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Zkoumáńı vlastnost́ı silné vazbové konstanty αS v proton-protonových
srážkách
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Abstrakt: Tento výzkumný úkol pojednává o silné vazbové konstantě αS
a jej́ıch valstnostech v proton-protonových srážkách. Hlavńım př́ınosem
práce je př́ıprava na nadcházej́ıćı diplomovou práci a to předevš́ım v těchto
bodech: seznámeńı se s tématem týkaj́ıćı se silné vazbové konstanty αS,
částečné shrnut́ı dosavadńıch výsledk̊u, vygenerováńı vzorku dat pro teo-
retickou předpověd’ v monte carlo generátoru Pythia a nalezeńı vhodné
proměnné pro vazbovou konstatntu αS, která by maximálně redukovala jak
chybu teoretickou tak chybu experimentálńı. Vzorek dat je vygenerován při
energii

√
s = 13 TeV se zvoleným rozhrańım, které opov́ıdá detektoru

ATLAS (tune A14) a ńıže uvedenou volbou PDF sad pro několik r̊uzných
hodnot αS. Následně bylo provedeno zpracováńı anti-kt jetovým algortimem.
Z výše uvedených d̊uvod̊u byla vybrána dvoujetová azimutálńı korelace jako
ideálńı pozorovatelná. V rámci této práce je ukázána jej́ı citlivost na několika
jetové procesy, čemuž odpov́ıdá úměrnost vazbové konstantně a zároveň velké
sńıžeńı teoretických chyb.

Kĺıčová slova: QCD, silná vazbová konstanta αS, jety a jetové algoritmy,
dijetové azimutálńı korelace
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Abstract: This research project deals with the strong running coupling αS
and its properties in proton-proton collisions. Main benefit of this work is a
preparation for the following diploma thesis and the contribution is primarily
in next points: to become acquainted with the topic of the strong running
coupling αS, to partly summarise the contemporary results for the value αS,
to generate the data sample for the theoretical prediction in the Monte Carlo
generator Pythia and to find a proper variable which would maximally re-
duce the theoretical and experimental uncertainties. The data sample was
generated for several values of αS with the central mass energy√
s = 13 TeV within interface reflecting the ATLAS detector settings (tune

A14) and with further mentioned PDF sets. Then, the anti-kt jet algorithm
processed the particle level data. Due to the previously discussed reasons,
the dijet azimuthal correlation was chosen as the suitable observable. In the
frame of this work, its sensibility for multijet events was demonstrated which
have direct connection to αS proportion and at the same time also the re-
duction of the theoretical uncertainties was shown.
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Introduction

The main purpose of Particle Physics is to study basic constituents of matter
and their mutual interaction. Nowadays, the high energy collisions of hadrons
are one of the most exploited way to achieve this purpose. In this context,
the next natural step is an attempt to describe the experimental data with
a theoretical concept and, according to this theory, make a prediction for
another measurement/observation.

Currently, the most successful theoretical description is offered by the
Standard Model, where one of its elementary parameters is the strong cou-
pling constant αS which is an indispensable part of the theory describing
strong interaction, the quantum chromodynamics (QCD). The strong cou-
pling enters all calculations of the strong interaction either as an explicit
part of the matrix elements or as an implicit part of the evolution equations
for parton distribution functions. It is the only one free parameter (besides
quarks masses) which has to be inserted into QCD.

Therefore a great effort has been made to perform the most precise mea-
surement of this running constant. A very illustrative example of the im-
portance of the precise αS measurement is the Higgs cross section presented
in [1]. One of the possible ways for the determination of the αS(m2

Z) value
are the lattice QCD with the result: α(m2

Z) =0.11840 ± 0.00060 and a jet
shape variable, thrust, for the positron-electron scattering with the outcome:
α(m2

Z) =0.1135 ± 0.00105. This difference of prediction αS causes a large
change of the Higgs boson cross section of is about 8%–9%. This is much
more than any theoretical or experimental uncertainty. It can be shown that
only less than 1% of uncertainty of αS is tolerable in the perspective of the
Large Hadron Collider (LHC) measurements.

9
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Some of the existing results can be seen in Figure 1 where ways to measure
the αS with their uncertainties are shown. The most utilized observables and
processes for extracting the value are [19]:

• Deep inelastic scattering

• Hadronic Z-decays

• Event shapes and jets in electron-positron annihilation

• Jets in hadron-hadron collisions

• Hadronic τ -decays

• Heavy quarkonia decay

• Lattice QCD

For this project, jets in hadron-hadron collisions were chosen with the
focus on the proton-proton hard scattering at the LHC detected with ATLAS
detector. The primary goal is to make a preparation for the following diploma
thesis. Due to this reason the discussion is done in a mostly theoretical
qualitative way with some results in the last part of this research paper.

