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Abstract
Quantum chromodynamics (QCD) is a
field theory that governs our current
understanding of the strong interaction
which plays a decisive role in the realm of
atomic nuclei. This theory comes along
with a set of rules and tools that enable
us to compute predictions for interactions
of strongly charged particles. However, to
understand and predict the behavior of an
object as complex as a nucleon, we need to
simplify the theory using well controlled
approximations and supplement it with
models of those aspects we do not know
how to implement. One example is the
dipole model along with the accompany-
ing Balitsky-Kovchegov equation, which
enables us to learn from the fundamen-
tal properties of QCD about the gluonic
structure of protons and neutrons. I have
used this formalism to extract informa-
tion about the shape of the gluon distri-
bution of protons and nuclei, its momen-
tum dependence, transverse profile and
distortion due to complex effects inside
hadrons. I have used this knowledge to
compute predictions for processes, which
could possibly prove the existence of the
long sought gluonic recombination effects
inside hadrons, a phenomenon known as
saturation.
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Strong interaction, Balitsky-Kovchegov
equation, Saturation
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Abstrakt
Kvantová chromodynamika (QCD) je
polní teorie, která řídí naše současné chá-
pání silných interakcí, jež hrají zásadní
roli v říši atomových jader. Tato teorie
nám dává sadu pravidel a nástrojů, které
nám umožňují spočítat předpovědi pro
jednotlivé interakce silně nabitých částic.
Avšak pro porozumění a správné před-
povědi chování objektů tak komplexních,
jakými jsou například nukleony, je ne-
zbytné sestavit a použít zjednodušující
modely. Dipólový model spolu s dopro-
vázející Balitsky-Kovchegovovou evoluční
rovnicí nám umožňuje extrahovat z fun-
damentálních vlastností kvantové chromo-
dynamiky informace o gluonové struktuře
protonů. V této práci jsem použil dipólový
model pro přepovězení tvaru protonových
gluonových distribucí, jejich závislosti na
hybnosti, příčném profilu a míře narušení
vlivem komplexních jevů odehrávajících
se uvnitř atomových jader. Tyto znalosti
jsem použil k výpočtům předpovědí pro
procesy, které mohou být použity k do-
kázání existence dlouho hledaných vlivů
gluonové rekombinace na vlnovou funkci
hadronů.

Klíčová slova: Kvantová
chromodynamika, silná interakce,
Balitsky-Kovchegovova rovnice, saturace

Překlad názvu: Fenomenologické studie
kvantové chromodynamiky za vysokých
energií
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Chapter 1
Introduction

Quantum chromodynamics (QCD) is a quantum field theory describing
the mechanisms of the strong interaction inside nucleons and nuclei. Its
principles and properties have been intensively studied both theoretically and
experimentally over the course of the past decades by a joint collaboration of
the entire world.

In this theory nucleons, such as protons and neutrons, are constituted from
fermion fields called quarks and of boson fields—that bind them together—
called gluons. When working in the framework of quantum field theory (such
as quantum electrodynamics), one usually takes advantage of perturbative
expansions in the powers of the coupling constant associated with the strength
of the interactions. This usual approach is more difficult for the purposes
of QCD since the coupling (termed strong) reaches values ∼ 1 and prevents
us from omitting terms with higher powers of this constant. However, it
has been shown, that the value of this coupling changes with energy and
for highly energetic interactions, its value decreases low enough that the
predictive powers of the series expansions are re-established [1, 2].

Going from the correct description of a single gluon-gluon interaction to a
complete understanding of an object as complex as the proton is a colossal
task. The proton consists not only of the three constituent quarks coined
"valence", but also of an infinite pool of gluons and of a sea of quark-antiquark
pairs, that interact with one another, exchange energy, spin, color and other
quantum numbers making up this dynamical cluster of particles, that we call
nucleon.

For the purpose of learning more about the full nucleon from simple rules
for interactions, so-called evolution equations have been established [3–14].
These take a simple object and during the course of evolution apply the
well-known single interactions over and over so that the sought complexity of
the object arises.

One of the evolution equations, that has been established and used for
the purpose of the description of the gluon populations inside nucleons is
called the Balitsky-Kovchegov (BK) equation [15–19]. This evolution equation
evolves the partonic population of the target in energy unlike the famous
DGLAP equation [11,12,20,21] that evolves in the scale of the process.

This work focuses on the use of the BK equation, that can be used to
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1. Introduction .....................................
calculate, within perturbative QCD, the evolution of a color dipole [22–24]
(quark-antiquark pair with total color zero) by adding a small amount of
energy into the system. This dipole is considered as a probe in deep-inelastic
scattering (DIS) events in virtual photon-proton collisions and with it, the
QCD structure of the target can be obtained in the following way.

The BK equation "dresses" the initially bare dipole with a cloud of additional
partons. Lorentz invariance of the cross section can be used to boost the
entire system into a frame, where the dipole is at rest and thus stays bare.
The energy evolution then has to go into the wavefunction of the proton (that
the dipole is colliding with), which has acquired energy by the boost. This
then gives birth to additional partons inside the proton.

This way, one can relate the scattering amplitude, that corresponds to
the parton distribution of the dipole to the parton distribution of the target
proton. This effect can be used to calculate distribution functions, that can
be used to compute various processes within the factorized approach to the
final cross section.

The BK equation is a differential equation that cannot be solved analytically
so one has to use numerical methods to obtain a solution. At first, I have
optimized its computation and used it to calculate structure functions of
the proton with the commonly used initial conditions originating from the
McLerran-Venugopalan (MV) [25] and Golec-Biernat Wüsthoff (GBW) [26]
models.

Then I have used the BK equation and its solutions to calculate the
Transverse Momentum Distributions (TMDs) [27] of proton and nuclei, with
which I have computed the prediction for the di-jet events in the forward
region in rapidity, that can serve as an ideal probe for the saturation effects
inside nucleons [27]. These intensively sought effects are incorporated in the
BK equation which, unlike the BFKL equation [13,14,28–30], incorporates
non-linear terms that are responsible for gluon recombination.

I have found that the collinear resummation within the BK framework [31,
32] suppresses the parts of the phase space of the kernel of this equation where
non-perturbative effects play an important role [33,34]. This in turn enables
us to solve this equation in the full impact-parameter dependent computation
without the rise of non-perturbative tails in its amplitude (called Coulomb
tails) and thus learn about the profile structure and evolution of the target.

I have generalized this approach to describe nuclear targets in order to
gain more understanding of nuclear effects, such as shadowing, because of the
planned facilities designed to perform such studies in the near future [35].

This work is organized as follows. In Chapter 2, I will introduce deep-
inelastic scattering (DIS), which is an invaluable probe of the inner structure
of the nucleons and nuclei. Then I will address, how the dipole model can be
used to describe these processes on theoretical level. The overview of the BK
equation as well as some of the key aspects of this formalism will be reviewed
in Chapter 3. Saturation effects embedded in this equation as well as some
of the possible ways to search for these effects will be outlined in Chapter 4
followed by a summary and finally, I include a reproduction of the articles

2



......................................1. Introduction
produced during my Ph.D. work and submitted to high-impact journals as
well as a list of the proceedings of international talks I gave on these subjects.
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Chapter 2
Deep-inelastic scattering

2.1 Kinematics of DIS

Deep-inelastic scattering (DIS) is a key process for studying the internal
structure of hadrons and therefore of the matter around us. This process
(shown in Fig. 2.1) involves the interaction of a lepton with a target hadron.
The passing lepton emits a gauge boson, which for the case of charged incoming
leptons and small virtualities is normally a photon, and this then interacts
with the target probing its internal structure and breaks it apart. Since
the electromagnetic interaction is explicitly given by the rules of quantum
electrodynamics (QED), electrons serve as an excellent probe of the structure
of nuclei and nucleons.

In experiments at SLAC in 1968, deep inelastic scattering was the pro-
cess that enabled the discovery of the constituent point-like particles inside
nucleons (termed quarks) [36,37] leading to the development of a quantum
field theory of the strong interaction—quantum chromodynamics. These
experiments have then been continued with great success in order to gain
more information about QCD dynamics and the rules that govern strongly
interacting particles e.g. at HERA [38,39], SLAC [40] and CERN [41].

If we write this process symbolically as

e(l) + p(P )→ e
′(l′) +X(Px), (2.1)

denoting the incoming electron as e, the incoming proton as p, the outgoing
electron as e′ and the outgoing fragmented hadron as X with their correspond-
ing four-momenta in the parentheses next to them, we can define variables
that are used to describe the kinematics of such processes as follows.

One of the most important variables for this process, the virtuality of the
photon, defines the scale at which the target is being probed and is defined as

Q2 = −q2 = −(l − l′)2. (2.2)

This definition is chosen as such due to the fact, that in DIS, the interacting
photon is considered to be an off-shell and space-like particle. Therefore, to
obtain a positive and frame independent variable representing the scale of
the process, one has to choose the negative square of its four-momenta.

5



2. Deep-inelastic scattering................................

e(l)

e’(l’)

p(P)

X(P )x

q

Figure 2.1: Schematic picture of deep inelastic electron-proton scattering.

Another important variable is the Bjorken x, which in the infinite momen-
tum frame corresponds to the fraction of the momentum carried by the struck
parton with respect to the total momentum of the proton and is defined as

x = Q2

2P · q = Q2

Q2 +W 2 −m2
N

, (2.3)

where mN is the mass of the nucleon (in this case a proton). A convenient
variable used for one of the definitions of x is W 2, the total energy that is
transferred to the hadron in the CMS frame, which is given by

W 2 = (P + q)2. (2.4)

The inelasticity of the collision y is defined as

y = q · P
l · P

, (2.5)

and represents the fraction of energy lost by the incoming electron because of
the collision. The last kinematic variable that will be addressed here, denoted
as s, is given by expression

s = (l + P )2 (2.6)

and gives us the squared center-of-mass energy of the lepton-hadron collision.

2.2 Cross sections in DIS

The kinematic variables introduced above are used in DIS to describe the
totally inclusive cross section for the process schematically shown in Fig. 2.1
as
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d2σ±
dxdQ2 =4πα2

em

xQ4 (2.7)[(
1− y + y2

2

)
F2(x,Q2)− y2

2 FL(x,Q2)∓
(
y − y2

2

)
F3(x,Q2)

]
,

where αem is the QED coupling and is usually set to 1/137. This cross section
is expressed in terms of the so-called structure functions F2(x,Q2), FL(x,Q2)
and F3(x,Q2). The structure function F3(x,Q2) takes into account parity-
violating effects depending on the chosen projectile particle (an electron or a
positron) and is negligible for values of Q2 smaller than the scale of the mass
of the Z0 boson.

The longitudinal structure function can be expressed in terms of the
standard structure functions F1(x,Q2) and F2(x,Q2) as

FL(x,Q2) = F2(x,Q2)
(

1 + 4M2
Nx

2

Q2

)
− 2xF1(x,Q2), (2.8)

where MN is the mass of the target nucleon. Therefore (after omitting the
parity-violating term F3(x,Q2)) Eq. (2.7) becomes

d2σ

dxdQ2 =4πα2
em

Q4

[(
1− y − M2

Ny
2

Q2
F2(x,Q2)

x
+ y2F1(x,Q2)

)]
. (2.9)

The proof, that the proton, in fact, contains point-like constituent particles
(called partons [42]) came from satisfying of the so-called Bjorken scaling,
which implies that the structure functions should depend only on one variable,
Bjorken-x [43], which can be expressed as

F2(x,Q2)→ F2(x), F1(x,Q2)→ F1(x). (2.10)

This behavior was later observed in data, proving that the proton is made of
constituent point-like particles (see Fig. 2.2)

The evidence, that the constituting partons are, in fact, spin-1/2 particles
comes from satisfying the Callan-Gross relation [45], that reads

2xF1(x) = F2(x). (2.11)

This relation has then been verified experimentally, determining the spin of
the partons probed by the DIS process (see Fig. 2.3).

2.3 The parton model

If we boost to a frame, where the proton carries infinite momentum in one
direction, all of the transverse components of the momentum of its constituents
as well as their masses will be negligible. In this frame, and during the short

7



2. Deep-inelastic scattering................................

Figure 2.2: Manifestation of the Bjorken scaling in the data (figure taken
from [44]).

time that the interaction lasts, you can treat the partons as quasi-free particles
that the virtual photon scatters off (see Fig. 2.4).

In this framework, the structure function of the proton can be written in
terms of the so-called parton distribution functions (PDFs) as

F2(x,Q2) = x
∑
f

e2
qf

[
qf (x,Q2) + q̄f (x,Q2)

]
, (2.12)

where f denotes the chosen flavor, eqf is the charge of the considered quark,
qf (x,Q2) is the quark PDF and q̄f (x,Q2) is the anti-quark PDF. These PDFs
have a stochastic interpretation and they give us the information about the
probability of a parton existing inside of a proton within a specific energy
interval. Furthermore, since quarks emit gluons and those can fluctuate into
more quarks, a picture of the proton consisting only of three static quarks is
too simplistic. The population of quarks that originates from these gluonic
fluctuations is called the "sea" distribution and the total quark densities for u
and d quarks are then given as

u(x) = uv(x) + us(x), d(x) = dv(x) + ds(x). (2.13)

Here subscript v denotes the valence-quark distribution and subscript s
denotes the sea-quark distribution.

The fact, that there are two valence u-quarks and one valence d-quark in
the proton translates into these distributions as a condition∫ 1

0
uv(x) = 2,

∫ 1

0
dv(x) = 1. (2.14)

8
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Figure 2.3: Manifestation of the Callan-Gross relation in the data (figure taken
from [46]).

Since there are no valence anti-quarks in the proton, we can relate the quark
sea distributions to the anti-quark distributions as

ūs(x) = ū(x) = us(x), d̄s(x) = d̄(x) = ds(x). (2.15)

From the form of the relation for the structure function (2.12) and the
assumption, that all sea-quark distributions for the light quarks (u, d and s)
are equal

S(x) ≡ ūs(x) = d̄s(x) = s̄s(x) = us(x) = us(x) = us(x) (2.16)

we can construct the structure functions for the proton and neutron as

F ep2 (x) = x

[4
9uv(x) + 1

9dv(x) + 4
3S(x)

]
(2.17)

and
F en2 (x) = x

[4
9dv(x) + 1

9uv(x) + 4
3S(x)

]
. (2.18)

These expressions follow that due to the isospin symmetry, upv(x) = dnv (x) and
dpv(x) = unv (x). Then we also decide to keep the convention of u(x) ≡ up(x),
d(x) ≡ dp(x). The superscripts p and n denote the proton and neutron,
respectively.

Therefore one can construct the ratio of the two structure functions and
probe it at various values of x. Since the sea-quarks come from gluonic
emissions, which are more probable at regions where gluons are abundant—
the low-x region—the sea-quarks dominate the distributions and for low
values of x

F ep2 (x)
F en2 (x) → 1. (2.19)

9
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e(l)

e’(l’)

p(P)

X(P )x

q

Figure 2.4: Schematic picture of the lepton-proton scattering where the virtual
photon scatters of a point-like quasi-free parton.

At other regions where sea-distributions are negligible, you can determine
the ratio of the valence u and d distributions by measuring the ratio of these
structure functions.

If we measure the total momentum carried by the quark distributions as

Tq =
∫ 1

0
xu(x) + xd(x), (2.20)

we find out, that these quarks carry just about 50% of the total momentum
of the proton. The rest is carried by electromagnetically neutral particles
called gluons. A useful framework for determining the gluonic structure of
protons and nuclei is the dipole model.

2.4 The dipole model

The dipole model addresses the interaction of a virtual photon with the target
hadron. In DIS, we are studying the effects of strong interaction, although,
the interacting photon emitted by the projectile lepton (see Fig.2.1) does not
carry color charge. In order for the photon to interact strongly, it needs to
fluctuate into one of its composing Fock-states. The minimal partonic Fock
state, that the photon can fluctuate into and that could interact strongly
with the target is a quark-antiquark pair forming a color dipole.

In the dipole picture to DIS [22–24], the incoming virtual photon firstly
fluctuates into a color dipole, which then exchanges a colorless object with the
target proton (see Fig. 2.5). This colorless object is in the first approximation
represented by a pair of gluons, even though in reality, its structure is far
more complicated.

The dipole interacting with the target proton is characterized by several
variables defining its properties. These are the transverse size ~r, impact

10
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p(P)

X(P )x

q

q

r

Figure 2.5: DIS in the color dipole model. The virtual photon first fluctuates
into a color dipole and this then scatters off a target breaking it apart.

parameter of the interaction ~b (as shown in Fig. 2.6) and energy, in our case
represented via its rapidity Y since

Y ∼ ln
(1
x

)
(2.21)

and
x ∼ 1√

s
. (2.22)

r

b

q

q

Figure 2.6: Schematic view of the variables describing a color dipole in the
transverse plane.

Due to the fact that the dipole lives much longer than the typical interaction
time, we can factorize the total cross section of the DIS process into two
separate terms.

11



2. Deep-inelastic scattering..................................1. Formation of the color dipole...2. Interaction of the dipole with the target hadron.

The first of the factorized terms then are the wave functions, that represent
the probability of a virtual photon splitting into a quark-antiquark dipole.
They read [26]

| Ψf
T (z, ~r,Q2) |2= 3αem

2π2 e2
qf

((z2 + (1− z)2)ε2K2
1 (εr) +m2

qf
K2

0 (εr)) (2.23)

and
| Ψf

L(z, ~r,Q2) |2= 3αem
2π2 e2

qf
(4Q2z2(1− z)2K2

0 (εr)), (2.24)

for the transverse and longitudinal polarization of the virtual photon respec-
tively.

Here z is the fraction of the total momentum carried by the quark, K0 and
K1 are the MacDonald functions, Q2 is the virtuality of the probing photon,
eqf is the fractional charge (in units of elementary charge) of a quark carrying
flavor f , αem = 1/137 and

ε2 = z(1− z)Q2 +m2
qf
, (2.25)

where mqf is the mass of the considered quark. We denote the sum of the
two polarized wave functions as

| Ψf
T,L(z, ~r) |2=| Ψf

T (z, ~r) |2 + | Ψf
L(z, ~r) |2 . (2.26)

The second factorized term is the cross section of the dipole-hadron interaction
denoted as dσqq̄(~r, x̃)/d~b. This variable contains all the information about
the QCD processes of the interaction and contains both the perturbative
and non-perturbative contributions to the collision and can be computed
with various models and approximations. We will discuss it in detail in the
following section at a fixed energy and address its evolution in energy in the
next chapters.

The structure function of the proton is then proportional to the integral of
the photon-dipole wavefunction and the cross section of the quark-antiquark
dipole scattering of the proton target over all transverse dipole sizes ~r, all
possible values of impact parameter ~b and over all possible values of the
fractional momentum of photon z (which goes from 0 to 1) as

F2(x,Q2) = Q2

4π2αem

∫ ∑
f

d~rd~bdz | Ψf
T,L(z, ~r) |2 dσqq̄(~r, x̃)

d~b
. (2.27)

Furthermore, it is usual to shift the value of the x at which the structure func-
tion and reduced cross section is computed according to the photoproduction
kinematic shift [26]

x̃ = x

(
1 +

4m2
qf

Q2

)
, (2.28)
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where mqf is the mass of the considered quark and Q2 is the virtuality.
The reduced cross section, that can also be measured, is obtained from the

relation [47]

σred(x, y,Q2) = F2(x,Q2)− y2

1 + (1− y)2FL(x,Q2), (2.29)

where the inelasticity y is obtained from y = Q2/sx and
√
s is the center-of-

mass (CMS) collision energy as discussed in previous sections and

FL(x,Q2) = Q2

4π2αem

∫ ∑
f

d~rd~bdz | Ψf
L(z, ~r) |2 dσqq̄(~r, x̃)

d~b
, (2.30)

where similarly as above, z goes from 0 to 1. One can also compute the reduced
cross section only for a single-quark contribution (c-quark σcharmred (x, y,Q2) for
instance) by including only the desired flavor instead of the sum over i in the
computation of the structure function F2(x,Q2) and longitudinal structure
function FL(x,Q2). Since the structure function F1(x,Q2) is given by

2xF1(x,Q2) = Q2

4π2αem

∫ ∑
f

d~rd~bdz | Ψf
T (z, ~r) |2 dσqq̄(~r, x̃)

d~b
, (2.31)

we can relate these three structure functions as

F2(x,Q2)− 2xF1(x,Q2) = FL(x,Q2). (2.32)

Another important process in the color dipole framework is the diffractive
production of vector mesons as a function of the four-momentum t transferred
at the hadron vertex. This process, where the virtual photon interacts with
a target proton diffractively, produces a vector meson but leaves the target
intact. It is especially important since the transferred four-momentum is a
Fourier-related variable to the impact parameter b and therefore by measuring
this cross section, we are, in fact, probing the impact-parameter profile of the
target. This cross section can be written as

dσγ∗p→Vp

d|t|

∣∣∣∣
T,L

=
(
1 + β2) (RT,Lg )2

16π |AT,L|2, (2.33)

where AT,L is the amplitude of the process, (1 + β2) is a correction for the
fact that in the derivation of this amplitude we considered only its imaginary
part (for more details see [48]). RT,Lg is called the skewedness correction and
corrects for the fact that we did not use an off-diagonal gluon distribution for
the vector meson production (see [49]).

The amplitude of this process is given by

AT,L(x,Q2, ~∆) = (2.34)

i

∫
d~r

1∫
0

dz
4π

∫
d~b|Ψ∗VΨγ∗ |T,L exp

[
−i
(
~b− (1− z)~r

)
~∆
] dσqq̄

d~b
,

13



2. Deep-inelastic scattering................................
where Ψγ∗ is a photon wave function that reflects the probability of it splitting
into a color dipole and ΨV is the wave function of the outgoing vector
meson. Subscript T, L denotes a sum over their longitudinal and transverse
polarizations. The square of the transferred four-momentum is here denoted
as ~∆2 ≡ −t. The x for this process is then computed as

x = Q2 +M2

W 2
γp +Q2 , (2.35)

where M is the mass of the considered vector meson and Wγp is the center-
of-mass energy between the photon and proton. The convolution of the wave
functions takes the form

|Ψ∗VΨγ∗ |T = (2.36)

êfe
Nc

πz(1− z)
[
m2
fK0(εr)φT (r, z)−

(
z2 + (1− z)2

)
εK1(εr)∂rφT (r, z)

]
,

and

|Ψ∗VΨγ∗ |L = êfe
Nc

π
2Qz(1− z)K0(εr)

[
MφL(r, z) + δ

m2
f −∇2

r

Mz(1− z)φL(r, z)
]
.

(2.37)
Here δ was fixed to one and for the scalar part of the vector meson wave
function φT,L(r, z), we used the boosted Gaussian model as in [50–52]. The
variable êf is the effective quark charge and other variables are defined
similarly as for Eq. (2.26).

2.5 The dipole-proton cross section

When addressing the dipole-proton cross section, that we need to compute
for the DIS-related processes, we can take use of the optical theorem that
identifies it with the dipole scattering amplitude by

dσqq̄(~r, x)
d~b

= 2N(~r,~b, x). (2.38)

This relation is especially useful to us, since N can be obtained from various
models (such as MV or GBW) or closer to pQCD obtained as a solution of the
Balitsky-Kovchegov evolution equation as will be discussed in the following
chapters.

For a moment, let us omit the dependence of the dipole-proton cross section
(or equivalently of the scattering amplitude) on the impact parameter ~b and
focus solely on its behavior with respect to the transverse dipole size ~r and
energy represented by x. This omitted dependence will be reintroduced in
various ways in the following chapters and is not necessary for the initial
consideration of such cross sections.

This simplification can then be rewritten as

N(~r,~b, x)→ N(~r, x). (2.39)

14



.............................2.5. The dipole-proton cross section

There are many models, that predict the behavior of this form of the scattering
amplitude at a fixed energy and we can then take it and use it as a starting
point for the energy evolution of the Balitsky-Kovchegov equation.

We will choose a commonly used model called McLerran-Venugopalan
(MV) [25] to illustrate how one can arrive to an expression for such cross
section. This model simplifies the picture of the proton as consisting of a few
highly-energetic partons, that generate a soft gluonic field that is then treated
as classical for the purposes of this computation and is derived within the
Color Glass Condensate model (CGC). For a review and more information
on CGC see [53–55].

If we try to express how a single quark, passing through such medium
would be affected, assuming a Gaussian distribution of the color sources and
zero-momentum exchange during the collision, we arrive to an object that
describes the color rotation occurring during this interaction, is called the
Wilson line, and can be expressed as

V (xT ) = P exp
[
ig

∫
dx+Ac−(x+, xT )tc

]
. (2.40)

Here P denotes path ordering in the integral, Ac−(x+, xT ) is the color field
that approximates our target, tc is the Gell-Mann color matrix and g is the
interaction coupling. We have used the light-cone notation to describe the four-
vectors that enter these expressions, which for a four-vector x = (x0, x1, x2, x3)
is defined as

x± = 1√
2

(x0 ± x3), xT = (x1, x2). (2.41)

If we then take two Wilson lines to model the effects of such collision on a
quark-antiquark pair, we are able to construct a scattering matrix for a color
dipole interacting with a target depending on its transverse size r at a fixed
energy given by x = x0 as

S = 1
Nc

TrV (xT )V †T (yT ), (2.42)

where Nc is the number of colors, V (xT ) stands for the quark-contribution to
the scattering, the conjugated V †T (yT ) for the antiquark-contribution and the
transverse size of the dipole is given by r = |xT − yT |. The corresponding
scattering amplitude is then constructed as

NMV = 1− 1
Nc

TrV (xT )V †T (yT ). (2.43)

After the evaluation of the trace over colors one arrives to an expression

NMV (r, x = x0) = 1− exp
(
−(r2Q2

0)γ

4 ln
( 1
rΛ + e

))
, (2.44)

where the constants that emerge in this computation are the saturation scale
Q2

0, the anomalous dimension γ, the Landau pole Λ and Euler’s number e.
Values for some of them can vary depending on which fit one chooses to
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2. Deep-inelastic scattering................................
follow or for the description of which processes they are used and they will
be addressed in greater detail in the following chapters.

There is of course a wide variety of models that can be used for predicting
the scattering amplitude at a fixed energy and then used for the BK evolution.
We will address each one before making the use of it in the following chapters,
but the methodology sketched out above for the case of the MV model can
be used as a possible way when thinking about the construction of such cross
sections in the color-dipole formalism.
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Chapter 3
The Balitsky-Kovchegov evolution
equation

3.1 The dipole picture of the BK equation

In the previous chapter, we have sketched how one can arrive to an expression
for the cross section of a bare color-dipole interacting with a target. This
cross section has been shown to be important for the DIS processes in the
color-dipole formalism. However, the interacting dipole does not necessarily
have to be bare (that is constituting solely of a quark-antiquark pair). When
increasing the energy of the interaction, it emits additional gluons making
the interaction far more complex than what we previously described. That is
why in order to take into account these gluonic emissions, one can make the
use of the so-called evolution equations.

The Balitsky-Kovchegov evolution equation (BK) is one of the equations
describing the evolution of the scattering amplitude N towards higher energies
by subsequent emissions of gluons from one of the quarks forming the color
dipole. It was derived from the JIMWLK evolution equations in the limit
of large number of colors Nc [19,24,56–60] and, unlike the BFKL equation,
accounts for the nonlinear effects of gluon recombination (see Eq. (3.7)) [61,62].

Following Mueller’s derivation [24] of the BK equation, in order to compute
the energy evolution of the scattering amplitude, one has to first boost into a
frame, where the dipole has minimal energy. Then its wave function consists
solely of the quark-antiquark pair Fig. 3.1 (left). If we want to add a bit of
energy to the system, we boost a bit further away from this frame which
manifests itself as an emission of a gluon from one of the quarks forming the
color dipole Fig. 3.1 (right). This gluon can be (in the limit of the infinite
number of colors) represented as a quark-antiquark pair, which then forms
two independent so-called "daughter" dipoles within the original "mother"
dipole Fig. 3.2 (left).

This way, we can add energy bit by bit into the system until we dress the
original bare dipole with a cloud of additional dipoles, that get emitted as we
add energy by boosting into a frame, where the dipole is not at rest Fig. 3.2
(right).
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3. The Balitsky-Kovchegov evolution equation........................

Figure 3.1: Diagram for the bare color dipole consisting solely of quark-antiquark
pair (left) and the color dipole after a bit of energy is added to the system and
one of the quarks emits a gluon (right).

Figure 3.2: Diagram for the color dipole after the emitted gluon splits into a
quark-antiquark pair in the limit of high number of colors and two daughter
dipoles are formed (left). Diagram for the color dipole after it is dressed with a
cloud of additional dipoles (right).

Mathematically, the BK equation reads [61,63]

∂N(~r,~b, Y )
∂Y

=
∫
d~r1K(r, r1, r2)

(
N(~r1, ~b1, Y ) +N(~r2, ~b2, Y )−N(~r,~b, Y )

−N(~r1, ~b1, Y )N(~r2, ~b2, Y )
)
, (3.1)

where K(r, r1, r2) is the kernel of the equation, reflects the probability of a
quark emitting a gluon, and is derived with the use of perturbative QCD.
N(~ri, ~bi, Y ) denotes the scattering amplitude with ~r, ~r1 and ~r2 being the
transverse sizes of the mother and daughter dipoles respectively, where
~r = ~r1 + ~r2 holds. Impact parameters of the considered dipoles are denoted
with ~bi. We follow the notation of |~r| = r and similarly for impact-parameter
vectors. The BK equation can be equivalently formulated in momentum
space [62] although, throughout this work, we will stick to the outlined
formulation in position space.

