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Abstract

Up to this date, energetically well defined nuclear standards do not exist for the electron
spectroscopy. Such a standard, for conversion electrons from transitions in 83mKr, is being
developed at Řež and it will be utilized in an independent device for the monitoring of the
voltage on main spectrometer of the prepared experiment KATRIN. The quality of the devel-
oped source is tested by measurement at the electrostatic spectrometer ESA12 in NPI Řež.
The aim of this work is to determine, how the uncertainty of conversion electrons energy
depends on the uncertainty of voltage that is applied on electrodes of the spectrometer and
uncertainty which is induced in measurement of this voltage by a voltmeter.
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Abstrakt

V jaderné fyzice dosud neexistujı́ energeticky dobře definované jaderné standardy pro elek-
tronovou spektroskopii. Jeden takový standard - konverznı́ elektrony z přechodů v 83mKr -
je vyvı́jen v Řeži a bude použit v nezávislém kontrolnı́m zařı́zenı́ pro monitorovánı́ napětı́
na hlavnı́m spektrometru připravovaného experimentu KATRIN. Kvalita vyvı́jeného zdroje
je testována měřenı́m na elektrostatickém spektrometru ESA12 v ÚJF Řež. Cı́lem této práce
je určit, jak závisı́ nejistota v určenı́ energie konverznı́ch elektronů na nejistotě napětı́, které
je přiloženo na elektrody spektrometru, a nejistotě s jakou je toto napětı́ měřeno voltmetrem.

KLÍČOVÁ SLOVA: KATRIN, monitorovánı́, konverznı́ elektrony, elektronový jaderný stan-
dard
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1 Introduction
One of the most challenging task in modern physics is to determine the rest mass of neutrino.
This particle has a fundamental implication to particle physics, astrophysics and cosmology.
In particle physics, the Standard Model assumes that neutrinos are massless particles. How-
ever, the recent investigations with solar and atmospheric (created by cosmic rays) neutrinos
show that neutrinos oscillate when they are travelling along their path (i.e., for example,
electron neutrino is transformed into muon or tauon neutrino). The neutrino oscillations are
a strong evidence for massive neutrinos.
Neutrinos play very important role in astrophysics and cosmology, too. They carry away up
to 99 % of the energy that is released in the supernova explosion. The cosmological implica-
tion of zero neutrino mass is such that we know only 4 % of the composition of our Universe
(so called visible matter). The remainder mass of the Universe is unknown and massive neu-
trino can contribute to this invisible part of our Universe considerably.

The aim of prepared experiment KATRIN [1] is a determination of the mass of neutrino
from the shape of the end of β-spectrum of tritium (see Figure 1). This experiment will im-
prove the sensitivity on neutrino mass by factor ten in comparison with previous experiments
in Mainz [2] and Troitsk [3].

Figure 1: The electron energy spectrum of tritium β decay: (a) complete and (b) narrow
region around endpoint energy E0. In (b), the β spectrum is shown for neutrino mass
of 0 or 1 eV.
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The tritium was chosen due to its several advantages:

• tritium decays by super-allowed transition with a half life of 12.3 years

• it has the simplest atomic shell

• it has one of the lowest endpoint energy (18.6 keV)

The experimental setup of KATRIN (Figure 2) can be divided into four major units:

• Windowless Gaseous Tritium Source (WGTS)

• an electron transport and tritium pumping section

• a system of two electrostatic spectrometer for energy analysis of electrons

• a semi-conductor detector

Figure 2: The 70 m long KATRIN setup with its major components: a) the windowless
gaseous tritium source WGTS, b) the transport elements, consisting of an active pumping
part and a passive cryotrapping section, c) the two electrostatic spectrometers and d) the
detector.

The high sensitivity of the KATRIN experiment will be reached by a special type of spec-
trometers, so-called MAC-E-Filters (Magnetic Adiabatic Collimation combined with an Elec-
trostatic Filter). This type of spectrometer was first proposed in [4]. The use of such a
spectrometer for the neutrino mass determination was described in [5, 6]. It combines high
luminosity and low background with a high energy resolution, both essential for determina-
tion of the neutrino mass from the measurement of the endpoint region of a beta spectrum.
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2 Monitoring of high voltage on main spectrometer
The determination of neutrino mass requires the precise knowledge of the energy of elec-
trons in the analyzing plane of the main spectrometer. This energy is determined by the
retarding electrostatic potential at the analyzing plane and the scanning potential applied to
the source. The precise measurement of the scanning voltage, which will not exceed 100 V,
does not represent any problem. However, the challenge is to measure the retarding voltage
of about 18 kV with a 50 mV precision, because the numerical studies [7] have shown that
an unrecognized shift of retarding energy by 50 meV would result in the systematic error of
the mass of neutrino as large as 40 meV which is a substantial part of the expected KATRIN
sensitivity to the neutrino mass.
Two methods will be simultaneously utilized for monitoring the retarding potential:

