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Chapter 1

Introduction

Future experiments at LHC(Large Hadron Collider) at CERN will enable
to test Standard Model predictions in new kinematic area. For the correct
interpretation of measured data it is necessary to investigate the influence of
all possible sources of uncertainty: the theoretical one, uncertainty arising
from detector effects and background. The aim of this work is to estimate the
influence of the uncertainty of our knowlege of parton distribution functions
of the proton on the kinematic distributions of the Z boson.

For the purpose of this study I use the nomenclature ”Drell-Yan Z boson”.
I mean by this Z boson created by quark-antiquark pair annihilation. The
decay channel Z → e+ + e− is investigated. The basic kinematic relations
characterising deep inelastic scattering (DIS) and Drell-Yan pair creation are
described in Chapter 3.

The formalism used for the description of elastic and inelastic lepton-
proton collisons is reported in the next chapter. Parton model is presented
in Chapter 5. The analytical formula for differential cross section of Drell-Yan
Z production is described in Chapter 6. The most important experiments
measuring proton structure functions are summarized in Chapter 7.

The main part of this work is the analysis of events pp → X +Z → e−e+

generated by two programms commonly used in particle physics - Herwig
[19] and Pythia [20]. Five sets of events (differing only by parton distri-
bution function) were generated by Herwig. Two classes of comparisons are
presented. The first one is the comparison of distributions of kinematic quan-
tities of the Z boson events generated with Herwig and Pythia. The second
one is the comparison of events generated by Herwig with different parton
distribution functions.
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The natural unit system is applied in the whole study. Planck constant
and speed of light is considered as one. The following conversion relations
can be used to recompute the values of quantities in both directions:

1 kg = 5.609589206 1026 GeV
1 s = 1.5192676 1024 GeV−1

1 m = 5.06773122 1015 GeV−1.
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Chapter 2

Quick overview of additive
quark model

Standard model consists of two substantial theories : quantum chromody-
namics (QCD) and GWS theory of electroweak interaction.

Quark model was suggested by two physicists independently in January
1964: Murray Gell-Mann and his student George Zweig. According to their
idea, all hadrons are made up of a small variety of more basic entities, called
quarks, bound together in different ways. In their work were used only three
lightest quarks: u, d, s and we will follow these historical steps.

All multiplets can be built from the fundamental representation of the
group SU(3), so called ”flavor SU(3) symmetry”, which is violated by low
mass differences among u, d, s. Each quark is assigned spin 1/2 h̄ and baryon
number B = 1/3. Baryons are made of three quarks (qqq) and the mesons
of a quark-antiquark pair (qq̄). The new additive quantum number is shown
as the hypercharge Y = B + S, rather than the strangeness S. The electrical
charge Qe is Q = I3 + Y/2. Baryon conservation means it is impossible to
destroy or to make a single quark, but it is permitted annihilate or create a
quark-antiquark pair only.

One problem arised soon in this theory. For example, a ∆++ is described
by the symmetric wave function u ↑ u ↑ u ↑, whereas it is expected antisym-
metry under the exchange of identical fermions. The explanation is that the
quarks possess an additional attribute, called colour, which can take three
possible values: R, G, or B. All hadrons are postulated to be colourless. They
belong to the singlet representations of the SU(3) colour group. The required
antisymmetric character of the total wavefunction is achieved. It is overall
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symmetric in space, spin and flavor structure and antisymmetric in colour.
The discovery in November 1974 of a very narrow resonance, called J/ψ

particle, followed later by the appearance of a second narrow resonance, ψ′,
can rightly be called the ”November revolution”. The ψ and ψ′ were imme-
diately interpreted as the lowest bound states of a new quark called charm
and its antiquark, cc̄. New additive quantum number C = ±1 is assigned to
the c quark and antiquark, respectively. The value of this quantum number
is zero for all other quarks. The c quark has charge Q = +2/3 and isospin I
= 0. The relation for hypercharge is updated to Y = B + S + C.

The model was changed even twice by discovery of quark b and t with new
quantum numbers called beauty and true. In 1977 series of narrow resonances
were discovered in p-p experiments at Fermilab. The lowest resonance, now
called Υ (upsilon), was considered as analogous of J/ψ like a bound state of
new quark called b and its antiquark b̄. The b quark has charge Q = −1/3
and its high mass violates the flavor SU(5) very much.

The theory expected a quark partner to the b, signed t, with a charge
Q = +2/3. Its existence was confirmed in 1995. Due to its properties the
flavor symmetry SU(6) isn’t considered. On the other hand the SU(3) colour
symmetry is regarded as exact.
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Chapter 3

Kinematics

3.1 Differential cross section

A calculational scheme is implemented by summing the relevant Feynman
diagrams that can be drawn for the process under study. Feynman developed
his rules using the machinery of quantum field theory from an appropriate
Lagrangian. This approach has the practical advantage that we can calculate
transition rates and cross sections in relatively simple way.

The differential cross section for the general process 1+2 → 3+4+...n in
the center-of-mass frame is given by simple equation [1]

dσ =
(2π)4

|~v1 − ~v2|
1

2E1

1

2E2

|M |2
n∏

i=3

d~pi

(2π)32Ei

δ4(p1 + p2 −
n∑

i=3

pi), (3.1)

where dΩ is the element of solid angle about ~p3, s = (E1 + E2)
2, |~p1| =

|~p2| = pi and |~p3| = |~p4| = ... = pf .
The technique of Feynman diagrams enables in principle to calculate the

invariant amplitude M in any order of the relevant coupling constant. Before
turning to the parton structure functions, it is important to master basic
kinematics relevant for further consideration.

3.2 Deep inelastic scattering

We assume the ”neutral current” process, namely when ingoing lepton is
the same as outgoing. These processes can be mediated by the exchange of
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either the photon or the neutral vector boson Z. The latter contribution is
dominant for really high energies, but in kinematic range of DIS it can be
neglected.

The e-p scattering in the leading order is shown in Fig. 3.1. More detailed
elements of proton structure can be resolved by increasing the transferred
momentum −q2 of the photon. The transferred four-momentum squared

)kk = (E,

1

2

n

.

.

’)kk’ = (E’,

.

k’k

p

Figure 3.1: The lowest - order diagram for inclusive e-p deep inelastic scat-
tering. k2 is neglected in relativistic limit, p2 = M2 is mass squared of the
proton.

is negative in the relativistic approach: q2 < 0. The proof is based
on the definition of q = (ν, ~q) = k − k′ and on relativistic limit, where

|~k|2 = E2 and |~k′|2 = E ′2, Θ is electron scattering angle in nucleon rest
frame with respect to the electron beam direction and ν is the electron energy
loss:

q2 = ν2 − |~q|2 = (E ′ − E)2 − (|~k|2 + |~k′|2 − 2|~k||~k′| cos Θ) =

= E ′2 − 2EE ′ + E2 − |~k|2 − |~k′|2 + 2|~k||~k′| cos Θ = (3.2)

= −2EE ′ + 2EE ′ cos Θ = −2EE ′(1− cos Θ) ≤ 0.
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The proton will often break up into complicated multiparticle states with
large invariant mass W. If the final state of proton is described with four-
momentum P as a sum over all momenta of fragments, we will get P 2 = W 2.
From momentum conservation follows W 2 = (p + q)2.

Two independent variables can describe the inelastic process. The fol-
lowing set of variables is commonly used:

Q2 = −q2 = −(k − k′)2 = 2kk′ = −2EE ′(1− cos Θ) = 4EE ′ sin2(Θ/2),

ν = (p.q)/m = E − E ′, (3.3)

x = Q2/(2p.q) = Q2/(2Mν),
y = (p.q)/(p.k) = ν/E.