Since the total cross section is a variable invariant under a Lorenz boost,
we can relate the two cases (bare dipole at rest and dressed boosted dipole)
by assuming, that the compensating variable, that fixes the Lorenz invariance
of the cross section, is the gluon distribution of the proton that the dipole
interacts with. This then allows us to relate the dipole gluon distribution
with the gluon distribution of the target proton and make the use of the BK
equation when describing the structure of nucleons.
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....................... 3.2. Simplifying the solution of the BK equation

3.2 Simplifying the solution of the BK equation

The BK evolution equation is usually solved in the b-independent scheme [47],
for which we have also sketched the derivation of the MV initial condition in
the previous chapter.

In this scheme, we assume the impact parameter dependence of the scatter-
ing amplitude to factorize from the transverse size and rapidity dependence
as

N(~r,~b, Y ) ∼= T (~b)N(~r, Y ), (3.2)

where we have moved from using x as the variable describing the energy of
the collision to rapidity Y , which is connected to it by the relation

Y = ln
(
x0
x

)
. (3.3)

The parameter x0 is a free parameter that defines the value of x, where we
decide to start our evolution.

The integral over the impact parameter of the scattering amplitude can
be parametrized under this factorization with a variable σ0, which remains
constant throughout the evolution and can be fitted to data. The formula
for the computation of the dipole cross section integrated over the impact-
parameter plane then reduces to

σqq̄(~r, Y ) = 2
∫
d~bN(~r,~b, Y ) = σ0N(~r, Y ). (3.4)

It is also convenient to assume that the size of the target proton is very big
and completely homogeneous. If we assume a proton with infinite size, no
matter, how large impact parameter or transverse size we choose, the dipole
will always interact with the target. This strong approximation simplifies
the situation a lot, because then we are able to neglect the dependence of
the scattering amplitude on the impact parameter not only in its integration
to get the inclusive cross section, but also in the BK evolution itself. In
other words, under the assumption of an infinite proton size and factorizable
b-dependence, the scattering amplitude reduces to

N(~r,~b, Y ) ∼= N(~r, Y ). (3.5)

In this approach, we neglect the angular asymmetries of the infinitely large
target and the scattering amplitude can be further simplified as

N(~r, Y ) ∼= N(r, Y ). (3.6)

Under these assumptions, we may rewrite the BK evolution equation as

∂N(r, Y )
∂Y

=
∫
d~r1K(r, r1, r2)(N(r1, Y ) +N(r2, Y )−N(r, Y )

−N(r1, Y )N(r2, Y )). (3.7)
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3. The Balitsky-Kovchegov evolution equation........................
There is a wide pallet of kernels K(r, r1, r2) that one can choose for the

BK evolution. Because this term reflects the perturbative calculation that
accounts for the emission of a gluon from one of the quarks, it can be carried
out under various approximations, orders and schemes. One of the usual
choices for such calculation is the running coupling kernel Krun(r, r1, r2) that
can be expressed as [61,63,64]

Krun(r, r1, r2) =
Ncαs(r2)

2π2

(
r2

r2
1r

2
2

+ 1
r2

1

(
αs(r2

1)
αs(r2

2)
− 1

)
+ 1
r2

2

(
αs(r2

2)
αs(r2

1)
− 1

))
. (3.8)

Here Nc is the number of colors, αs denotes the strong coupling that will be
discussed in more detail later on, and r, r1 and r2 are the dipole transverse
sizes. A clear picture of the geometric orientation of the mother-daughter
dipoles and their relation in the evolution can be seen in Fig. 3.3 in the
transverse plane. This kernel incorporates some of the NLO effects into the
evolution and differs from a pure LO version of the equation [65–67].

r
r

r

1

2

Figure 3.3: Schematic view of the mother and daughter dipoles in transverse
space for the BK evolution.

The Balitsky-Kovchegov equation unfortunately does not have an analytic
solution, so it has to be solved numerically [47,64,68]—more recently for more
complicated kernels in the work described in this thesis and in [33–35]. A usual
way of solving this equation involves the Simpson method for integration, a
linear interpolation for acquiring values of N(r, Y ) for intermediate positions
in a predefined grid in the size of dipoles r and the Runge-Kutta method for
solving the differential equation.

Solving this equation numerically can be CPU-time demanding and it is
necessary to develop methods to improve the speed of the computation in
order to be able to calculate predictions for more complicated approaches
(such as for the b-dependent computations). Throughout this work, we
follow and extend on the approach, that we implemented in my Diploma
thesis [69,70].
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....................... 3.3. Running coupling in the variable nf scheme

fit Q2
0 [GeV2] C Λ [GeV] γ σ0 [mb]

GBW 0.241 2.46 0.241 0.971 32.357
MV 0.165

√
6.5 0.241 1.13 32.895

Table 3.1: Possible values of the initial condition and running coupling parame-
ters [47].

This approach consists of optimizing the grid spacing (in rapidity, transverse
dipole size and its angle in integration) for maintaining constant error-to-
precision ratio, rewriting the Runge-Kutta method of fourth order, so that it
needs just one step in computation, rather than four [71], and choosing the
correct scale for the variables, that are iterated over (logarithmic scale for
the transverse size and linear for its angular dependence has proven to be an
optimal choice).

In order to solve the Balitsky-Kovchegov evolution equation and to get a
prediction for the associated observables, one must start with a certain initial
condition. One of the frequently used initial conditions is the GBW initial
condition [26]

NGBW (r, Y = 0) = 1− exp
(
−(r2Q2

0)γ

4

)
. (3.9)

Another typical initial condition (as discussed in the previous chapter) for
the BK equation is the MV initial condition [25] that reads

NMV (r, Y = 0) = 1− exp
(
−(r2Q2

0)γ

4 ln
( 1
rΛ + e

))
. (3.10)

Here Λ is called the Landau pole and represents the infrared cutoff of the
dipole cross section [72], Q2

0 determines the typical gluon momentum where
the target starts to be saturated (see next chapter for more details) and is
called the saturation scale. Parameter γ is called the anomalous dimension
and e is the Euler’s number. Some of the typical values for the parameters
used in these two initial conditions are shown in Tab. 3.1.

3.3 Running coupling in the variable nf scheme

In the kernel of the BK equation, the strong running coupling plays an
essential role. A common choice for the coupling constant in this approach
is to use the running coupling with variable number of flavors nf . In this
framework, the number of flavors that are active in the evolution changes
with the considered size of the original dipole that emitted the two daughter
dipoles. The running coupling is then given by

αs,nf (r2) = 4π

β0,nf ln
(

4C2

r2Λ2
nf

) , (3.11)
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3. The Balitsky-Kovchegov evolution equation........................
where nf corresponds to the number of flavors that are active, C2 is the

uncertainty coming from the Fourier transform that was used to derive this
result and is usually fit to data [72] (Tab. 3.1) and

β0,nf = 11− 2
3nf . (3.12)

Λ2
nf

is called the QCD scale parameter and its value depends on the value
of nf in the variable nf scheme. When heavier quark flavors are active (e.g.
charm and beauty quarks, Eq. (3.14)), its value needs to be calculated from
the relation [47]

Λnf−1 = (mf )
1−

β0,nf
β0,nf−1 (Λnf )

β0,nf
β0,nf−1 . (3.13)

We need to fix this recursive relation at one point in order to be able to
solve it. For this, it is standard to choose the value of Λ5, which we obtain
by solving the running coupling relation (3.11) at the scale of Z0 boson mass
with the value of the coupling that has been measured experimentally. For
this we use the measured value of αs(MZ) = 0.1196± 0.0017 at the Z0 mass
of MZ = 91.18GeV/c2 [73].

The number of active flavors nf is set depending on the transverse size of
the mother dipole. The condition that governs this relates the mass of the
heaviest quark considered to the values of r2. This condition can be expressed
as

r2 <
4C2

m2
f

. (3.14)

Since all dipole sizes are accounted for in the BK evolution equation, there
is a need to freeze the coupling at a set value α0 after a certain dipole size is
reached [47,72]. This value differs depending on the chosen parametrization
and is one of the free parameters that enters the computation.

3.4 Solutions without impact-parameter
dependence

Let us now conclude the necessary introduction to the theory of the dipole
model and the BK equation and move to the results that I have computed.
This section and sections 3.6 and 3.8 are reproduction of previous works and
aim for development of tools necessary for investigation and improvement
of the problems of those approaches. From Sec. 3.9 onward I present our
original results published in peer-reviewed journals.

If we now solve the simplified BK equation as was sketched above (Eq. (3.7)),
we arrive to a scattering amplitude (Fig. 3.4), that approaches zero in the
region of low-values of the transverse dipole size r, which corresponds to
color-transparency of the probing dipole [74–76], and reaches one in the region
of high values of r, which is a consequence of the infinite-target approximation
as well as of the saturation effects of the non-linear term in the equation.
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..................... 3.4. Solutions without impact-parameter dependence

Without this non-linear term, at high regions in r, the scattering amplitude
would not be stopped at 1, but would continue growing. Figure 3.5 depicts

10−1 100 101
r [GeV−1]

0.0

0.2

0.4

0.6

0.8

1.0

N(
r, 
Y)

rcBK Y = 0
rcBK Y = 3
rcBK Y = 5

Figure 3.4: Scattering amplitude as a solution of the approximated BK equa-
tion (3.7) with factorized impact parameter.

the integrand of the structure function of the DIS process (2.27). It serves
for gaining the notion of which regions in r are mostly important for these
inclusive cross sections. This then turns out to be from about 0.02 to 4GeV−1.

Figure 3.6 shows the computed structure function confronted with data
from the HERA experiment [39]. The initial condition for this computation
was chosen to be the MV model with parameters obtained from [47] Tab. 1,
row e, where the masses of the considered u, d and s quarks were set to
be 140MeV/c2. The running coupling was frozen at a value of 0.7 and the
heavier quark masses were set to mc = 1.3GeV/c2 and mb = 4.5GeV/c2.
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Figure 3.5: Integrand of the structure function (Eq. (2.27)) - virtual photon
wave function | ψT,L |2 (2.26) multiplied by the scattering amplitude N(r, Y ),
corresponding Jacobian and factors. This plot is used to illustrate the region of
r that contributes the most to the inclusive processes in DIS.
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Figure 3.6: The dependence of the proton structure function F2(Y,Q2) computed
from the impact-parameter independent BK equation on Y and compared with
data from HERA [39].
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........................ 3.5. Impact parameter dependent BK equation

3.5 Impact parameter dependent BK equation

In the previous chapters, we have demonstrated how one can obtain solutions
of the BK equation under the approximation of factorizable impact-parameter
dependence. This approach was very successful in the past, but now we would
like to lift this simplification and solve for a scattering amplitude containing
a non-trivial dependence on the impact parameter. The proton will no longer
be "an infinite homogeneous object", but we will allow it to have finite-size
and non-trivial structure.

The full BK evolution equation without neglecting the impact parameter
dependence reads

∂N(~r,~b, Y )
∂Y

=
∫
d~r1K

run(r, r1, r2)(N(~r1, ~b1, Y ) +N(~r2, ~b2, Y )−

−N(~r,~b, Y )−N(~r1, ~b1, Y )N(~r2, ~b2, Y )). (3.15)

Let us assume (as in [77–79]), that the hadronic target is rotationally sym-
metric and therefore we omit the dependence on the angle Φ (as shown in
Fig. 3.7).

r

b

rb

Figure 3.7: Schematic view of the dipole interacting with a proton in the impact
parameter dependent scheme.

The equation in this approach becomes independent of the rotational angle
as

∂N(~r, b, Y )
∂Y

=
∫
d~r1K

run(r, r1, r2)(N(~r1, b1, Y ) +N(~r2, b2, Y )−

−N(~r, b, Y )−N(~r1, b1, Y )N(~r2, b2, Y )). (3.16)

All variables that enter this equation can be derived from the geometry of
the three dipoles, which is defined by the knowledge of at least one impact
parameter vector and two dipole size vectors. In the usual approach, the
known vectors are ~r, ~b and ~r1 and we can then compute the remaining
variables that enter this equation as
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r2 =
√
r2 + r2

1 − 2rr1cos(θrr1), (3.17)

θrr2 = arccos

(
r2

2 + r2 − r2
1

2rr2

)
, (3.18)

b1 =
∣∣∣∣~b+ ~r2

2

∣∣∣∣ =

√
b2 + r2

2
4 + br2cos(θbr2), (3.19)

and

b2 =
∣∣∣∣~b− ~r1

2

∣∣∣∣ =

√
b2 + r2

1
4 − br1cos(θbr1). (3.20)

Here the variable θxy denotes the angle between vectors x and y. Furthermore,
for the angles θbr1 and θbr2 holds

θbr1 = θbr + θrr1 (3.21)

and
θbr2 = θbr + θrr2 , (3.22)

as is illustrated in Fig. 3.8.
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Figure 3.8: Schematic view of the mother and daughter dipoles along with all
the associated variables defining the evolution.

The scattering amplitude in this framework has two more dimensions
with respect to the previously considered case without the impact-parameter
dependence: the size of the vector ~b and its orientation relative to the
transverse size vector, θbr. Let us simplify the situation by assuming that
the dependence on this angle is weak and that we are solely interested in
the influence of the distance from the center of the proton on the scattering
amplitude. This effectively means

N(~r, b, Y )→ N(r, b, Y ), (3.23)
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.................................... 3.6. Coulomb tails

transforming the BK equation into

∂N(r, b, Y )
∂Y

=
∫
d~r1K

run(r, r1, r2)(N(r1, b1, Y ) +N(r2, b2, Y )−

−N(r, b, Y )−N(r1, b1, Y )N(r2, b2, Y )). (3.24)

3.6 Coulomb tails

When trying to solve the impact-parameter dependent BK equation, one has
to modify the initial condition to incorporate this behavior. A possible choice
is to combine the GBW model (Gaussian profile in the transverse dipole
size) with a Gaussian distribution for modelling the transverse profile of the
proton [77]

N(r, b, Y = 0) = 1− exp[−cr2 exp(−db2)]. (3.25)

The values for the parameters that were used for this initial condition are c
= 0.0643GeV2 and d = 1/8GeV2.

The Runge-Kutta formulas have to be adapted to the new dimensionality
of the problem. The original way of writing the method [71] was such that it
allowed for a straight forward generalization. In this approach, one can then
simply add the extra dimension to the scattering amplitude, at each step of
the evolution calculate the corresponding daughter-dipole impact parameters
b1 and b2 as illustrated in Fig. 2.6 and solve the BK equation in a similar
manner as for the previous case without the impact-parameter dependence.

The numerical computation can be quite demanding on hardware resources
due to a very large phase space that needs to be covered in each step of the
evolution. However, CPU time is not the only problem that one encounters.
When one tries to evolve the scattering amplitude to higher rapidities in this
framework, it is observed, that the initial exponentially falling dependence of
the scattering amplitude in b gets distorted quickly and that the evolution
changes this exponential fall-off into a power-law (as shown in Fig. 3.9). This
behavior was first observed in [79] using a kernel with a constant αs. As we
can see from Fig. 3.9, the inclusion of the running coupling does not change
the qualitative picture.

The resulting size of the proton therefore grows rapidly, as we evolve
the scattering amplitude towards higher rapidities superseding the Martin-
Froissart bound (a theoretical limit on the speed of the growth of a cross
section emerging from quantum mechanics [80–82]) and making the data
description impossible (see Fig. 3.10 and 3.11).

This unphysical behavior emerges from the fact, that the BK equation
was postulated in perturbative QCD, where a small value of the strong
coupling constant αs is assumed. When we reach the region of large b, the
corresponding coupling constant is too large and we reach a non-perturbative
region, where this equation loses validity [83]. In other words, when the BK
equation was derived, the effects of confinement were not taken into account,
which manifests itself by producing unphysical results.

27



3. The Balitsky-Kovchegov evolution equation........................

100 101

b [GeV−1]

10−6

10−5

10−4

10−3

10−2

10−1

100

N(
r =

 1
.0
 G

eV
−1
, b

, Y
)

Initial condition N(b, Y = 0)
N(b, Y = 0.2)
N(b, Y = 1)
N(b, Y = 3)

Figure 3.9: The dependence of the b-dependent running-coupling BK equation
with respect to the impact parameter. We can see, that the initial exponential
decrease of the scattering amplitude is changed to a power law with evolution.
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Figure 3.10: Structure function of the proton computed from the b-dependent
BK equation with the running coupling kernel compared to data from HERA [39].
For this evolution, the initial condition (3.39) was used since it describes data at
the initial condition without any additional parameters.
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Figure 3.11: The comparison of the prediction for the reduced cross section for
the charm quark with respect to x for the running coupling b-dependent BK
equation. Data are from the accelerator HERA [39].
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3.7 Origin of the non-perturbative contribution

In the previous section, we have shown how the b-dependent computation
makes the scattering amplitude grow so fast, that it makes correct data
description impossible. If we try to determine, which part of the phase-space
of the evolution is responsible for the onset of non-perturbative effects, one
has to look at a single step of the evolution at the initial condition in a region,
where b is very large (as shown in Fig. 3.12).

Here, the mother dipole is far away from the proton that is depicted
as a grey blob in the center of the figure. Since we are starting at the
initial condition, the scattering amplitude at large-b region is exponentially
suppressed. This means, that all N(r, b, Y ) terms in the Eq. (3.24) will be
essentially zero. In this figure, we see that the first daughter dipole has also
an impact-parameter vector, that puts it outside of the target and therefore
terms with N(r1, b1, Y ) will be zero as well.

r

r

r

1

2

b2

1b

b

Figure 3.12: Geometrical orientation of the mother and daughter dipoles that
contributes to the rise of Coulomb tails. The region that contributes the most
is the one where transverse sizes of the daughter dipoles r1 or r2 are large. See
text for more details.

However, the third dipole N(r2, b2, Y ) has an impact parameter small
enough, so that it could hit the target, resulting in a large value of the
scattering amplitude. We can see, that in the integration over the daughter-
dipole size r1, the term N(r2, b2, Y ) is going to be the only non-zero term
and comes with a positive sign. This term will be the one responsible for the
growth of the scattering amplitude at high values of b.

The only way, how one can obtain a small value for b1 or b2 for computations
at large distances from the center of the target is when the corresponding
daughter-dipole sizes are very large, namely

r1,2 ∼ 2b. (3.26)

Therefore, the growth of the scattering amplitude at large distances—and
thus the growth of the Coulomb tails—stems from the configurations, where
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daughter-dipole sizes are very large.

3.8 Scale-dependent cutoff as a remedy for the
Coulomb tails

If we now try to fix the unphysical growth of the scattering amplitude
and restore its ability to correctly describe data, an obvious choice is to
suppress the regions responsible for these divergences. We can achieve this
regularization by imposing a scale-dependent cutoff of the daughter-dipole
size into the kernel of the equation as

∂N(r,~b, Y )
∂Y

=
∫
d~r1K

run(r, r1, r2)Θ
( 1
m2 − r

2
1

)
Θ
( 1
m2 − r

2
2

)
(N(r1, ~b1, Y ) +N(r2, ~b2, Y )−N(r,~b, Y )−N(r1, ~b1, Y )N(r2, ~b2, Y )), (3.27)

In this section, we will follow the work of [78], where the cutoff parameter m
was set to be 0.35GeV.

Of course, since we have imposed a cutoff for large-r1,2 regions into the
kernel of the equation, we need to impose the same cutoff into the initial
condition in order to stay consistent with our scattering amplitude, which
then becomes

N(r, b, Y = 0) = 1− exp[−cr2 exp(−db2)]Θ
( 1
m2 − r

2
)
. (3.28)

This initial condition was then used for evolution with the kernel, that
incorporates confinement effects via the mass-dependent cutoff (3.27). See
Fig. 3.13 for the scattering amplitude cut in r for various values of rapidity
and Fig. 3.14 for the scattering amplitude cut in b.

After we include this regularization parameter, that tries to mimic the
effects of confinement, we can run the evolution again and compare the
resulting scattering amplitude (Fig. 3.14) with the non-regularized version
(Fig. 3.9). We can see, that the mass-dependent cutoff (sometimes termed
"gluon mass") suppresses the Coulomb tails and restores the exponential falloff
of the scattering amplitude in the impact-parameter region even after several
units of rapidity. This regularization however comes at a cost of an extra free
parameter that needs to be fitted to data. Since this parameter cuts a part of
the phase space away from the evolution, the resulting scattering amplitude
is especially sensitive to its value.

Figure 3.13 shows the behaviour of this amplitude with respect to the
transverse dipole size r. Notice, that the cutoff in this plane occurs at twice
the distance as the chosen gluon mass dictates. This occurs because, in fact,
~r = ~r1 + ~r2 and therefore the evolution does not suppress r until the value of
2/m is reached.

If we now use the formalism described above and produce the related
scattering amplitude, we will not get a good data description (see Fig. 3.15).

31



3. The Balitsky-Kovchegov evolution equation........................

10−2 10−1 100 101

r [GeV−1]

0.0

0.2

0.4

0.6

0.8

1.0

N(
r, 
b 
= 

0.
1 
Ge

V−
1 , 
Y)

Y = 0
Y = 3
Y = 10

Figure 3.13: Scattering amplitude as a function of r for b = 0.1GeV−1 for
various values of rapidity for the impact-parameter dependent BK equation with
the massive cutoff as Eq.( 3.27).

As was reported in the work of [78], the used cutoff that regulates the
large-b behavior of the scattering amplitude is too strong and cuts off some
of the important parts of the large-r1,2 phase space that are necessary for
a correct description of the inclusive F2 data. In order to make up for this
loss, one has to come up with an additional phenomenological term dubbed
F soft2 [84]. This correction is computed as

F soft2 = Q2

2παem
σ0

∫
1
m

rdr

∫ 1

0
dz(|ΨL|2 + |ΨT |2), (3.29)

where σ0 = 75.98GeV−2. This addition effectively means, that we are
assuming the scattering amplitude to be unity for dipole sizes r > 1/m. Since
this inclusion of large dipoles lacks the b-dependence, it has to be normalized
with a constant σ0 just as was done for the impact-parameter independent
BK equation and this parameter needs to be again fitted to data. The total
structure function is then computed as

F2 = FBK2 + F soft2 , (3.30)

where by FBK2 we mean the structure function obtained by the BK computa-
tion (Eq. (2.27)).

If we now compute the scattering amplitude with these corrections (see
Fig. 3.16 and 3.17), we can see that we obtain a description of the data as
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Figure 3.14: The dependence of the b-dependent BK equation with respect to
the impact parameter. The confinement cut was considered in this computation,
which fixed the large-b behavior of the scattering amplitude (see Eq. (3.27)).

measured at HERA. This description however comes at a significant cost,
since we needed to introduce a number of additional free parameters and
phenomenological terms (m, F soft2 , σ0) into the computation. If we try to
quantify how much the soft correction contributes to the final structure
function (see Fig. 3.18), we can see that, especially in the high-x region, its
contribution plays a significant role in the final value of the cross section.
The dependence of the scattering amplitude on so many free parameters, that
have a strong impact on its final shape and the associated observables, spoils
its predictive powers. The fact that we needed them in order to describe the
inclusive DIS cross section suggests that when we try to apply this equation
for other processes (as well as for predicting processes that have not yet been
measured), it will give incorrect results. That is why in the next section, we
will investigate other possibilities for the kernel regularization without the
need for additional ad hoc corrections.
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Figure 3.15: Comparison of the prediction for the structure function F2 with
data from HERA [39] at various Q2 for the b-dependent BK evolution equation
after the mass-dependent cutoff has been imposed to the kernel as in [78].
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Figure 3.16: Comparison of the prediction for the structure function F2 with
data from HERA [39] at various Q2 for the b-dependent BK evolution equation
with the F soft2 correction.
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Figure 3.17: Comparison of the prediction for the reduced cross section for the
charm quark with respect to x for the regularized b-dependent BK equation.
Data are from HERA [39].
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structure function at various Q2 for the b-dependent BK evolution equation.
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3.9 Collinear resummation and its implications to
the b-BK equation

In the previous section, we have shown how the regularization of the kernel of
the b-dependent BK equation can lead to the restoration of the exponential
fall off of the scattering amplitude. We have shown, that this approach
also introduces additional undesirable free parameters and phenomenological
corrections into the computation. In this section, we will explore the properties
of the collinearly improved kernel [31,32,85–88], that resumms some of the
divergences that the running coupling kernel omitted, and we will show how
it can be used for the suppression of the Coulomb tails instead of the massive
kernel regularization.

Inclusion of the running coupling into the LO BK equation managed to
add some of the large perturbative corrections crucial for a more complete
description of the dipole-related processes [61]. However, there are other
corrections that should be included such as large single or double transverse
logarithms. These logarithms arise from collinear radiative corrections in
higher orders of αs and they were first included into the equation in [31].
These corrections come at play in the case, when the size of the dipole is
small and the scattering weak. In this approach, the collinearly improved BK
equation reads [32]

∂N(r, b, Y )
∂Y

= αs
2π

∫
d~r1

r2

r2
1r

2
2

[
r2

min(r2
1, r

2
2)

]±αsA1

KDLA(
√
|Lr1rLr2r|)

(N(r1, b1, Y ) +N(r2, b2, Y )−N(r, b, Y )−N(r1, b1, Y )N(r2, b2, Y )), (3.31)

where
KDLA(ρ) = J1(2

√
αsρ2)√
αsρ

, (3.32)

J1 is the Bessel function, the anomalous dimension A1 = 11/12 and

Lrir = ln
(
r2
i

r2

)
. (3.33)

The sign factor in the exponent ±αsA1 takes the value of the plus sign when

r2 < min(r2
1.r

2
2) (3.34)

and a negative sign otherwise. For the running coupling

αs = αs
Nc

π
, (3.35)

the smallest dipole prescription was used according to

αs = αs(rmin), (3.36)

where
rmin = min(r, r1, r2). (3.37)

36



.............. 3.9. Collinear resummation and its implications to the b-BK equation

This version of the BK equation allows us to resum large collinear logarithms
as well as incorporates the running coupling in its kernel.

In this approach, it is usual to include the contribution of the heavier
quarks to the structure function F2. The mass of the charm quark was set,
as in [32], to mc = 1.3GeV/c2 and the mass of the bottom quark as mb =
4.5GeV/c2. The masses of the light quarks u, d and s were set to 100MeV/c2

(it has been shown that the solutions are insensitive to the chosen value of
the light-quark mass [32]).

The contribution of the massive quarks to the dipole cross section makes
the computation more complicated due to the fact, that the mass affects the
value of x, for which the structure function is computed according to the
photoproduction kinematic shift [26]

x̃ = x

(
1 +

4m2
f

Q2

)
. (3.38)

In this computation, we have incorporated the contribution from the charm
quark and neglected the one from the bottom quark. The mass of the bottom
quark was therefore used just for the correct computation of the running
coupling.

Since before we were assuming the quark masses of the u, d and s quarks
to be identical, the inclusion of this correction shifts the value of x, for which
we compute the F2 for heavier quarks. Therefore, it is necessary to compute
both the wave function and structure function for these quarks separately
and then interpolate and add the two structure functions together.

The collinear resummation embedded in the kernel of the equation (3.31)
imposes time-ordering in the lifetime of the subsequent color dipoles. This
time-ordering suppresses the emission of large-sized daughter dipoles since
those would then live longer than the original mother dipole. This large
daughter-dipole suppression is crucial not only for the collinear resummation
itself, but as we have shown in the previous section, also should suppress the
onset of non-perturbative effects to the scattering amplitude.

The magnitude of this suppression is studied in Fig. 3.19. Here we can see
that for large values of daughter-dipole size, value of the collinearly improved
kernel drops by a factor of ∼ 104 with respect to that of the running coupling
kernel. This then in turn mimics the behavior of the previously postulated
mass-dependent cutoffs (3.27) without the need to fix the suppression at a
predefined scale, since that is given in a natural way by the life-time ordering
of the collinear resummation.
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Figure 3.19: Absolute value of the ratio of the collinearly improved kernel Kci
(Eq. (3.31)) and running couling kernel Krc (Eq. (3.8)) at a fixed dipole size
r = 1 GeV−1 and orientation with respect to the daughter dipole θrr1 = π/2 as
a function of the daughter dipole size (Fig. taken from [33]).

3.10 Proposing a new initial condition for the
collinearly improved b-BK equation

The collinearly improved kernel has been shown to suppress the emission of
large-daughter dipoles and to mimic the mass-dependent cutoff in the kernel
of the BK equation (3.19). It is however also necessary to adjust the initial
condition of the equation to properly take into account the geometry of the
b-dependent computation.

In order to include the finite-size of the target proton, we have proposed
a new family of initial conditions [34] that include the contribution of the
quarks constituting the bare dipole at the initial condition separately, based
on their distance from the center of the target bqi as shown in Fig. 3.20. The
initial condition combines the Gaussian shape of the proton profile with the
GBW dependence for the behavior of the scattering amplitude with respect
to dipole size as

N(r, b, Y = 0) = 1− exp
(
−1

2
Q2
s

4 r2T (bq1 , bq2)
)
, (3.39)

where bqi are the impact parameters of the quark and anti-quark forming the
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dipole and

T (bq1 , bq2) =
[
exp

(
−
b2q1

2BG

)
+ exp

(
−
b2q2

2BG

)]
. (3.40)

This equation introduces two free parameters, where one is the saturation
scale Q2

s and the other BG defines the size of the proton. In order to establish
a value for these two free parameters, we have used the inclusive structure
function at x = 0.008 for the determination of the saturation scale as Q2

s =
0.496 GeV2 and then exclusive J/ψ vector meson production at a fixed value
of Y to fit the value of the proton-profile parameter as BG = 3.2258 GeV−2.

r

b
2 1

b
q q

Figure 3.20: Schematic picture of the variables that enter the initial condition
presented in Eq. (3.39).