The first chapter of this thesis discusses the Particle Physics and the
Standard Model with a further focus on the history of QCD. The second
chapter offers elementary information about quantum chromodynamics and
its basic properties: a formulation of QCD with Lagrange formalism, the
running nature of the parameter αS in context of the renormalization pro-
cedure, the color confinement and the asymptotic freedom. The second part
of this chapter also includes basic principles of the quark-parton model and
of the parton distribution functions. The third chapter discusses basic vari-
ables needed for the hard scattering characterisation, also brief introduction
to jet physics and the description of ATLAS detector. The fourth chapter
concerns with the theoretical prediction for the parameter αS. Its main goal
is to determine the most suitable observable in accordance with mentioned
requirements with the final results summarised in the fifth chapter.
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Figure 1: The summery of some experimental measurements of the strong
coupling constant.[1]



Chapter 1

Introduction to Particle Physics

One of the cornerstones of Particle Physics is the Standard Model (SM).
It is a theoretical concept which attempts to describe three interactions of
nature acting between elementary particles, based on current experimen-
tal results. These three interactions include: the weak interaction, the
electro-magnetic interaction and the strong interaction. The gravita-
tional interaction, which is much more common to everyday observation, is
not successfully comprised in the SM. Also, it may be neglected due to its
very low relative strength in comparison with the other elementary forces for
achieved energies in contemporary accelerators (see further in Table 1.1).

Elementary particles can be divided into two categories according to the
value their of spin: fermions with half-integer spin and bosons with integer
spin 1 (see Figure 1.1).

Fermions can be further divided into two families of leptons and quarks2.
The electron e− is the most common lepton (with the negative electric
charge). It was discovered by J. J.Thomson in 1897 during an investiga-
tion of the cathode rays.[20] In the perspective of quarks, there can be no
direct examination of their existence due to the properties of the strong inter-
action called color or quark confinement (it is explained further in the text),
which restricts the observation only to bound states of quarks, baryons and

1This different value has a consequence in distinct behaviour in the sense the of Pauli
exclusion principle. Fermions must obey the principle and therefore there is zero prob-
ability that two fermions could be observed in the same quantum state. Bosons, on the
contrary, are not restricted to this principle and any number of bosons could occupy the
same quantum state.

2Further, they can be distinguished into three generations. See Figure 1.1.

12
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Figure 1.1: The diagram of the Standard Model. [2]

mesons3. The most familiar representatives of hadrons are proton and neu-
tron (nucleons). The proton was first confirmed experimentally by
E. Rutherford in 1911 [21]. At the time of discovery of proton and electron, it
was quiet natural to regard them as elementary and therefore they were used
as constituents of the first atomic models (the Rutherford model of atom).
Similar situation has happened with leptons, quarks and bosons in the case of
the SM, and because there is still no evidence of the internal structure, they
are denoted and used as elementary particles. Leptons and quarks also have
second and third generation which is mostly compound of unstable particle
and therefore they are not basic constituents of matter.

As was mentioned before, the second category of elementary particles
are bosons, which play a crucial role in the SM and in characterization of
the interaction. Their important goal in the framework of the SM is to
mediate the interactions. More precisely, in the case of scattering of two
particles with electric charges, is in the lowest approximation described as

3Baryons are composed of three quarks and mesons are composed of one quark and
one antiquark.
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Interaction Boson
M

[GeV/c2]
FR
[-]

r
[fm]

Electro-magnetic
γ

(photon)
0 10−2 ∞

Weak
W±,Z

(intermediate bosons)
80.4 and 91.2 10−6 10−18

Strong
gi, i = 1, . . . , 8

(gluons)
0 1 < 10−15

Gravitational
G

(graviton)
0 10−8 ∞

Table 1.1: The description of the basic properties of the elementary interac-
tions where FR represents the relative strength and r stands for the range of
the given force.[6])

an exchange of a photon with an amount of momentum between these two
particles. Each interaction is then represented/mediated by different gauge
bosons: one massless photon for the electromagnetic, heavy Z and W± bosons
for the weak and eight massless gluons for the strong interaction. The last
piece of puzzle of the SM is the Higgs boson and the Higgs mechanism. This
principle is accounted for generation of masses of all particles. Specifically, in
first step the masses of Z and W± are created by introducing the mechanism
and the Higgs boson itself is established. In second step, the masses of all
other particles are caused by an interaction with the Higgs field (with the
Higgs boson).