In standard notation the pairs (ν, q2), (x, y) or (x,Q2) are most often
used to uniquely specify the state of the scattered electron and to write down
the cross section provided that colliding particles are unpolarized.

It is possible to express other quantities in new variables. E.g. total CMS
energy squared:

s = (k + p)2 = M2 + 2kp = M(2E + M) = M2 + Q2/(xy) (3.4)

and invariant mass of the hadronic system:

W 2 = (p + q)2 = Q2(1− x)/x + M2 = 2Mν −Q2 + M2. (3.5)

Notice, all quantities defined above are relativistic invariant.
The term ”deep inelastic scattering” means that both invariants Q2 and

pq are large with respect to M

Q2 À M2, ν À M.

The so called Bjorken limit corresponds to the idealized case when Q2 →
∞, pq →∞ but the ratio x remains finite.

3.3 Drell-Yan process

Deep inelastic scattering is investigated by colliding electrons with a proton
beam. From these experiments information about nucleon structure func-
tions can be extracted. To determine the internal structure of other hadrons
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different method has to be used - collision of two hadrons as hard as possi-
ble. The process most similar to deep inelastic scattering in these reactions
is the annihilation of a quark and an antiquark, each deriving from a differ-
ent hadron, into a lepton pair. This is called the Drell - Yan process. Our
task is investigation of the special channel, when quark-antiquark pair anni-
hilates into Z boson and electron - positron pair is created. The process is
schematically shown in Fig. 3.2.

Z

-e

+e

 = (P,0,0,-P)bP

 = (P,0,0,P)aP

q

q

Figure 3.2: Schematic view of the creation of the Drell - Yan Z boson in the
p-p interaction.

Here a designates the first and b the second hadron, thus xa and xb give
the momentum fraction carrying by corresponding parton (quark). It means
that x,y ∈ (0,1). Both quarks in Fig.3.2 have to be of the same flavor and
colour.
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Notice, that it it assumed the head-on collision of two hadrons with non-
zero momentum only in z-axis direction. Consequently Z has the transverse
momentum equal to zero. The non-zero pt of the Drell - Yan Z is generated
just by radiation of gluons - see Fig.3.3.

g

q

q

-e

+e
Z

Figure 3.3: Drell - Yan process with Z in next to leading order.

Kinematic difference between Drell -Yan and deep inelastic scattering is
that now is q2 > 0 in comparison with q2 = −Q2 < 0 for DIS. It is clear that
q2 = M2 holds with M the invariant mass of the leptonic pair. The running
coupling constant still has its usual form with α(Q2) → α(M2).

The invariant mass of the colliding protons is

s = (Pa + Pb)
2. (3.6)

The momentum of the partons participating in the Drell - Yan process ex-
pressed in terms of fractions xa, xb are

pa = xa Pa, pb = xb Pb. (3.7)

Neglecting hadron and quark masses, the invariant mass of the lepton pair
is then

M2 = (pa + pb)
2 = 2pa pb = 2xa xb Pa Pb = xa xb (Pa +Pb)

2 = xa xb s (3.8)

and is equal to four-momentum of intermediate Z squared. It is standard to
express from this equation product of xa and xb and define a new variable

τ = xa xb = (M2)/s. (3.9)
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In the CMS of the lepton pair it is possible to express the rapidity of the Z
boson by the following formula:

y =
1

2
ln

(
E + PL

E − PL

)
=

1

2
ln

(
xa

xb

)
, (3.10)

where PL = xa Ea − xb Eb.
Using new variables it is possible to write the fractional momenta xa and xb

as
xa = ey Q/

√
s, xb = e−y Q/

√
s. (3.11)
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Chapter 4

Structure of the proton

In this chapter is discussed scattering on proton. Such ranges of energy are
regarded, that it is essential to involve gradually more detailed theory of
structure of hadrons. From now it is impossible to consider the proton as a
point-like particle. Generally, this theory develops different levels of structure
functions.

4.1 Elastic scattering of electron on point-

like proton

At the beginning of investigation of inner structure of proton it is useful to
transform the DIS kinematics (Chapter 3) into the laboratory frame. These
results can be then directly applied to electron-quark scattering. For now
the goal is to find the cross section of elastic lepton-proton scattering for the
case of point-like proton. In the lowest order of perturbative quantum elec-
trodynamics this process is described by photon exchange diagram in Fig.
4.1.

Using the Dirac formalism and Feynman rules the invariant amplitude is
given by

M = −e2ū(k′, s4)γ
µu(k, s2)

1

q2
ū(p′, s3)γµu(p, s1). (4.1)

To obtain the unpolarized cross section, the square of the matrix element
M has to be summed over the spins s3, s4 of the final and averaged over the
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 (k)-e  (k’)-e

p (p’)

 (q)γ

p (p)

Figure 4.1: The LO diagram for e-p elastic scattering. The low energetic
photon interract with the whole proton due to its long wavelength.

spins s1, s2 of the initial fermions [1]

|M |2 =
8e4

q4
2M2E ′E

(
cos2 Θ

2
− q2

2M2
sin2 Θ

2

)
. (4.2)

The first kinematic relation from (3.3) was used for the derivation of this
formula. The final result (4.3) is reached by inserting (4.2) into (3.1), where
the electron mass is neglected and dE’ integration is performed

dσ

dΩ

∣∣∣∣
lab

=
(

α2

4E2 sin4 Θ
2

)
E ′

E

{
cos2 Θ

2
− q2

2M2
sin2 Θ

2

}
, (4.3)

where the factor
E ′

E
=

1

1 + 2E
M

sin2 Θ
2

. (4.4)

Returning to (4.2), it is convenient to separate the sums over the electron
and proton spins and to write |M |2 as a contraction of two tensors

|M |2 =
e4

q4
L(1)µνL(2)

µν . (4.5)

These tensors can be calculated by well-established trace technique, which
is described in many publications. Thus the tensor associated e.g. with the
electron vertex is

Lµν
e =

1

2

∑

e spins

[ū(k′)γµu(k)] [ū(k′)γνu(k)]∗, (4.6)
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Lµν
e =

1

2
Tr

(
(k̂′ + m)γµ(k̂ + m)γν

)
, (4.7)

Lµν
e = 2(k′µkν + k′νkµ − (k′ · k −m2)qµν). (4.8)

This type of notation will be useful in next chapters for generalization from
lepton tensor to hadron tensor.

4.2 Proton form factors

For the real proton the situation is more complicated because the strong
interaction modify the point-like coupling in transition current

jµ = −eū(k′)γµu(k)ei(k′−k)·x. (4.9)

This simple coupling has to be replaced with a structure, compatible
with gauge and Lorentz invariance and parity conservation. Thus, this most
general four-vector form can be constructed from p, p’, q and the Dirac γ-
matrices sandwiched between ū and u. There are only two independent terms,
γµ and iσµνgν that are functions of only one independent scalar variable q2,
where

σµν = i
2
[γµγν − γνγµ].

 (k)-e  (k’)-e

p (p’)

 (q)γ

p (p)

Figure 4.2: Electron proton elastic scattering. Structure of proton is de-
scribed by elastic form factors dependent on q2.
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Therefore, a new transition current is connected with outer lines of proton
in Fig. 4.2.

Jµ = eū(p′)
[
F1(q

2)γµ +
κ

2M
F2(q

2)iσµνgν

]
u(p), (4.10)

The F1(q
2) and F2(q

2) are two independent elastic electromagnetic form
factors of the proton and parametrize our ignorance of the detailed structure
of the proton. κ is anomalous magnetic moment. The proton is effectively
seen as a particle of charge e and magnetic moment (1 + κ)e/2M . For the
proton was measured κ = 1.793 [1]. In the case of point-like proton where
q2 → 0 is κ = 0 and the form factors of the proton must therefore be chosen
so that in this limit

F1(0) = 1, F2(0) = 1.