Such initial condition then reflects the fact, that a dipole too large will not
hit the proton (even for b = 0, for sufficiently large r, we will get large bq1,2

and therefore low value of N). There is no need to include a mass-dependent
regularization in the initial condition as in (3.28), since this form is naturally
suppressed as shown in Fig. 3.21.
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Figure 3.21: Modified initial condition for the b-dependent BK equation (3.39).
This form of the initial condition is naturally suppressed at high values of r
without a mass-dependent regularization. Figure adapted from [33].

3.11 Solutions of the collinearly improved b-BK
equation

Combining the newly proposed initial condition (3.39) with the collinearly
improved BK equation (3.31), we proceeded to solve the BK equation (for
details see [33]). As we can see from Fig. 3.22, which shows the b-dependent
evolution for the collinearly improved kernel, the collinear resummation
suppresses the onset of Coulomb tails when compared to the running coupling
evolution shown in Fig. 3.9. The fact, that the large-r1,2 part of the phase
space is suppressed in the collinearly improved case retards the onset of
Coulomb tails but does not fully suppress them. If we now ask ourselves
whether the suppression is sufficient enough to restore the description of data
for the b-dependent case, we can compute the inclusive structure function
and reduced cross section (see Fig. 3.23 and 3.24). These observables were
computed without any other phenomenological constant or modification to
the equation other than a modified initial condition and running coupling.

The modified structure function is sensitive to the overall integral of the
scattering amplitude weighted with the photon wave-function (2.26) in the
r-region. If we want to study in detail the computed impact-parameter profile
of the target and compare it to data, we can focus on vector meson production
with respect to the transferred four-momentum t (see Fig. 3.25). This variable
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Figure 3.22: Dependence of the collinearly-improved scattering amplitude with
respect to the impact parameter at different rapidities for a dipole of size r = 1
GeV−1. Figure adapted from [33].

is Fourier-related to the impact parameter and therefore a correct description
of these observables in t points to a correct slope and shape of the scattering
amplitude in b.

The fact that in this approach, we get a good description of the structure
function as well as of the vector meson production is a strong signal pointing
to the fact, that we can rely on the predictive powers of this scattering
amplitude and use it for computation of various other processes of interest.
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Figure 3.23: Comparison of the structure function data from HERA [39] with
the solutions to the collinearly improved b-dependent BK equation. Figure
adapted from [33].
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Figure 3.24: The comparison of the prediction for the reduced cross section for
the charm quark with respect to x for the collinearly improved b-dependent BK
equation. Data are from HERA [39]. Figure adapted from [33].
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Figure 3.25: Comparison of the computation for the |t| dependence of the cross
section with data from HERA for the exclusive photoproduction of J/ψ vector
mesons off protons. The data is from the H1 Collaboration at HERA at 〈W 〉 =
55GeV [89] and 〈W 〉 = 100GeV [90]. Figure adapted from [34].
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3.12 Nuclear collinearly improved b-BK equation

In the previous sections, we have shown how the formalism of collinearly
improved BK equation can be shown to restore the predictive powers of the
b-dependent version of this equation. Now we will generalize this formalism
to compute predictions not only for protons as targets, but also for nuclei.
These results can then be used for computing effects of nuclear shadowing [91],
structure functions, and other observables that will be extensively studied at
future facilities, such as [92,93].

In order to make a transition towards nuclear targets, we need to adjust
the initial condition. Each considered nucleus will have a different profile
in the impact-parameter space, which is modelled by the corresponding
Woods-Saxon distribution. The form of this distribution is

ρA(x, y, z) = ρ0
1

exp [(r − R)/a] + 1 , (3.41)

(where r ≡
√
x2 + y2 + z2) and x, y and z are Cartesian spatial coordinates.

Since we are interested in the nuclear density in the impact parameter space,
we need to integrate over the longitudinal spatial coordinate as

TA(b) =
+∞∫
−∞

dzρA(x, y, z). (3.42)

Table 3.2 shows the parameters for the Woods-Saxon distribution for various
nuclei, which is then normalized as

∫
d2~b TA(b) = A. However, nuclear density

is not the desired variable for the exponent of the initial condition since, just
as in the proton case, we want the initial condition to saturate at ∼ 1 for
the cases when the dipole hits the target and then fall off proportionally to
the density of the target for more peripheral interactions of the dipole. That
is why we need to normalize this function so that it would reach unity for
central values of b with a factor k as

TnormA (bq1 , bq2) = k [TA(bq1) + TA(bq2)] , (3.43)

where the k is defined simply so that kTA(0) = 1. Then we can rewrite the
previously proposed collinearly improved initial condition (3.39) as

NA(r, b, Y = 0) = 1− exp
(
−1

2
Q2
s0(A)
4 r2TnormA (bq1 , bq2)

)
, (3.44)

where the values of the saturation scale will depend on the atomic number of
the considered nucleus and will need to be fit to data again. In order to fit
the values of the saturation scale, we have used the EPPS16 nuclear PDF
fit [94] to compute the structure function of the considered nucleus at the
initial value of x = 0.008 and then chose the saturation scale optimizing for
the best possible description of the EPPS16 data there. The values obtained
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Figure 3.26: Dependence of the Q2
s0(A) parameter as a function of A1/3 (solid

bullets) compared with a linear function (blue line). Figure adapted from [35].

Nucleus A R (fm) a (fm) ρ0 (fm−3) Q2
s0(A) (GeV2)

Al 27 2.84 0.569 0.2015 0.315
Ca 40 3.51 0.563 0.17611 0.341
Fe 56 3.980 0.569 0.17655 0.390
Cu 64 4.2 0.569 0.1746 0.409
W 184 6.510 0.535 0.1493 0.553
Pb 208 6.624 0.549 0.16 0.609

Table 3.2: Values of the parameters of the Wood-Saxon distribution, see
Eq. (3.41), used in the computations reported in this text, and the value of
the Q2

s0(A) parameter obtained as explained in the text. The Wood-Saxon
parameters are taken from [95], Table taken from [35].

by the fit are shown in Tab. 3.2 as well as in Fig. 3.26. The technical details
of the fitting procedure are discussed in more detail in [35].

An alternative prescription for the scattering amplitude for the nuclear
case can be obtained in the Glauber-Gribov approach with the use of the
evolved scattering amplitude of the proton [96] as

NA(r, b, Y ) =
[
1− exp

(
− 1

2TA(b)σqq̄(Y, r)
)]
, (3.45)

with
σqq̄(Y, r) =

∫
d~b2Np(r, b, Y ), (3.46)

where Np(r, b, Y ) is in our case the solution of the collinearly-improved BK
equation for the proton (as discussed in previous sections). We will denote
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Figure 3.27: Comparison of the dipole scattering amplitudes computed for
b-BK-A (solid line) with the b-BK-GG approach (dashed line). The comparisons
are done at Y = 0 and Y = 5 for lead as a function of the impact parameter for
a dipole size r = 1GeV−1. Figure adapted from [35].

solutions obtained by this approach as b-BK-GG and the ones with evolved
initial condition (3.44) as b-BK-A. The two resulting scattering amplitudes
for the case of lead are shown in Figs. 3.27 and 3.28.

For both approaches, we have computed the evolved scattering amplitudes,
structure functions and from them the nuclear modification factor as

RpA ≡
FA2 (x,Q2)
A F p2 (x,Q2) , (3.47)

where F p2 (x,Q2) is the structure function of the proton computed as discussed
in the previous sections within the impact-parameter dependent framework
(see Fig. 3.29 for its dependence on atomic number A). The results were then
confronted with the data measured at Fermilab by the E665 collaboration [97]
and with the b-BK-GG approach (Fig. 3.30). After verifying that we obtain a
good description of the data, we have produced predictions for the observables
that will be measured at future facilities [35].

Furthermore, the influence of the non-linear term in the BK equation on
the nuclear modification factor was also studied in order to estimate the
amount of saturation effects present in these measurable observables [98].
This was done by carrying out the computation in the same manner as was
discussed above but with the non-linear term in the Eq. (3.31) set to zero.
The comparison of the two nuclear modification factors along with measured
data [97] can be seen in Fig. 3.31.

It is expected that the BFKL-like scattering amplitude will grow faster
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Figure 3.28: Comparison of the dipole scattering amplitudes computed for
b-BK-A (solid line) with the b-BK-GG approach (dashed line). The comparisons
are done at Y = 0 and Y = 5 for lead as a function of the dipole size for an
impact parameter b = 0.1GeV−1. Figure adapted from [35].

than the one that includes non-linear terms responsible for saturation effects.
However, from this comparison we can see that the BFKL-like version of
the BK equation produces nuclei that grow even faster than the sum of
individual non-saturated protons. That is a prediction that could impact
the measurement of such observables in the future planned facilities such
as [92, 93] and help us with determining the validity of saturation-driven
models in low-x physics.

Another good variable for testing the validity of the two approaches (b-BK-
GG and b-BK-A) is the vector meson production, as described in Eq. (2.33)
and below. The vector meson production was evaluated for coherent J/ψ
production at the LHC for both cases [99] and Fig. 3.32 shows that the
position of the diffractive minima shifts, which has been reported as a signal
of saturation effects [100, 101]. On one hand, the b-BK-GG model uses a
simple addition of the individual protons and thus the b-BK-A approach
(which runs the BK evolution for entire nuclei) is expected to yield more
saturation and show a displacement of these minima. On the other hand,
the fact that the displacement is larger than in models that incorporate no
saturation casts a warning on using solely this observable as a clear indicator
of the presence of saturation effects.

The fact that the nuclear scattering amplitude computed from the BK
equation with nuclear initial condition gets saturated sooner than the one
computed with the use of the proton scattering amplitude and Glauber model
results into a suppression of the differential coherent photoproduction of
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Figure 3.29: Nuclear modification factor at two values of the photon virtuality
Q2 = 2.42 GeV2 as a function of A at different fixed values of x. Figure adapted
from [35].
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Figure 3.30: Nuclear modification factor at two values of the photon virtuality
Q2 = 2.42 GeV2 as a function of x for Ca and Pb. The predictions are compared
with data from [97]. Figure adapted from [35].

vector mesons.
Currently there is no dedicated photon-nucleus collider, but ultra-peripheral
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Figure 3.31: Nuclear modification factor computed for Ca and Pb with and
without saturation effects for Q2 = 2.42 GeV2. The predictions are compared
with data from [97]. Figure adapted from [98].

collisions [102–105] in a hadron collider offer a possibility to explore this
process using the strong electromagnetic field of the circulating ions.

The differential cross section in rapidity for the coherent J/ψ production
(at the LHC) reads:

dσ

dy
= nγ(y)σγPb(y) + nγ(−y)σγPb(−y), (3.48)

where the rapidity y of the J/ψ vector meson can be related to the photon-
nucleus collision energy WγPb by the relation

W 2
γPb = √sNNMJ/ψe

−y. (3.49)

Here √sNN is the center-of-mass energy of the collision, MJ/ψ is the mass of
the J/ψ meson, σγPb(y) is the cross section of the virtual photon with a lead
nucleus, and the flux of photons nγ(y) that comes from it is computed as
described in [106].

Figure 3.33 illustrates this suppression and matches it to data. It shows
that the coherent photoproduction of J/ψ in Pb-Pb collisions from the LHC
Run 1 strongly favors the b-BK-A approach when confronted with data from
ALICE and CMS. As discussed in [99], Run 2 data do not show such a strong
favor toward either of the models due to discrepancies between ALICE and
LHCb data as well as due to large errorbars on this data. Future experiments
should provide us with a clear answer on the validity of the two models and
their applicability for phenomenology.
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Figure 3.32: Cross section for the coherent photoproduction of a J/ψ vector
meson off a Pb target as a function of |t| at a centre-of-mass energy of the γPb
system WγPb = 121 GeV. Figure adapted from [99].

Since a conclusive evidence for the presence of saturation effects in the data
has proven to be difficult to obtain due to the fact that we need to probe
a region of very low x (high energy of the collision), in the next section an
alternative way of getting information about the presence of such phenomena
will be discussed with the help of di-jet events in the forward region in rapidity.
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Figure 3.33: Cross section for the coherent photoproduction of a J/ψ vector
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LHC energies during the the Run 1 period. The predictions are compared with
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from [99].
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Chapter 4
Saturation

4.1 The origin of saturation and where it is
relevant

It is well known that since gluons (unlike photons) carry color charge, they can
undergo the process of gluon splitting. This means, that a gluon can—with a
certain probability—radiate other gluons. Each of these gluons has smaller
energy than their predecessor and each has a probability of further splitting
(see Fig. 4.1). This effect then increases the number of partons inside hadrons
and nuclei when we move toward regions of smaller x.

E

E

E

E
1

1

−

Figure 4.1: A schematic diagram of gluon splitting.

The number of gluons keeps growing until the opposite process (gluon
recombination) becomes important. This is a process of two gluons merging
into one Fig. 4.2. The resulting gluon has bigger energy, than the two original
gluons due to energy conservation and therefore this process reduces the
number of gluons with smaller momenta. Gluon recombination becomes more
and more probable as there are more gluons in the nucleon and therefore
plays a crucial role in the regions of small x. The dynamical balance between
gluon splitting and recombination is called saturation.

Models including saturation predict correctly some specific effects, that
have been observed in the data. Some of the most convincing results have been
obtained at RHIC [107,108] in the forward di-hadron production; these results
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Figure 4.2: A schematic diagram of gluon recombination.

have been adequately described with the use of the Color Glass Condensate
(CGC) framework [109–111].

It is very important to understand these observations and to look for other
processes, that would verify (or disprove) the existence of saturation effects.
This can be challenging, because the suppression in the cross section in the
region of low x can be alternatively described by other approaches rather than
by saturation and the measurements have not yet been completely decisive.

If we take a look at the parton distribution functions (PDFs), as they were
measured at HERA [38], we can see, that the gluon distribution grows as we
move toward the region of low x, which is the effect of gluon splitting (see
Fig. 4.3).

To search for signatures of saturation effects can be difficult due to the
fact, that these become dominant in regions of very low x, beyond the scope
of Fig. 4.3 (and possibly of today’s accelerators). Reaching lower regions of
x would require us to further increase the energy of the interaction (which
we are unable to do in an existing collider), go to more forward rapidities or
decrease the typical transverse momentum of the process, since [27]

x ∼ kt√
s
. (4.1)

Here kt is the typical transverse momentum of the considered process and s
is the Mandelstamm variable that corresponds to the energy of the collision.

4.2 Saturation scale and its properties

Saturation is typically described by a variable Qs, the saturation scale. This
variable determines the region, where saturation becomes dominant. If we
plot a transverse momentum distribution (TMD) ktΦ(x, k2

t ) with respect to kt,
saturation scale is the value of transverse momentum where this distribution
reaches its maximal value [27] (as can be seen from Fig. 4.4).

The reason, why we chose to plot this distribution multiplied by the
transverse momentum is that the TMD would grow indefinitely even if
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Figure 4.3: Parton Distribution Functions measured at HERA [112] with their
uncertainties.

we include the saturation effects into its computation. However, since it
would grow logarithmically, after multiplying it with a factor of kt, the
logarithmic increase is suppressed and the distribution decreases at low
transverse momenta.

One additional feature of saturation will be used in this chapter, that its
effects are stronger in nuclei than in nucleons. The saturation scale of a
nucleus Q2

sA is expected to be roughly proportional to that of the proton via

Q2
sA ∼ A1/3Q2

sp (4.2)

due to the Lorentz boost of the system and the overlapping of parton wave-
functions (see Fig. 4.5).

This phenomenon can be used to determine the presence of saturation
effects in measurements. If we compare the cross sections for protons and
for nuclei, we can observe a suppression in nuclei with respect to those of
in protons due to the fact, that in nuclei, the value of saturation scale is
greater and therefore saturation processes become dominant sooner. Stronger
saturation effects decrease the distribution functions of nuclei faster than
those of protons which results in lower cross sections.
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Figure 4.4: Weiszacker-Williams gluon distribution (here as Φ(x, k2
t )) weighted

with momentum kt with depicted saturation scale as a gray vertical line.

4.3 Dijet production and saturation

The detection of saturation effects in data has proven to be difficult due to
the inaccessibility of the region of very low x for processes with a perturbative
energy scale. In order to use the previously discussed BK equation and to use
its predictions for the detection of saturation, one has to focus on processes
that are energetically and kinematically reachable within current experiments.
One of such processes, that is both reachable by current measurements and
that shows a signature of saturation effects, is the one shown in Fig. 4.6–the
production of back-to-back jets in the forward region of rapidity.

We need to focus on back-to-back events due to the fact, that in our
collision, we would like to access the region of low-x values as well as be able
to detect the outgoing particles with enough precision. Since

x ∼ kt√
s
, (4.3)

the way to reach low values of x is to either increase the energy of the
collision or decrease the typical transverse momentum of the considered
process. Because we are working with experiments at the frontier of their
energy reach, we can increase our reach in x solely by decreasing the typical
transverse momentum of the process.

In these dilute-dense collisions, the projectile particle is described by
the usual collinear parton distribution functions, that have no transverse
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Boost

Figure 4.5: Lorentz contraction of the proton enhances the color density and
shifts saturation scale to higher values.

momentum dependence. The only transverse momentum, that enters the
process is the one carried by the interacting gluon in the target particle, that
is described by the TMDs (See Fig.4.6). The outgoing jet pair then carries
the total transverse momentum, that this gluon was carrying prior to the
collision.

When these two jets are back-to-back (and of the same magnitude) in the
transverse momentum plane, their transverse momenta cancel out and the
total transverse momentum of the process is small due to the fact that

kt = | ~p1t + ~p2t|, (4.4)

where ~p1t and ~p2t are the momenta of the two outgoing jets.
We want to reach low values of kt of the process with high pt of the jets,

since jets with low pt are difficult to detect and it is not simple to obtain their
corresponding matrix elements. When we have dijet events as in Fig. 4.6,
with the jets being back-to-back in the transverse momentum plane, we can
fulfill this constraint [27].

Furthermore, we want to reach a region, where x1 is large (the projectile
particle) and x2 is small (the target particle). x2 << 1 is necessary to detect
saturation effects and large x1 is required because in this region of x, we can
use collinear parton distribution functions that are known with great precision
from previous experiments to describe the projectile particle. Collisions with
such imbalance in x1 and x2 are then called dilute-dense collisions. Since [27]

x1 = 1√
s

(
p1t e

y1 + p2t e
y2
)
,

x2 = 1√
s

(
p1t e

−y1 + p2t e
−y2
)
, (4.5)

we can achieve both conditions by imposing y1 and y2 to be large. That is
why, to detect saturation effects, we shall focus on back-to-back dijet events
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Figure 4.6: A schematic picture of the dilute-dense proton-nucleus collision with
dijet production.

in the forward region of rapidity.

4.4 Cross section of dijet events in the factorized
scheme

The cross section for the process discussed in Sec. 4.3 can be expressed in the
factorized approach as [27]

dσpA→dijets+X

d2Ptd2ktdy1dy2
= α2

s

(x1x2s)2 (4.6)
∑
a,c,d

x1fa/p(x1)
∑
i

1
1 + δcd

K
(i)
ag∗→cd(Pt, kt)Φ

(i)
ag (x2, kt).

Here x1 and x2 correspond to the projectile and target particle respectively,
δcd is a variable, that triggers a combinatorical factor of 1/2 when the
outgoing particles are indistinguishable, s corresponds to the CMS energy of
the collision and αs is the coupling of the interaction. The variable x1fa/p(x1)
is the collinear structure function that describes the projectile particle and
is obtained from data. K(i)

ag∗→cd(Pt, kt) are the 2 to 2 matrix elements with
non-zero kt computed in [27], that are shown in Tab. 4.1. y1 and y2 are the
rapidities of the two jets and kt is the transverse momentum of the jet pair.
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i 1 2

K
(i)
gg∗→gg 2 (s4+t4+u4)(uû+tt̂)

tt̂uûsŝ
− (s4+t4+u4)(uû+tt̂−sŝ)

tt̂uûsŝ

K
(i)
gg∗→qq

1
2Nc

(t2+u2)(uû+tt̂)
t̂ûsŝ

1
2N3

c

(t2+u2)(uû+tt̂−sŝ)
t̂ûsŝ

K
(i)
qg∗→qg −u(s2+u2)(uû+tt̂)

2tt̂ŝ − s(s2+u2)(uû+tt̂)
2tt̂ŝ

Table 4.1: The values of matrix elemets for the forward dijet events.

Here the Mandelstamm variables are computed as

ŝ = P 2
t

z(1− z) , s = P 2
t

z(1− z) + k2
t ,

t̂ = −p
2
t2

1− z , t = −zs,

û = −p
2
t1
z

, u = −(1− z)s,

where
~Pt = p+

2 ~p1 − p+
1 ~p2

p+
1 + p+

2
. (4.7)

The transverse momentum kt can be expressed as

kt =
√
p2
t1 + p2

t2 + 2pt1pt2cos(∆φ), (4.8)

where ∆φ is the angle between the two jets in the transverse momentum
plane as shown in Fig. 4.7.

Furthermore, z can be expressed as

z = pt1e
y1

pt1ey1 + pt2ey2
, (4.9)

and p+
i as

p+
i = ptie

yi/
√

2. (4.10)

The distributions Φ(i)
ag (x2, kt) [27] are the TMDs, that can be computed

from the BK equation and will be discussed in more detail in Sec 4.6.
With all these ingredients, we can compute the cross section for the pro-

duction of dijet events in the forward region in rapidity by integrating over
the correct part of phase space.
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Figure 4.7: Schematic picture of the two outgoing jets in the transverse momen-
tum plane.

4.5 Nuclear modification factor and saturation

The fact that these events are sensitive to saturation effects is however by itself
not enough to observe them. In order to detect the presence of saturation
effects, we will furthermore exploit the fact, that they are stronger in nuclei
than in nucleons [27]. If we take a look at the nuclear modification factor

RpPb =
dσp+Pb

dO

Adσp+p

dO

, (4.11)

where O denotes an arbitrary observable sensitive to saturation, we should
observe its suppression when the saturation effects become dominant because
there will be fewer partons per nucleon available for the interaction in lead
than there will be in a proton.

In order to predict the behavior of the nuclear modification factor, one
has to compute the cross section both for protons and for nuclei. The sole
difference in these two computations lies in the TMDs, since these distributions
are used to describe the target.

They are obtained from the BK equation and to distinguish between the
computation of lead and protons a different saturation scale in the initial
condition was chosen. How to choose the correct value for saturation scale
of protons and nuclei, as well as the computation of those TMDs will be
discussed more in Sec. 4.6.

If we then plot the nuclear modification factor with respect to the angle
∆φ, that denotes the angle between the two jets in the transverse momentum
plane, we should see a decrease as we approach the region, where ∆φ ∼ π
and the two momenta of jets cancel each other out.

This way, we can use the nuclear modification factor to depict the onset of
saturation effects in nuclei and to determine their presence in data.
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4.6 Transverse momentum distributions in the
dipole picture

Now, since we have addressed some of the main features of the BK equation
and of the scattering amplitude, we can use these to compute the TMDs, that
would be related to the events with a dijet pair at forward rapidity (shown in
Fig. 4.6) in order to determine the presence of saturation effects in nuclei as
was described in the previous sections.

The following text and numerical solutions will be based on the non-impact-
parameter dependent BK equation with the running coupling kernel. We
have used numerical solutions of this equation, Fourier-transformed them into
momentum space and then convoluted them with themselves to obtain the
TMDs relevant for the dijet processes. A similar approach was considered
in [27], where analytical solution of the GBW model was used instead of the
BK evolution.

Then, the derived hard-process matrix elements have been implemented
(Tab. 4.1) and combined with a macro, that uses the data measured at HERA
for the description of the projectile particle. In order to be able to predict
the onset of saturation effects, we need to carry out this computation for
protons and for lead separately to obtain the two cross sections and from
them the nuclear modification factor. This modification factor shows the
effects of saturation on the dijet events and can be measured experimentally
at the LHC.

To start with this computation, first we have to calculate the Fourier
transform of the impact-parameter independent scattering amplitude N(x2, ~r)
as

F (x2, kt) =
∫

d~r

(2π)2 e
−ikt·~r[1−N(x2, ~r)]. (4.12)

Then, we need to calculate two universal (process independent) unintegrated
gluon distributions within the dipole model [27]–the dipole gluon distribution
and the Weiszacker-Williams gluon distribution (for more information about
the universality of these two distributions see [113]). Fig. 4.8 shows the
two distributions and their dependence on kt at Y = 0. These two gluon
distributions are given by the following relations

x2G
(1)(x2, kt) = NcS⊥

4αsπ4

∫
d2b

∫
d~r

~r2 e−ikt·~r
{

1− [1−N(x2, ~r)]2
}

(4.13)

and
x2G

(2)(x2, kt) = Nc k
2
t S⊥

2π2αs
F (x2, kt), (4.14)

where S⊥ is a constant that describes the transverse size of the proton and is
fitted to data. Since in our approach, we are interested in a ratio of two cross
sections, this constant cancels out. Then we need to convolute the gluon
distributions to obtain the non-universal, process dependent TMDs, that
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Figure 4.8: The WW (blue) and dipole (gray) gluon distributions computed
with the use of the BK equation.

come in the computation of the actual dijet cross section [27]. The resulting
TMDs are shown in Fig. 4.9.

F (1)
qg (x2, kt) = Nc k

2
t S⊥

2π2αs
F (x2, kt) , (4.15)

F (2)
qg (x2, kt) =

∫
d2qt x2G

(1)(x2, qt)F (x2, kt − qt) , (4.16)

F (1)
gg (x2, kt) =

∫
d2qt x2G

(2)(x2, qt)F (x2, kt − qt) , (4.17)

F (2)
gg (x2, kt) = −

∫
d2qt

(kt − qt) · qt
q2
t

x2G
(2)(x2, qt)F (x2, kt − qt) , (4.18)

F (6)
gg (x2, kt) = (4.19)∫

d2qtd
2q′t x2G

(1)(x2, qt)F (x2, q
′
t)F (x2, kt − qt − q′t) .

The last step then is to redefine the TMDs in the limit of high number of
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Figure 4.9: The non-universal TMDs that contribute to the dijet production in
the forward region in rapidity.

colors, so that they correspond to the considered matrix elements as [27]

Φ(1)
qg→qg = F (1)

qg , (4.20)

Φ(1)
gg→q̄q = F (1)

gg , (4.21)

Φ(1)
gg→gg = 1

2(F (1)
gg + F (6)

gg ) , (4.22)

Φ(2)
qg→qg = F (2)

qg , (4.23)

Φ(2)
gg→qq̄ = −N2

cF (2)
gg , (4.24)

Φ(2)
gg→gg = F (2)

gg + F (6)
gg . (4.25)

Since the scattering amplitude that is the starting ingredient in this com-
putation does not have an analytic solution, we have to compute its value on
a predetermined grid via numerical methods [47, 64, 68, 71]. Then we have
to use similar methods for the computation of the WW and dipole gluon
distributions and finally for the convolution to obtain the TMDs. These
TMDs are the ones that contain the information about the saturation effects,
since the parton distribution, that was used to describe the projectile particle
is probed at much higher values of x, where these effects are negligible.

The TMDs shown in Fig. 4.9 represent the non-universal distributions, that
enter the calculation of the cross section for dijet events in the forward region
in rapidity, that we have mentioned in previous sections.

These distributions enable us to calculate the cross section for protons. To
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4. Saturation ......................................
compute the TMDs for lead, we need to compute the scattering amplitude
for the interaction of dipoles and lead. In order to do this, one has to change
the value of the saturation scale Q2

s0 in the initial conditions of BK equation
(in the impact parameter independent framework).

The value of the saturation scale for protons was obtained from a fit to
single-hadron production as Q2

s0p = 0.2GeV2 [114]. For nuclei, this value was
obtained from a fit to minimum-bias d+Au data at RHIC. The fit resulted in
the value of 0.4GeV2 and to obtain the saturation scale for central collisions
for nuclei, the Woods-Saxon distribution was assumed, which predicted a
factor of 1.5 with respect to the minimum-bias events. The saturation scale
for lead then was determined to be Q2

s0Pb = 0.6GeV2 [114].
With this setup, we can compute the cross section for dijet events for both

p-p collisions as well as for p-Pb collisions, which enables us to compute the
nuclear modification factor (NMF) for this interaction.

4.7 Dijet events in the forward region in rapidity

With the use of the TMDs calculated in Sec. 4.6, we can calculate the cross
section for dijet events, that would show a signature of saturation effects which
we would like to study. We have used the formula (4.6) for the computation
of the factorized cross section for the process shown in Fig. 4.6.

The kinematic region, that was considered for our computation was y1, y2 ∈
[3.4, 4.5] (since we have imposed the condition of forward rapidity for both
jets because of our constraints on x1 and x2) and pt1, pt2 > 20GeV. This
kinematic region could be experimentally covered by the CMS or ATLAS
experiments at the LHC.

Since we are interested in the ratio of the two cross sections, the running
coupling cancels out in Eq. (4.6). As was mentioned before, x1 and x2
correspond to the projectile and target particle respectively and s is the
energy of the collision.
x1fa/p(x1) is the parton distribution function obtained from data measured

at the HERA experiment. We use the MSTW data set at leading order from
the year 2008 (MSTW2008lo90cl) to describe the projectile particle.
K

(i)
ag∗→cd(Pt, kt) are the 2 to 2 matrix elements with non-zero kt computed

in [27] and Φ(i)
ag (x2, kt) [27] are the TMDs computed in the previous section.

The nuclear modification factor was then computed as a ratio of the cross
section for proton and for lead. The difference between the two is that
the impact-parameter-independent initial condition (3.10), that goes to the
computation of the BK equation was used with the value of saturation scale
of 0.6GeV2 for lead and 0.2GeV2 for proton, as was discussed in the previous
section. These two initial conditions were then evolved, Fourier-transformed,
convoluted and used to obtain the two cross sections.