From a mathematical and physical point of view, the SM is a local
gauge quantum field theory based on product SU(3)× SU(2)× U(1) gauge
groups. The SU(3) group represents the quantum chromodynamics, that
describes the strong interaction between colored objects (gluons and quarks)
, the SU(2) group corresponds with the weak interaction, that acts between
fermions and leptons (they can be characterized by weak isospin I3), and
the U(1) group stands for the electro-magnetic interaction between particles
with the hyper-charge Y 4.

The SM is only an attempt to understand the present experimental ob-
servations. On one hand, there are many physical processes which were

4Hyper-charge Y and weak isospin I3 can be related to electric charge Q as follows:
Q = I3 + Y .
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theoretically understood and described with the SM, but on the other hand,
even now lots of evidences of the SM incompleteness are known. As was pre-
viously mentioned, the gravitational interaction is one of the missing pieces
in the SM. A question about larger portion of matter than anti-matter is
still open5. Lots of new theories are already present that strive to explain all
these problems (Supersymmetry (SUSY), Grand Unified Theories).

This brief section focuses on first steps towards QCD. The Eightfold Way
theory by M. Gell-Mann [22] tries to explain properties of hadrons in sense
of a group flavour symmetry SU(3), then the discovery of quark structure
of hadrons in the SLAC continued by the improvement of the quark theory
called quark-parton model by R. Feynman and in the end, the color charge,
that is the quantum characteristic of the particles interacting with the strong
force, and its experimental confirmation are discussed.
In the middle of the 20th century many discoveries of new particles happened,
mainly of hadrons (firstly, cosmic rays were used and further, with develop-
ment of accelerator physics and technology, a high energy accelerator beams
of leptons and hadrons were utilized). With these new ”zoo” of particles the
need for some theory framework which would categorize them in some way
emerged. The first pioneers in this field were M. Gell-Mann and Y. Ne’eman.
Both of them, independently, invented a theory which is able to interpret the
new particles with the help of a symmetry group SU(3) (as its representa-
tion). They had noticed that some quantum numbers of the hadrons (third
component of isospin I3, hypercharge Y , electric charge Q, strangeness S,
baryon number B) perform symmetries within the strong interactions and
one of the consequences is the conservation of an electric charge Q and its
relation with Y and I3 is called Gell-Mann-Nishijima formula [23]:

Q = I3 +
Y

2
. (1.1)

Gell-Mann and Nishijima also established the relation between Y , S and B:
Y = S +B 6. One of the biggest successes of this theory was the prediction
of the new hadron Ω− which had not been yet observed. The prediction
introduced not only the existence itself but also its mass, life-time and a way
of production. In the year 1964 [24], this new hadron was detected at the

5The SM predicts that both of them should have been created in the same amount.
6Later, more quantum numbers was discovered with new hadrons and added to this

equitation.
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Figure 1.2: The baryons octet of the SU(3) group. [3]

Brookhaven National Laboratory. One of the geometrical representation of
the group SU(3) can be seen in Figure 1.2.

Nevertheless, the theory also anticipated the basic triplet of the SU(3)
group comprehending ”peculiar” particles with a non-integer spin and electric
charge which were never observed in nature. M. Gell-Mann [25] and G. Zweig
(in 1964) offered a theoretical solution of this ambiguity and proposed the
quark model in which the hadrons are objects composed of the basic triplet
of the SU(3) group, quarks.

In the beginning of 1970 in the SLAC experiments on the inelastic scatter-
ing of electrons and protons were performed, among others, with an attempt
to probe the Gell-Mann and Zweig quark theory. The result for the cross
section of the process indicated a very interesting feature which had been
earlier described by J. Bjorken [26] called Bjorken scaling. The cross-section
depends on two kinematic Lorentz invariant variables: the virtual photon
mass and the energy transfer. In case of the scattering electrons on protons,
the structure functions are also included in formula and depend on these vari-
ables. In high energy transfer, the Bjorken scaling causes that these structure
functions depend only on their ratio. R. Feynman used these results as a ba-
sis for a new theory which is called the parton model. In the frame of this
model, he interpreted the Bjorken scaling as a composite nature of proton
consist of point-like components, partons7 [27].

7He did not denote partons only as quarks.
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One of the consequences of the parton model is that the bound state of
three quarks sss, baryon Ω−, has a symmetric space part of wave function and
all the quarks are in the same quantum state. This is clearly in contradiction
with the Pauli exclusion principle and the antisymmetric space-function of
Ω−. The solution for this problem was establishing a new quantum number
called color charge (H. Fritzsch and M. Gell-Mann in 1971[3] ) which should
be different for all the quarks in Ω− and conserved in the frame of the strong
interaction. The requirement for the three different types (NC = 3) and its
existence itself was proven from an experimental observation of the cross-
section for the electron-positron annihilation into muons and hadrons. The
observed variable was the ratio of the cross sections of these two different
annihilations:

σ(ee+ → qq)

σ(ee+ → µµ+)
=
∑
q

(
Qq

e

)
NC , (1.2)

where Qq represents electric charge of quark. Only the prediction with
NC = 3 was in agreement with the data.