The evaluation of the differential cross section using (4.10) is

dσ

dΩ

∣∣∣∣
lab

=
(

α2

4E2 sin4 Θ
2

)
E ′

E

{(
F 2

1−
κ2q2

4M2
F 2

2

)
cos2 Θ

2
− q2

2M2
(F1+κF2)

2 sin2 Θ

2

}
,

(4.11)
This result was derived first by Rosenbluth in 1950 and therefore this formula
bears his name.

Instead of F1, F2, it is convenient to introduce their special linear combi-
nations GE and GM , called electric and magnetic form factors

GE = F1 +
κq2

4M2
F2, (4.12)

GM = F1 + κF2. (4.13)

They are defined so that no interference terms occur in the calculation of
the cross section. With definition τ = −q2

4M2 equation (4.11) becomes

dσ

dΩ

∣∣∣∣
lab

=
(

α2

4E2 sin4 Θ
2

)
E ′

E

(
G2

E + τG2
M

1 + τ
cos2 Θ

2
+ 2τG2

M sin2 θ

2

)
. (4.14)
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4.3 Inelastic Electron-Proton Scattering

Inelastic events in Fig.3.1, where the proton is recoiled into many final states,
can not be described only by construction of general form of proton current
Jµ. The expression for the invariant amplitude is directly generalized from
form (4.5) to

|M |2 =
e4

q4
LµνWµν , (4.15)

where Lµν represents the lepton tensor of (4.6) and Wµν is hadronic tensor.
Its most general form must be constructed out of the independent momenta
p and q, symmetric metric tensor gµν and totally antisymetric Levi-Civita
pseudotensor εµναβ

Wµν(p, q) = −W1gµν + W2
pµpν

M2 + iW3εµναβpαqβ

+W4qµqν + W5(pµqν + pνqµ) + iW6(pµqν − pνqµ). (4.16)

In the above decomposition Wi(p, q) are unknown functions of p and q,
which depend on the internal structure of the proton. But only two of them
are, however independent. When the parity conservation is true antisym-
metric term vanished by W3(p, q) = 0 and gauge invariance, expressed as the
condition

qµWµν = [−W1+W4q
2+W5(pq)]qν+[W2

pq

M2
+W5q

2]pν+iW6[(pq)qν−q2pν ] = 0

(4.17)
leads to three relations

W6(p, q) = 0, (4.18)

W5(p, q) = −W2(p, q)
pq

q2M2
, (4.19)

W4(p, q) = W1(p, q)
1

q2
+ W2(p, q)

(pq)2

q4M2
. (4.20)

This properties make the possibility to simplify (4.16) to [1]

Wµν(p, q) = −W1(p, q)
(
gµν − qµqν

q2

)
+

W2(p, q)

M2

(
pµ − pq

q2
qµ

)(
pν − pq

q2
qν

)
.

(4.21)
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So, for ep → eX in the laboratory frame we have

(Le)µνWµν = 4EE ′
[
cos2 Θ

2
W2(ν, q

2) + sin2 Θ

2
2W1(ν, q

2)
]
. (4.22)

Instead of W1, W2 it is common to introduce another pair of functions

F1 = M W1, F2 = ν W2. (4.23)

The double differential cross section written in three equivalent ways different
in the choice of pair of variables is

dσ

dE ′dΩ

∣∣∣∣
lab

=
α2

4E2 sin4 Θ
2

[
W2(ν, q

2) cos2 Θ

2
+ 2W1(ν, q

2) sin2 Θ

2

]
, (4.24)

dσ

dxdy
=

4πα2(2kp)

Q4

[(
1− y − M2xy

s

)
F2(x, Q2) +

1

2
y22xF1(x,Q2)

]
, (4.25)

dσ

dxdQ2
=

4πα2

Q4

[(
1− y − M2xy

s

)
F2(x,Q2)

x
+

1

2
y22F1(x, Q2)

]
. (4.26)

The unknown functions Fi(x,Q2), or equivalently, Wi(x, q2) are called
inelastic electromagnetic form factors or structure functions of the proton.

These cross sections were calculated for the case of the exchange of un-
polarized virtual photon. Now it is possible to transfer the problem on scat-
tering by a real photon with energy ν and polarization ε off the unpolarized
proton. The total cross section for photon with helicity λ is

σtot
λ =

4π2α

K
εµ∗
λ εν

λWµν . (4.27)

Using expression (4.16) for Wµν the transverse and longitudinal cross sections
are

σT =
4π2α

K
W1(ν, q

2), (4.28)

σL =
4π2α

K

[(
1− ν2

q2

)
W2(ν, q

2)−W1(ν, q
2)

]
, (4.29)

where K satisfy

K =
W 2 −M2

2M
= ν +

q2

2M
. (4.30)
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Chapter 5

Introduction to parton model

5.1 Basic ideas of parton model

The parton model develops an experimental fact, that such complex system
like proton starts for really small wavelength scattering to behave like a free
Dirac particle, see Fig. 5.1.

proton quark

Figure 5.1: The electromagnetic interaction between electron and photon
behave for sufficiently small wavelengths of virtual photons like couppling a
photon with point-like charge - charged parton.

The parton model describes the proton as a composition of many ”point”
partons (quarks and gluons), each carrying a different fraction x of the parent
proton momentum and energy. Both the proton and its parton move along
the z axis, therefore the longitudinal and transverse momenta are
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proton parton
energy E xE
momentums pL = p pL = xp

pT = 0 pT = 0
mass M xM

The parton momentum distribution function

fi(x) =
dPi

dx
(5.1)

describes the probability that the struck parton i carries a fraction x of the
proton momentum p. The sum over all partons (charged as well as not
charged) has to creates the whole proton, therefore

∑

j

∫
dx x fj(x). (5.2)

Generally, an inelastic electron-proton scattering at large Q2 is viewed
simply as elastic scattering an electron on a ”free” quark within the proton.
This signs, that quark model is very promising theory and that there are
structureless particles inside a proton. These ”point” functions now display
intriguing property, that they are only functions of dimensionless ratio

ω =
2Mν

Q2
(5.3)

and not of Q2 and ν independently. This property, that structure functions
are independent of Q2 at constant ω, is called the Bjorken scaling.

Therefore, it is common to redefine a structure functions for parton with
momentum fraction x

xmW1(ν, Q
2) → F1(ω) → F1(x), (5.4)

νW2(ν,Q
2) → F2(ω) → F2(x). (5.5)

In addition to F1, F2 it is useful to introduce the so called longitudinal
structure function

FL(x,Q2) = F2(x, Q2)
(
1 +

4M2x2

Q2

)
− 2xF1(x,Q2), (5.6)
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in terms of which the ratio of longitudinal and transversal cross section is
ordinarily expressed and also measured

R(x, Q2) =
σL(x,Q2)

σT (x,Q2)
=

FL(x,Q2)

2xF1(x,Q2)
. (5.7)

Summing results for F1, F2 for fraction x over the partons making up a
proton, it is obtained

F2(x) =
∑

i

e2
i xfi(x), (5.8)

F1(x) =
1

2x
F2(x), (5.9)

where i sums only over the charged partons, which can interact with a photon.
Delta function in expression for structure function implies x = 1/ω. Using
this basic idea of parton model the cross section can be expressed as follows[1]

dσ

dxdy

∣∣∣∣
ep→eX

=
2πα2

Q4
s
[
1 + (1− y)2

] ∑

i

e2
i xfi(x), (5.10)

where the particle masses are neglected.
Identity (5.8) can be made more concrete by including terms from additive

quark model (shortly described in Chapter 2)

1

x
F2(x) =

(
2

3

)2

[u(x) + ū(x)] +
(

1

3

)2

[d(x) + d̄(x)] +
(

1

3

)2

[s(x) + s̄(x)] . . .