In order to normalize the two processes to take multiplicity into an account,
the asymptotic equivalence of the two cross sections was assumed in the
region of large kt. If we take the limit of the NMF for the MV model, we find
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....................... 4.7. Dijet events in the forward region in rapidity

out that this normalization reduces to a factor of Q2
s0p/Q

2
s0n, see Appendix

B in [27], which for our case is 1/3. After including this last piece, we can
calculate the NMF prediction from the BK equation and the dipole model.

The NMF never completely reaches unity even at large kt in our prediction.
This is given by the fact, that evolution to higher values of rapidity spoils
the originally assumed normalization of 1/3, that was carried out at Y=0.

The resulting nuclear modification factor is shown in Fig. 4.10, and we
can see, that it is suppressed when the two jets become back-to-back in the
transverse momentum region, which is a signature of the saturation effects
since as we move towards the region of back-to-back jets, the two momenta
cancel each other out and the total transverse momentum of the jet pair is
comparable to the saturation scale of lead

kt ∼ QsPb. (4.26)

This approach produces results completely different from those of the nuclear
distribution functions approach because these do not include the kt dependence
and therefore, in this approach all regions of the angle between the two jets
in the transverse momentum plane (denoted as ∆φ) would show the NMF to
be at unity (Fig. 4.10 - grey line).
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Figure 4.10: Nuclear modification factor as a function of the angle between the
two outgoing jets in the transverse momentum plane. The gray line represents
the results, that would be seen in the nuclear PDFs approach and the suppression
at ∆Φ ∼ π is due to saturation effects in nuclei.
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Chapter 5
Summary

Quantum chromodynamics (QCD) is a fundamental theory describing the
strong interaction within the framework of a relativistic quantum field theory.
It allows us to compute particle-particle interactions in the high-energy limit,
where we can make use of the fact that strong coupling decreases at large
scales of the processes. Then we can expand the amplitudes we are computing
into a perturbative power-series and omit the higher-order terms. In order
to obtain predictions for objects more complicated than single particles, we
need to build models that simplify the situation and allow us to use the
information about single-particle interaction to build complex structures.

One of these models is the so-called dipole model which together with the
BK equation allows us to compute the gluonic structure of protons and nuclei
and compare them with various experimentally measurable processes such as
DIS, diffractive vector meson production, and dijet production at forward
rapidities.

This work presents a review of the color dipole formalism used for the
evolution equations in QCD starting with a brief review of the DIS process,
parton model and then how some observables-of-interest can be expressed in
terms of color dipole variables (e.g. the scattering amplitude). Then we have
shown how the BK equation can be used to compute these observables within
such framework in the impact parameter-independent approach. We have
shown how the impact parameter dependence introduces the non-perturbative
effects into the scattering amplitude resulting in a growth of the scattering
amplitude at the large-b region (the so-called Coulomb tails). We have linked
this growth with the emissions of large daughter dipoles and showed two
approaches to taming this growth...1. Introducing a mass-dependent cut-off into the kernel of the equation that

stops the evolution for large daughter dipoles...2. Using a collinearly improved kernel for the evolution that suppresses the
emission of large daughter dipoles due to built-in lifetime ordering of the
subsequent dipoles.

We have explored the second approach in greater detail and matched its
solutions to data in order to test the validity of the assumption that the
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5. Summary ......................................
Coulomb tails are suppressed to such extent that the description of data is
restored.

We have then used this approach to obtain predictions for nuclear targets
and to compute the nuclear shadowing effects arising from the non-linear
BK evolution. We have also explained how the BK evolution incorporates
saturation effects, and how these can be studied with the use of dijet events
in the forward region in rapidity. We have obtained predictions for these
events in the impact-parameter independent framework for both protons and
lead as targets and computed the nuclear modification factor, that shows a
significant suppression due to saturation effects when the two jets become
back-to-back and the typical transverse momentum of the process decreases
low enough so that we reach the saturation region.

The works [33] and [34] study the collinearly improved resummation for
the BK equation and how it suppresses the emissions of large daughter
dipoles (due to the life-time ordering imposed by this resummation). In these
papers we study the suppression of the Coulomb tails and how it affects
the predictive powers of this equation. We show that with this approach a
successful description of DIS data as well as of vector meson photoproduction
cross sections is achieved.

In works [35], [99], and [98], we have shown how to generalize this equation
to describe nuclear targets, proposed a new family of initial conditions and
then produced solutions, that were successfully compared to existing data as
well as used for obtaining predictions for future measurements.

Work [115] is dedicated to the dijet events in the forward region in rapidity
and how the information about the presence of saturation effects can be
accessed through this channel, where we can access low-values of x while still
being able to measure these events by current experiments.
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We solved the impact-parameter dependent Balitsky-Kovchegov equation with the recently proposed
collinearly improved kernel. We find that the solutions do not present the Coulomb tails that have affected
previous studies. We also show that once choosing an adequate initial condition it is possible to obtain a
reasonable description of HERA data on the structure function of the proton, as well as on the cross section
for the exclusive production of a J=ψ vector meson off proton targets. As a further application of the
solutions, we computed the impact-parameter dependent Weizsäcker-Williams gluon distribution.
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I. INTRODUCTION

The high-energy, or equivalently small Bjorken-x, limit
of perturbative quantum chromodynamics (pQCD) has
received significant attention in recent years. From the
experimental side, this has been driven by the precise
measurements from HERA [1], the large kinematic reach
of the LHC [2], and the proposal of new electron-ion
facilities [3,4]. In particular, the precise measurement of
the F2ðx;Q2Þ structure function of the proton at HERA and
its interpretation within pQCD [5,6] shows that the gluon
distribution grows rapidly with decreasing x for a fixed Q2,
where x is fractional momentum of the struck parton and
Q2 is the negative squared four-momentum transferred
between the lepton and the nucleon. This growth has to be
tamed at some high energy in order to respect unitarity.
In this limit, integro-differential equations are a powerful

tool to compute and predict observables related to the
dynamics of pQCD where the nonperturbative contribu-
tions are typically incorporated into an initial condition.
In the seminal work [7], it was shown that the inclusion of a
nonlinear term in these so-called evolution equations would
limit the growth of the gluon distribution, a phenomenon
known as saturation, see e.g., [8] and references therein. In
this context, the Balitsky-Kovchegov (BK) equation [9,10]
has been quite successful for phenomenological studies.
This equation was derived independently in the formalism
of the operator product expansion in [9] and within the
dipole approach in [11,12]. It can also be obtained within

the color glass condensate model as a limit of the so-called
Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner
(JIMWLK) equation [10,13–18].
The BK equation describes the evolution with rapidity,

Y, of the dipole-target scattering amplitude, Nðr⃗; b⃗; YÞ,
where r⃗ is the transverse size of the dipole, b⃗ the impact
parameter, and Y ¼ lnðx0=xÞ with x0 being the x value at
the start of the evolution. Solutions obtained under the
assumption that there is no dependence on the impact
parameter describe quite well the F2ðx;Q2Þ data [19]. This
equation has also been solved including the impact param-
eter dependence [20,21], where it was found out that the
solutions acquired a so-called Coulomb tail, meaning that
the contribution at large impact parameters grew too fast.
This behavior was curbed by introducing an extra term to
the kernel; furthermore, it was necessary to include an
extra, so-called soft, contribution in order to describe
F2ðx;Q2Þ data [22]. With this approach it was also possible
to describe the exclusive production of vector mesons in
deeply inelastic scattering [23]. These studies were based
on a BK equation with a kernel including running coupling
corrections [24,25]. Recently, a new kernel including
collinear corrections was proposed and shown to describe
correctly HERA data on F2ðx;Q2Þ in an impact-parameter
independent BK equation [26,27].
In this work we study the BK equation including the

dependence on the impact parameter using the collinearly
improved kernel. We find that the Coulomb tails are
strongly suppressed with respect to the running coupling
case. Furthermore, we show that when using an appropriate
initial condition a good description of experimental data is
directly obtained; that is, without having to modify the
kernel nor having to add extra soft contributions.
The improved treatment of the impact parameter depend-

ence provides a new tool for phenomenology. This tool is
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particularly important for the EIC facilities being currently
under design and which have as one of their main goals
a tomographic study of the structure of nucleons and
nuclei [3,4].

II. THE BALITSKY-KOVCHEGOV EQUATION

We assume a rotational symmetry of the target which
implies that the scattering amplitude depends on the
magnitude of the impact parameter, b, but not on its
orientation. Furthermore, we assume the scattering ampli-
tude to be independent of the angle between the vectors r⃗
and b⃗. In this case, the BK equation reads

∂Nðr; b; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr1; b1; YÞ

þ Nðr2; b2; YÞ − Nðr; b; YÞ
− Nðr1; b1; YÞNðr2; b2; YÞÞ; ð1Þ

where r⃗2 ¼ r⃗ − r⃗1, jr⃗j≡ r with similar definitions for r1
and r2, while b1 and b2 are the magnitudes of the impact
parameters of the respective dipoles. The collinearly
improved kernel [26–28] is given by

Kðr; r1; r2Þ ¼
ᾱs
2π

r2

r21r
2
2

�
r2

minðr21; r22Þ
��ᾱsA1 J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þffiffiffiffiffiffiffi
ᾱsρ

p :

ð2Þ
It constitutes of four factors. The factors ᾱs=2π and r2=r21r

2
2

are present already at the LO, the factor in square brackets
represents the contribution of single collinear logarithms
and factor J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þ= ffiffiffiffiffiffiffi
ᾱsρ

p
resums double collinear

logarithms to all orders. Parameter A1 ¼ 11=12 and the
sign in the third factor is positive when r2 < minðr21; r22Þ
and negative otherwise. J1 is the Bessel function, ρ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p
and Lrir ≡ lnðr2i =r2Þ. For the running coupling,

ᾱs ≡ αsNc=π with Nc the number of colors, we use the
smallest dipole prescription: αs ¼ αsðrminÞ, where
rmin ¼ minðr1; r2; rÞ. This prescription has been used in
previous studies, where it was compared to other prescrip-
tions at a phenomenological level [27]; it has also been
advocated to be the correct prescription for the BK equation
at next-to-leading order (NLO) [29].
To be consistent with the computations leading to the

BK equation the form of the running coupling is given by

αsðrÞ ¼
4π

β0;nf lnð 4C2

r2Λ2
nf
Þ ; ð3Þ

where nf denotes the number of flavors that are active at
the scale r and β0;nf is the leading order coefficient of the

QCD beta-series. The value of Λ2
nf depends on the number

of active flavors and was computed in the same manner as

in [19]. Two parameters control the infrared behavior of αs:
αfr and C2. For very large dipoles the perturbative form of
αs given by Eq. (3) is not anymore valid. Following the
procedure used in previous studies [19] (see also discussion
in Sec II. C of [30]) we freeze the value of αs to αfr ¼ 1.0
for all dipole sizes that would produce a larger value of αs
when using Eq. (3). This is a purely phenomenological
approach, which roughly describes the behavior found in
more theoretical studies of αs in the nonperturbative regime
[31,32]. Finally, the parameter C2 also contributes to
regulate the infrared behavior and takes into account the
potential effect of the approximations made when comput-
ing the Fourier transform to coordinate space [29,33].

III. SOLVING THE BK EQUATION

For the initial condition we use a combination of the
Golec-Biernat and Wusthoff (GBW) model [34] for the
dependence on the dipole size r and a Gaussian distribution
for the impact parameter dependence. A similar approach
has been considered in [35]. We use the following func-
tional form

Nðr; b; Y ¼ 0Þ ¼ 1 − exp
�
−
1

2

Q2
s

4
r2Tðbq1 ; bq2Þ

�
; ð4Þ

where bqi are the impact parameters of the quark and
antiquark forming the dipole and

Tðbq1 ; bq2Þ ¼
�
exp

�
−
b2q1
2B

�
þ exp

�
−
b2q2
2B

��
: ð5Þ

Both Q2
s and B are parameters to be adjusted. These

parameters have a clear interpretation: the scale at which
nonlinear effects become important, known as the saturation
scale, is given byQ2

s ; whileB is related to the effective radius
of the Gaussian distribution in impact parameter space that
represents the target profile by 2B ¼ hb2i. Tðbq1 ; bq2Þ
suppresses contributions from dipoles that are large with
respect to the size of the target. Such suppression of large
dipole sizes, which makes sense from the phenomenological
point of view, has also been used in previous approaches [22]
in order to describe the data.
ParameterBwas chosen to obtain a reasonable description

of the cross section for J=ψ photoproduction off protons as a
function of jtj (−t is the square of the momentum transferred
at the proton vertex) at a fixed center-of-mass energy of
the photon–proton system (W ¼ 100 GeV), while Q2

s was
simultaneously chosen to describe F2ðx;Q2Þ data at x0 ¼
0.008 and Q2 ∈ ð3.5; 27Þ GeV2. That is, the fixing of Q2

s
does not involve an evolution in Y, while that of B requires
evolving the dipole scattering amplitude to x ≈ 0.001. (This
value is obtained from x ¼ ðMJ=ψ=WÞ2 where MJ=ψ is the
mass of the J=ψ). These two conditions uniquely fix the
value of these two parameters, since the structure function
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is sensitive to an overall integral of the scattering amplitude
and vector meson production is sensitive to the b-dependence
of it. The values we use in the following areQ2

s ¼ 0.49 GeV2

and B ¼ 3.22 GeV−2. The value of C2 used in the compu-
tation of αsðrÞ was chosen to regulate the evolution speed
of the dipole scattering amplitude and set to C ¼ 9.
The BK equation is solved numerically using the Runge-

Kutta method of order four with the algorithm described in
[36,37], extended to include the b-dependence. The grids in
log10ðrÞ and log10ðbÞ are of the same size and cover the
range from 10−7 to 102 1=GeV for both r and b. A linear
interpolation in log10ðrÞ and log10ðbÞ is used to find the
value of the dipole scattering amplitude outside the points
in the grids. The step in rapidity was 0.01. The integrals are
performed with the Simpson method.
Using the procedure just described we obtained the

solutions presented in Fig. 1, which shows the impact-
parameter dependence of the dipole scattering amplitude
for a dipole of size r ¼ 1 GeV−1 at different rapidities for
two computations: using the collinearly improved or the
running-coupling kernel. In both cases we use the same
initial condition.
We show results for rapidities which are relevant for

phenomenology at current and planned facilities, but have
checked that such a behavior is still present even at Y ¼ 10,
which is beyond the reach of foreseeable accelerators.
The evaluation of αsðrÞ for the running coupling case is
done as in [19]. Figure 1 shows that the Coulomb tails are
strongly suppressed when using the collinearly improved
kernel. A similar pattern is observed for all dipole sizes.
The suppression of the amplitude at large values of b
observedwhen using the collinearly improved kernel instead

of the running coupling kernel is due to two reasons: (i) the
different treatment of the r2=r21r

2
2 factor, which in the running

coupling kernel appears accompanied by other additive
terms, and (ii) the new corrections introduced in the
collinearly improved kernel. When comparing the original
LO with the collinearly improved kernel, there are three
factors contributing to the suppression: the use of a running
coupling constant instead of a fixed αs, the contribution of
single collinear logarithms, and the resummation of double
collinear logarithms. This last term is numerically the most
important. A detailed discussion of the properties of the
solutions foundwith our approach is outside the scope of this
work and will be presented elsewhere [38].

IV. APPLICATIONS

As a first use of the solutions to the b-dependent BK
equation we compute the F2ðx;Q2Þ structure function and
compare the result with HERA data. In the dipole model
the structure function is related to the dipole scattering
amplitude by

F2ðx;Q2Þ ¼ Q2

4π2αem

X
f

Z
dr⃗db⃗dz

× jΨf
T;Lðz; r⃗Þj2

dσqq̄ðr⃗; xfÞ
db⃗

; ð6Þ

where αem is the electromagnetic coupling constant,
Ψf

T;Lðz; r⃗Þ is the convolution of the wave functions for a
photon to split into a quark-antiquark dipole of flavor f and
for the dipole to return to the photon state—see e.g., [39]
for a detailed discussion—z is the fraction of the dipole
energy carried by the quark, and the cross section is related
to the dipole scattering amplitude by

dσqq̄ðr⃗; xÞ
db⃗

¼ 2Nðr⃗; b⃗; xÞ: ð7Þ

As it is customary, we use xf ¼ xð1þ ð4m2
fÞ=Q2Þ with mf

an effective quark mass set to 100 MeV=c2 for light quarks.
The description of data shown below does not depend
strongly on the value of mf and remains the same if a value
of 10 MeV=c2 is used. Similar observations were made in
[27]. In the future, it would be interesting to match this
prescription with a more formal description of dressed
quarks as e.g., in [40]. Mass of the charm quark was fixed
to 1.3 GeV=c2; these values are the same as used in [27].
Figure 2 shows the comparison of the computation with

the measured data [5] for several different values ofQ2 as a
function of x. The average percentile difference between
data and theory is 3.7% for data with Q2 ∈ ½3.5; 35� GeV2.
We would like to emphasize that this level of agreement
was obtained without the need to include ad hoc corrections
to the kernel and without the addition of soft contributions.

FIG. 1. Dependence of the dipole scattering amplitude with
respect to the impact parameter at different rapidities for a dipole
of size r ¼ 1 GeV−1. The dashed-dotted lines represent solutions
obtained with the running-coupling kernel (Nrc), while solid lines
represent solutions with the collinearly improved kernel (Nci).
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As a further application we computed the jtj dependence
of cross section for the exclusive photoproduction of
J=ψ vector mesons off protons at fixed values of W.
The amplitude for this process is given by (see e.g., [39])

Aðx;Q2; Δ⃗ÞT;L ¼ i
Z

dr⃗
Z

1

0

dz
4π

ðΨ�ΨJ=ψÞT;L

×
Z

db⃗e−iðb⃗−ð1−zÞr⃗Þ·Δ⃗
dσqq̄

db⃗
; ð8Þ

where −t≡ Δ⃗2, T and L represent transverse and longi-
tudinal photons, respectively, andΨJ=ψ is the wave function
of the transition from the dipole into a J=ψ vector meson.
We use the boosted Gaussian wave functions [41,42] with
parameters as determined in [39].
The jtj-differential cross section is given by the square of

the amplitude divided by 16π. The contributions from the
longitudinal and transverse photons are added. As it is
customary (see discussion in Sec. III of [39]), we correct
the cross section for two effects: (i) to take into account the
contribution of the real part of the dipole scattering
amplitude that was not considered when deriving the form
of the amplitude in Eq. (8), and (ii) the fact that in a two-
gluon exchange the gluons have different momentum,
which is known as the skewedness correction [43]. The
correction has been computed using the derivative of the
amplitude as in [39]. The correction in this context has to
be understood as a phenomenological ingredient that
contributes up to a value of 30% to the total cross section.
The comparison of the computation with data from the

H1 Collaboration [44,45] is shown in Fig. 3. Note that the
data at hWi ¼ 100 GeV were used to set the value of
the parameter B, but the computation forW ¼ 50 GeV is a
prediction. The agreement is at the level of 10%.

As a final application of the dipole scattering amplitude
solutions to the b-dependent BK equation with the collin-
early improved kernel we turn to TMD (transverse momen-
tum dependent) distributions. The measurement of these
distributions is one of the goals of future facilities which
are being currently designed [3,4]. There are also recent
ideas on how to access this kind of distributions, and how
to apply them to phenomenology, using LHC data, see
e.g., [46–48]. Here, as an example of the potential of the
solutions we found, we compute the impact-parameter
dependent Weizsäcker-Williams gluon distribution Gð1Þ.
This gluon distribution can be interpreted as the number

density of gluons at certain x and with a given transverse
momentum, kt, at a distance b from the center of the proton.
Its relation to the dipole scattering amplitude as given in
[46] is (see e.g., [49])

αsxGð1Þðx; kt; bÞ ¼
Nc

4π4

Z
dr⃗
r2

e−ik⃗t·r⃗

× f1 − ½1 − Nðx; r; bÞ�2g: ð9Þ

Figure 4 shows the impact-parameter dependent
Weizsäcker-Williams gluon distribution computed with
the dipole scattering amplitude obtained as a solution to
the b-dependent BK equation with the collinearly improved
kernel. The distribution is shown at a rapidity Y ¼ 2. The

figure also shows the integrals of this distribution over k⃗t
and over b⃗. Integrals of this distribution feature reasonable
size in impact parameter and fast-falling dependence on kt
(with an asymptotic behavior close to a power-like fall off
with a power of -2, which was also reported in [46]),

FIG. 2. Comparison of the structure function data from HERA
[5] with the computation based on solutions to the collinearly
improved b-dependent BK equation.

FIG. 3. Comparison of the computation for the jtj dependence
of the cross section for the exclusive photoproduction of J=ψ
vector mesons off protons with data from the H1 Collaboration at
HERA at hWi ¼ 55 GeV [44] and hWi ¼ 100 GeV [45].
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suggesting that these distributions are ready to be used for
phenomenological studies.

V. SUMMARY AND OUTLOOK

In this work we obtained the dipole scattering amplitude
as a solution to the impact-parameter dependent Balitsky-
Kovchegov equation using the collinearly improved kernel.
We find that the Coulomb tails that have affected previous
studies are strongly suppressed when using this kernel.
Furthermore, we show that choosing specific initial con-
ditions we obtain a good description of data on the
F2ðx;Q2Þ structure function of the proton and on the cross
section for the jtj dependence of exclusive photoproduction
of J=ψ vector mesons off protons. The agreement with data

is obtained without the need of adding any extra term to the
kernel and without any soft contribution. The success of
these dipole scattering amplitudes in the description of data
makes them valuable tools for phenomenological studies
either using existing HERA and LHC data or to predict
observables for future colliders. In this context we pre-
sented first results on the impact-parameter dependent
Weizsäcker-Williams gluon distribution.
As a last remark, we would like to point out that there

have been important advances in the computation of
the BK equation at the next order in perturbation theory.
The new equation, presented in [29], has been solved
in [50] using the collinearly improved kernel, but
without considering the impact parameter dependence.
Furthermore, the tools to be able to use this equation for
phenomenological applications are being developed, see
e.g., [51–54]. Our results indicate that solutions of the
NLO-BK equation including the collinearly improved
kernel and considering the impact-parameter dependence
may be useful to understand better the properties of pQCD
in the high-energy limit.
The dipole scattering amplitudes computed in this work

are publicly available in the website https://hep.fjfi.cvut.cz/.

ACKNOWLEDGMENTS

We would like to thank Dagmar Bendová, Heikki
Mäntysaari and Cyrille Marquet for fruitful discussions.
Our work has been partially supported by Grant No. 17-
04505S of the Czech Science Foundation, GAČR and the
COST Action CA15213 THOR. Computational resources
were provided by the Czech Education and Scientific
Network (CESNET) LM2015042 grant and the CERIT
Scientific Cloud LM2015085, provided under the
program “Projects of Large Research, Development, and
Innovations Infrastructures.”

[1] P. Newman and M. Wing, Rev. Mod. Phys. 86, 1037 (2014).
[2] K. Akiba et al. (LHC Forward Physics Working Group),

J. Phys. G 43, 110201 (2016).
[3] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[4] J. A. Fernandez et al. (LHeC Study Group), J. Phys. G 39,

075001 (2012).
[5] F. D. Aaron et al. (ZEUS and H1 Collaborations), J. High

Energy Phys. 01 (2010) 109.
[6] H. Abramowicz et al. (ZEUS and H1 Collaborations), Eur.

Phys. J. C 75, 580 (2015).
[7] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.

100, 1 (1983).
[8] J. L. Albacete and C. Marquet, Prog. Part. Nucl. Phys. 76, 1

(2014).

[9] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[10] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert,

Phys. Rev. D 59, 014014 (1998).
[11] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[12] Y. V. Kovchegov, Phys. Rev. D 61, 074018 (2000).
[13] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D

59, 014015 (1998).
[14] H. Weigert, Nucl. Phys. A703, 823 (2002).
[15] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys.

A692, 583 (2001).
[16] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B

510, 133 (2001).
[17] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran, Nucl.

Phys. A703, 489 (2002).

FIG. 4. The impact-parameter dependent Weizsäcker-Williams
gluon distribution computed from the solution to the BK equation
with the collinearly improved kernel. The red and green lines
represent the integral of this distribution over the transverse
momentum k⃗t or over the impact parameter b⃗, respectively.

COLLINEARLY IMPROVED KERNEL SUPPRESSES COULOMB … PHYS. REV. D 99, 051502 (2019)

051502-5



[18] H. Mntysaari and B. Schenke, Phys. Rev. D 98, 034013
(2018).

[19] J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias,
and C. A. Salgado, Eur. Phys. J. C 71, 1705 (2011).

[20] K. J. Golec-Biernat and A. M. Stasto, Nucl. Phys. B668, 345
(2003).

[21] J. Berger and A. Stasto, Phys. Rev. D 83, 034015 (2011).
[22] J. Berger and A.M. Stasto, Phys. Rev. D 84, 094022 (2011).
[23] J. Berger and A. M. Stasto, J. High Energy Phys. 01 (2013)

001.
[24] I. Balitsky, Phys. Rev. D 75, 014001 (2007).
[25] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188

(2007).
[26] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N.

Triantafyllopoulos, Phys. Lett. B 744, 293 (2015).
[27] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N.

Triantafyllopoulos, Phys. Lett. B 750, 643 (2015).
[28] L. Motyka and A.M. Stasto, Phys. Rev. D 79, 085016

(2009).
[29] I. Balitsky and G. A. Chirilli, Phys. Rev. D 77, 014019

(2008).
[30] J. L. Albacete, N. Armesto, J. G. Milhano, and C. A.

Salgado, Phys. Rev. D 80, 034031 (2009).
[31] D. Binosi, C. Mezrag, J. Papavassiliou, C. D. Roberts, and

J. Rodriguez-Quintero, Phys. Rev. D 96, 054026 (2017).
[32] S. J. Brodsky, G. F. de Teramond, and A. Deur, Phys. Rev. D

81, 096010 (2010).
[33] J. L. Albacete and Y. V. Kovchegov, Phys. Rev. D 75,

125021 (2007).
[34] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D 59,

014017 (1998).
[35] L. D. McLerran and R. Venugopalan, Phys. Lett. B 424, 15

(1998).

[36] J. Cepila and J. G. Contreras, arXiv:1501.06687.
[37] M. Matas, J. Cepila, and J. G. C. Nuno, EPJ Web Conf. 112,

02008 (2016).
[38] J. Cepila, J. G. Contreras, and M. Matas (to be published).
[39] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D 74,

074016 (2006).
[40] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C.

Tandy, Phys. Rev. C 68, 015203 (2003).
[41] J. Nemchik, N. N. Nikolaev, and B. G. Zakharov, Phys. Lett.

B 341, 228 (1994).
[42] J. Nemchik, N. N. Nikolaev, E. Predazzi, and B. G.

Zakharov, Z. Phys. C 75, 71 (1997).
[43] A. G. Shuvaev, K. J. Golec-Biernat, A. D. Martin, and M. G.

Ryskin, Phys. Rev. D 60, 014015 (1999).
[44] C. Alexa et al. (H1 Collaboration), Eur. Phys. J. C 73, 2466

(2013).
[45] A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 46, 585

(2006).
[46] A. vanHameren, P. Kotko,K.Kutak, C.Marquet, E. Petreska,

and S. Sapeta, J. High Energy Phys. 12 (2016) 034.
[47] Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O.

Teryaev, Phys. Rev. D 96, 034009 (2017).
[48] J. L. Albacete, G. Giacalone, C. Marquet, and M. Matas,

Phys. Rev. D 99, 014002 (2019).
[49] C. Marquet, E. Petreska, and C. Roiesnel, J. High Energy

Phys. 10 (2016) 065.
[50] T. Lappi and H. Mntysaari, Phys. Rev. D 93, 094004 (2016).
[51] G. Beuf, Phys. Rev. D 89, 074039 (2014).
[52] G. Beuf, Phys. Rev. D 96, 074033 (2017).
[53] B. Duclou, H. Hnninen, T. Lappi, and Y. Zhu, Phys. Rev. D

96, 094017 (2017).
[54] H. Hnninen, T. Lappi, and R. Paatelainen, Ann. Phys.

(Amsterdam) 393, 358 (2018).

J. CEPILA, J. G. CONTRERAS, and M. MATAS PHYS. REV. D 99, 051502 (2019)

051502-6



 

Forward dihadron back-to-back correlations in pA collisions

Javier L. Albacete,1 Giuliano Giacalone,2,3 Cyrille Marquet,3 and Marek Matas4
1CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada,

E-18071 Campus de Fuentenueva, Granada, Spain
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We study the disappearance of the away-side peak of the di-hadron correlation function in pþ A
vs pþ p collisions at forward rapidities, when the scaterring process presents a manifest dilute-dense
asymmetry. We improve the state-of-the-art description of this phenomenon in the framework of the color
glass condensate (CGC), for hadrons produced nearly back to back. In that case, the gluon content of the
saturated nuclear target can be described with transverse-momentum-dependent gluon distributions, whose
small-x evolution we calculate numerically by solving the Balitsky-Kovchegov equation with running
coupling corrections. We first show that our formalism provides a good description of the disappearance of
the away-side azimuthal correlations in dþ Au collisions observed at BNL Relativistic Heavy Ion Collider
(RHIC) energies. Then, we predict the away-side peak of upcoming pþ Au data at

ffiffiffi
s

p ¼ 200 GeV to be
suppressed by about a factor 2 with respect to pþ p collisions, and we propose to study the rapidity
dependence of that suppression as a complementary strong evidence of gluon saturation in experimental data.

