from the same un-
derlying distribution will be bigger than d. The formulas
for obtaining Q(d) for any d are given in the Appendix
of [5]. Thus defined, for large d, the value of Q will be
small because there is little chance that two events will be
so much different. If all events come from the same un-
derlying distribution, then the Q’s determined on a large
sample of event pairs will be distributed uniformly.
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Fig. 3. Q-histograms for samples of 104 simulated events. Ra-
pidities of charged pions (top) and all charged hadrons (bot-
tom) are taken into account.

In a sample of events where the shape and dynamical
state of the fireballs fluctuate, e.g. due to fragmentation,
large scaled distance d will be more frequent. This is then
translated into higher abundance of low Q values. Thus
non-statistical differences between events will show up as
a peak at low Q in the histogram of Q values for large
number of event pairs. In order to quantify the signifi-
cance of the peak above the usual statistical fluctuations
we introduce

R =
N0 − Ntot

B

σ0
=
N0 − Ntot

B
Ntot

B

(13)

where N0 is the number of event pairs in the first Q-bin,
Ntot is the number of all event pairs and B is the number
of Q-bins.

To illustrate the application at NICA, we have used
event samples with the same settings as in the previous
Section and show in Fig. 3 the Q-histograms for pion ra-
pidity distributions as well as rapidity distributions of all
charged hadrons. The signal is very strong and the one
for charged hadrons is generally more pronounced than
the one for pions. The comparison of different data sets is
consistent with results for correlation functions from the

previous section. Note that there is basically very weak
signal for the case without droplets, which shows that
clustering effect due to resonance decays cannot mask the
investigated mechanism.

5 Event shape sorting

In presence of fireball fragmentation, rapidity distribu-
tions of different events show large variety. This motivates
the quest to select among them groups of events which will
be similar. Such groups allow to appreciate the range of
fluctuations of the momentum distribution. They also may
be useful for the construction of mixed events histograms
used in correlation functions.

A method for sorting events according to their simi-
larity with each other has been proposed [12,6]. The ap-
plication in [6] was on azimuthal angle distributions. Here
we use it for rapidity distributions. Details can be found
in [6]; here we only shortly explain the sorting algorithm.

An event is characterized when all its bin entries ni
are given; i numbers the bins in rapidity. Full bin record
will be denoted {ni}.
1. Events are initially sorted in a chosen way and divided

into N quantiles of the distribution. We use deciles,
numbered by Greek letters.

2. For each event, characterized by record {ni}, calcu-
late the probability that it belongs to the event bin µ,
P (µ|{ni}), using the Bayes’ theorem

P (µ|{ni}) =
P ({ni}|µ)P (µ)

P ({ni})
. (14)

The probability P ({ni}|µ) that the event with bin
record {ni} belongs to the event bin µ can be expressed
as

P ({ni}|µ) = M !
∏

i

P (i|µ)ni

ni!
(15)

where M is the event multiplicity, the product goes
over all (rapidity) bins, and P (i|µ) is the probability
that a particle falls into bin i in an event from event
bin µ

P (i|µ) =
nµ,i
Mµ

. (16)

(Mµ is the total multiplicity of all events in event bin
µ and ni,µ is the total number of particles in bin i.)
Coming back to eq. (14): P (µ) = 1/N is the prior and

P ({ni}) =
N∑

µ=1

P ({ni}|µ)P (µ) . (17)

3. For each event determine

µ̄ =

N∑

µ=1

P (µ|{ni})µ (18)

and re-sort all events according to µ̄. Then divide again
into quantiles.
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Fig. 4. Average rapidity histograms of the 10 event bins after
the sorting algorithm with 5000 events (with rapidity flip - see
text) converged. Droplet fraction 25% and b = 50 fm3.

4. If the ordering of events changed, re-iterate from point
2. In a less strict version of the algorithm, the ordering
is re-iterated only if the assignment to quantiles has
changed.

This iterative algorithm organizes events in such a way,
that those which are similar to each other by the shapes
of their histograms end up close to each other. It is not
specified a priori, however, whether there is any specific
observable according to which the sorting proceeds. The
algorithm itself picks the best ordering automatically. The
method actually provides a more sophisticated version of
the Event Shape Engineering.

We have tested the algorithm on a set of events gen-
erated by DRAGON with the same parameters as in pre-
vious two Sections. For illustration, we show in Fig. 4 the
average histograms in different event bins after the sorting
algorithm. We have chosen the data set with droplet frac-
tion 25% and b = 50 fm3 and the algorithm works with
rapidity distributions of pions. As a result of the fluctu-
ations in rapidity distributions, the differences between
event bins are large. On one end there are events with al-
most symmetric distributions, whereas on the other end
there are events with strong emphasis on one side.

It should be noted that the simulation setting assumes
symmetric Gaussian rapidity distribution and correspon-
ded to symmetric nuclear collisions. Consequently, there is
no reason to favour one rapidity direction over the other.
The resulting sorting in Fig. 4 is obtained when in the
middle of the iteration process one half of the events is
flipped over the mid-rapidity.

The difference between event bins is much bigger here
than in a sample of events where no droplets are present.

6 Conclusions

We have sketched and explained two kinds of observables
that can be used for identification of the fragmentation
process: proton correlations in rapidity [3,4] and the Kol-
mogorov-Smirnov test comparing the event-by-event ra-
pidity distributions [5]. The motivation to look for the
fragmentation comes from the fact that a first order phase
transition actually should proceed this way.

It should be mentioned that in [13,14] it has been ar-
gued that potentially there is a mechanism which may lead
to fireball fragmentation even in absence of the first order
phase transition. A sharp peak of the bulk viscosity as a
function of temperature may suddenly cause resistance of
the bulk matter against expansion. Driven by the inertia,
the fireball could choose to fragment. This possibility puts
the uniqueness of the fragmentation process as the signa-
ture for the first order phase transition under question.
Nevertheless, it is still certainly worthwhile to investigate
the consequences of such a process.

A process that could mask the signals of fragmenta-
tion is rescattering of hadrons emitted from droplets. It
would be interesting to combine the presented methods
with models including such a possibility.

Finally, we presented a method which is still being
developed and which allows to sort the measured events
automatically according to the most pronounced features
in their histograms and build groups of similar events [6].
This would allow to study such groups, where event-by-
event fluctuations are suppressed, in more detail.
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