(5.11)
where u(x) and ū(x) are the probability distributions of u quarks and anti-
quarks within the proton, d(x) and d̄(x) are the probability distributions of
d quarks and antiquarks atc.

5.2 Higher orders of deep inelastic e-p scat-

tering

The parton model in previous section completely ignores the dynamical role
of neutral partons. In quark model, these constituents are gluons, carriers of
the strong force. Now it is essential to allow for the possibility that quark
may radiate a gluon before or after being struck by the virtual photon. This
process γ∗q → qg is shown in Fig. 5.2.
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Figure 5.2: Initial- or final-state gluon radiations contribute to inclusive e-p
deep inelastic scattering in O(ααs).

Moreover, a gluon participated in the proton structure can contribute to
deep inelastic scattering via γ∗g → qq̄. Fig. 5.3 shows such qq̄ pair creation.
Despite of the leading order of DIS O(α), these processes are O(ααs) contri-
butions to the cross section. The emission of gluon has two experimentally
observable consequences. First, the scaling property of the structure func-
tions will no longer be true and second, the outgoing quark will no longer be
collinear with the virtual photon. These produced jets so will gain a nonzero
transverse momentum pT relative to the virtual photon.

+

Figure 5.3: The gluon - initiated scattering contributions to inclusive e-p DIS
in O(ααs).

The results for QED process γ∗e → γe can be taken over for the calcu-
lation of invariant amplitude for process γ∗q → qg. It can be written using
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substitution α2 → e2
i ααs as

|M |2 = 32(e2
i ααs)

4

3

(
− t

s
− s

t
+

2uQ2

st

)
, (5.12)

where the factor 4/3 takes into account the summation over final and aver-
aging over initial colours. The square of the transverse momentum of the
outgoing quark, pT = k′ sin Θ, can be expressed in the limit of small-angle
scattering, -t ¿ s, as

p2
T =

s(−t)

s + Q2
(5.13)

and the solid angle differential is then

dΩ =
4π

s
dp2

T . (5.14)

 = xp
i

zp = yp
i

pp

proton

Figure 5.4: Schematic illustration of photon - parton interaction with gluon in
final-state. The initial parton momentum fraction is y and final momentum
fraction of that parton is x.

Using (5.13) and definition of momentum fraction z

z =
Q2

2piq
, (5.15)

based on kinematics in Fig. 5.4, the cross section becomes [1]
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dσ

dp2
T

= e2
i σ0

1

p2
T

αs

2π
Pqq(z) (5.16)

where σ0 = 4π2αs and

Pqq(z) =
4

3

(
1 + z2

1− z

)
(5.17)

represents the probability of gluon emission from quark and so becoming a
quark with momentum reduced by a fraction z = x/y.

At high energy (s large), hence in the region -t ¿ s, the cross section
(5.16) represents the full p2

T distribution of the final-state parton jets. If
computed

σ(γ∗q → qg) =
∫ s/4
µ2 dp2

T
dσ
dp2

T

∼= e2
i σ0

∫ s/4
µ2

dp2
T

p2
T

αs

2π
Pqq(z)

∼= e2
i σ0

(
αs

2π
Pqq(z) log

Q2

µ2

)
, (5.18)

it is clearly seen, that Bjorken scaling is violated due to the presence of the
logQ2 factor. The structure function is directly modified to

F2(x,Q2)

x
=

∑
q

e2
q

∫ 1

x

dy

y
q(y)

(
δ
(
1− x

y

)
+

αs

2π
Pqq

(x

y

)
log

Q2

µ2

)
, (5.19)

where the notation for quark structure function q(y) = fq(y) have been
introduced. In derivation of (5.18) the maximum pT of the gluon

(
p2

T

)
max

=
s

4
= Q2 1− z

4z
(5.20)

was used. The lower limit was set as µ in order to regularize the divergence
when p2

T → 0.
It seems very useful to absorb the log Q2 term in (5.19) into a modified

quark probability distribution

F2(x,Q2)

x
=

∑
q

e2
q

(
q(x) + ∆q(x,Q2)

)
, (5.21)

where

∆q(x,Q2) =
αs

2π
log

(
Q2

µ2

) ∫ 1

x

dy

y
q(y)Pqq

(
x

y

)
. (5.22)
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The quark densities q(x,Q2) now depend on Q2. By the Q2 evolution of
the quark densities it is meant an integro-diferencial equation for q(x, Q2).
Such equation is called ”Altarelli-Parisi evolution equation”:

d

d log Q2
q(x, q2) =

αs

2π

∫ 1

x

dy

y
q(y, Q2)Pqq

(
x

y

)
. (5.23)

Now the second O(ααs) process described in Fig. 5.3 has to be incorpo-
rated into ep → eX. Similarly as for the first process, the QED Compton
scattering invariant amplitude is used for computation

|M |2 = 32π2(e2
qααs)

1

2

(
u

t
+

t

u
− 2sQ2

tu

)
. (5.24)

Hence, the proton structure function contains the additional contribution

F2(x,Q2)

x
= . . . +

∑
q

e2
q

∫ 1

x

dy

y
g(y)

αs

2π
Pqg

(
x

y

)
log

Q2

µ2
(5.25)

Here g(y) is the gluon density in the proton and

Pqg =
1

2

(
z2 + (1− z)2

)
(5.26)

represents the probability, that a gluon annihilates into a qq̄ pair. This newly
created quark has a fraction momentum z. The quark evolution equation
becomes

dqi(x,Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

(
qi(y,Q2)Pqq

(
x

y

)
+ g(y, Q2)Pqg

(
x

y

))
(5.27)

for each quark flavor i.
Gluon evolution equation can be derived by applying of analogous argu-

ments for quarks. It has a form

dg(x,Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

( ∑

i

qi(y, Q2)Pgq

(
x

y

)
+ g(y, Q2)Pgg

(
x

y

))
, (5.28)

where the sum runs over quarks and antiquarks of all flavors and probability
functions are

Pgq(z) =
4

3

1 + (1− z)2

z
(5.29)
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Figure 5.5: Feynman diagrams representing gluon vertices embedded in gluon
structure functions.

Pgg(z) = 6
(

1− z

z
+

z

1− z
+ z(1− z)

)
. (5.30)

Other O(ααs) contributions designed in Fig. 5.6 are of the form δ(1− z)
and are singular at z = 1. They must be such, that the total probability
Pqq(z) satisfies the constraint

∫ 1

0
Pqq(z)dz = 0 (5.31)

+ +

Figure 5.6: Three types of virtual gluon diagrams.