DOI: 10.1103/PhysRevD.99.014002

I. INTRODUCTION

Azimuthal correlations of particles in the final states of
hadronic collisions serve as a powerful tool for exper-
imental tests of the color glass condensate (CGC) [1–3], the
effective theory of protons and nuclei in the nonlinear
regime of quantum chromodynamics. A special role in the
phenomenology of the CGC is played by correlations of
particles in pþ A collisions probed in the region of
fragmentation of the protons [4–11], where the rapidities
of the correlated particles are large and positive (forward
rapidity region). Such configurations are ideal for testing
the CGC theory, because they induce a dilute-dense
asymmetry in the problem: The projectile proton is probed
at large values of Bjorken x, and is thus a dilute object,
amenable to a description in terms of well-known parton
distribution functions (PDFs). The nuclear target is instead
seen as dense state of low x gluons, a regime in which the
saturation of the gluon densities is manifest, so that the
CGC description applies. This dilute-dense asymmetry,
hence, minimizes our uncertainty in the knowledge of the
projectile and provides the cleanest possible environment

for the study of phenomenological signatures of gluon
saturation in the target.
In this paper, we deal with a salient prediction of the

CGC theory: The disappearance of the away-side peak
(Δϕ ¼ π) of the two-particle correlation function of dilute-
dense collisions (i.e., forward pþ A collisions). Following
[12], let us provide an intuitive picture of this phenomenon.
A valence parton interacting with a CGC (i.e., a large
classical Yang-Mills background field) undergoes multiple
scattering with low-x gluons, either before or after splitting
into a pair of back-to-back partons, which eventually
produce the jets or hadrons observed in the final state.
The pair of partons is put on shell via the interaction with
the target, and this occurs through a transverse momentum
exchange of order of the saturation scale of the target, Qs,
which is typically much larger than the transverse momen-
tum of the parent valence parton. The back-to-back
correlation of the final-state particles, which would not
be affected by an interaction with a gluon of zero transverse
momentum, is therefore altered, and this induces a
depletion of the correlation function around Δϕ ¼ π.
Hence, the away-side peak observed in pþ A collisions
is expected to be suppressed with respect to that of pþ p
collisions, because the target nuclei are denser and more
saturated. Moreover, since Qs grows with the inverse of x
probed in the targets, one expects stronger suppression of
back-to-back correlations if particles are correlated at large
rapidity, y ¼ lnð1=xÞ.
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Experimentally, the validity of this picture is strongly
supported by Relativistic Heavy-Ion Collider (RHIC) data,
as both the STAR and the PHENIX Collaborations reported
a visible suppression of the away-side peak when compar-
ing pþ p collisions to central dþ Au collisions [13,14].
These data, though, suffer from large uncertainties. More
accurate tests of the CGC prediction may nevertheless
become possible with the advent of data from the recent
200 GeV pþ Au run performed at RHIC. As we shall see,
one of the goals of this paper is to provide predictions for
the away-side peak in these collisions.
On the theory side, first calculations of forward two-

particle production in pþ A collisions within the CGC
framework date back more than ten years [4,15]. The cross
section for the production of two particles is intrinsically
difficult to evaluate, because it involves multipoint corre-
lators of Wilson lines. Over the years, different levels of
approximation have been employed to perform calculations
and obtain predictions, as reviewed in Ref. [12]. The
simplest option is to disregard nonlinear effects and recover
the so-called kt factorization (or high-energy factorization)
framework [5,16]; the cross section is then obtained from
a single two-point correlator, but that approximation is not
applicable in the away-side peak region. In Ref. [6], the
multipoint correlators are evaluated using the so-called
Gaussian approximation of the nonlinear QCD evolution;
however, only the elastic contributions are kept, and it turns
out that the neglected contributions are also sizable in the
away-side peak region. In Ref. [8], the complete Gaussian
expressions are used; however, due to the complexity of the
problem, only quark-initiated channels could be included.
A crucial step was the realization that the cross section

simplifies dramatically if one considers the production of
partons which are nearly back to back [17,18]. In this limit,
the dense part of the scattering (the nucleus) is charac-
terized by transverse-momentum-dependent (TMD) gluon
distributions whose small x evolution is easily affordable to
numerical implementations, because the multipoint corre-
lators of Wilson line [19] involve only two distinct trans-
verse positions. This framework has been employed in a
number of applications [7,10,11,19–22], and was recently
reviewed in [23].1 In the case of forward di-hadron
production, it has only been used together with Golec-
Biernat Wusthoff (GBW) type parameterizations for the
gluon TMDs [7], which suffer from unphysical exponential
tails at large gluon transverse momentum. The goal of our
work is to improve on this by obtaining the TMD gluon
distributions from numerical solutions of the QCD non-
linear evolution.

In [19,20], the gluon TMDs and their small-x evolution
were obtained from the full QCD evolution at leading
logarithmic accuracy, i.e., from the Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK)
equation. Since the implementation of running-coupling
corrections in this context has not been performed yet,
we prefer to work within the Gaussian approximation of
JIMWLK evolution and obtain the gluon TMDs from the
Balitsky-Kovchegov (BK) equation with running cou-
pling corrections (rcBK), because we expect running-
coupling corrections to be much more important than
corrections to the Gaussian approximation. In addition,
the rcBK solutions are well constrained from deep
inelastic scattering data [25], so that the final expression
of the cross section of two-parton production turns out to
be essentially free from tunable parameters. We shall
derive this cross section, and convolute it with fragmen-
tation functions to present state-of-the-art results on
azimuthal correlations of di-hadrons in forward pþ A
and pþ p collisions at RHIC energies. We both test our
theory against existing data and make predictions for
future back-to-back correlations of hadrons.
The paper is organized as follows. In Sec. II, we briefly

review the theoretical formalism of nearly back-to-back
forward di-hadron production in pþ A collisions in the
CGC framework, and we present the fully differential cross
section for the production of di-hadrons, specifically, two
neutral pions. In the cross section we shall introduce the
TMD gluon distributions which characterize the dense
component of the scattering process. In Sec. III, we explain
in detail how such quantities are obtained from rcBK
evolution, and we show their behavior as function of the
kinematic variables. Calculations of the away-side peak are
eventually given in Sec. IV. The per-trigger-yield cross
section is calculated as a function of the relative azimuthal
angle of the two hadrons. We first calculate it in dþ Au
and pþ p collisions, and we compare our results to existing
RHIC data. Then, we compute several predictions for the
away-side peak in upcoming pþ Au collisions at

ffiffiffi
s

p ¼
200 GeV. In Sec. V, we make predictions for the evolution
with rapidity of the suppression of the away-side peak, and
we compare our results with calculations performed using an
alternative implementation of the rcBK evolution for nuclei.
Section VI is left for conclusive remarks.

II. COLOR GLASS CONDENSATE IN THE
BACK-TO-BACK REGION: TMD

FACTORIZATION

We study the production of pairs of hadrons in forward
pþ A collisions. We display this process in Fig. 1. Working
in light-cone coordinates, (þ, ⊥, −), the Feynman-x
variables associated with the projectile parton moving along
theþ direction and with the target gluon coming from
the − direction are, respectively, given by

1Note that an improved version of the TMD formalism
(dubbed ITMD) was introduced in Ref. [24]. This framework
allows one to relax the condition Δϕ ∼ π, and was applied in
calculations of forward di-jet production in Refs. [10,11]. How-
ever, in this paper we do not employ the improved framework
because it is strictly equivalent to the original TMD formulation
as long as back-to-back particles are considered.
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x1 ¼
kþ1 þ kþ2

pþ
p

¼ 1ffiffiffi
s

p
�
p1t

z1
ey1 þ p2t

z2
ey2

�
;

x2 ¼
k−1 þ k−2

p−
A

¼ 1ffiffiffi
s

p
�
p1t

z1
e−y1 þ p2t

z2
e−y2

�
; ð1Þ

where the ki’s refer to the outgoing partons and the p0
is refer

to the final-state hadrons. We have introduced their trans-
verse momenta, p1t ¼ z1k1t and p2t ¼ z2k2t, and rapidities,
y1 and y2, while

ffiffiffi
s

p
denotes the invariant mass of the

scattering process. Equation (1) shows that when both y1
and y2 are large and positive, we probe a large-x parton in
the projectile, and a small-x gluon inside the target nucleus.
In experiments at RHIC, one can reach y ∼ 4, leading to
x1 ∼ 0.5, and x2 ∼ 10−3: This realizes the anticipated dilute-
dense asymmetry of forward particle production, which is
essential for the applicability of our formalism.
Now, following [18,19], we dub

z ¼ kþ1
kþ1 þ kþ2

¼ pþ
1 =z1

pþ
1 =z1 þ pþ

2 =z2
; ð2Þ

and we introduce the following variables

kt ¼ k1t þ k2t; Pt ¼ ð1 − zÞk1t − zk2t: ð3Þ

If we stick to a limit in which the produced particles are
back to back, i.e., their relative azimuthal angle, Δϕ, is
close to π, then the total transverse momentum of the di-
hadron pair is much smaller than the transverse momentum
of the single hadrons, i.e., jktj ≪ jPtj [18].
Following the exhaustive derivations of [19], the advan-

tage of this limit is that it allows to write the cross section of
the scattering process as an expansion in powers of 1=Pt.
Keeping only the leading order terms in this expansion, the
dense component of the scattering is given by a combina-
tion of transverse momentum dependent gluon distributions
(TMDs in short), which are CGC correlators of traces of
Wilson lines. Summing over all production channels
(qg → qg, gg → qq̄, gg → gg), the cross section for the
production of two partons can be written in the following
compact notation [19]

dσpA→hhX

d2k1td2k2tdy1dy2
¼ α2s

ðx1x2sÞ2
X
a;c;d

x1fa=pðx1; μ2Þ

×
X
i

1

1þ δcd
HðiÞ

ag→cdðz; PtÞ

× F ðiÞ
agðx2; ktÞ; ð4Þ

where we note the manifest factorization of the cross section
into a dilute component, characterized by collinear parton
distribution functions fa=pðx1; μ2Þ, evaluated at a factoriza-
tion scale μ2, and a channel-dependent dense component,
characterized by hard factors [18], Hðz; PtÞ, and the TMD
gluon distributions, F ðiÞðx2; ktÞ, specified below.
To turn Eq. (4) into a tool enabling us to compute

predictions for di-hadron production, we convolute it with
fragmentation functions. Considering u quarks, d quarks
and gluons in the projectile proton, and considering only
their fragmentation into pions, and neglecting all terms
which are suppressed by 1=N2

c, the full expression of the
cross section reads

dσpA→π0π0X

dy1dy2d2p1td2p2t
¼ α2s

2CF

Z
1

pt1
ey1ffiffi

s
p =ð1−pt2

ey2ffiffi
s

p Þ

dz1
z21

Z
1

pt2
ey2ffiffi

s
p =ð1−pt1

z1
ey1ffiffi

s
p Þ

dz2
z22

zð1 − zÞ
P4
t

× fDπ0=gðz1; μ2Þ½x1uðx1; μ2ÞDπ0=uðz2; μ2Þ þ x1dðx1; μ2ÞDπ0=dðz2; μ2Þ�PgqðzÞ
× ½ð1 − zÞ2F ð1Þ

qg ðx2; ktÞ þ F ð2Þ
qg ðx2; ktÞ� þDπ0=gðz2; μ2Þ½x1uðx1; μ2ÞDπ0=uðz1; μ2Þ

þ x1dðx1; μ2ÞDπ0=dðz1; μ2Þ�Pgqð1 − zÞ½z2F ð1Þ
qg ðx2; ktÞ þ F ð2Þ

qg ðx2; ktÞ�
þ 2½Dπ0=uðz1; μ2ÞDπ0=uðz2; μ2Þ þDπ0=dðz1; μ2ÞDπ0=dðz2; μ2Þ�x1gðx1; μ2ÞPqgðzÞ
× ½F ð1Þ

gg ðx2; ktÞ − 2zð1 − zÞðF ð1Þ
gg ðx2; ktÞ − F ð2Þ

gg ðx2; ktÞÞ�
þDπ0=gðz1; μ2ÞDπ0=gðz2; μ2Þx1gðx1; μ2ÞPggðzÞ
× ½F ð1Þ

gg ðx2; ktÞ − 2zð1 − zÞðF ð1Þ
gg ðx2; ktÞ − F ð2Þ

gg ðx2; ktÞÞ þ F ð6Þ
gg ðx2; ktÞ�g; ð5Þ

H

TMDs

PDFspp

pA

D

D

FIG. 1. The pA → π0π0X process. See the text for details about
the displayed quantities.
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where we have denoted by Dπ0=aðzi; μ2Þ the fragmentation
of a parton a into a neutral pion at the factorization scale μ2,

and the notation used for the distributions F ðiÞ
agðx2; ktÞ is the

same as in [19]. In Sec. IV we shall make use of Eq. (5) to
compute azimuthal correlations of neutral pions at RHIC.
Let us first describe, in the following section, the rcBK
formalism developed for the small x2 evolution of the TMD
distributions which appear in the cross section.

III. EVOLUTION OF THE TMD GLUON
DISTRIBUTIONS TOWARDS SMALL x

In order to complete our formulation of the cross section,
Eq. (5), we discuss now the x2 evolution of the TMD gluon

distributions, F ðiÞ
agðx2; ktÞ. The starting point is the evolu-

tion of the impact parameter (b) independent fundamental–
dipole scattering amplitude, which we denote in a standard
notation NFðx; rÞ. As it is customarily done in the liter-
ature, we assume that the b dependence of NF factorizes,
and that it does not mix with the evolution. The evolution
equation of the dipole amplitude, known as the Balitsky-
Kovchegov equation [26,27], supplemented with running
coupling corrections (rcBK equation), reads (ri ¼ jrij)

∂NFðr; xÞ
∂ lnðx0=xÞ ¼

Z
d2r1Krunðr; r1; r2Þ½NFðr1; xÞ þ NFðr2; xÞ

− NFðr; xÞ − NFðr1; xÞNFðr2; xÞ�; ð6Þ

with r2 ≡ r − r1, and where x0 is some initial value for the
evolution (usually chosen to be x0 ¼ 0.01). Krun is the
evolution kernel including running coupling corrections.
Different prescriptions have been proposed in the literature
for Krun. As shown in [28], Balitsky’s prescription mini-
mizes the role of higher conformal corrections:

Krunðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�
þ r2

r21r
2
2

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
: ð7Þ

The rcBK evolution is independent of whether the target
is a proton or a nucleus. That is accounted for in the initial
condition. We use the so-called McLerran-Venugopalan
(MV) model:

NFðr; x ¼ x0Þ ¼ 1 − exp

�
−
r2Q2

s0

4
ln

�
1

Λr
þ e

��
; ð8Þ

withΛ ¼ 0.241 GeV, and whereQs0 denotes the saturation
scale at the initial value x0. We use x0 ¼ 0.01 and Q2

s0 ¼
0.2 GeV2 for a proton target, which are known to provide a
good description of single-inclusive forward hadron RHIC
data [29]. For a target nucleus, things are more uncertain, as
we are interested only in central collisions, i.e., collisions at

small impact parameter. Motivated by previous studies [6],
we keep x0 ¼ 0.01, and we choose Q2

s0 ¼ 0.6 GeV2, i.e., a
factor 3 larger than the Q2

s0 with a target proton.
Now, the simplest gluon TMD distribution, F ð1Þ

qg ðx2; ktÞ,
is related to the Fourier transform of the fundamental dipole
amplitude, NFðx2; rÞ, and is given by

F ð1Þ
qg ðx2; ktÞ ¼

Nc

αsπð2πÞ3
Z

d2b
Z

d2re−ikt·r∇2
rNFðx2; rÞ

¼ Nck2t S⊥
2π2αs

Fðx2; ktÞ; ð9Þ

where

Fðx2; ktÞ ¼
Z

d2r
ð2πÞ2 e

−ikt·r½1 − NFðx2; rÞ�; ð10Þ

and with S⊥ denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be

obtained in such a straightforward manner, directly from
NF, or its Fourier transform F. To move forward, we resort
to a mean-field type approximation: we shall utilize the
so-called Gaussian approximation of the CGC [4,30–35].
The essence of this approximation is to consider all the
color charge correlations in the target to stay Gaussian
throughout the evolution. This approximation, along with
the large Nc-limit, ensures the factorization of CGC
expectation values into single-trace expectation values,

and allows to calculate F ð1Þ
gg and F ð2Þ

gg from F [18]:

F ð1Þ
gg ðx2; ktÞ ¼

Z
d2qtF

ð1Þ
qg ðx2; qtÞFðx2; kt − qtÞ; ð11Þ

F ð2Þ
gg ðx2; ktÞ ¼ −

Z
d2qt

ðkt − qtÞ · qt
q2t

F ð1Þ
qg ðx2; qtÞ

× Fðx2; kt − qtÞ; ð12Þ

We note that the difference,

F ð1Þ
gg ðx2; ktÞ − F ð2Þ

gg ðx2; ktÞ

¼
Z

d2qt
kt · qt
q2t

F ð1Þ
qg ðx2; qtÞFðx2; kt − qtÞ ð13Þ

¼ k2t
2

Z
d2qt
q2t

F ð1Þ
qg ðx2; qtÞFðx2; kt − qtÞ; ð14Þ

which enters the cross section (5), is related to the adjoint-

dipole scattering amplitude NA in the same way that F ð1Þ
qg

was related to the fundamental dipole scattering amplitude.
Indeed, if we introduce
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F adjðx2; ktÞ ¼
CF

αsπð2πÞ3
Z

d2b
Z

d2re−ikt·r∇2
rNAðx2; rÞ

¼ CFk2t S⊥
2π2αs

F̃ðx2; ktÞ; ð15Þ

where

F̃ðx2; ktÞ ¼
Z

d2r
ð2πÞ2 e

−ikt·r½1 − NAðx2; rÞ�; ð16Þ

then one has F ð1Þ
gg − F ð2Þ

gg ¼ F adj. This identify is true in
full generality, beyond the Gaussian and large-Nc approx-
imations (for which 1 − NA ¼ ½1 − NF�2) used here, as was
first noticed in [20].
Finally, the two remaining gluon TMDs need to be

computed from the Weizsäcker-Williams (WW) gluon dis-
tribution [18], which we denote FWW , and which should be
obtained from the quadrupole operator hTr½AðxÞAðyÞ�ix2
whereAðxÞ ¼ U†ðxÞ∂xUðxÞwithU denoting aWilson line.
Again, this quantity is in general not related to the solution of
the BK equation, Fðx2; ktÞ, but using the Gaussian approxi-
mation one can write (in the large Nc limit)2:

FWWðx2; ktÞ ¼
CF

2αsπ
4

Z
d2b

Z
d2r
r2

× e−ikt·rf1 − ½1 − NFðx2; rÞ�2g: ð17Þ
which allows to calculate the remaining two gluon TMDs
needed in the cross section as follows [18]:

F ð2Þ
qg ðx2; ktÞ ¼

Z
d2qtFWWðx2; qtÞFðx2; kt − qtÞ; ð18Þ

F ð6Þ
gg ðx2; ktÞ ¼

Z
d2qtd2q0tFWWðx2; qtÞFðx2; q0tÞ

× Fðx2; kt − qt − q0tÞ: ð19Þ

We have now expressed all the needed gluon TMDs in terms
of Fðx2; ktÞ, the solution of the BK equation.
We show in Fig. 2 some of those gluon distributions for

a target proton, as function of kt, and for two values of x2.

We do not show F ð2Þ
gg explicitly, but rather the difference

F ð1Þ
gg − F ð2Þ

gg , which effectively plays a role in Eq. (5). The
TMD distributions present three specific features, fully
characterizing the dense component of our scattering.
Starting from the region where kt ≫ 1 GeV, we note that
all the curves approach the same asymptotic behavior, i.e.,
an inverse power law, precisely equal to k−2t at x2 ¼ x0
[panel (a)], with a smaller absolute slope after x2 evolution
[panel (b)]. As kt becomes of order 1 GeV, the TMD
distributions start to separate, and quickly change their slope
at a specific kt, which corresponds approximately to the

location of the maximum of Fð1Þ
gg − Fð2Þ

gg . This is the value of
the saturation scale, Qs, which we indicate in both panels
with a vertical dotted line.3 Note that the small-x2 evolution

Fgg
(1)

Fgg
(1) – Fgg

(2)

Fgg
(6)

Y = 0

(a)

0.05 0.2 0.5 1 5 10 50

10–6

10–5

10–4

0.001

0.010

kt [GeV]

Y = 4

(b)

0.05 0.2 0.5 1 5 10 50

10–6

10–5

10–4

0.001

0.010

kt [GeV]

FIG. 2. This figure presents the x2 evolution of three TMDs appearing in the cross section of Eq. (5), for a target proton. In panel (a),

the initial conditions at x2 ¼ 0.01 are presented. We show F ð1Þ
gg (solid line), F ð1Þ

gg − F ð2Þ
gg (dashed line), and F ð6Þ

gg (dot-dashed line). The
vertical dotted lines represent the saturation scale at the given value of x2. In the figure, Y ¼ lnð0.01=x2Þ. The plotted quantities do not
include the factor S⊥=αs in Eq. (9), common to all the gluon TMDs.

2Strictly speaking, the 1=r2 factor—which we shall keep in our
numerical computation—should be replaced by a more compli-
cated function of NF, equal to 1=r2 only in the MV model at
x2 ¼ x0.

3More specifically, the maximum of F adj corresponds to the
adjoint saturation scale, which is 1.5 times bigger than Qs, the
fundamental saturation scale which corresponds to the maximum
of Fð1Þ

qg . This explains why the vertical line in Fig. 2(a) does not
correspond to Qs0 ¼

ffiffiffiffiffiffi
0.2

p
GeV.
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has the effect of shifting the saturation scale to larger values.
Eventually, below the value of Qs the distributions become

flat, and saturation is manifest. The difference F ð1Þ
gg − F ð2Þ

gg

goes to zero at kt ¼ 0, consistently with Eq. (14).

IV. THE AWAY-SIDE PEAK FROM rcBK
EVOLUTION: RESULTS AND

PREDICTIONS

We can eventually employ the theoretical formalism
introduced in the previous sections to compute azimuthal
correlations of two hadrons in pþ p and pþ A collisions atffiffiffi
s

p ¼ 200 GeV. We integrate Eq. (5) over the momenta
and rapidities of the produced hadrons, and study the
behavior of the cross section as function of relative
azimuthal angle, Δϕ. In the notation of [6], the observable
we want to calculate is

NpairðΔϕÞ ¼
Z

dσpA→π0π0X

dΔϕdy1dy2dp2
t1dp

2
t2
dy1dy2dp2

t1dp
2
t2:

ð20Þ

The experimentally measured quantity is not directly given
by Eq. (20). Experimentalists normalize NpairðΔϕÞwith the
total number of hadrons that trigger the correlations, i.e.,

Ntrig ¼
Z

dσpA→π0þX

dydp2
t

dydp2
t ; ð21Þ

in which we have introduced the cross section for single
hadron production [29]

dσpA→π0þX

dydp2
t

¼
Z

1

pt
eyffiffi
s

p

dz
z2

f½x1uðx1; μ2ÞDπ0=uðz; μ2Þ

þ x1dðx1; μ2ÞDπ0=dðz; μ2Þ�Fðx2; ktÞ
þ x1gðx1; μ2ÞDπ0=gðx2; μ2ÞF̃ðx2; ktÞg; ð22Þ

where F and F̃ are computed from the rcBK evolution
equation as explained in the previous section. The final
observable is dubbed coincidence probability by the STAR
Collaboration, and is given by

CPðΔϕÞ ¼ NpairðΔϕÞ=Ntrig: ð23Þ

Before showing our results, let us list all the details about
the quantities needed in the calculation of CPðΔϕÞ:

(i) The parton distribution functions (PDFs) describing
the projectile are taken from the NLO MSTW2008
fits [36];

(ii) The fragmentation functions (FFs) used are the
recent DSS14 NLO sets [37];

(iii) The strong coupling constant appearing in Eq. (5) is
calculated at NLO, and is given by the following
expression

αsðμ2Þ ¼
4π

ð11 − 2
3
NfÞ lnðμ

2

Λ2Þ
; ð24Þ

where we take Nf ¼ 4, and Λ ¼ 197 MeV. For μ2,
we use the same scale employed in the PDFs and in
the FFs (see item below);

(iv) The PDFs, the FFs, and αs are computed at the scale
μ2 ¼ p2

t1, i.e., at the transverse momentum of the
leading hadron.

A. Comparison with run-8 d +Au RHIC data

Saturation effects are expected to yield a larger CPðΔϕÞ
in pp collisions than in pA collisions, when Δϕ is in the
vicinity of π. STAR data on CPðΔϕÞ [13] for neutral pion
correlations are shown as symbols in Fig. 3. Data present a
visible suppression of the correlation in dþ Au collisions,
suggesting that saturation effects may be effectively at play.
The outcome of integrating Eq. (5) over the STAR
kinematics in both pþ p and dþ Au collisions4 is shown
as shaded bands, in the nearby of Δϕ ¼ π. The shaded
bands represent the uncertainty in the choice of the
factorization scale, μ2, in Eq. (5). The upper limit of the

FIG. 3. The figure shows STAR data on azimuthal π0 corre-
lations at forward rapidity, in pþ p collisions (circles) and central
dþ Au collisions (triangles) at

ffiffiffi
s

p ¼ 200 GeV. To remove fake
two particle correlations which are essentially due to pileup
effects, an arbitrary offset is added to push the STAR measure-
ments close to 0 at the minimum of the correlation functions.
Calculations of CPðΔϕÞ in our TMDþ rcBK framework are
shown as shaded bands. Light-shaded band: pþ p collisions.
Dark-shaded band: dþ Au collisions. The meaning of the shaded
bands is discussed in the text.

4Note that Eq. (5) is suitable only for proton-nucleus colli-
sions. A slightly different combinations of the PDFs and FFs at
play is used to obtain the same cross section in the deuteron-
nucleus case.
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bands is obtained with μ2 ¼ p2
t1, and the shaded area is

obtained by taking a scale larger by 50%.5 In the following,
we shall therefore always employ μ2 ¼ p2

t1, which should
provide the best agreement with data.
Figure 3 shows that the suppression of the away-side

peak provided by our calculation is in agreement with the
data, although robust conclusions are impossible to draw
due to the large uncertainties in dþ Au collisions. We also
notice that our calculation reasonably captures the magni-
tude of CPðΔϕÞ at the away-side peak of pþ p collisions.
What we fail in reproducing, though, is the width of the
measured correlation in pþ p, which appears to be broader
than our result. This has a simple explanation: in our
calculation we are not supplementing the cross section with
Sudakov factors; i.e., we do not take into account the
radiation of soft gluons in both the initial and the final state,
which would naturally provide a broadening of the corre-
lation function. This was done in Ref. [38], using GBW-
type parametrization for the gluon TMDs, but it remains to
be done with the rcBK gluon TMDs. An attempt of such
Sudakov resummation in the case of di-jet production was

made within the Kutak-Sapeta (KS) approach [39] (see
Sec. V), and the results are promising, in the sense that one
observes a clear broadening aroundΔϕ ¼ π when Sudakov
resummation is included.We finally note that the correlation
function shown in Fig. 3 is somewhat less flat than the one
obtained in [29]. By comparison, our formalism is valid in a
narrower window nearΔϕ ¼ π, but it is more accurate there.

B. Predictions for p+Au collisions

In Fig. 4, we present predictions for the away-side peak
of neutral pions in pþ p and pþ Au collisions atffiffiffi
s

p ¼ 200 GeV. This is achieved by integrating Eq. (5)
over the kinematic cuts used by the STAR collaboration in
their new analysis. We predict that the away-side peak is
suppressed in pþ Au by a factor close to 2. We find this
conclusion to be rather independent of the pt window
chosen for the measurement.

V. RAPIDITY DEPENDENCE OF THE
SUPPRESSION AND COMPARISON WITH

THE KUTAK-SAPETA APPROACH

A generic prediction of the CGC framework is that any
effect due to gluon saturation should become less visible if
we move towards more central rapidities; i.e., in our case, if

(a) (b)

(c) (d)

FIG. 4. In this figure we show predictions for azimuthal correlation of forward neutral pions in pþ p (dashed line) and pþ Au (dotted
line) collisions at

ffiffiffi
s

p ¼ 200 GeV. Different panels correspond to different pt cuts applied to the cross section.