• The retarding voltage of the KATRIN main spectrometer will be reduced by a precision
high-voltage divider [8] down to a voltage below 10 V which is ideally suited for high
precision digital voltmeters. Both instruments, divider and voltmeter, exhibit a drift
and must be regularly calibrated.

• Monitor spectrometer serving as independent monitoring device on that will be ap-
plied the same high voltage like on main spectrometer (Figure 3). For the checking of
the voltage by the monitor spectrometer, the energetically well-defined and sharp mo-
noenergetic electron sources will be used like natural standard. Using this method, the
possible unrecognized drift of divider and voltmeter can be detected and corrections
may be done.

For this purpose, two kinds of electron sources with energy of electrons close to the
tritium endpoint are intended:

– the K-conversion electrons from the 32 keV transition in 83mKr (K-32) having
the energy of 17824.3(2) eV [9] and natural width of 2.8 eV [10].

– the photoelectrons ejected by 26 keV gamma-ray photons of 241Am from the
atomic K-shell of cobalt foil. The energy of photoelectrons calculated as the
difference of gamma ray and binding energies amounts to 18635.8(2) eV. The
line width is given by the cobalt atomic K-level and amounts to 1.3 eV [1]

Actually, for the monitoring it is not very important to know precise electron energy for
particular source but a high stability and reproducibility of electron energy deduced from the
measured spectra is substantial.
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Figure 3: The setup of the monitor spectrometer and the main spectrometer.

3 Numerical simulation
Currently the vacuum evaporated solid generator type 83Rb/83mKr source is developed at NPI
Rez. The quality of the sources is tested in the electron spectrometer. Owing to the ambi-
tious demand, energy stability and reproducibility at 50 meV level, very careful and detailed
analysis of the measured electron spectra is necessary. For this purpose the simulation of the
spectrometer output data file will be very useful. The measured value of energy of the con-
version electrons depends on both the statistical uncertainty and the systematic uncertainty.
The proposed simulation will be used for investigation of systematic uncertainties.

3.1 Motivation
Up to this day, the nuclear standards for electron spectroscopy do not exist, contrary to the
gamma spectroscopy. Nevertheless for the KATRIN monitoring spectrometer, a radioactive
source with monoenergetic electrons is needed. For this reason, we are developing a source
based on 83mKr. For this standard, it is needed to know the position (energy) of conversion
line in spectrum precisely. The energy of conversion electron or, in other words, atomic
levels in the source vary with a distribution of electrons in cloud caused by orbitting electrons
and also due to chemical bonding between substrate and Rb/Kr layer. Also, with decay of
rubidium into krypton, one originates electric charge and it can change distribution of charge
in electron clouds and it affects atomic levels. The shape of electron spectrum, its low-energy
range, also depends on energy loss due to the penetration of electrons throw matter of source.
In order to investigate influences of these effects, at first we have to investigate how energy
of conversion line depends on instabilities or, more accurately, uncertainties of voltage of
power supply and, of course, on uncertainty of measured voltage of voltmeter.
We investigate these effects using the spectrometer ESA121 (Figure 4) [11] in Řež.

1The spectrometer ESA12 is differential spectrometer unlike all KATRIN’s spectrometers which are integral
spectrometers.
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Figure 4: Electrostatic spectrometer ESA12 at NPI Řež.