This modification of Pqq(z) can be conveniently expressed in terms of the
so-called ”+ prescription” formalism. Here the term 1/(1− z) is replaced by
1/(1− z)+ due to regularization. The ”+ prescription” is defined as

∫ 1

0
dz

f(z)

(1− z)+

=
∫ 1

0
dz

f(z)− f(1)

1− z
, (5.32)
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where (1− z)+ = (1− z) for z < 1 but is infinite at z = 1.
These P functions are summarily called the splitting functions. The lead-

ing order Altarelli-Parisi splitting functions are [12]

Pqq(z) =
4

3

[
1 + z2

1− z

]

+
=

4

3

[
1 + z2

(1− z)+

]
+ 2δ(1− z), (5.33)

Pqg(z) =
1

2

[
z2 + (1− z)2

]
, (5.34)

Pgq(z) =
4

3

[
1 + (1− z)2

z

]
, (5.35)

Pgg(z) = 6
[
1− z

z
+ z(1− z) +

z

(1− z)+

]
+

[
11

2
− nf

3

]
δ(1− z), (5.36)

where nf is the number of (active) quark flavors.
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Chapter 6

Cross section of the Drell-Yan
Z boson production

Kinematics of Drell-Yan process is described in Section 3.3. Drell-Yan process
has played an important role in determining the structure functions together
with e−e+ annihilation and deep inelastic leptoproduction. These processes
serve as a test of the parton model and its QCD corrections. Just vector
boson production is one of the most intensively investigated topics at both
Tevatron and the LHC.

The differential cross section of the Drell-Yan Z boson production can be
calculated in the lowest order of the perturbation theory by carrying over the
results of deep inelastic scattering to the Drell-Yan processas as [5]

dσDY =
[
fa(xa, Q

2)·f̄b(xb, Q
2)+f̄a(xa, Q

2)·fb(xb, Q
2)

]
×σBorn(qq̄ → Z)dxadxb.

(6.1)

σBorn is elementary cross section for annihilation of a pair quark and
antiquark of invariant mass Q into a vector boson Z at the Born level.

When the σDY was measured, it turned out that the experimental cross
section exceed the prediction by a factor of about 2. This missing factor is
termed the ”K factor” [5]. To gain a deeper understanding of the problems
in Drell-Yan reactions, it is essential to incorporate first-order gluonic cor-
rections to the annihilation graph q + q̄ → Z, see Fig. 3.3. These gluon
radiations from the initial state then generate the nonzero pT = QT of the
Z boson. One can continue by pursing this tedious calculation order by or-
der, but the problem of the perturbation theory is, that the cross section
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dσ/dQ2dQ2
T contains a term proportional to ln2n(Q2/Q2

T ) and in QT ¿ Q
region diverge at every fixed power n of the αs [6].

These large logarithms can be removed by the resummation technique.
This idea is based on possibility to itterate some types of corrections into ge-
ometric or exponential series and then summed up them. The standard pro-
cedure of resummation is leading-logarithm approximation(LLA), connected
with definition of Sudakov form factor S(Θ) [5]. This function express the
probability that after n-gluon emissions the outgoing quark still has a scat-
tering angle pT /p|| < Θ, with pT and p|| being defined with respect to the jet
axis, or the original quark momentum, respectively.

Similar method of resummation for the Drell-Yan production was used
first by Dokshitzer, Diakonov and Troyan [7]. They showed in QT space,
that dominant contributions in the region of small QT can be resummed into
a Sudakov form factor by double leading-logarithm approximation(DLLA).
The disadvantage of this method is, that some subleading logarithms can
be resummed only in the b-space, which is a Fourier conjugate of the QT

space. b is called impact parameter. The b-space resummation method was
introduced by Parisi and Petronzio [8]

In the framework of improved b-space resummation, Collins, Soper and
Sterman derived a formalism for the transverse momentum distributions of
vector boson production in hadronic collisions [9]. This formalism is often
called the CSS formalism.

According to this formalism can be obtained the expansion for the final
cross section:
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dσ(pa + pb → Z)

dQ2dydQ2
T

=
1

2S

∑
q

σBorn(qq̄ → Z)
∑

c

∑

d

∫ ∞

0
bdbJ0(QT , b)

×e−S(b∗,Q)e−SNP (b,Q)
∫ 1

xa

∫ 1

xb

dξadξb

ξaξb

Cq/c(ξa, b
∗, αs(

b0

b∗
)) · Cq̄/d(ξb, b

∗, αs(
b0

b∗
))

×fc/p(xa/ξa, b0/b
∗) · fd/p(xb/ξb, b0/b

∗)

+
∞∑

n=1

(
αs(µ)

π

)n(
4π4α2

EM

3S

) ∑

a,b

∫ 1

xa

∫ 1

xb

dξadξb

ξaξb

fa/p(ξa, µ)fb/p(ξb, µ)

×R
(n)
ab→Z(QT , Q, xa/ξa, xb/ξb; µ). (6.2)

The first term of the sum is important in the region QT ¿ Q, the second
term is regular part negligible for small QT but important for QT ∼ Q. Here,
b∗ = b√

1+b2/b2max

≤ bmax = 0.5GeV −1 is the boundary between perturbative

and nonperturbative region. The first summation in the first part is over
all quark flavors, the second and third over all partons. The Sudakov form
factor S(b∗, Q), Wilson coefficient functions Cq/c(ξa, b

∗, αs(
b0
b∗ )) and functions

R
(n)
ab→Z(QT , Q, xa/ξa, xb/ξb; µ) are perturbatively calculable.

The only input to CSS formula not calculable from the principles are the
nonperturbative Sudakov function SNP (b,Q) and the conventional parton
distribution functions fq/p(xa, µ). The nonperturbative form factor SNP (b,Q)
is determined by fitting the experimental data. Several parametrization exist.
The CSS formalism well describes all the Drell-Yan data up to the Tevatron.
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Chapter 7

Experiments

7.1 Electron scattering with proton target

Up to now only several experiments aimed measuring the structure functions
of proton. This challenging task can be performed only by the greatest
accelerating centres in the world, which can produce high energetic collisions
and have a precision detection apparatus at disposal. For this purpose leptons
were soon recognized as the best probes of protons because of their well-
understood electromagnetic interactions.

The first e-p scattering experiments were systematically used by a group
led by Robert Hofstadter at Stanford University from 1955 for the investiga-
tion of the structure of individual nucleons. These investigations with static
proton target and electron beam of energies from 200 MeV up to 1 GeV
earned Hofstadter the Nobel prize for physics in 1961.

In 1967, new electron linear accelerator was built in Stanford Linear Ac-
celerator Centre (SLAC) with electron beam energy up to 20 GeV. The first
serious study of deep inelastic e-p scattering was started by the group of
experimentalists from SLAC and MIT (Massachusetts Institute of Technol-
ogy). They discovered that proton contained tiny scattering centres. This
was the first evidence of point-like charged structures in the proton and sup-
port for newly formulated quark model. A new type of physics opened up:
DIS. These first MIT-SLAC results attracted the attention of Feynman who
developed the basic ideas of the parton model (1968).

After that, physicist tried to probe deeper and deeper into depths of the
proton. Generally, the extraction of the structure functions was based on the
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measurements of double differential cross section dσ/dxdQ2 of deep inelastic
lepton-hadron scattering. Each experiment has its own kinematic range of
Bjorken variable x and transferred momentum squared Q2 as well as the type
of probing lepton.

A series of eight other experiments at SLAC collected data during the
years 1970 and 1985. They provided detailed knowledge of deep inelastic e-p
scattering cross section. Structure functions F2(x,Q2) and the radio R(x,Q2)
were determined by the fitting procedure for all precise measurements over
the entire SLAC kinematic range 0.06 ≤ x ≤ 0.9 and 0.6 ≤ Q2 ≤ 30.0 (GeV)2

[12].

7.2 Muon scattering with proton target

In the next stage of proton structure investigation, more energetic lepton
beams were necessary. It was difficult to produce such high-energy electron
beams because of their energy losses through synchrotron radiations. Thus,
muons became a natural choice as high-energy massive lepton probes with
sufficient lifetime. In the following experiments, the muon beam was a ter-
tiary beam obtained from the decay of charged pions and kaons, which in
turn were obtained from the interaction of primary protons.