5We cannot test values of μ2 lower than p2
t1, as they would lead

to unreasonably small values of the factorization scale.
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we reduce the dilute-dense asymmetry by probing larger
values of x in the nuclei. Consequently, the suppression of
the away-side peak in pþ A collisions relative to pþ p
should essentially fade away if we correlate particles in more
central rapidity intervals. It is important to stress that the
dependence on rapidity is a very specific feature of the
saturation framework, which is not predicted by typical
competing effects, e.g., conservation of total transverse
momentum [40], or other energy-momentum conservation
corrections which are relevant in the proximity of x1 → 1
[41,42]. Another competing description is that reported
by Kang et al. [43], who manage to describe the suppression
of the away-side peak without resorting to a CGC descrip-
tion, but solely from (cold) nuclear transverse-momentum
broadening effects. Such models do not predict a specific

dependence on the rapidity, so that the CGC interpretation
would be strongly favored if such dependence is observed
in data. Let us stress that the away-side peak in different
rapidity intervals could be easily measured at the STAR or at
the LHCb detectors, which present wide rapidity coverages.
Let us show, then, what our formalism predicts for the

rapidity dependence of the suppression of the away-side
peak. For reasons which will appear clear in the following
discussion, it is very instructive to perform calculations
and show results using both our rcBK formalism and the
alternative Kutak-Sapeta (KS) approach [16], which we
briefly review below.
In the KS approach, the momentum space version of the

BK equation is used (written below for Fp ¼ πF ð1Þ
qg , for a

target proton):

Fpðx; k2Þ ¼ F ð0Þ
p ðx; k2Þ þ αsNc

π

Z
1

x

dz
z

Z
∞

μ2

dl2

l2

�
l2Fpðxz ; l2Þ − k2Fpðxz ; k2Þ

jl2 − k2j þ k2Fpðxz ; k2Þ
j4l4 þ k4j12

�

−
2α2s
R2

��Z
∞

k2

dl2

l2
Fpðx; l2Þ

�
2

þ Fpðx; k2Þ
Z

∞

k2

dl2

l2
ln

�
l2

k2

�
Fpðx; l2Þ

�
: ð25Þ

This way of writing the BK equation is convenient as it
allows to include relatively easily some higher-order
corrections, and in particular running-coupling corrections
[44]. To write down the nonlinear term of Eq. (25) (last line
in the equation) for the impact-parameter-integrated gluon
distribution, it is assumed that integration over impact
parameter yields

R
d2b ¼ πR2, where R is the radius of the

target proton. The evolution of the gluon TMD in the case
of a nucleus, FA, is then obtained through the following
formal substitution in Eq. (25),

1

R2
→ c

A
R2
A
; where R2

A ¼ R2A2=3: ð26Þ

In the above equation, RA is the nuclear radius, A is the
mass number (A ¼ 208 for Pb), and c is a parameter that
is supposed to vary between 0.5 and 1, to assess the
uncertainty related to the nonlinear term. The density FA
obtained from Eq. (25) with the substitution above is the
nuclear gluon density normalized to the number of nucle-
ons in the nuclei.
The KS evolution in Eq. (25) is A-dependent through the

nonlinear term (it has to be so, since FA is an impact
parameter integrated distribution), but the prescription for
the initial condition is to choose the same in the nuclear
case as in the proton case, i.e., FAðx0; k2Þ ¼ Fpðx0; k2Þ.
This is the major difference with respect to the approach
presented in Sec. III, where an A-dependent initial con-
dition and an A-independent evolution were used.
Figure 5 shows an illustration of the effect due to this

difference between the rcBK and the KS approaches, which

are both based on the same small-x evolution. In the figure
we show F ð1Þ

gg for a target nucleus divided by the same
quantity for a target proton,6 for different values of rapidity
Y, which is defined as Y ¼ lnð0.01=x2Þ. On the left, the
rcBK distributions predict the same amount of suppression
at each value of Y in the fully saturated region, kt ∼ 0,
because the small-x evolution is A independent. This is not
the case in panel (b), where the ratio in the KS scheme is
equal to unity for Y ¼ 0 (not shown), and the difference in
the evolution of the nucleus with respect to the proton is
manifest already at kt ¼ 0. Note that the plot is drawn for
c ¼ 0.5, but we stress that the qualitative picture is
essentially independent of the choice of this constant.
This difference shown in Fig. 5 has a non-negligible

impact on the rapidity dependence of the suppression of
the away-side peak, which is the subject under study in
this section. To show this, we calculate the ratio CPðΔϕÞ in
pþ Au over the same quantity in pþ p using both the
standard rcBK approach and the KS alternative proposal,7

and we look at its dependence with rapidity. We keep the
old STAR kinematics of Fig. 3 for the pt of the produced
hadrons, and we compute CPðΔϕÞpA=CPðΔϕÞpp, with
an obvious meaning of the notation, around Δϕ ¼ π in
different intervals of rapidity. Results are shown in Fig. 6.

6The factor 3 appearing in the denominator of the rcBK ratio
corresponds to the initial value of the ratio Q2

s ½A�=Q2
s ½pp�, as

introduced in Sec. III.
7The KS implementation we have in mind is not directly the

one performed in [16] which involves a single gluon TMD, but
rather an adaptation of it to the away-side peak region, involving
the several gluon TMDs needed just as in (5).
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We find that both schemes provide a hierarchy as function
of rapidity expected in the saturation framework: Larger
values of the ratio around Δϕ ¼ π correspond to more
central rapidities, i.e., less suppression at the away-side
peak. We stress that this is a peculiar feature of the
saturation framework, and we strongly encourage mea-
surements of this ratio in different rapidity intervals, which
could provide, arguably, the strongest possible evidence in
favor of the saturation picture. In addition, we expect such
quantity to be almost unaffected by the uncertainties on the
factorization scale (which turned out to be quite large in
Fig. 3), as they are likely to cancel in the ratio.

Besides confirming the generic prediction of the CGC
framework, precise measurements in pþ Au collisions
might as well shed light on the very validity of the
approaches taken for the small-x evolution of the dense
targets. In Fig. 6 we observe two notable differences
between rcBK and KS. First, the dependence on rapidity
at Δϕ ¼ π is about twice stronger in the KS approach
[panel (b)]: This results from having a small-x evolution at
low kt (Fig. 5). Second, the rcBK case presents ratios which
grow towards unity much faster as we move away from the
back-to-back region. Specifically, the ratio at Δϕ ¼ 3 is
larger by 15% in the rcBK scheme. Such visible differences

(a) (b)

FIG. 5. The figure shows F ð1Þ
gg for a target nucleus divided by the same quantity for a target proton, as function of kt. Results are shown

within two different evolution schemes, namely rcBK [panel (a)] and KS approximation [panel (b)]. The ratio is taken at different values
of x2, indicated with different line styles. In the figure, Y ¼ lnð0.01=x2Þ.

(a) (b)

FIG. 6. The figure shows the ratio CPðΔϕÞpA=CPðΔϕÞpp around Δϕ ¼ π. Different line styles represent different rapidity intervals.
Panel (a) shows results with gluon TMDs obtained as described in Sec. III. In panel (b) the TMDs are obtained using the KS scheme,
with c ¼ 0.5.
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are expected to be sizable in the upcoming data, and would
help improve significantly our understanding of the evo-
lution equations of QCD in the nonlinear small-x regime.

VI. CONCLUSION

We have calculated the production of back-to-back pions
in pþ A and pþ p collisions at RHIC energies, using the
state-of-the-art CGC framework, i.e., the cross section
reported in Eq. (5). We have developed a novel approach
for the small-x evolution of the TMD gluon distributions

F ðiÞ
ag , in which they are obtained from the BK evolution with

an evolution kernel that includes running coupling correc-
tions. The evolution is identical for proton and nuclear
targets, the only difference being the value of Q2

s at the
initial condition. The validity of our framework is con-
firmed by the good agreement observed between the
available data and our results in Fig. 3.
We thus derived genuine predictions of the CGC theory.

The away-side peak in upcoming pþ Au data is sup-
pressed by about a factor 2 with respect to pþ p collisions
(Fig. 4), and this suppression tends to disappear as we
reduce the dilute-dense asymmetry of the problem
(Fig. 6). We stress, once more, that the combination of
these two effects is a much stronger probe of gluon
saturation than the suppression of the away-side peak

alone. We have further compared the expectation of our
framework to those of another state-of-the-art rcBK
implementation, namely, the KS approach. Using the
observable proposed in Fig. 6, pþ Au data will poten-
tially allow us to make a data-driven distinction between
these two schemes of small-x evolution.
Before concluding, we stress that our calculation lacks

an important ingredient: The inclusion of the soft gluon
resummation, i.e., of Sudakov factors attached to the cross
section which could potentially solve our problem of a
too narrow correlation peak around Δϕ ¼ π (Fig. 3). This
improvement of our formalism will be presented in an
upcoming publication.
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The solution to the impact-parameter dependent Balitsky-Kovchegov equation with the collinearly
improved kernel is studied in detail. The solution does not present the phenomenon of Coulomb tails at
large impact parameters that have affected previous studies. The origin of this behavior is explored
numerically. It is found to be linked to the fact that this kernel suppresses large daughter dipoles. Solutions
based on a physics motivated form of the initial condition are used to compute predictions for structure
functions of the proton and the exclusive photoproduction and electroproduction of vector mesons.
A reasonable agreement is found when comparing to HERA and LHC data.
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I. INTRODUCTION

Evolution equations are powerful tools to study the high-
energy, equivalently, small-x limit of quantum chromody-
namics (QCD) [1–3]. The availability of quality data from
HERA [4] and the LHC [5] as well as the need for reliable
phenomenology for the proposal of new electron-ion
facilities [6,7] have given an extra impulse to the develop-
ment of these tools.
In this work, the emphasis is placed on the Balitsky-

Kovchegov (BK) evolution equation derived independently
in the operator-product-expansion formalism by Balitsky [8],
and by Kovchegov [9,10] within the color dipole approach
[11–13]. It corresponds to the large-number-of-colors limit
of the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) evolution equations [14–19]. The BK
equation describes the evolution with rapidity, Y, of the
dipole-target scattering amplitude, Nðr⃗; b⃗; YÞ, where r⃗ is the
transverse size of the dipole and b⃗ the impact parameter of
the interaction.
Soon after its introduction, the kernel of the leading order

BK equation was modified to include corrections that take
into account the running of the coupling constant [20–23].
The resulting equation, referred to as rcBK below, when
combined with appropriate initial conditions—embodying
nonperturbative properties of the hadronic targets—and
disregarding the impact-parameter dependence, produces

solutions that have been successfully used to describe a
wide variety of phenomena. In particular, the structure
function data of the proton as measured at HERA was
successfully described [24–27]. A few other applications of
these solutions are, for example, gluon production in
heavy-ion collisions [28], single particle [29] and J=ψ
production in pp and pA collisions [30], dihadron corre-
lations in p-Pb interactions [31] and even the flux of
atmospheric neutrinos [32,33].
As already mentioned, these comparisons of rcBK-based

predictions to data disregarded the impact-parameter
dependence of the dipole amplitude. The reason is that
earlier studies of solutions including the impact parameter
found that the amplitude developed a powerlike depend-
ence on b≡ jb⃗j, the so-called Coulomb tails, which
generate an unphysical growth of the cross section [34].
Nonetheless attempts were made to modify the kernel to
solve this problem, for example, by adding an ad hoc cutoff
for large sizes of the daughter dipoles [35]. The solutions
found had no more Coulomb tails, but needed an extra, so-
called soft, contribution to be able to describe HERA data
on structure functions [36]. (A similar conclusion also
holds for the solutions of the impact-parameter dependent
JIMWLK equation [37].) Nonetheless, this approach did a
good job when confronted with HERA data on exclusive
vector meson production [38].
Recently, the kernel of the leading order equation has

been improved by including the resummation of all double
collinear logarithms [39] as well as two classes of single
logarithmic corrections [40]. (See also early work on this
direction in the context of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation in [41].) Using this kernel and
disregarding the dependence on the impact parameter, it
was also possible to obtain a good description of HERA
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data on the structure function of the proton. Finally, in the
rapid communication [42], we have demonstrated that
solutions of the BK equation with the collinearly improved
kernel and an appropriate initial condition describe cor-
rectly the HERA data on structure functions and the t
dependence of the exclusive photoproduction of J=ψ at one
energy without the need of any additional ad hoc parameter
or correction.
In this contribution the studies reported in [42] are

extended to discuss in depth the behavior of the collinearly
improved kernel and of the solutions of the corresponding
BK equation, comparing them to the rcBK case. In
addition, more details on the comparison to HERA struc-
ture function data are presented, and comparison of our
predictions to relevant HERA and LHC data on exclusive
vector meson photoproduction and electroproduction is
provided. In all cases, the agreement between model and
measurements is satisfactory.
The rest of this contribution is organized as follows: In

Sec. II the formalism used throughout this work is reviewed.
In Sec. III the technical details to solve the collinearly
improved impact-parameter dependent BK equation are
addressed. In Sec. IV the origin of the suppression at large
impact parameters is discussed, the behavior of the solution
is contrasted with solutions of the rcBK case, and the shape
of the amplitude is shown at different values of rapidity,
dipole size and impact parameter. In Secs. V and VI our
predictions are confronted with structure function data
measured at HERA, and to data for cross sections of
exclusive photoproduction and electroproduction of ϕ,
J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons measured both at
HERA and at the LHC, respectively. Section VII contains a
brief summary of our findings and presents our conclusions.

II. REVIEW OF THE FORMALISM

A. The Balitsky-Kovchegov equation

The BK evolution equation reads [21,22]

∂Nðr⃗; b⃗; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr⃗1; b⃗1; YÞ

þ Nðr⃗2; b⃗2; YÞ − Nðr⃗; b⃗; YÞ
− Nðr⃗1; b⃗1; YÞNðr⃗2; b⃗2; YÞÞ; ð1Þ

where r≡ jr⃗j, r1 ≡ jr⃗1j, and r2 ≡ jr⃗2j≡ jr⃗ − r⃗1j are the
sizes of the original dipole and of the two daughter dipoles,
respectively. Note that these are two-dimensional vectors
in the same plane as the impact parameter. The magnitudes
of the corresponding impact parameters are b≡ jb⃗j,
b1 ≡ jb⃗1j, b2 ≡ jb⃗2j. The kernel Kðr; r1; r2Þ is dis-
cussed below.
In this work, the solution to the BK equation is obtained

under the assumption that the scattering amplitude

Nðr⃗; b⃗; YÞ depends solely on the sizes of the dipoles and
of the impact parameter vectors. In practice, this means to
solve the equation

∂Nðr; b; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr1; b1; YÞ

þ Nðr2; b2YÞ − Nðr; b; YÞ
− Nðr1; b1; YÞNðr2; b2; YÞÞ; ð2Þ

subjected to the condition that the angle between r⃗ and b⃗ is
fixed. We chose to fix this angle at zero, meaning that these
vectors are parallel.

B. Kernels of the Balitsky-Kovchegov equation

Several functional forms for the kernel of the BK
equation have been proposed. The ones that are mentioned
in this work are presented in the following.
The leading order kernel is given by

KLOðr; r1; r2Þ ¼
αnrs
2π

r2

r21r
2
2

; ð3Þ

where the nonrunning coupling, αnrs , is fixed to a con-
stant value.
The running coupling kernel Krcðr; r1; r2Þ reads [21]

Krcðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
; ð4Þ

where Nc is the number of colors and αs is the running
coupling, which is further discussed in Sec. II C.
The running coupling kernel with a cutoff to tame the

Coulomb tails generated by the evolution in the impact
parameter is given by [36]

Kbdep
rc ðr; r1; r2Þ ¼ Krcðr; r1; r2ÞΘ

�
1

m2
− r21

�
Θ
�

1

m2
− r22

�
;

ð5Þ

where Θ is the Heaviside function and m a parameter to
limit the size of daughter dipoles.
Finally, the collinearly improved kernel is [40]

Kciðr; r1; r2Þ

¼ ᾱs
2π

r2

r21r
2
2

�
r2

minðr21; r22Þ
��ᾱsA1

KDLAð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p Þ; ð6Þ

where [41]
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KDLAðρÞ ¼
J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þffiffiffiffiffiffiffi
ᾱsρ

p ; ð7Þ

J1 is the Bessel function (the inclusion of the Bessel
function into the BK kernel has been previously discussed
in [43]), the anomalous dimension is A1 ¼ 11=12, and

Lrir ¼ ln
�
r2i
r2

�
: ð8Þ

The sign factor in the exponent �ᾱsA1 takes the value of
the plus sign when r2 < minðr21; r22Þ and the negative sign
otherwise. For the running coupling

ᾱs ¼ αs
Nc

π
; ð9Þ

the smallest dipole prescription is used throughout the
computation according to

αs ¼ αsðrminÞ; ð10Þ

where rmin ¼ minðr1; r2; rÞ. This prescription was com-
pared to other prescriptions in [40], where it was found to
work adequately in this context. This prescription has also
been suggested as the natural option for the BK equation at
next-to-leading order (NLO) [44].

C. Treatment of the coupling constant

In this work the running coupling is computed in the
variable-number-of-flavors scheme, implemented accord-
ing to

αs;nfðr2Þ ¼
4π

β0;nf lnð 4C2

r2Λ2
nf
Þ ; ð11Þ

where nf corresponds to the number of flavors that are
active, C2 is an infrared regulator that takes into account the
approximations made for the computation of the Fourier
transform into the position space and is usually fit to data
[25]. The variable β0;nf is the leading order coefficient of
the QCD beta series and is given by relation

β0;nf ¼ 11 −
2

3
nf: ð12Þ

The value of the QCD scale parameter Λ2
nf depends on the

number of active flavors. When heavier quarks are active
(charm and beauty quarks), its value is obtained from the
relation [26]

Λnf−1 ¼ ðmfÞ
1−

β0;nf
β0;nf−1ðΛnfÞ

β0;nf
β0;nf−1 : ð13Þ

This recursive relation needs to be fixed at one point and for
this the usual choice is to take the value of the running
coupling at the scale of the mass of the Z0 boson. In this
way, Λ5 is set with the use of the experimentally measured
value of αsðMZÞ ¼ 0.1196� 0.0017, where the Z0 mass is
MZ ¼ 91.18 GeV=c2 [45]. The number of active flavors is
set depending on the transverse size of the mother dipole.
The condition that governs this relates the mass of the
heaviest quark considered to the values of the dipole size r.
This condition can be expressed as

r2 <
4C2

m2
f

: ð14Þ

Since all dipole sizes are accounted for in the BK evolution
equation, there is a need to freeze the coupling at a set value
after a certain dipole size is reached [25]. In this work, the
coupling is frozen at αsats ¼ 1 as in [39].
The value of the parameter C affects the description of

data by modifying the speed of the evolution and effec-
tively changes the slope of the structure function. The
higher value of this parameter the more the running of
the coupling is suppressed and, consequently, the slope in
the structure function F2 is less steep. Figure 1 compares
the running of αs for two values of C: the one used here,
C ¼ 9, and the one used in [39], C ¼ 2.586. The value
C ¼ 9 was set heuristically and since the solutions repro-
duce correctly the data, as shown below, it has not been
further optimized.

III. IMPACT-PARAMETER SOLUTION TO THE
BALITSKY-KOVCHEGOV EQUATION

A. Initial condition

The initial condition, already introduced in [42], depends
on the impact parameter; it is suppressed in the regions

FIG. 1. Comparison between the behavior of ᾱs computed from
Eqs. (9) and (11) with C ¼ 2.586 (red) and C ¼ 9 (blue).
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where r or b reaches large values, in order to respect the
geometric nature of the dipole-proton interaction. The shape
of its functional form is a combination of the expected
behavior in r, which is obtained from the Golec-Biernat
Wüsthoff (GBW) model [46], and the impact-parameter
dependence, which uses a Gaussian distribution to reflect the
expected profile of the proton. Such an approach has been
used in similar forms in the past; e.g., in [47–51]. The main
new ingredient with respect to the initial condition used in
the previous studies [20,35,36,38] is the explicit separation
of the contribution from the individual quark and antiquark
forming the dipole. The initial condition is given by

Nðr; b; Y ¼ 0Þ ¼ 1 − exp

�
−
1

2

Q2
s

4
r2Tðbq1 ; bq2Þ

�
; ð15Þ

where bqi are the impact parameters of the quark and
antiquark forming the dipole and

Tðbq1 ; bq2Þ ¼
�
exp

�
−

b2q1
2BG

�
þ exp

�
−

b2q2
2BG

��
: ð16Þ

As a first attempt, the angle between r⃗ and b⃗ was fixed as
shown schematically in Fig. 2. As the results obtained with
this initial condition are satisfactory, no further optimization
has been considered.
The parameters appearing in this initial condition, Q2

s
and BG, have a clear physical interpretation as the satu-
ration scale and as the variance of the Gaussian distribution
of the target in impact parameter, respectively. The value of
theQ2

s parameter is chosen to be 0.496 GeV2, such that the
F2ðx;Q2Þ data are correctly described at the rapidity of the
initial condition. The relation between x and rapidity is
Y ¼ lnðx0=xÞ, where x0 ¼ 0.008. The parameter BG is set

to 3.2258 GeV−2 in order to describe the data for exclusive
photoproduction of J=ψ off protons at a photon–proton
center-of-mass energy hWγpi ¼ 100 GeV, where as cus-
tomary x ¼ ðM2 þQ2Þ=ðW2

γp þQ2Þ is used; here, M
represents the mass of the vector meson.

B. Setup for the numerical solution to the equation

The BK evolution equation does not have an analytic
solution and therefore has to be solved numerically. The
procedure used by us in [27,52] was extended to the case of
the impact-parameter dependent BK equation [42] and the
solution is evolved in rapidity with a step of ΔY ¼ 0.01.
Fixed grids are used for r and b. They are logarithmic

grids of base 10 with 25 evenly spaced points per order of
magnitude, spanning the range from 10−7 to 104 GeV−1 for
both the r and b variables. The integration over r⃗1 is
performed in polar coordinates, where r1 is evaluated in the
same grid as r and the polar angle, denoted by θrr1, is
evaluated in a fixed grid with 21 points separated by a
constant step. The numerical integrations are performed
applying Simpson’s method.
Since the transverse dipole vectors are related as

r⃗ ¼ r⃗1 þ r⃗2, by fixing the values of r and r1 to the
predefined grid, the values of r2 are in general off
the grid. Whenever this happens, linear interpolation in
the log10 space is used to get the desired value of
Nðr2; b2; YÞ. A similar approach is used for obtaining
the value of the scattering amplitude whenever the value
of b1 or b2 is off the grid.
The values of b1 and b2 are then computed from the

relations b⃗1 ¼ b⃗þ r⃗2=2 and b⃗2 ¼ b⃗ − r⃗1=2 assuming a
fixed angle between r⃗ and b⃗. As mentioned above, this
angle is set to zero for the results presented below.
The solution to the BK equation has been implemented

independently using C++ and the Intel Fortran Compiler.
Both implementations have similar performance, with the
Fortran version being slightly faster. In a standard
personal computer, the program performs the evolution
of the dipole amplitude in one unit of rapidity, that is 100
steps for the settings described above, in a bit less than
one hour for one set of parameters.
To test the numerical stability of the selection of the

grid, the setup was modified and the scattering amplitude
was compared at Y ¼ 3, r ¼ 1=GeV and all values of b.
We have changed the step in rapidity from 0.01 to 0.02,
the number of steps in r and b per order of magnitude
from 25 to 15 and the size of the grid in the polar angle
from 21 to 16 and 31 points. Except for the change to 16
points in the grid for polar angles, all other changes
produced a difference below the per-mil level. The use of
the spare grid in polar angle produced changes almost at
one percent level. In summary, with the chosen settings a
numerical precision at the percent level, or even below it,
is expected.

FIG. 2. Schematic picture of the variables that enter the initial
condition presented in Eq. (15).
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IV. THE SOLUTION TO THE BK EQUATION

A. Behavior of the collinearly improved kernel

As was shown in [42], the solutions to the BK equation
do not exhibit Coulomb tails when using the collinearly
improved kernel. This behavior is related to the suppression
of this kernel for large values of the size of the daughter
dipoles. As an illustration, Fig. 3 shows the ratio of the
collinearly improved kernel, see Eq. (4), to the running-
coupling kernel, see Eq. (6). (The parameter C for the
running coupling in this kernel was chosen to be C ¼ 9 just
as in the collinearly improved kernel for the sake of a valid
comparison.) The ratio is computed at r ¼ 1 GeV−1 and
θrr1 ¼ π=2. Other values produce a similar picture. The
figure shows that for large sizes of the daughter dipole the
collinearly improved kernel is orders of magnitude smaller
than the running-coupling one.
To follow up in more detail the origin of this behavior the

kernels are divided into three parts. For the collinearly
improved kernel, they are

K1
ci ¼

ᾱs
2π

r2

r21r
2
2

; ð17Þ

K2
ci ¼

�
r2

minðr21; r22Þ
��ᾱsA1

; ð18Þ

K3
ci ¼ KDLAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p Þ: ð19Þ

The first term, K1
ci, is present already at the leading order if

one considers a fixed value of the running coupling, K2
ci

takes into account the contribution from the single collinear
logarithms, and K3

ci resums double collinear logarithms to

all orders. The entire collinearly improved kernel is then
given by the multiplication of all these factors as

Kci ¼ K1
ciK

2
ciK

3
ci: ð20Þ

For the running coupling BK kernel, the separation in
three parts is as follows:

K1
rc ¼

Ncαsðr2Þ
2π2

r2

r21r
2
2

; ð21Þ

K2
rc ¼

Ncαsðr2Þ
2π2

1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�
; ð22Þ

K3
rc ¼

Ncαsðr2Þ
2π2

1

r22

�
αsðr22Þ
αsðr21Þ

− 1

�
; ð23Þ

whereas the running coupling kernel is then given by the
addition of these constituent terms as

Krc ¼ K1
rc þ K2

rc þ K3
rc: ð24Þ

The contribution of the three terms is shown in Fig. 4 at
r ¼ 1 GeV−1 and θrr1 ¼ π=2 for each of the two kernels.
The fact that the three terms are added inKrc, but multiplied
in Kci explains numerically the suppression. Even though
the first term is essentially the same for both kernels, the
additive character of Krc makes it deviate from the
collinearly improved kernel at large r1 values as shown
in Fig. 4. There, we can see that even though the kernels are
comparable in the low-r1 region, at large r1 values, the K2

rc

and K3
rc terms become dominant, whereas in the collinearly

improved kernel, the K1
ci term suppresses the total value.

The physical reason of this suppression can be traced
back to the fact that large daughter dipoles do not follow
the time-ordering prescription (that is, they would live
longer than the parent dipole) built in when setting up
the resummation that leads to the collinearly improved
kernel [40,53].

B. Contribution of the kernel terms to the evolution

The suppression for large sizes of the daughter dipole in
the kernel is translated as a suppression of the amplitude
at large b in the evolution. In this region only large r1;2
contribute to the total integral in Eq. (2). This is true
because a large impact parameter means that the probing
dipole is far away from the target proton and the amplitude
is therefore (at the initial condition) exponentially sup-
pressed. Only dipoles with r1 (r2) ∼2b can be oriented so
that their impact parameters b1 (b2) are small, such that
they contribute to the evolution. But, since Kci is sup-
pressed in this region, the integral will be suppressed as
well and the scattering amplitude will not grow fast at
large b.

FIG. 3. Absolute value of the ratio Kci=Krc at a fixed dipole size
r ¼ 1 GeV−1 and orientation with respect to the daughter dipole
θrr1 ¼ π=2 as a function of the daughter dipole size.
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This can be numerically studied by computing the
contribution to the evolution of the three terms in the
collinearly improved kernel. Figure 5 shows the scattering
amplitude after evolution to Y ¼ 3 using each time a kernel
formed with different constituents. It is clearly seen that
the impact parameter profile is mostly influenced by the
inclusion of the K3

ci term with the Bessel functions. This
term originates from resumming double collinear loga-
rithms. Note that also the term K2

ci, resumming single
collinear logarithms, suppresses the large b region.

C. Behavior of the solution to the BK equation

The evolution of the scattering amplitude as a function of
r for different fixed values of b is shown in the upper panels

of Fig. 6, while the lower panels of the same figure show
the evolution as a function of b for two fixed values of r.
A two-dimensional view of the amplitude at two stages of
the evolution is shown in Fig. 7. The amplitude decreases
fast for small dipole sizes as expected. The suppression of
large dipole sizes imposed in the initial condition is lifted
with evolution. Similar behavior was observed in previous
studies, e.g., [35]. Nonetheless, in the case of the collin-
early improved kernel the growth at the largest dipole sizes
is not as fast and a shoulder appears, after which the
amplitude is again suppressed. The behavior as a function
of impact parameter has been discussed above; the profile
impact parameter grows, but the development of Coulomb
tails is suppressed. Recently, a similar finding has been
reported for the case of NLO BFKL equations at large
impact parameters [54].
Finally, Fig. 8 shows Nðr; YÞ, defined as

Nðr; YÞ ¼
Z

d2b⃗Nðr; b; YÞ; ð25Þ

for different dipole sizes and for two kernels, the running
coupling and the collinearly improved. For small dipoles
the difference is larger and it grows with rapidity. At larger
dipole sizes the difference between both kernels is smaller.
Note that for the comparisons to data discussed below, the
main numerical contribution comes from the region of
relatively large dipoles. For the case of the structure
function the main contribution for virtualities between 1
and 10 GeV2 comes from dipoles of sizes on the range
around 0.1=GeV to 10=GeV, see e.g., the lower panel of
Fig. 4 in [27].
Another interesting observation is that Nðr; YÞ is related

to the σ0 parameter introduced in studies based on the rcBK
equation without impact-parameter dependence. Basically,
σ0 corresponds to the scale of Nðr; YÞ. Standard values

FIG. 5. The scattering amplitude evolved to Y ¼ 3 with
various kernels illustrates the effect of the different terms in
the evolution and demonstrates that the computation based on
the Kci kernel does not develop the Coulomb tails seen when
the Krc kernel is used.

FIG. 4. The three constituent terms of the BK kernel for the running coupling (left) and collinearly improved cases (right) at a fixed
dipole size r ¼ 1 GeV−1 and orientation with respect to the daughter dipole θrr1 ¼ π=2.
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FIG. 7. Evolution of the scattering amplitude from the initial condition at Y ¼ 0 (left) to Y ¼ 10 (right).

FIG. 6. The scattering amplitude as a solution to the BK equation with the collinearly improved kernel as a function of r for
b ¼ 10−6 GeV−1 (upper left) and b ¼ 4 GeV−1 (upper right), and as a function of b at r ¼ 0.1 GeV−1 (lower left) and at r ¼ 1 GeV−1

(lower right).
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found for this parameter are a few tens of mb, see e.g.,
Table I in [26]. Figure 8 justifies the order of magnitude of
these values from the perspective of an impact-parameter
dependent computation.