Unfortunately we cannot apply high voltage of 17 kV on this spectrometer, i.e. the con-
version line K-32 cannot be directly investigated. Thus we use conversion electrons L1 of
transition 9.4 keV in 83mKr. We suppose, if position of K-32 changes due to the above effects,
the energy of L1-9.4 line proportionally changes too.
The conversion line L1-9.4 is for this purposes suitable because this line is very intensive. It
is circa two times wider (FWHM = 5.3 eV [10]) than K-32 , however, it is unsubstantial in
this case for our aims.
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3.2 Physical background and philosophy of a computer code for the
simulations

The electrostatic spectrometer at Řež can operate in several modes. One of them is so called
retardation mode [11]. In this mode, we apply the voltage both on the analyzing electrode
and on the source. During the measurement, the voltage on electrode is fixed and we change
voltage on source by fixed step (0.5 eV) in order to measure electron spectrum in the required
energy range. This mode is used for more delicate and accurate measurements. For this
mode, we have developed the computed code which simulate the spectrometer output data
file corresponding to the electron spectrum given by the input data.
The shape of the conversion line is described by Lorentzian function. However, the spec-
trometer, by which spectrum is taken, has got a finite resolution, so, in practise, the shape of
it is described by a folding (convolution) of Lorentzian curve L(E) and a apparatus function
G(E), i.e.

L(E) ? G(E) =

∞∫

−∞
L(E ′)G(E − E ′)dE ′,

where for G(E) stands

∞∫

−∞
G(E)dE = 1.

In our case, that means for spectrometer ESA12 at Řež, the apparatus function can be very
well described by Gaussian function [11], i.e. the final term for convolution is

+∞∫

−∞
A

(
ΓL

2

)2

(E ′ − E0)
2 +

(
ΓL

2

)2

1√
2πσ

exp

[
−(E − E ′)2

2σ2

]
dE ′, (1)

where A is height (or more accurately amplitude) of the peak, ΓL is FWHM of Lorentzian
function, E0 energy of the conversion line and σ = 1

2
√

2ln 2
ΓG, where ΓG is FWHM of

Gaussian function.
Since the integral (1) contains e−x2-like function, the most appropriate is to compute this
integral by Gauss-Hermite quadrature [12] (sometimes called only Hermite quadrature). The
general formula for Gauss-Hermite quadrature is

+∞∫

−∞
f(x)w(x) =

m∑

j=1

wjf(xj), (2)

where f(x) is an arbitrary function, w(x) = e−x2 is so called weight function, xj is j-th
root of Hermite polynomial of the n-th degree and wj weight corresponding to the root xj .
We have tried Hermite quadratures for several orders2. Eventually we have decided Hermite

2We have tried quadratures of 10th, 14th, 18th, 20th, 22nd, 26th order, and from the 20th order, the value of
integral (1) is not changed.
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quadrature of twentieth order, the weights and roots were computed by program Mathematica
[13]. We have computed the weights from the formula

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2
,

where Hn(x) is Hermite polynomial of n-degree.
In order to use Hermite quadrature, we have rewritten the integral (1) to ”Hermite quadra-
ture” form, where we have used the replacement (E−E′)2

2σ2 = E1. Finally we have got formula

+∞∫

−∞
A

(
ΓL

2

)2 1

(E − 2σ2E1 − E0)
2 +

(
ΓL

2

)2 e−E2
1dE1. (3)

The energy of electrons E is proportional to the retarding voltage US that is applied on
source, for this type of the spectrometer [11]

Ekin = e
(
US +

UC

0.56

)
,

where UC is voltage that is applied on analyzing electrode. The numerical value 0.56 repre-
sents so called spectrometer constant that depends on the spectrometer dimensions. Measure-
ments are performed at UC = 146 which implies that electrons with kinetic energy 260 eV
can go through the spectrometer analyzing electrodes and hit the detector. The energy of 260
eV amounts to the energy resolution 2.9 eV (i.e. 1.1 % of UC

0.56
).

In the next paragraph, we will describe, how we have done the numerical simulations of
the conversion spectrum. This simulation imitates the control program output file of the
spectrum, taken by the spectrometer. This program writes measured data in a file that con-
tains two columns. There are the voltage that is measured by voltmeter in the first column,
and number of counts in the second one. This file consists of many sweeps, where one sweep
represents one throughpass of the spectrum taking on.
In the first sweep for the first point of spectrum, the energy (or voltage of power supply), for
instance, is V0. We have assumed that the voltage on power supply is a normal distributed
quantity. Then, for this value, we have got a value of this voltage by a random number
generator, V1 (in general, V0 6= V1). Now we have computed a number of counts N0 that
corresponds to a theoretical spectrum, i.e. Voight function. Since, in practise, the number
of counts is a Poisson distributed quantity, we, again by random number generator, have
generated the realistic (or measured) number of counts N1 (again in general, N0 6= N1). The
N1-value, we write to a file that looks like the output file from the real measurement.
The voltage V1 is reduced by a precision high-voltage divider down to a voltage below 20
V, this reduced voltage V ′