In the European Centre of Nuclear Research (CERN), several experiments
were running in 1978-1985 under BCDMS (Bologna-CERN-Dubna-Munich-
Saclay) Collaboration [22] and New Muon Collaboration (NMC) in 1986 -
1989. Data for these measurements of the proton structure function F2 and
the ratio R were collected at CERN SPS with static liquid-hydrogen target
and muon beam with the highest energy of 280 GeV. BCDMC Collaboration
provided a high statistics measurements with high Q2 (7 - 260 (GeV)2) and
covered range of Bjorken variable 0.06 ≤ x ≤ 0.8. Analysis of the struc-
ture function was based on 1.81 106 reconstructed events after all cuts [13].
NM Collaboration measured inclusive deep inelastic µ-p cross sections in the
kinematic range 0.002 ≤ x ≤ 0.6 and 0.5 ≤ Q2 ≤ 75 (GeV/c)2. The ratio
of the longitudinally and transversally polarized virtual photon absorption
cross section, R, was measured for 0.002 ≤ x ≤ 0.120 and 1.0 ≤ Q2 ≤ 25
(GeV)2. The full NMC data set consists of 0.54 106 events from the small
angle trigger and 1.82 106 events from the large angle trigger [15].

The aim of another experiment signed Experiment 665 at Fermi National
Laboratory in Batavia was to measure proton structure function F2(x,Q2)
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in fixed-target inelastic muon scattering. Data were taken during the years
1987 - 1992 excluding 1989 when the detector was being upgraded. Total
number of events was 159 853. The highest energy of muon beam was 470
GeV and these are the first precise measurements of F2(x,Q2) in the low x
(0.0008-0.6) and Q2 (0.2-75 (GeV)2 ) range of the data [16].

Figure 7.1: Ranges of kinematic variables x and Q2 accessible to experiments
realized up to now [2].

7.3 Positron-proton collisions

The second way, how to obtain collisions of protons with leptons at high en-
ergy was colliding. Such arrangement was possible to gain at the Hadron
Electron Ring Accelerator (HERA) at Deutsches Electronen Synchrotron
(DESY). At HERA, colliding particles were positrons with maximal energy
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of 27.6 GeV and protons with energy of 820 GeV. The total CMS energy was√
s = 300.9 GeV. In the years 1996 - 1997, two collaborations measured deep

inelastic e+-p cross sections at H1 detector and ZEUS detector, respectively.
The ZEUS Collaboration [14] measured proton structure function F2(x,Q2)
in the kinematic range 10−5 ≤ x≤ 0.65 and 2.7 ≤Q2 ≤ 30 000 (GeV)2 at inte-
grated luminosity of 30 pb−1. The H1 Collaboration [18] measured F2(x,Q2)
as well as FL(x, Q2), which was extracted using the partial derivative of the
reduced cross section (δσr/δ ln y)Q2 . The measurements covered the range
3 10−5 ≤ x ≤ 0.2 and 1.5 ≤ Q2 ≤ 150 (GeV)2 and was running at integral
luminosity of 20 pb−1. Using low x H1 data was possible to determine the
gluon distribution xg(x, Q2).

In 1999 - 2000, after accelerator upgrading, the H1 Collaboration con-
tinued with data collecting [17]. This time the energy of proton beam was
920 GeV, corresponding CMS energy rised at

√
s=319 GeV and integrated

luminosity rised at 65.2 pb−1. Collaboration provided high Q2 measurement
of FL and xF̃3 in kinematic range 0.0013 ≤ x ≤ 0.65 and 100 ≤ Q2 ≤ 30 000
(GeV)2. Thus, data together with H1 low Q2 precision data were used to
perform new NLO QCD analyses in the framework of the Standard Model
to extract flower separated parton distributions in the proton.
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Table 7.1: Most important experiments measuring structure functions up to
now.

years x Q2 [(GeV)2] str. func.
SLAC 1970-1985 6 10−2 - 0.90 0.6-30.0 F2, R
BCDMS 1978-1985 6 10−2 - 0.80 7-260 F2, R
NMC 1986-1989 2 10−3 - 0.60 0.5-75 F2

2 10−3 - 0.12 0.2-150 R
E665 1987-1992 8 10−4 - 0.60 0.2-75 F2

H1 1996-1997 3 10−5 - 0.20 1.5-150 F2, FL

H1 1999-2000 1.3 10−2 - 0.65 100-30000 FL, xF̃3

ZEUS 1996-1997 6 10−5 - 0.65 2.7-30000 F2

events or int. lum. process
SLAC e(20GeV) + p
BCDMS 1.81 106 µ(280GeV) + p
NMC 2.36 106 µ(280GeV) + p
E665 159 853 µ(470GeV) + p
H1 20 pb−1 e+(27.6GeV) + p(820GeV),

√
s = 300.9GeV

H1 65 pb−1 e+(27.6GeV) + p(920GeV),
√

s = 319.9GeV

ZEUS 30 pb−1 e+(27.6GeV) + p(820GeV),
√

s = 300.9GeV
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Chapter 8

Analysis of generated events

The main research projects measuring proton structure functions were de-
scribed in Chapter 7. On the basis of these and other experiments many
parametrizations of proton PDFs were prepared. The aim of this chapter is
to designate their different predictions for distributions of kinematic charac-
teristics of Z boson and its secondaries created in Drell-Yan process as well
as to try to quantify their uncertainties. It will be examined generated sets
of events for five different PDFs (see below) in proton-proton interactions at
14 TeV in CMS. The second aim is to compare the results for two different
generators: Herwig/Jimmy and Pythia.

8.1 Monte Carlo event generators

Monte Carlo event generators for high-energy processes were evolved in or-
der to model interactions of different particles and to predict the values of
kinematic quantities observed in real experiments. The programmes provide
simulations of lepton-lepton, lepton-hadron and hadron-hadron scattering.

Herwig and Pythia are general-purpose event generators based on differ-
ent models of fragmentation mechanism comprehensively described in their
manuals. In Pythia it is Lund’s string model of hadronization [11] and in
Herwig it is Cluster model of hadronization [10].

The typical high-energy event is described by an event generator simply
as follows: a pair of incoming beam particles are characterized by two sets
of parton distributions, which define the partonic substructure in terms of
flavor composition and energy sharing. Each of an incident beam hadrons
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can radiate time-like partons and so starts off building up an initial-state
shower.

One parton from each of the two initial showers collides and participates
in hard QCD subprocess. This can be described by exactly computed matrix
elements in lowest order of perturbation theory. The nature of this hard
subprocess determines the main characteristics of the event. The outgoing
partons may create a similar shower (final-state shower) like ingoing partons.

In addition to the hard process many semihard or soft QCD processes,
such as diffractive and elastic scattering and minimum-bias events, occur
between the other partons of two incoming showers. These processes take
place at low momentum transfer scale, for which the strong coupling αs

is large. Perturbation theory is not applicable and some phenomenological
model has to be used. In addition hadronization process, which combine the
not observable outgoing gluons and quarks into hadrons, is non-perturbative
process.

8.2 Files used for the analysis

Versions of the generators used for this analysis were HERWIG 6.507 [19]
together with JIMMY Version 4.0 and PYTHIA 6.323 [20]. The full matrix
element (including Z, γ and interference term) was used during the genera-
tion. The minimum mass of the generated Z was set to the 60 GeV. Such
steering parameters were chosen, so that programmes generated inclusive
collisions with unpolarized proton-proton at c. m. energy 14 TeV in initial
state and the final state contained pair electron-positron, created in Drell-
Yan annihilation of the pair quark-antiquark. The programs were used in
the framework ATHENA of offline software Rel 11.0.41 of the experiment
ATLAS [23].