V. DEEP INELASTIC SCATTERING

A. Structure function and reduced cross section

Due to the fact that the dipole lives much longer than the
typical interaction time, the computation of the total deep-
inelastic scattering (DIS) cross section can be written as the
convolution of separate terms. One of them is the wave
function representing the probability of a virtual photon
splitting into a quark-antiquark dipole. Here formulas and
notation of [46] are used:

jΨi
Tðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qiððz2 þ ð1 − zÞ2Þϵ2K2

1ðϵrÞ
þm2

qiK
2
0ðϵrÞÞ; ð26Þ

and

jΨi
Lðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qið4Q2z2ð1 − zÞ2K2

0ðϵrÞÞ ð27Þ

for the transverse and longitudinal polarization of the
incoming photon, respectively, where z is the fraction of
the total longitudinal momentum of the photon carried by
the quark, K0 and K1 are the MacDonald functions, Q2 is
the virtuality of the probing photon, eqi is the fractional
charge (in units of elementary charge) of quark i, αem ¼
1=137 and

ϵ2 ¼ zð1 − zÞQ2 þm2
qi ; ð28Þ

where mqi is the mass of the considered quark, which is set
to 100 MeV=c2 for light quarks and 1.3 GeV=c2 for charm
quark and 4.5 GeV=c2 for bottom quark. Note that the
computed structure function does not depend strongly
on the value of the mass of the light quarks (as was
reported in [40]); this has been checked by also using
mu;d;s ¼ 10 MeV=c2, which did not influence the descrip-
tion of data. The total wave function then is

jΨi
T;Lðz; r⃗Þj2 ¼ jΨi

Tðz; r⃗Þj2 þ jΨi
Lðz; r⃗Þj2: ð29Þ

According to the optical theorem, one can link the
dipole-target cross section to the scattering amplitude by

dσqq̄ðr⃗; xÞ
db⃗

¼ 2Nðr⃗; b⃗; xÞ: ð30Þ

Furthermore, it is usual to shift the value of the x at
which the structure function and reduced cross section
are computed according to the photoproduction kinematic
shift [46],

x̃ ¼ x

�
1þ 4m2

qi

Q2

�
: ð31Þ

Using these ingredients, the relation for the computation
of the structure function in the dipole model framework is

F2ðx;Q2Þ ¼ Q2

4π2αem

Z X
i

dr⃗db⃗dzjΨi
T;Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

;

ð32Þ

and the reduced cross section is computed as

σredðy; x;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ;

ð33Þ

where y ¼ Q2=ðsxÞ is the inelasticity of the process, s is the
squared of the center-of-mass energy of the collision and
FLðx;Q2Þ is given by the relation

FLðx;Q2Þ ¼ Q2

4π2αem

Z X
i

dr⃗db⃗dzjΨi
Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

:

ð34Þ

B. Comparison to HERA data

The predictive power of this model is evaluated by
confronting it with data from HERA on the F2ðx;Q2Þ
structure function [55] in Fig. 9. A closer look is given in
Fig. 10 for two values of the photon virtuality. To quantify

0 1 2 3 4 5 6 7 8 9 10
Y []

6−10

5−10

4−10

3−10

2−10

1−10

1

10

N
(r

,Y
) 

[m
b]

-1r=1 GeV

-1r=0.1 GeV

-1r=0.01 GeV

-1r=0.001 GeV

rcBK
ciBK

FIG. 8. Growth of the dipole-target amplitude integrated over
impact parameter as a function of rapidity for solutions of the BK
equations with the running coupling and the collinearly improved
kernel.
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the level of agreement between data and model, Fig. 11
presents the percentage pulls associated with the structure
function, which are given by

d% ¼ 100
FBK
2 ðx;Q2Þ − FHERA

2 ðx;Q2Þ
FHERA
2 ðx;Q2Þ ð35Þ

and byD%, which denotes the average of the corresponding
values of d%. Finally, for completeness Fig. 12 shows the
comparison of the model and data for the charm component
of the proton structure function measured at HERA [55].
Overall, the agreement between prediction and data is

within a few percent over most of the phase space. For
our purposes this level of agreements is satisfactory.
First, the equation we are using does not include the full
angular dependence. Second, we have not needed to add
any ad hoc component to describe data and the values of the

parameters are reasonable from the point of view of the
physics that is being probed. Furthermore, note that the BK
equation that we are using is definitely not the last word on
the subject. The full equation at NLO has already been
computed [44], and a large effort is being done to use it for
phenomenology [53,56–59]. There are also recent develop-
ments regarding the most adequate variable to evolve the
scattering amplitude [60].

VI. PRODUCTION OF VECTOR MESONS

A. Exclusive cross section in the color-dipole approach

Similarly to the DIS process described in the previous
section, the diffractive production of a vector meson as a
result of the interaction of a virtual photon with the proton
can be treated within the color-dipole approach. In this
formalism, the exclusive cross section to produce a vector
meson V is given by

dσγ
�p→Vp

djtj
����
T;L

¼ ð1þ β2ÞðRT;L
g Þ2

16π
jAT;Lj2; ð36Þ

where AT;L is the scattering amplitude of the process. It is
given as a convolution of the overlap of photon-meson
wave functions with the dipole cross section given in
Eq. (30) (for a detailed derivation see e.g., [61,62]) and
takes the following form:

AT;Lðx;Q2; Δ⃗Þ ¼ i
Z

dr⃗
Z1

0

dz
4π

Z
db⃗jΨ�

VΨγ� jT;L

× exp ½−iðb⃗ − ð1 − zÞr⃗ÞΔ⃗� dσ
qq̄

db⃗
; ð37Þ

where the subscripts T, L denote the contribution from the
virtual photon with transverse, respectively longitudinal,
polarization, Ψγ� is the wave function of a virtual photon

FIG. 10. Close-up comparison of the structure function data from HERA [55] (blue points) to the b-dependent prediction (red line) for
Q2 ¼ 8.5 GeV2 (left) and Q2 ¼ 12 GeV2 (right).

FIG. 9. Comparison of the structure function data from
HERA [55] (solid circles) to the prediction of the impact-
parameter dependent BK equation with the collinearly im-
proved kernel (lines).
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which fluctuates into a dipole, ΨV represents the wave
function of the vector meson, and Δ⃗2 ≡ −t, the square of
the four momentum transferred in the proton vertex. Under
the assumption of large photon-proton center-of-mass
energies Wγp,

x ¼ Q2 þM2

W2
γp þQ2

; ð38Þ

where M is the mass of the given vector meson.
The wave functions of a vector meson are modeled under

the assumption that the vector meson is predominantly a qq̄
pair with the same polarization and the spin structure as the
original photon. The overlap of the photon-meson wave
functions in Eq. (37) is given as

jΨ�
VΨγ� jT ¼ êfe

NC

πzð1 − zÞ ½m
2
fK0ðϵrÞϕTðr; zÞ

− ðz2 þ ð1 − zÞ2ÞϵK1ðϵrÞ∂rϕTðr; zÞ�; ð39Þ

and

jΨ�
VΨγ� jL ¼ êfe

NC

π
2Qzð1 − zÞK0ðϵrÞ

�
MϕLðr; zÞ

þ δ
m2

f −∇2
r

Mzð1 − zÞϕLðr; zÞ
�
; ð40Þ

with êf being the effective charge of the given vector
meson, ϵ defined by Eq. (28), and the parameter δ is a

FIG. 12. The comparison of the prediction for the reduced cross
section for charm to data from HERA [55].

FIG. 11. The percentage pulls for various values of Q2 and their average value.
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switch to include (δ ¼ 1) or exclude (δ ¼ 0) the nonlocal
term in the longitudinal contribution. The scalar part ϕT;L

of the wave function is, in general, model dependent. For
our studies, we use the boosted Gaussian model [63–65] in
which the δ parameter is fixed to one. The values of the
parameters for the wave functions of all vector mesons are
fixed according to Table I in [66].
The total exclusive cross section to produce a vector

meson is given by the sum of the transverse and the
longitudinal contributions defined by Eq. (36). Moreover
two important corrections have to be applied. The deriva-
tion of the formula for the exclusive vector meson cross
section is performed under the assumption that the scatter-
ing amplitude AT;Lðx;Q2; Δ⃗Þ is purely imaginary. The real
part of the amplitude can be accounted for by the extra term
(1þ β2) in Eq. (37), where β is the ratio of real to imaginary
parts of the scattering amplitude, for details see [61]. The
other correction takes into account that there are two values
of x involved in the interaction of the dipole with the proton

and one should therefore use the off-diagonal gluon
distribution for vector meson production. This effect can
be accounted for by multiplying the scattering amplitude by
a factor RT;L

g , called the skewedness correction [67].

B. Comparison to data

Using the model described in this paper, the cross
sections for exclusive photoproduction and electropro-
duction of ϕ, J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons are
presented at different virtualities of the exchanged photon
and they are compared to available experimental data. The
presented results are calculated at the scales which allow
perturbative treatment of the specific parts of the model.
In Fig. 13 a comparison of our predictions for the jtj

distributions and the total cross sections with HERA H1
[68] and ZEUS [69] data for the exclusive electroproduc-
tion of the ϕ meson for several values of Q2 is shown. The
predictions give a very good description of the available
data, especially at low photon virtualities.
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The predictions for the exclusive production of the J=ψ
meson are compared with the experimental data from H1
[70,71] and ALICE [72,73] experiments in Figs. 14–16, for
several different measurements of kinematic observables.
In the left panel of Fig. 14, the comparison of the jtj
distribution of the photoproduction cross section is pre-
sented. The predictions give very good agreement with the
data at energies Wγp ¼ 55 GeV and Wγp ¼ 100 GeV. The
result for Wγp ¼ 78 GeV is slightly underestimated at low
values of jtj, however one can notice the very small
difference in the measured data with respect to the result
for Wγp ¼ 100 GeV. Since the value of Wγp from the
experimental data is a mean value estimated from a
measured energy range, the result of the model can be
considered satisfactory. The same comparison for the
electroproduction at three different values of Q2 can be

seen in the right panel of the same figure. Although our
predictions do not describe all the data points, we conclude
the agreement between the data and the model to be
qualitatively good. The same conclusion applies to the
comparison of the model predictions with the measured
Wγp dependence of the exclusive differential photoproduc-
tion and electroproduction cross sections at several fixed
values of jtj presented in Fig. 15. The agreement of the
predictions with the data is very good at low values ofWγp,
however at larger values (∼102 GeV), the predictions are
underestimated when compared to experimental photo-
production data. We have also obtained total cross section
for the J=ψ production which is presented in the left panel
of Fig. 16. The predictions for the electroproduction at
three different values of Q2 give a very good description of
the available data. The result for photoproduction gives a

210 310

 [GeV]pγW

1

10

210

310]
-2

 [n
b 

G
eV

d|
t|

p
ψ

 J
/

→
p γσd

 
 2 |t| = 0.03 GeV
 2 |t| = 0.1 GeV
 2 |t| = 0.22 GeV
 2 |t| = 0.43 GeV
 2 |t| = 0.83 GeV

H1 (2006) data vs model with b-BK
2 = 0.05 GeV2Q

210 310

 [GeV]pγW

1

10

210

]
-2

 [n
b 

G
eV

d|
t|

p
ψ

 J
/

→
p γσ d

 

 2 |t| = 0.05 GeV

 2 |t| = 0.19 GeV

 2 |t| = 0.64 GeV

H1 (2006) data vs model with b-BK
2 = 8.9 GeV2Q

FIG. 15. Comparison of the predictions of the model (solid lines) with HERA data from H1 [70] for theW dependence of the exclusive
photoproduction (left) and electroproduction (right) cross sections of the J=ψ meson at fixed jtj values.

210 310

 [GeV]pγW

1

10

210

310

 [n
b]

p
ψ

 J
/

→
p γσ

Photoproduction
H1 (2006)
H1 (2013)
ALICE p-Pb (2014)
ALICE p-Pb (2018)

2 = 0.05 GeV2Model, Q

Electroproduction
2 = 3.2 GeV2Model, Q

2 = 7 GeV2Model, Q
2 = 22.4 GeV2Model, Q

H1 (2006)

H1 (2006)

H1 (2006)

210 310

 [GeV]pγW

1−10

1

p
ψ

 J
/

→
p γσ

(2
S

)p
ψ  

→
p γσ

2 = 0.05 GeV2Model, Q
2 = 16 GeV2Model, Q

2 = 0.05 GeV2H1 data, Q
2 = 16 GeV2ZEUS data, Q

FIG. 16. Comparison of the predictions of the model (solid lines) with HERA data from H1 [70,71] and LHC data from ALICE
[72,73] for the Wγp dependence of the exclusive photoproduction and electroproduction cross section of the J=ψ meson (left) and with
HERA data from H1 [74] and ZEUS [75] for theWγp dependence of the exclusive photoproduction and electroproduction cross section
J=ψ=ψð2SÞ ratio (right).

BENDOVA, CEPILA, CONTRERAS, and MATAS PHYS. REV. D 100, 054015 (2019)

054015-12



good agreement with the data at low values of Wγp,
however at high energies the result is again underestimated
when compared to data.
Also, the exclusive cross section of the ψð2SÞmeson was

calculated within the model. The experimental data are not
available for the total cross sections, but only for a ratio of
the ψð2SÞ to J=ψ cross sections, the predictions for these
ratios for photoproduction and electroproduction at Q2 ¼
16 GeV2 are calculated and compared to data from H1
[74], and ZEUS [75], respectively, in the right panel of
Fig. 16. The description of the data is not very good, yet the
large uncertainties of the experimental data do not allow us
to make any final conclusions in this case.
To complete the set of the predictions based on the BK

equation, the exclusive photoproduction of the ϒð1SÞ
meson is presented in Fig. 17. The prediction is compared
with experimental data obtained at HERA by H1 [76]
and ZEUS [77] experiments. It is also compared with the
two latest measurements—in proton-proton collisions atffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 8 TeV by LHCb [78], and in
proton-lead collisions at

ffiffiffi
s

p ¼ 5.02 TeV by the CMS
experiment [79]. The description of the data is good,

although the large uncertainties prevent us from making
any strong conclusions regarding the agreement of the
predictions with the data.

VII. CONCLUSIONS

The solution of the Balitsky-Kovchegov equation with
the collinearly improved kernel and including the impact-
parameter dependence has been obtained numerically. This
solution does not show the so-called Coulomb tails that
have appeared in previous attempts to include the impact-
parameter dependence. We have shown that the suppres-
sion at large values of the impact parameter is due to the
suppression of contributions from daughter dipoles of large
sizes in the terms of the collinearly improved kernel that
deal with the resummation of double and single collinear
logarithms.
The solutions based on a physics-inspired initial condition

have been confronted with HERA and LHC data of the
structure function of the proton measured in deep-inelastic
scattering and of exclusive vector meson photoproduction
and electroproduction. The predictions described data over a
large kinematic range in scale and in energy.
The dipole scattering amplitudes computed in this work

are publicly available on the website [80] along with
instructions on how to use them.
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Abstract

In this work we present dipole scattering amplitudes, including the dependence on the impact-

parameter, for a variety of nuclear targets of interest for the electron-ion colliders (EICs) being

currently designed. These amplitudes are obtained by numerically solving the Balitsky-Kovchegov

equation with the collinearly improved kernel. Two different cases are studied: initial condi-

tions representing the nucleus under consideration and the solutions based on an initial condition

representing a proton complemented by a Glauber-Gribov prescription to obtain dipole-nucleus

amplitudes. We find that the energy evolution of these two approaches differ. We use the obtained

dipole scattering amplitudes to predict (i) nuclear structure functions that can be measured in

deep-inelastic scattering at EICs and (ii) nuclear suppression factors that reveal the energy evolu-

tion of shadowing for the different cases we studied. We compare our predictions with the available

data.
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I. INTRODUCTION

Feasibility studies for electron-ion colliders (EICs), like those proposed in the USA [1]

or at CERN [2], are an essential ingredient towards the design of these machines. Inclusive

measurements are among the most important observables in this context. In particular, the

study of the structure function FA
2 (x,Q2) at small Bjorken-x for photons of virtuality Q2 at

a pertubative scale, and for a variety of nuclei A, is expected to yield a new understanding

of the high-energy limit of quantum chromodynamics (QCD). Comparison of these mea-

surements with those reported by H1 and ZEUS [3] for the corresponding structure function

of the proton, F p
2 (x,Q

2), promise to shed new light on the origin of shadowing, the phe-

nomenon that the parton distributions of nucleons bounded in a nucleus are suppressed with

respect to those of free nucleons [4].

At small values of x, the dominant parton distribution is that of gluons; thus the case of

gluon shadowing has been the focus of attention for theorists since a long time; e.g., [5, 6].

A process expected to occur in this kinematic regime is saturation, namely the fact that

the density of gluons is so high that they start to interact with each other, even in the

domain of perturbative QCD. (For a recent review see [7].) An early equation to describe

saturation was introduced in the seminal work [8], while nowadays it is common to use the

Balitsky-Kovchegov (BK) equation for this type of studies. The leading order BK equation,

discussed in Sec II, was derived in [9] and [10] using two independent approaches. Later on,

corrections to account for the running of the coupling [11, 12] as well as the resummation

of other logarithmic contributions [13, 14] were incorporated into this formalism. In the

approximation of considering a large homogeneous target, that is, disregarding the impact

parameter dependence, this equation has been successfully used to describe the existing

F p
2 (x,Q

2) data, e.g. in [14, 15].

The first attempt at solving the BK equation including the impact-parameter depen-

dence [16] found that the solutions developed so-called Coulomb tails: an unphysical grow

of the amplitude at large impact parameters. Nonetheless, using some extra ad hoc correc-

tions it was possible to describe the structure function data of the proton [17, 18]. Recently,

our group discovered that using the collinearly-improved kernel introduced in [14] the prob-

lem of Coulomb tails is tamed such that a successful phenomenology using the BK equation

is possible [19, 20].
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In this article, we solve the BK equation with the collinearly improved kernel for different

nuclei of importance for future EICs and predict their structure functions as well as the

corresponding nuclear suppression factors, which are a direct measurement of shadowing. We

study two cases: solutions obtained from an initial condition representing the nuclei (denoted

as b-BK-A below), and solutions of the proton case coupled to a Glauber-Gribov prescription

to obtain the nuclear structure functions (denoted as b-BK-GG). Other approaches to the

computation of nuclear structure functions can be found for example in [21–25]

The rest of the text is organised as follows: Sec. II contains a brief review of the formalism,

including the definition of the initial conditions and the values of the parameters used in

the computation. Section III discusses the behaviour of the dipole scattering amplitudes

obtained by solving the BK equation for the different nuclei and the b-BK-A and b-BK-

GG approaches. Section IV presents our predictions for the nuclear structure functions

and nuclear suppression factors for all cases under study as well as a comparison with the

available data. Finally, in Sec. V we provide a brief summary of the presented work as well

as an outlook of future steps.

II. FORMALISM

A. The Balistsky-Kovchegov equation with the collinearly improved kernel

The leading order Balitsky-Kovchegov equation [9, 10] is

∂N(~r,~b, Y )

∂Y
=
∫

d~r1K(r, r1, r2)
(
N(~r1, ~b1, Y ) +N(~r2, ~b2, Y )−N(~r,~b, Y )

−N(~r1, ~b1, Y )N(~r2, ~b2, Y )
)
. (1)

It describes the evolution in rapidity Y of the dipole scattering amplitude N(~r,~b, Y ). Here,

the sizes of the mother and daughter dipoles are r ≡ |~r |, r1 ≡ |~r1|, and r2 ≡ |~r2| ≡ |~r − ~r1|,
respectively. The magnitudes of the corresponding impact parameters between these dipoles

and the hadronic target are b ≡ |~b|, b1 ≡ |~b1|, b2 ≡ |~b2|. All these vectors are two-dimensional

and live in the impact-parameter plane.

We solve the equation for the case when the following two conditions are fulfilled, (i) the

evolution depends only on the magnitude of both the dipole size and the impact-parameter
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vectors, and (ii) the angle between ~r and ~b is fixed to zero:

∂N(r, b, Y )

∂Y
=
∫

d~r1K(r, r1, r2)
(
N(r1, b1, Y ) +N(r2, b2, Y )−N(r, b, Y )

−N(r1, b1, Y )N(r2, b2, Y )
)
. (2)

For the kernel we use the recently proposed collinearly improved version [13]

Kci(r, r1, r2) =
αs

2π

r2

r21r
2
2

[
r2

min(r21, r
2
2)

]±αsA1

KDLA(
√
Lr1rLr2r), (3)

where (see also [26])

KDLA(ρ) =
J1(2

√
αsρ2)√

αsρ
, (4)

J1 is the Bessel function, the anomalous dimension is A1 = 11/12, and Lrir = ln (r2i /r
2).

The sign is positive when the size of the original dipole is smaller than the size of each

of the daughter dipoles and negative otherwise. The smallest dipole prescription is used

for the running coupling: αs = αs(rmin)Nc/π, where rmin = min(r1, r2, r). Note that this

prescription has also been put forward as the natural scale for the BK equation at next-to-

leading order [27]. The variable-number-of-flavours scheme is used with the same parameters

as in our previous work [19, 20].

B. Glauber-Gribov approach to the nuclear dipole amplitude

Following [21], one can use the solution of the BK equation for the case of a proton target

to obtain the dipole scattering amplitude for a nuclear target by using a Glabuer-Gribov

approach

NA(r, b, Y ) =
[
1− exp

(
− 1

2
TA(b)σqq̄(Y, r)

)]
, (5)

with

σqq̄(Y, r) =
∫
d2~b2Np(r, b, Y ). (6)

This approach has been used in other studies, e.g. those reported in [21, 22] (see also [24]

for a more general approach that reduces to the Glabuer-Gribov case for large nuclei). The

nuclear thickness function TA(b) is obtained from a Woods-Saxon distribution for the nuclear

matter density

ρA(x, y, z) = ρ0
1

exp [(r − R)/a] + 1
, (7)
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TABLE I. Values of the parameters of the Wood-Saxon distribution, see Eq. (7), used in the

computations reported in this text, and the value of the Q2
s0(A) parameter obtained as explained

in the text. The Wood-Saxon parameters are taken from [29].

Nucleus A R (fm) a (fm) ρ0 (fm−3) Q2
s0(A) (GeV2)

Al 27 2.84 0.569 0.2015 0.315

Ca 40 3.51 0.563 0.17611 0.341

Fe 56 3.980 0.569 0.17655 0.390

Cu 64 4.2 0.569 0.1746 0.409

W 184 6.510 0.535 0.1493 0.553

Pb 208 6.624 0.549 0.16 0.609

(where r ≡ √
x2 + y2 + z2) by integrating it over the longitudinal coordinate z

TA(b) =

+∞∫

−∞
dzρA(x, y, z), (8)

with the x and y coordinates in the impact-parameter plane. It is normalised according to
∫
d2~b TA(b) = A. (See for example [28] for full details on the formalism.) The values of

the Woods-Saxon parameters are given in Table I. This approach is denoted as b-BK-GG

in what follows.

C. Initial conditions for the nuclear targets

To solve the BK equation an initial condition is needed. In our previous work [19, 20] we

introduced a new functional form for the initial condition given by

Np(r, b, Y = 0) = 1− exp

(
−1

2

Q2
s0

4
r2Tp(bq1 , bq2)

)
, (9)

where Q2
s0 is a free parameter representing the saturation scale at a zero impact parameter,

and bqi are the impact parameters of the quark and anti-quark forming the dipole.

For the case of the proton, we assumed a Gaussian like distribution which leads to

Tp(bq1 , bq2) =

[
exp

(
− b2q1
2BG

)
+ exp

(
− b2q2
2BG

)]
. (10)
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FIG. 1. Dependence of the Q2
s0(A) parameter as a function of A1/3 (solid bullets) compared with

a linear function (blue line). See text for details.

The parameter BG was set to 3.2258 GeV−2, while Q2
s0 took the value 0.496 GeV2. With

these values a satisfactory description of HERA and LHC data on the proton structure

functions and exclusive production of vector mesons is achieved [19, 20].

Here, we follow a similar approach for the nuclear case, but assuming a Woods-Saxon

instead of a Gaussian distribution:

NA(r, b, Y = 0) = 1− exp

(
−1

2

Q2
s0(A)

4
r2TA(bq1 , bq2)

)
, (11)

with

TA(bq1, bq2) = k [TA(bq1) + TA(bq2)] . (12)

where the factor k ensures that kTA(0) = 1. This approach is denoted as b-BK-A in what

follows.

As the nuclear parameters are already fixed, the only free parameter is Q2
s0(A). We

have fixed these parameters using N(r, b, Y = 0) where Y = ln(x0/x) with x0 ≡ 0.008.

This dipole scattering amplitude at the initial rapidity is used to compute structure func-

tions and to compare them with the predictions obtained using the EPPS16 nuclear parton

distributions [30].

In detail, we have varied the value of the Q2
s0(A) parameter in order to get a small relative

deviation from the structure function F2(x = 0.008, Q2) as predicted by the EPPS16 PDFs.

The comparison is done for the following values of the photon virtuality: Q2 ∈ [3.5, 4.5, 6.5,

8.5, 10, 12, 15, 18, 22, 27] GeV2 to avoid the nonperturbative region at very low Q2 and to

6



stay in the region of virtualities where the BK equation is expected to work the best. We

have used LHAPDFs [31] to obtain the PDF sets and the APFEL software [32, 33] for the

computation of the structure function. The values obtained for Q2
s0(A) by this procedure

are reported in the last column of Table I.

Interestingly, this parameter follows a linear behaviour as a function of A1/3 as shown in

Fig. 1. This opens the possibility of studying other nuclei for which there is currently no

information in the EPPS16 set of parton distributions.

III. BEHAVIOUR OF THE DIPOLE SCATTERING AMPLITUDE

The dipole scattering amplitude in the b-BK-A approach computed using the colinearlly

improved kernel with the initial condition given by Eq. (11) is shown in Fig. 2 for two

values of the rapidity and at a fixed value of r, respectively b, for three different nuclei. The

chosen rapidity values are the initial condition (Y = 0) and Y = 5, which corresponds to

x ≈ 5.4 · 10−5 representing the case of a dipole scattering amplitude evolved to a rapidity of

potential interest of future EICs. The impact parameter dependence is clearly different for

the three depicted nuclei, reflecting their different sizes, while the shape of the amplitude

as a function of r is similar for the three cases. The main effects of the evolution are the

growth of the profile in impact parameter, the softening of the large r behaviour, and a

small advancement of the wave front towards smaller dipoles.

Figure 3 shows a comparison of the two methods, b-BK-A and b-BK-GG, to compute

the nuclear dipole scattering amplitude presented above. The differences are remarkable.

The absolute value of the amplitude for dipoles of size 1/GeV is substantially smaller for

b-BK-A. Regarding the dependence on the dipole size at an impact parameter of 0.1/GeV

the b-BK-GG approach samples dipole sizes around one order of magnitude smaller than

those sampled in the b-BK-A case for large dipoles.

These differences between the dipole scattering amplitudes in the two approaches reflect

themselves in one of the most important parameters that can be obtained from these objects:

the saturation scale and its evolution. As it is standard, we define the saturation scale at

a given rapidity and a fixed impact parameter as the dipole size that produces a scattering

amplitude equal to a constant that commonly is chosen to be one half. Figure 4 shows the

behaviour of the saturation scale at an impact parameter of 0.01/GeV for two rapidities as a

7
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FIG. 2. Dipole scattering amplitude in the b-BK-A approach at the initial condition (left) and

after evolution to Y = 5 (right) as a function of the impact parameter for a dipole size r = 1/GeV

(upper panels), and as a function of the dipole size for an impact parameter b = 0.1/GeV (lower

panels).

function of A1/3. The saturation scale shows a linear behaviour in this representation. The

intercept is larger for b-BK-A with respect to b-BK-GG, while the slope is smaller. The

evolution of both the intercept and the slope seems to be different in both cases. For all values

of A the saturation scale at Y = 5 is smaller for b-BK-A than for b-BK-GG predictions.

Note that the figure would look the same at other values of the impact parameter due to

the flat form of the dipole scattering amplitude as shown in Fig. 3. Only for larger values

of the impact parameter, around 4 to 5/GeV, the drop at the border of the nuclei changes

the behaviour of Fig. 4.
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FIG. 3. Comparison of the dipole scattering amplitudes computed for b-BK-A (solid line) with the

b-BK-GG approach (dashed line). The comparisons are done at Y = 0 and Y = 5 for two nuclei,

Ca (left) and Pb (right) as a function of the impact parameter for a dipole size r = 1/GeV (upper

panels), and as a function of the dipole size for an impact parameter b = 0.1/GeV (lower panels).