1 is measured by a voltmeter. Once again we have assumed that a
voltage on the voltmeter is a normal distributed quantity, and therefore, by random number
generator, we have got the realistic measured voltage V ′′

1 . We write the voltage V ′′
1 to the

file and this one corresponds to number of counts N1. Then we go ahead to the next point
where we repeat the same procedure as in previous point. When we have finished the first
sweep, in analogy with a scan procedure of the spectrometer, we jump to the beginning of the
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measured spectrum, and we get in the next or another sweep for the voltage V0 the voltage
V2 (once again in general V0 6= V1 6= V2), for the number of counts N0, we get number of
counts N2 (N0 6= N1 6= N2 in general), and the same we do with voltage on the voltmeter.
Typically we have simulated one thousand of sweeps. From this sweeps, we reconstructed
the electron spectrum. We have counted up the number of counts of each sweep that belong
to the certain bin (for example

(
E − ∆

2
, E + ∆

2

〉
), where ∆ is the sorting (or binning) step).

The resultant number of counts, we re-count per a unit of time. In our case this is one second,
because we have assumed that the spectrometer have spent one second when it has taken the
data in one point of spectrum.

3.3 Results
The simulated data have been fitted by ROOT [14] and using the MINUIT package with
Migrad minimization method. We have used two parametrization of the Voight function for
this fit. Since we are interesting only in the determination of the position of the conversion
line, in the first parametrization, we have assumed that the Voight function is folded from the
Lorentzian and Gaussian function with the same FWHM. In the second one, we have used
the parametrization where these FWHM’s are different.
Thus the first parametrization has got the form:

V (Γ, A, E0) = L(Γ, E0, A) ? G(Γ),

where V () is Voight function, Γ’s are the FWHM’s of Lorentzian L() and Gaussian function
G(), E0 is the energy of the conversion electrons, and A is a height of the peak. Since this
convolution has not got again an analytical solution, we should compute and subsequently fit
in the numerical form. We have used once again the Gauss–Hermite quadrature of the 20th
order. Therefore we have written the Voight function (in according to (2))in the form:

A
20∑

j=0






 1

2(E−E0)
Γ

−H20(xj)




2

+ 1





wj, (4)

where A is the height of peak, E0 the energy of conversion electrons, H20(xj) is the value of
Hermite polynomial of 20th order for xj-root of this one, and wj is the weight corresponds to
xj-root. This integral has been computed again by Gauss-Hermite integration. In this case,
we have once again used the Gauss-Hermite quadrature of the 20th order. The results of this
fit are plotted in the Figure 5.
The second parametrization has got the different FWHM’s, i.e. Lorentzian ΓL and Gaussian
ΓG.

V (ΓL, ΓG, A,E0) = L(ΓL, E0, A) ? G(ΓG),

In order to fit the Voight function numerically, we have overwritten this one in the form:

A

4
√

π

20∑

j=0








1

(E−√2ΓG H20(xj)−E0)
ΓL




2

+
1

4





wj,
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Figure 5: The dependence of the conversion line energy uncertainty on the voltage uncertain-
ties for the parametrization with the same FWHM’s for Lorentzian and Gaussian function.

the variables have the same meaning as in (4). How we can see from the Figure 6, this
parametrization is more precise than the previous one.
Now we will discuse if both parametrizations give the close values of the line energy un-
certainty. Therefore we compare both parametrization (we have subtracted the first from
the second one). This is plotted in the Figure 7. From this figure, we can see that both
parametrization are equivalent because most of the differences is equal or very close to zero.
The region of the plotted data was chosen by reason of the voltmeters which are used in Řež
have got the voltage uncertainty (2 µV for Fluke, and 40 µV for Solartron), and of the Řež’s
power supply (its voltage uncertainty is 0.4 V).
Now we focus to results of the first parametrization. When we look at the Figure 5, we can
see that, in our investigated range, all data are concentrated around the plane with vertical
coordinate equal to 8.8 mV. We look more closely in this data. We do several cuts of this
plane, firstly in power supply direction, i.e. we fix voltmeter voltage uncertainty, and then in
voltmeter direction, i.e. we fix power supply uncertainty.
At first, we fixed the voltage uncertainty and we will investigate how does the line energy
uncertainty depend on the power supply uncertainty. We have fixed following voltmeter
uncertainties, 2 µV (Fluke voltmeter - Figure 8), 40 µV (Solartron voltmeter - Figure 9), and
80 µV (Figure 10).
These ones have been fitted again by constant line. The line energy uncertainty is very close
to 8.80 mV.
And then we have fixed the power supply uncertainty (once again the same values as in
previous case). For the line energy uncertainty, we have got almost 8.80 mV from the fit of
these histograms (pictured in the Figure 11, 12, and 13).
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Figure 6: The dependence of the conversion line energy uncertainty on the voltage uncer-
tainties for the parametrization with the different FWHM’s for Lorentzian and Gaussian
function.