The Les Houches Accord Parton Density Function (LHAPDF) Version
4.0 interface package [21] was used for implementation of sets of PDFs into
generation. Many of PDF sets are contained in this library. Five of them
were chosen for this study. They are listed in Table 9.1 together with their
codes and appropriate ranges for x and Q2.

PDF set CTEQ6ll was used for the comparison between Herwig and
Pythia. The main task, kinematic predictions for Z boson, was fulfilled
by creation of below shown distributions of kinematic characteristics for Z
and secondary electrons and positrons. Distributions of mass, transverse
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Table 8.1: Proton PDFs selected for comparison.
PDF set code xmin xmax Q2

min Q2
max

CTEQ6L 10041 10−6 1 1.69 108

CTEQ6ll 10042 10−6 1 1.69 108

CTEQ6m 10050 10−6 1 1.69 108

MRST2004 20400 10−5 1 1.25 107

ZEUS2005 60300 10−6 1 0.3 2×105

momentum, rapidity and parton fraction momentum xa were created.

8.3 Event selection, cuts, objects

Three aggregates of events were defined for each generated set. No cut was
used for the definition of the level 1 aggregate. It is formed by all events of
the corresponding set. There are 106 events in each level 1 aggregate.

The level 2 aggregates were created by the application of cuts to the
secondary leptons. Events were accepted if electron or positron has pT >
20 GeV and |η| < 2.5. So, we can distinguish electron and positron level 2
aggregates.

The level 3 aggregate contains only events in which both secondary lep-
tons survived the lepton cut. So, it is identical to the intersection of electron
and positron aggregates of level 2.

In the following text the three above defined aggregates are often men-
tioned as data levels. The level 3 aggregate is sometimes mentioned as Z
cut.

The kinematic quantities of three types of objects are investigated in the
rest of this chapter. By electrons and positrons are meant the Z secondaries
obtained directly from the generator record. Generated Z corresponds to the
Z from the generator record. By decayed Z is meant Z constructed from the
fourmomenta of its secondaries.

The generated sets were analyzed by object oriented data analysis frame-
work ROOT [24].
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Table 8.2: Summarization of the cross sections of Z production and of decay
Z after cut for all selected PDFs for Pythia and Herwig generators.

number of cross section of Relative
generated Z Z production [fb] fraction [%]

Pythia
CTEQ6ll 1,000,000 1.681 106 100.6
Herwig
CTEQ6ll 1,000,000 1.671 106 ± 948.2 100.0
CTEQ6L 1,000,000 1.560 106 ± 888.2 93.4
CTEQ6m 1,000,000 1.701 106 ± 955.2 101.8
MRST2004 1,000,000 1.731 106 ± 982.6 103.6
ZEUS2005 1,000,000 1.753 106 ± 986.2 104.9

number of decayed cross section of decayed Relative
Z after cut Z after cut [fb] fraction [%]

Pythia
CTEQ6ll 396,677 0.667 106 103.1
Herwig
CTEQ6ll 387,457 0.647 106 100.0
CTEQ6L 386,739 0.603 106 93.2
CTEQ6m 407,347 0.693 106 107.1
MRST2004 410,713 0.711 106 109.9
ZEUS2005 407,654 0.714 106 110.4

number of expected cross section of
Z for detection Z detection [fb]

Pythia
CTEQ6ll 194,372 0.327 106

Herwig
CTEQ6ll 189,854 0.317 106

CTEQ6L 189,502 0.296 106

CTEQ6m 199,600 0.340 106

MRST2004 201,249 0.348 106

ZEUS2005 199,750 0.350 106
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8.4 Expected multiplicities of the Drell-Yan

Z boson

Table 8.2 summarizes numbers of Z and cross sections for first and third level
of data. It is possible to provide prediction for cross section of Z detection
(last column in Table 8.2). The efficiency of lepton detection is supposed to
be 70%. Neither other detector effects, nor background corrections are taken
into account in this estimate. The PDF set ZEUS2005 embodies the most
interesting properties. Via the final-state radiation by secondary leptons is
cross section for decaying of Z reduced with respect to the large cross section
of Z production.

Notice the increased relative fractions after Z cuts for all PDFs except
CTEQ6L, that decreased. Especially, it is interesting to compare differences
between Pythia and Herwig. In the following it will be shown that the main
difference in pT distribution, see Fig. 8.9, is responsible for differences in the
cross section evolutions.

Cross sections in Table 8.2 are scatched in Fig. 8.1. This dependence of
cross sections on PDFs is responsible for different normalization of following
kinematic distributions.

8.5 PT and η distributions for the Drell-Yan

Z secondaries

There is a comparison of pT distributions between Herwig and Pythia for
both electrons and positrons in all three levels of data in Fig. 8.3. Notice
that there are small difference between Herwig and Pythia in normalization
decreased after cuts. The influence of the lepton cut can be perfectly seen
at 20 GeV of pT . There is no remarkable difference between electrons and
positrons.
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Figure 8.1: Graphical comparison of the cross sections for Drell-Yan produc-
tion of Z boson. The upper red set of points corresponds to generated cross
sections and the lower set corresponds to the cross section of decayed Z after
cut.

In Fig. 8.4 is shown the comparison of pT distributions for electrons after
Z cut among different PDFs for Herwig generator. Distributions differ only in
normalization, see Fig. 8.1, not in shape. Distributions are roughly identical
for MRST2004 and ZEUS2005 PDF sets.

There is a distinct difference between Herwig and Pythia generators in
Fig. 8.5, which survived all cuts. Herwig distributions are significantly wider.
The effect of |η| < cut can be well seen. The last cut causes significant change
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Figure 8.2: Numbers of generated electrons and positrons for events gener-
ated via Pythia and via Herwig/Jimmy. The CTEQ6ll parton distribution
function is used . Numbers of electrons (x axis) and positrons (y axis) are
roughly symmetric. Maximum number is 4 for both of generators.

in the shape of distribution.
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Figure 8.3: Differential cross section as a function of transverse momentum
of electrons (on the left) and positrons (on the right). CTEQ6ll parton
distribution function was used for both generators. Distributions are similar
except normalizations and cuts.

The pseudorapidity distributions of electron are shown in Fig. 9.6 for five
PDFs. The only difference is in normalization (see Fig. 9.1)
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of electrons after Z cuts(Herwig/Jimmy). Five PDF sets are compared. The
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8.6 Kinematic characteristics of the Drell-Yan

Z boson

The invariant mass distribution of Z is shown in Fig. 8.7 for CTEQ6ll and
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Figure 8.5: Differential cross section as a function of pseudorapidity of elec-
trons (on the left) and positrons (on the right). CTEQ6ll parton distribution
function was used for both generators.

Herwig. Histogram was fitted by Breit-Wigner distribution.
The peak for decayed Z after cut is broader due to the final-state radiation

of e−,e+ and is shifted slightly to the left. The parameters of the fitting for
all PDFs and both of generators are in Table 8.3.

The values of mass and width of Z approximatelly correspond to the
tabulated values [2]: m = 91.1876 ± 0.0021 GeV and Γ = 2.4952 ± 0.0023
GeV. The high value of the χ2/ndP for decayed Z is caused by final-state
radiation that violated Breit-Wigner character of the mass distribution.

The mass distributions for all PDFs are shown in Fig. 8.8. Character of
the distributions is almost identical with respect to the normalization, see
Fig. 8.1.