IV. PREDICTIONS FOR NUCLEAR STRUCTURE FUNCTIONS AND NU-

CLEAR SUPPRESSION FACTORS

A. Relation between the dipole scattering amplitude and the structure function

Using as input the dipole scattering amplitudes, the structure function FA
2 (x,Q2) is

computed as

FA
2 (x,Q2) =

Q2

4π2αem

∫ ∑

i

d~rd~bdz | Ψi
T,L(z, ~r) |2

dσqq̄(~r, x̃)

d~b
, (13)
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FIG. 4. Saturation scale at two different rapidities for an impact parameter of 0.01/GeV for the b-

BK-A (left) and b-BK-GG (right) approaches. The solid bullets are the results from the evolution

and are well described by a linear function. See text for details.

where, following [34], x̃ = x(1 + (4m2
qi
)/Q2) with mqi the mass of the i-quark. The dipole–

target cross section is related to the dipole scattering amplitude by

dσqq̄(~r, x)

d~b
= 2NA(~r,~b, x). (14)

Finally, the wave function representing the probability of a virtual photon splitting into a

quark-antiquark dipole, and following the notation of [34], is

| Ψi
T (z, ~r, Q

2) |2= 3αem

2π2
e2qi

(
(z2 + (1− z)2)ǫ2K2

1 (ǫr) +m2
qi
K2

0 (ǫr)
)
, (15)

and

| Ψi
L(z, ~r, Q

2) |2= 3αem

2π2
e2qi

(
4Q2z2(1− z)2K2

0 (ǫr)
)

(16)

for the transverse and longitudinal polarisation of the incoming photon, respectively. The

total wave function is

| Ψi
T,L(z, ~r) |2=| Ψi

T (z, ~r) |2 + | Ψi
L(z, ~r) |2 . (17)

In these equations K0 and K1 are the MacDonald functions, z is the fraction of the total

longitudinal momentum of the photon carried by the quark, eqi is the fractional charge (in

units of elementary charge) of quark i, αem = 1/137 and ǫ2 = z(1 − z)Q2 + m2
qi
. As in

our previous work [19, 20] we set the quark masses to 100MeV/c2 for light, 1.3GeV/c2 for

charm, and 4.5GeV/c2 for bottom quark. As reported for example in [13] the numerical

results do not depend strongly on these choices.
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FIG. 5. The upper panels show the dependence on x of the nuclear structure function FA
2 (x,Q2)

computed in the b-BK-A and b-BK-GG approaches for two values of the photon virtuality Q2

and two nuclei: Ca (left) and Pb (right). The ratio of the structure functions in the b-BK-A and

b-BK-GG approaches is shown in the lower part of those panels. The bottom panels show the

contribution of charm, that is they show the structure function FA
2C(x,Q

2).

B. Predictions for the nuclear structure function

The nuclear structure functions FA
2 (x,Q2) for Ca and Pb are shown in the upper panels

of Fig. 5 as a function of x for two values of the photon virtuality Q2. Results in both

approaches, b-BK-A and b-BK-GG, are shown in the figure which also shows the ratio of

both predicted structure functions. There is a clear difference between both sets of results.

Furthermore, the difference shows a dependence on x, on Q2, and a striking dependence on

A, where the difference between both approaches grows from small to large nuclei.

A measurement of this structure function is expected to be one of the first results of
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any future EIC. Given the precision expected from these machines, these measurements will

select which of the two approaches describes better the data.

The lower panels of Fig. 5 show that the difference between the b-BK-A and b-BK-GG

approaches are larger for the charm structure function, FA
2C(x,Q

2), than for the inclusive

case, and that there is a very soft dependence on kinematic variables and nucleus species.

A measurement of FA
2C(x,Q

2) would offer additional stringent constraints to predictions of

the structure function of nuclei.

C. Predictions for the nuclear suppression factor

As a final observable we present the nuclear suppression factor, defined as the ratio

RpA ≡ FA
2 (x,Q2)/(A F p

2 (x,Q
2)), which is expected to be unity if the structure of a free

nucleon is equal to that of a bounded one. This ratio is the most direct way to observed

nuclear shadowing, which for small x is dominated by gluon shadowing and thus may be an

important tool to determine the behaviour of saturation across different nuclei.

This factor is shown in the upper panels of Fig. 6 as a function of x. Exiting data at the

same Q2 from [35] is also shown as a cross check of the procedure. For the x dependence

of RpA one sees a linear decrease (in logarithmic scale) towards small x for both nuclei, but

the linear behaviour is reached later for the lighter nucleus, specially at higher Q2 scales.

The b-BK-A computation predicts stronger shadowing than the b-BK-GG case with this

behaviour seemingly dependent on Q2. The same figure also shows, in the bottom panels,

the A-dependence of the nuclear suppression factor for two Q2 scales and for two values of

x. As expected, shadowing becomes stronger as the size of the nucleus grows. The different

behaviour of shadowing for different nuclei in the b-BK-A and b-BK-GG is clearly seen in

this observable.

Figure 7 shows the comparison of our predictions with those obtained using EPPS16 which

is considered a standard of our current knowledge of nuclear shadowing. The comparison

is done for Ca and Pb as middle and large nuclei. The predictions are compared with data

from [35]. Note that the predictions are at a Q2 scale of 2.42 GeV2 which we considered

the lowest we would like to go to stay in a somehow perturbative scale. But the data is

measured at a different Q2 for each x value (as illustrated by the use of empty markers for

data at smaller Q2). The Q2 values are reported in the figure.
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Focusing on the predictions, the behaviour at small x is definitely different for the EPPS16

and BK computations. Note that the difference between EPPS16 and b-BK at the initial

scale used for the BK evolution have two origins: one, that the parameter of the initial scale

shown in Fig. 1 is chosen by comparing with larger values of Q2 than those shown in Fig. 7,

and two that the prediction for the structure of the proton is substantially different for

EPPS16 and for the b-BK approach reported in [19, 20]. Given that the difference among

the approaches goes beyond a normalisation factor and shows a strong x-dependence, data

from future EICs are expected to be precise enough to decide which prediction is closer to

reality.

Comparing with the currently available data, and taking into account (i) the different

Q2 in data and predictions, and (ii) that for measurements the values are quite low (even

below what one would expect to be valid for an approach based on perturbative QCD), the

b-BK-A prediction seems to do a reasonable job of describing data. The EPPS16 prediction

also does quite well for Pb, but slightly worse for Ca. The b-BK-GG prediction on the other

hand is good when comparing with Ca, but it suffers a bit when compared with Pb.

V. SUMMARY AND OUTLOOK

The dipole scattering amplitudes, including the impact parameter dependence, for dif-

ferent nuclei have been obtained by solving the BK equation with the collinearly improved

kernel. These amplitudes have been used to predict structure functions and nuclear satura-

tion factors in kinematic ranges of interest for future EICs as those currently planned in the

USA and at CERN. We followed two approaches: modelling the target directly as a nucleus

using Wood-Saxon parameterisations (denoted as b-BK-A above), and solving for a proton

and using a Glauber-Gribov prescription to go to the nuclear level (denoted as b-BK-GG

above).

We find sizable differences between these approaches. These differences show a depen-

dence on x, Q2 and A such that data from a future EIC will be able to select the most

appropriate approach for the description of data. We also compared nuclear suppression

factors with those predicted using the EPPS16 formalism which is taken as a standard of

our current knowledge of nuclear shadowing. We find that all three approaches yield differ-

ent predictions and that the b-BK-A computation seems to provide a better description of
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FIG. 6. Nuclear suppression factor at two values of the photon virtuality Q2 = 2.42 GeV2 (left)

and Q2 = 7.91 GeV2 (right) as a function of x for Ca and Pb (upper panels) and as a function of

A at different fixed values of x (lower panels). The predictions are compared with data from [35].

existing data.

These studies show that the data expected from a future EIC have the capability of

select the best theoretical approach and thus to advance our understanding of the nuclear

structure, of shadowing, and of the high energy limit of QCD.

The dipole scattering amplitudes computed in this work are publicly available in the

website https://hep.fjfi.cvut.cz/ along with macros and instructions to facilitate their

use for anybody interested.
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Abstract

The coherent photonuclear production of a J/ψ vector meson at the LHC has

been computed using two different sets of solutions of the impact-parameter

dependent Balitsky-Kovchegov equation. The nuclear dipole scattering ampli-

tudes are obtained either from (i) solutions for this process off proton targets

coupled with a Glauber-Gribov prescription, or (ii) from solutions obtained with

an initial condition representing the nucleus. These approaches predict differ-

ent cross sections, which are compared with existing data from ultra-peripheral

collisions at the LHC. The latter approach seems to better describe current

measurements. Future LHC data should be precise enough to select one of the

two approaches as the correct one.

Keywords: Impact-parameter dependent Balitsky-Kovchegov equation,

coherent vector meson photoproduction, LHC

1. Introduction

The exclusive photoproduction of a J/ψ vector meson off a hadron has been

recognised for many years as a very sensitive probe of the gluonic structure of

hadrons in the perturbative regime of quantum chromodynamics (QCD) [1, 2];

thus it has been extensively studied at HERA [3, 4]. In recent years, this process

has attracted renewed attention. On one hand, due to measurements at the LHC

including production off protons and off Pb nuclei and reaching unprecedented

energies [5, 6, 7]. On the other, because of studies related to the potential of

electron-ion colliders [8, 9].

Preprint submitted to Journal of LATEX Templates June 24, 2020



As mentioned above, there is plenty of high-quality data from HERA on

production off proton targets. Therefore, many computations predicting the

behaviour of this process off nuclear targets start from a description of the

process off nucleons, where the parameters of the given model are fixed by

HERA data, and then apply some form of Glauber formalism to predict the

cross sections for photonuclear production. Such an approach has been followed

for example in [10, 11, 12, 13].

The applicability of using a Glauber approach has been analysed since a

long time, e.g. [14, 15], but recent advances in the understanding of saturation

through the solution of the Balitsky-Kovchegov (BK) equation [16, 17, 18] al-

low for new insights into this question. In particular, the implementation of

collinear corrections to the kernel [19, 20] together with a suitable initial con-

dition have been used to find impact-parameter dependent solutions of the BK

equation [21], which correctly describe HERA data on vector meson photo- and

electroproduction off protons [22].

Recently, these advances have been extended to the case of nuclear tar-

gets [23] using two approaches: (i) coupling the solution of the BK equation

for the case of proton targets to a Glauber-Gribov prescription to obtain the

solutions to the nuclear case, and (ii) solving directly the impact-parameter de-

pendent BK equation with an initial condition representing a specific nucleus.

In what follows, these two set of solutions are denoted as b-BK-GG and b-BK-A,

respectively.

In this Letter, both approaches are used to predict the cross section for coher-

ent photoproduction of J/ψ vector mesons in Pb–Pb ultra-peripheral collisions

(UPC) at the LHC and compare the predictions with data available at different

rapidities and at two centre-of-mass energies per nucleon pair,
√
sNN = 2.76 TeV

and
√
sNN = 5.02 TeV, corresponding to measurements performed during the

LHC Run 1 and Run 2, respectively. It is found that Run 1 measurements at

midrapidity strongly disfavour the use of b-BK-GG solutions, and that the ex-

pected precision of the measurements with Run 2 data may provide a definitive

answer on the question of which approach is the valid one. The rest of this
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Letter is organised as follows: the next section presents a brief overview of the

formalism; Sec. 3 contains the main results, while in Sec. 4 our findings are

discussed; the Letter concludes with a brief summary and outlook in Sec. 5.

2. Brief overview of the formalism

In this section a brief overview of the formalism is presented. For the full

details see for example [22, 23] and references therein.

The cross section for the coherent photoproduction of a J/ψ vector meson,

differential on the square of the momentum transfer t at the target vertex, is

given by the sum of the contributions from transversely (T ) and longitudinally

(L) polarised photons:

dσγPb

d|t|

∣∣∣∣
T,L

=

(
1 + β2

) (
RT,Lg

)2

16π
|AT,L|2. (1)

The factor (1 + β2) accounts for contributions from the real part of the ampli-

tude, while (RT,Lg )2 corrects for the so-called skewedness [24]. The scattering

amplitude of the process is given by

AT,L(x,Q
2, ~∆) = i

∫
d~r

1∫

0

dz

4π

∫
d~b|Ψ∗

VΨγ∗ |T,L exp
[
−i

(
~b− (1− z)~r

)
~∆
] dσqq̄

d~b
.

(2)

Here, Ψγ∗ and ΨV are the wave functions of a virtual photon fluctuating into

a colour dipole and of the dipole producing the vector meson. The vector ~r

represents the dipole size and orientation, and~b represents the impact parameter

between the dipole and the target. Q2 denotes the virtuality of the photon and

~∆2 ≡ −t. The variable z corresponds to the fraction of the energy of the quark-

antiquark dipole carried by the quark, while

dσqq̄

d~b
= 2N(~r,~b;x), (3)

with N(~r,~b;x) the dipole scattering amplitude obtained as a solution of the

BK equation at a rapidity Y = ln(x0/x); here x0 ≡ 0.008 corresponds to the

rapidity at the initial condition.
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Figure 1: (Colour online) Left: Cross section for the coherent photoproduction of a J/ψ

vector meson off a Pb target as a function of |t| at a centre-of-mass energy of the γPb system

WγPb = 121 GeV. Right: Energy dependence for the cross section integrated over |t|.

As mentioned before, two sets of dipole scattering amplitudes are used; both

were obtained and studied in detail in our previous work [23]1. In the b-BK-

GG approach, the impact-parameter dependent BK equation is solved with an

initial condition representing a proton. The solutions at each rapidity are then

converted into solutions for a nucleus using the Glauber-Gribov prescription

proposed in [25]. In the case of the b-BK-A approach, the initial condition

represents the specific nucleus where the impact-parameter part is described

with the help of the corresponding Woods-Saxon distribution.

3. Results

The cross section for the coherent photoproduction of a J/ψ vector meson

off a Pb target as a function of |t| is shown in Fig. 1 (left) at a centre-of-mass

energy of the γPb system WγPb = 121 GeV, where W 2
γPb =M2

J/ψ/x with MJ/ψ

the mass of the J/ψ vector meson. Note that not only the absolute magnitude

of the cross section is different in the b-BK-A and b-BK-GG approaches, but

1The amplitudes are available online at https://hep.fjfi.cvut.cz/NuclearbdepBK.php
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Figure 2: (Colour online) Cross section for the coherent photoproduction of a J/ψ vector meson

in ultra-peripheral Pb–Pb collisions at
√
sNN = 2.76 TeV (left) and

√
sNN = 5.02 TeV (right)

corresponding to LHC energies during the the Run 1 and Run 2 periods, respectively. The

predictions are compared with data from the ALICE [26, 27, 28] and CMS [29] collaborations

as well as with preliminary results from the LHCb collaboration [30].

also that the positions of the diffractive minima are displaced. This particular

value of WγPb has been chosen, because it corresponds to production in UPC

at midrapidity for LHC Run 2
√
sNN energies, as explained below.

Figure 1 (right) shows the energy dependence of the total γPb cross section,

that is integrated over |t|. The difference in the absolute value of the cross

section when using b-BK-A with respect to b-BK-GG solutions increases with

energy from a 30% at WγPb = 35 GeV to 54% at WγPb = 121 GeV, reaching

already a factor of two at WγPb = 900 GeV.

The cross section dσ/dy for the coherent photoproduction of a J/ψ vector

meson in Pb–Pb UPC is shown in Fig. 2 for the LHC energies corresponding to

the Run 1 (left) and Run 2 (right). This cross section is given by

dσ

dy
= nγ(y)σγPb(y) + nγ(−y)σγPb(−y), (4)

where the rapidity y of the J/ψ at the LHC is related to WγPb by

W 2
γPb =

√
sNNMJ/ψe

−y. (5)

The flux of photons from the Pb nucleus nγ(y) is computed following the de-

5



scription detailed in [31]. The figure also shows a comparison with existing

measurements from the ALICE [26, 27, 28] and CMS [29] collaborations as well

as with preliminary results from the LHCb collaboration [30].

4. Discussion

Some comments are in order. First, those of technical nature are addressed,

followed by those related to the physics insight provided by the results presented

in the previous section.

There has been recent interest on the argument of the exponential term in

Eq. (2). This factor, introduced in [32], originates from a Fourier Transform

term modified to take into account non-forward amplitudes. In [32] the factor

is written in a general form, but when used for phenomenology it has been

commonly implemented as in Eq. (2). A proposal put forward in [33] and based

on symmetry arguments is that the term (1−z) should be (1−2z)/2. Using the

proposal from [33] produces a 3.5% larger cross section in both the b-BK-A and

the b-BK-GG scenarios. This percentage is constant within the studied energy

range. Therefore, this issue does not affect significantly the results presented in

this Letter.

The corrections to take into account contributions from the real part of the

amplitude and the skewedness effect are computed at fixed |t| = 0.0001. They

depend on energy decreasing slowly with increasing WγPb. The factor (1 + β2)

is 1.07 (1.08) around 35 GeV and 1.04 (1.05) at 1 TeV, while (RT,Lg )2 is 1.32

(1.34) around 35 GeV and 1.23 (1.27) at 1 TeV for the b-BK-A (b-BK-GG)

case.

The predictions shown in Fig. 2 cover a restricted range in rapidity. The

origin of this limitation is that the initial condition for the evolution of the

dipole scattering amplitude in the BK equation corresponds to an initial value

of x0 = 0.008. Inserting this into W 2
γPb = M2

J/ψ/x and using Eq. (5) produces

a lower limit in y for Eq. (4).

The approach followed here to compare the predictions from the b-BK-A

6



and b-BK-GG is consistent in the sense that the same wave functions and the

same corrections are used. The internal parameters not directly related to the

targets take the same values in both cases and the subjacent QCD input, namely

the BK equation with the collinear corrections, is the same. Furthermore, this

implementation of the BK equation and the corresponding solutions including

the impact-parameter dependence avoid the introduction of ad hoc parameters

or assumptions to describe the distribution of matter in the plane transverse

to the γA interaction. The solutions for the proton case used in the b-BK-GG

approach described correctly photo and electroproduction data from HERA [22].

The cross sections shown in Fig. 1 (left) demonstrate the presence of diffrac-

tive dips. The location of the dips have been put forward as a signature of

saturation in γp [34] and γA collision [35]. The facts that the position of the

dip changes according to whether a Glauber-Gribov prescription is used or not,

and that the change is larger than that observed in [35] between the saturation

and the no-saturation cases, casts a warning on the use of this observable.

The flux entering Eq. (4) is fairly constant for lower WγPb energies, but it

shows a strong cut-off at large energies. As the γA cross section raises with

energy as shown in Fig. 1 (right), the two terms in Eq. (4) have a different

numerical value at large |y| with the low WγPb contribution being dominant.

In this region, the predictions for the b-BK-A and b-BK-GG prescriptions are

the closest. At midrapidity, both contributions to Eq. (4) are the same and

correspond to WγPb = 125 GeV. Here, the difference in the presented UPC

cross sections is the largest as shown in Fig. 2. Comparison with data from the

LHC Run 1 indicates a preference for the b-BK-A approach and disagrees with

b-BK-GG at a bit more than one-sigma for |y| = 2 and more than 3 sigmas

for y = 0. The currently existing data from the LHC Run 2 does not provide

such a clean message because of the large experimental uncertainties as well as

the slight apparent discrepancy between ALICE and LHCb results. The data

from LHC Run 2 at midrapidity are still being analysed; it is expected that

the uncertainties will be smaller than those in the existing measurement. If so,

then these new data may help to select one of the two prescriptions as the most

7



adequate approach.

These results, specifically those shown in Fig. 1, are of interest for future

electron-ion colliders [8, 9] where such a process will be precisely measured for a

variety of nuclei, allowing for the study not only of the energy, but also of the A

dependence of the cross section for coherent J/ψ photo and electroproduction.

5. Summary and outlook

The coherent photonuclear production off Pb nuclei in ultra-peripheral col-

lisions at the LHC has been studied using solutions of the impact-parameter

dependent BK equation. Two approaches have been compared. Starting from

solutions of the proton case coupled to a Glauber-Gribov formalism, or solving

directly the impact-parameter dependent BK equation with an initial condition

representing the nucleus. Data from the LHC favour the latter approach. Fu-

ture data at midrapidity should be precise enough to settle the question of the

most valid approach in this context. These studies are of interest for the newly

approved and planned future electron-ion colliders where this type of process

can be studied with more precision and in a variety of ways.
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Contribution of the non-linear term in the Balitsky-Kovchegov
equation to the nuclear structure functions

Jan Cepila and Marek Matas

Faculty of Nuclear Sciences and Physical Engineering, Czech technical University in Prague, Czech Republic

Abstract. In this paper, we present nuclear structure functions calculated from the impact-parameter
dependent solution of the Balitsky-Kovchegov equation with our recently proposed set of nuclear initial
conditions. We calculate the results with and without the non-linear term in the BK equation in order
to study the impact of saturation effects on the measurable structure functions and nuclear modification
factor. The difference of these results rises with decreasing Bjorken x and increasing scale. These predictions
are of interest to the physics program at the future ep and eA colliders.

PACS. 12.40.-y Models of Strong Interactions – 12.38.Bx Perturbation theory applied to quantum chro-
modynamics – 21.60.-n Nuclear models

1 Introduction

With the recently approved Electron Ion Collider in the
USA [1] and planned LHeC [2] at CERN, a new interest is
sparked in understanding the difference between the struc-
ture function of nuclear and of proton targets. At small
values of Bjorken x, the nuclear structure function per one
nucleon is smaller than the nucleon structure function.
This effect called shadowing may be understood qualita-
tively in the frame where the target is moving very fast to
be a result of gluon recombination due to the overlap of
the gluon wave functions from the surrounding nucleons
[3,4]. In this way, the gluon density in a bound nucleon is
smaller than the gluon density in a free nucleon.

This phenomenon is called saturation since at certain
saturation scale the recombination processes balance gluon
splitting, effectively saturating the gluon density. Quanti-
tatively, the evolution of gluon density in this frame is
described by non-linear evolution equations [3,4]. Recent
review of available evolution equations can be found in e.g.
[5]. The Balitsky-Kovchegov evolution equation (BK) [6,
7] has been used with great success to describe the internal
structure and dynamics of protons in the impact param-
eter independent framework [8]. This evolution equation
can be schematically written as ∂yN = K ⊗ (N − N2).
It incorporates non-linear dynamics via the second term
proportional to N2. Omitting this term, the BK equation
becomes equivalent to BFKL equation, which has been
shown to give a satisfactory description of HERA data
[9].

The solution of the BK equation — the dipole scatter-
ing amplitude N — allows us to calculate a wide spectrum
of observables e.g. [8,10]. In our previous work, we have
lifted one of the common approximations that were needed

for solving this equation and by utilizing the collinearly
improved kernel, we have shown that the impact param-
eter dependent computation can be obtained without be-
ing spoiled by the non-perturbative effects of Coulomb
tails [11]. In this work, we focus on quantitatively ad-
dressing the onset of saturation effects in nuclear targets
by suppressing the non-linear term in the equation using
our recently proposed initial condition. We are aware that
the applicability of our model is restricted to sufficiently
high energies where gluons are dominant scattering tar-
gets. The resulting signals are of interest for the physics
program planned at future facilities.

2 Balitsky-Kovchegov equation

The leading order Balitsky-Kovchegov evolution equation
[6,7] for the impact parameter dependent case with the
assumption of identical scattering amplitude for various
angles between the transverse dipole size vector r and
impact parameter vector b can be written as

∂N(r, b; y)

∂y
=

∫
dr1K(r, r1, r2)

(
N(r1, b1; y) +

N(r2, b2; y)−N(r, b; y)−N(r1, b1; y)N(r2, b2; y)
)
.(1)

The evolution runs in rapidity y = log(x0/x), where x
is the Bjorken variable and x0 gives the initial value of
Bjorken variable for the evolution. In order to solve the
BK equation with explicit impact parameter dependence
and to avoid the unphysical growth of so-called Coulomb
tails [12] originating from the non-perturbative region of
its phase space we shall use the collinearly improved ker-
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nel [13] expressed as

K(r, r1, r2) =
αs

2π

r2

r21r
2
2

[
r2

min(r21 , r
2
2)

]±αsA1 J1(2
√
αsρ2)√

αsρ
.

(2)
with the smallest-dipole prescription for its running cou-
pling

αs(r) =
4π

β0,nf
ln

(
4C2

r2Λ2
nf

) , (3)

as described in [11] with all the parameter values and in
greater detail.
In order to solve the BK equation for the nuclear case,
one has to start with a nuclear initial condition. We have
chosen to treat individually the dependence on the trans-
verse size of the dipole r and the dependence on the dis-
tance of the dipole from the center of the target b. For
the r-dependence, we have parametrized our initial condi-
tion as in the GBW model [14] and for the b-dependence,
we have chosen to mimic the density profile of the target
parametrized by the Woods-Saxon distribution expressed
as [15]

ρA(b, z) = ρ0
1

exp [(r − R)/a] + 1
, (4)

where r ≡
√
b2 + z2 and parameters are given by [16]. In

order to obtain the nuclear thickness of the target, one
has to integrate the Woods-Saxon distribution over the
longitudinal coordinate z as

TA(b) =

+∞∫

−∞

dzρA(b, z). (5)

Then we can define our nuclear initial condition (we de-
note this model as b-BK-A in the plots) as

NA(r, b, y = 0) = 1− exp

(
−Q2

s0(A)

4
r2

TA(bq1 , bq2)

2

)
(6)

with

TA(bq1 , bq2) =
1

TA(0)
[TA(bq1) + TA(bq2)] (7)

and values of Q2
s0(Ca) = 0.341GeV2 and Q2

s0(Pb) =
0.609GeV2 taken from [15].

3 Nuclear structure functions

An observable that is often used to describe the onset
and characteristic of nuclear effects is the so-called nu-
clear modification factor. This variable tells us how much
a nucleus differs from a simple sum of the constituent nu-
cleons and is obtained in our framework with the use of
the structure function that can be expressed in the dipole
model [4,17] as

FA
2 (x,Q2) =

Q2

4π2αem

∑

i

∫
drdz|Ψ i

T,L(z, r)|2σA
qq̄(r, x̃i). (8)

Here x̃i = x(1 + (4m2
qi)/Q

2) with mqi the mass of the i-
quark [14]. The cross section of the interaction of the color
dipole with the target can be obtained due to the optical
theorem as

σA
qq̄(r, x) = 2

∫
dbNA(r, b, x). (9)

The wave function representing the probability of a vir-
tual photon splitting into a quark-antiquark dipole can be
written [17] as

|Ψ i
T (z, r)|2 =

3αem

2π2
e2qi

(
(z2+(1−z)2)ǫ2K2

1 (ǫr)+m2
qiK

2
0 (ǫr)

)

(10)
and

|Ψ i
L(z, r)|2 =

3αem

2π2
e2qi

(
4Q2z2(1− z)2K2

0(ǫr)
)

(11)

for the transverse and longitudinal polarization of the in-
coming photon, respectively, and |Ψ i

T,L(z, r)|2 is a sum of
squares of both contributions. K0 and K1 are the Mac-
Donald functions, z is the fraction of the total photon
longitudinal momentum carried by the quark, eqi is the
fractional charge in units of elementary charge of quark
i, αem = 1/137 and ǫ2 = z(1 − z)Q2 + m2

qi . The quark

masses were set to 100MeV/c2 for light, 1.3GeV/c2 for
charm, and 4.5GeV/c2 for bottom quark. After comput-
ing the structure function in such way and after taking the
proton structure function calculated in a similar way (see
[11,12]), one can obtain the nuclear modification factor as

RpA ≡ FA
2 (x,Q2)

A F p
2 (x,Q

2)
. (12)

The longitudinal structure function can be within the same
model expressed as

FA
L (x,Q2) =

Q2

4π2αem

∑

i

∫
drdz|Ψ i

L(z, r)|2σA
qq̄(r, x̃i). (13)

4 Results

We have solved the BK equation in the impact-parameter
dependent, collinearly improved framework. We have done
so with the same initial condition for two cases i) with the
inclusion of the saturation effects represented by the non-
linear term in Equation 1 and ii) without the nonlinear
term in order to understand the expected role of satura-
tion in the solutions of this equation. The initial condition
was chosen so that it resembles the transverse profile of the
nucleus. Fig. 1 shows the resulting scattering amplitude at
y = 5 for two nuclei (lead and calcium) and its dependence
on the transverse dipole size r for a fixed b = 0.1GeV−1

and on the impact parameter b for a fixed r = 1GeV−1.
We can see that the value of the non-saturated scattering
amplitude exceeds unity. The difference between the non-
linear and linear evolution is 30%-60%. In Figs. 2 and
3 we show the computed structure functions F2(x,Q

2)
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Fig. 1. The dipole scattering amplitudes computed for Ca
(green) and Pb (red) with (solid) and without (dashed) satu-
ration effects. The comparison is done at y = 5 as a function
of the impact parameter for a dipole size r = 1/GeV (upper)
and as a function of the dipole size for an impact parameter
b = 0.1/GeV (lower).

and FL(x,Q
2) for calcium and lead respectively in lin-

ear and non-linear scenario as well as their ratios for two
choices of Q2. One can see that the non-linear evolu-
tion suppresses the structure functions significantly and
the difference grows with decreasing Bjorken x. At large
Bjorken x the difference is very small and thus one can-
not discriminate between both scenarios using available
data. Also, the difference rises with increasing Q2 both
for FL(x,Q

2) and F2(x,Q
2). For FL(x,Q

2) the difference
is greater than for F2(x,Q

2) at all scales and Bjorken x.
In Fig. 4, we show the dependence of the nuclear modifi-
cation factor on x for calcium and lead obtained with the
use of Eq. (12) and compare it to data for Q2 = 2.42GeV2

and Q2 = 4.45GeV2. We can see, that the non-saturated
scattering amplitudes produce larger nuclear modification
factor implying softer nuclear effects. The difference be-
tween linear and non-linear model grows with decreasing
Bjorken x and so one can clearly discriminate between
saturated and non-saturated model with future data from
electron ion colliders. At large Bjorken x, both models are
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Fig. 2. The nuclear structure function FA
2 (x,Q2) w.r.t x com-

puted with the Balitsky-Kovchegov evolution equation with
and without saturation for two values of Q2 for calcium (up-
per) and lead (lower). Bottom panel in the figures shows the
ratio of the computation with and without saturation.

indistinguishable and both agree quite well with measured
data point from E665 from Fermilab [18].

5 Conclusions

In this paper we have presented a calculation of nuclear
structure functions using the impact parameter depen-
dent solution of the non-linear BK evolution equation. We
have compared the resulting structure functions F2(x,Q

2)
and FL(x,Q

2) and nuclear modification factor RpA(x,Q
2)

with and without the non-linear term in BK evolution
equation. The difference of the results with and without
saturation is clearly visible and it rises with decreasing
Bjorken x and with scale Q2 indicating that we will be
able to distinguish between these two models with future
data from electron-ion colliders.
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