Now we will be interested in the parametrization with the different FWHM’s both in Gaus-
sian function and Lorentzian function. We again fixed the voltmeter uncertainties, the same
as in previous case. The relevant histograms are pictured in the Figures 14, 15, and 16 .
How we can see in previous histograms, the data are very close to constant line in this region
and then we tried to fit them by constant line. The uncertainty of line energy determination
is, in all cases, very close to 8.84 mV.
Now we fix the power supply uncertainties. We have done the same procedure as in previous
case. We have chosen the following power supply uncertainties: 0.1 V (Figure 17), 0.4 V
(Figure 18), and 0.8 V (Figure 19).
When we fitted these histogram by constant line, we have got the line energy uncertainty,
once again, very close to 8.84 mV.
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Figure 9: The dependence of the conversion line energy uncertainty on the power supply
voltage uncertainties for fixed voltmeter uncertainty equal to 40 µV.
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Figure 10: The dependence of the conversion line energy uncertainty on the power supply
voltage uncertainties for fixed voltmeter uncertainty equal to 80 µV.
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Figure 11: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.1 V.
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Figure 12: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.4 V.
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Figure 13: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.8 V.
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Figure 14: The dependence of the conversion line energy uncertainty on the power supply
voltage uncertainties for fixed voltmeter uncertainty equal to 2 µV.
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Figure 15: The dependence of the conversion line energy uncertainty on the power supply
voltage uncertainties for fixed voltmeter uncertainty equal to 40 µV.
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Figure 16: The dependence of the conversion line energy uncertainty on the power supply
voltage uncertainties for fixed voltmeter uncertainty equal to 80 µV.
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Figure 17: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.1 V.
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Figure 18: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.4 V.
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Figure 19: The dependence of the conversion line energy uncertainty on the voltmeter volt-
age uncertainties for fixed power supply uncertainty equal to 0.8 V.

4 Summary and conclusion
In this work, we have concentrated ourselves on the influence of the uncertainties of the
voltage of the power supply and voltmeter on the line energy uncertainty. This is one of
the first steps in the procedure of preparing a nuclear standard for the electron spectroscopy.
We find that in the range of voltage uncertainties that is in our focus the uncertainty of line
energy is around 8.8 mV. This value is sufficient for further Řež’s measurement with the
electron spectrometer. Since the line energy uncertainty also depends on the strength of the
radioactive source (on the height of the peak) through the uncertainty of the number of counts
(its square root) that occur in minimize procedure, so for a stronger source, the line energy
uncertainty will be than smaller.
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Appendix

Software
In our computer simulation, we have used several software frameworks. The own program
for the simulation of the electron conversion spectrum was written in program language C.
In program code, we used the roots of Hermite polynomial; to acquire the root values we
have used the famous program framework for symbolic computing - Mathematica. The final
part of numerical simulation - the fitting of data and plotting of the histograms - was created
in ROOT.

ROOT is an object oriented framework aimed at solving the data analysis of high energy
physics. It was developed in the context of the NA49 experiment at CERN. NA49 has gener-
ated an impressive amount of data, around 10 Terabytes per run. This rate provided the ideal
environment to develop and test the next generation data analysis. ROOT contains CINT
interpreter (C++ interpreter) that serves to a communication with a user.

Minuit is projected as a tool to find the minimum value of a multi parameter function and
analyze the shape of the function around its minimum. The principal application is statistical
analysis, working on chi-square or log-likelihood function, to compute the best fitted param-
eter values and their uncertainties, including correlations between the parameters. Minuit
was, in origin, written in FORTRAN, and consecutively it has been converted to C++. Later
it was integrated to ROOT as its package.
One of the minimization method in Minuit, that we used, is called MIGRAD. This is the
best minimizer for almost all function. The minimizing technique currently implemented
in MIGRAD is a stable variation of the Davidon-Fletcher-Powell variable-metric algorithm
[15]. This algorithm converges to the correct error matrix as it converges to the function
minimum.
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