The Z pT distributions are shown in the Fig. 8.9 for CTEQ6ll PDF for
Herwig and Pythia. There is very strong difference between them. Herwig
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Table 8.3: Mean values of mass and width of the Z boson.
all generated Z

mass [GeV] Γ [GeV] χ2/ndP
Pythia
CTEQ6ll 91.153 ± 0.002 2.485 ± 0.006 21.49/17
Herwig/Jimmy
CTEQ6ll 91.197 ± 0.002 2.524 ± 0.006 17.68/17
CTEQ6L 91.197 ± 0.002 2.517 ± 0.006 20.81/17
CTEQ6m 91.200 ± 0.002 2.511 ± 0.006 26.52/17
MRST2004 91.196 ± 0.002 2.505 ± 0.006 11.88/17
ZEUS2005 91.198 ± 0.002 2.502 ± 0.006 26.24/17

generated Z after cut
mass [GeV] Γ [GeV] χ2/ndP

Pythia
CTEQ6ll 91.167 ± 0.003 2.485 ± 0.009 16.01/17
Herwig/Jimmy
CTEQ6ll 91.216 ± 0.003 2.530 ± 0.010 16.37/17
CTEQ6L 91.213 ± 0.003 2.527 ± 0.010 24.77/17
CTEQ6m 91.212 ± 0.003 2.512 ± 0.009 11.55/17
MRST2004 91.212 ± 0.003 2.508 ± 0.009 8.54/17
ZEUS2005 91.216 ± 0.003 2.509 ± 0.009 13.1/17

decayed Z after cut
mass [GeV] Γ [GeV] χ2/ndP

Pythia
CTEQ6ll 90.947 ± 0.004 2.821 ± 0.012 469/17
Herwig/Jimmy
CTEQ6ll 90.989 ± 0.004 2.875 ± 0.013 359.5/17
CTEQ6L 90.992 ± 0.004 2.878 ± 0.013 357.8/17
CTEQ6m 90.993 ± 0.004 2.868 ± 0.013 449.3/17
MRST2004 90.992 ± 0.004 2.862 ± 0.012 508.3/17
ZEUS2005 90.991 ± 0.004 2.872 ± 0.013 475.6/17
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Figure 8.6: Differential cross section as a function of pseudorapidity of elec-
trons after Z cuts. Five PDF sets are compared. The distributions for
positrons are almost identical.

predicts higher cross sections in the area of pT < 15 GeV compared to Pythia
and vice versa in the area of pT > 15 GeV. Numerically it is described in the
Table 8.4.

The comparison of different PDFs is in Fig. 8.10. Their differences are
fully explained by normalization, see Fig. 8.1. The mean values of pT are in
Table 8.5. The different shape of Pythia distribution is clearly manifested.

Fig. 8.11 shows rapidity distributions for CTEQ6ll PDF using Herwig
and Pythia generator. Herwig predicts slightly wider peaks.

The comparison of rapidity distributions for all sets of PDFs using Herwig
generator is displayed in Fig. 8.12. Differences are only in normalization.
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Figure 8.10: Differential cross section as a function of transverse momentum
of Z boson for different PDFs using Herwig/Jimmy generator.
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Table 8.4: Cross sections in the regions of transverse momentum of Z boson.
Pythia: σ [105fb] Herwig/Jimmy: σ [105fb]

pT < 15 GeV pT > 15 GeV pT < 15 GeV pT > 15 GeV
all Z 8.056 8.754 8.933 7.777
gen. Z
after cut 3.100 3.570 3.362 3.108
dec. Z
after cut 3.071 3.599 3.323 3.147

Table 8.5: The mean values of pT of Z and RMS for all PDFs.
all generated Z generated Z after cut

p̄T [GeV] RMS [GeV] p̄T [GeV] RMS [GeV]
Pythia
CTEQ6ll 21.27 19.00 21.97 19.52
Herwig/Jimmy
CTEQ6ll 19.73 18.49 20.39 18.99
CTEQ6L 20.06 18.75 20.71 19.23
CTEQ6m 19.39 18.37 20.39 18.99
MRST2004 19.09 18.24 19.79 18.81
ZEUS2005 19.20 18.35 19.99 18.94

decayed Z after cut
p̄T [GeV] RMS [GeV]

Pythia
CTEQ6ll 21.92 19.19
Herwig/Jimmy
CTEQ6ll 20.38 18.65
CTEQ6L 20.70 18.90
CTEQ6m 20.38 18.65
MRST2004 19.83 18.50
ZEUS2005 20.02 18.64
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Figure 8.12: Differential cross section as a function of rapidity of decayed Z
boson after cut for different PDFs using Herwig/Jimmy generator.
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The distributions of fraction xa are shown in Figures 8.13 and 8.14. The
first one compares Pythia and Herwig generators and describes the influence
of cut. The Z cut dramatically decrease the range of magnitude of xa. Fig.
8.14 shows almost identical distributions for all PDFs.
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Figure 8.13: Differential cross section as a function of the fraction xa on
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8.7 PT distribution of Z boson in xa bins

CTEQ6ll PDF was used for demonstration of differential cross sections de-
pending on transverse momentum of decayed Z boson after cut in seven xa

bins covering the whole xa scale, see Fig. 8.15. The pT distributions seems
to depend only on normalization, the shape of lines does not depend on the
chosen bin of xa.
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Figure 8.15: Differential cross section as a function of transverse momentum
of decayed Z boson after cut in different xa-bins for CTEQ6ll PDF using
Herwig/Jimmy generator.
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Chapter 9

Summary and conclusions

Kinematic characteristics of the Z boson and its secondaries created in the
process pp → X + Z → e−e+ at 14 TeV were studied on the generator
level.Two generators were used - Herwig/Jimmy and Pythia. Five different
event sets were generated with Herwig/Jimmy. They differ only in PDF.
The following PDFs were used: CTEQ6ll(used also in Pythia),CTEQ6L,
CTEQ6m, MRST2004 and ZEUS2005. The first three are leading order
PDFs, the last two are next-to-leading order ones.

The expected multiplicity of Drell-Yan Z decayed in e−e+ channel are 3.27
× 105, 106, 107 for the integrated luminosity 1, 10 and 100 fb−1, respectively
for events generated with Pythia. These numbers differ from 3.17 × 105, 106,
107 generated with Herwig/Jimmy using the same PDF set by about 3.2%.
The identification and reconstruction efficiency is supposed to be 70 % for
the electrons and positrons with pT > 20GeV and |η| < 2.5. Other detector
effects and background corrections are not taken into account.

Herwig/Jimmy event generator was used for comparison of different sets
of PDFs. The expected multiplicities are 2.96 × 105, 3.17 × 105, 3.40 × 105,
3.48 × 105 and 3.50 × 105 for integrated luminosity 1 fb−1. They correspond
to CTEQ6L, CTEQ6ll, CTEQ6m, MRST2004 and ZEUS2005 PDF sets.

No strong dependence on the PDF used was found for the pT and η
distributions of secondary leptons. The pseudorapidity distribution obtained
with Herwig/Jimmy is wider compared with the Pythia one.

The distributions of Z invariant mass for different PDFs are almost iden-
tical and differ only in normalization. The same is true for the distributions
of rapidity, transverse momentum and xa.

As to the comparison of distributions of kinematic characteristics of Z
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obtained with Herwig/Jimmy and Pythia, the following was found. The Z
invariant mass and xa distributions are quite similar. The rapidity distribu-
tion of Z obtained with Herwig/Jimmy is wider than the Pythia one. The
difference of the Z transverse momentum distributions is dramatic. The Her-
wig distribution is significantly shifted to the lower values. The Z transverse
momentum distributins were created in seven roughly equally populated xa

bins. The Herwig/Jimmy events with CTEQ6ll were used for this purpose.
No strong dependence on xa bins was found.
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