Chapter 2

Theoretical concept of QCD

The goal of this chapter and the following sections is to present a basic de-
scription of QCD in the Lagrange formalism and its elementary properties
among which the running of coupling αS and the asymptotic freedom (as-
sociated with the color confinement) can be classified. Brief introduction to
the theme of the perturbative QCD (pQCD) is also included.

In the beginning, an effort in made to clarify the expressions that de-
termine QCD as a local nonabelian gauge quantum field theory (especially
the words ”local”, ”nonabelian” and ”gauge”). The strong interaction acts
between particles with color charges that is distinguished to three different
types (labelled green (g), red (r), blue (b)). These particles can be described
with a help of the Dirac bispinors ψ(x):

ψ(x) =

ψr(x)
ψg(x)
ψb(x)

 . (2.1)

It has to be symbolized as matrix in the color space due to these distinct
types. According to the Dirac field theory its free Lagrangian and generated
Euler-Lagrange equation have following form:

L fermion
free = ψ(x)(iγµ∂µ −m)ψ(x),

(iγµ∂µ −m)ψ(x) = 0, (2.2)

where γµ represents the Dirac matrices and m mass of the particle. For
QCD, the local gauge transformation is defined by:

ψ′(x) ≡ exp[iαa(x)Ta]ψ(x) = Uψ(x), a = 1, ...8, (2.3)

18
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Figure 2.1: The Feynman diagrams of the elemental vertices of QCD.

where Ta are generators of the color SU(3) group, which is created by these
transformations, and αa(x) are parameters of this transformation. The de-
pendence of the parameters on space-time coordinate x is called local. It can
be seen that the application of this transformation on the Dirac bispinor in
the free Lagrangian (Equation 2) causes the noninvariance and can be elimi-
nated by the introduction of a gauge field Aµ and the special derivate, called
the covariant derivate:

Dµ ≡ ∂µ − igAµ, Aµ = AaµTa. (2.4)

These fields are interpreted as 8 gauge field bosons of the strong force, gluons.
The transformation of these fields Aµ is defined in following way:

Aaµ
′ = Aaµ + fbcaαbA

c
µ +

1

g
∂µαa, (2.5)

where fabc represents the structure constants. Their important role in the
whole formalism is to establish relation between the generators:

[T a, T b] = ifabcT
c. (2.6)

This feature of the transformation is called nonabelian and has a great con-
sequence for the behaviour of the strong interaction. For the implementation
of the gauge field to QCD Lagrangian, the invariant tensor of Aµ is needed
to derive with the final form:

F µν
a (x) =

∂Aνa(x)

∂xµ
− ∂Aµa(x)

∂xν
− gfabcAνa(x)Aµa(x). (2.7)

As can be seen from the above equation, self interactions of the gauge field
is present due to the nonabelian conduct of the generators and the theory
itself. In case of the abelian QED, this member of the invariant tensor is
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missing. Now, it is possible with all the information to construct the QCD
Lagrangian:

L QCD = ψ(x)(iγµ∂µ+m)ψ(x) + αSψ(x)γµψ(x)T aAaµ(x)− 1

4
Gµνa(x)Ga

µν(x),

(2.8)
where αS is the coupling constant of QCD and it will be discussed later.
From QCD Lagrangian it is apparent that the first member stands for the
free Lagrangian, the second member represents the interaction between the
gauge field Aµ and the particle (between the gluon field and the fermion field,
see Figure 2.1; the first diagram) and the last member is the potential term
of the gauge field. The self interaction can be easily extracted from a detailed
product of these two gauge tensors:

L gauge ∼= (∂νA
a
µ − ∂µAaν)(∂νAµa − ∂µAνa)

+gfabc[(∂νA
a
µ−∂µAaν)AµbAνc+(∂νAµa−∂µAνa)AbµAcν ]+g2fabcfadeA

µbAνcAdµA
e
ν ,

(2.9)

the presence of the four gauge field in one product is the self interaction of
the four glouns and the same for the three gauge fields (see Figure 2.1; the
second and the third diagram). This two interactions will help us to under-
stand the principle of an antiscreening nature of the strong force.

Next section informs about the renormalization procedure for QCD and its
effects on behaviour of the coupling αS. In frame of the description of this
consequence, the color confinement and asymptotic freedom (the antiscreen-
ing conduct) is described.
Following the QCD Lagrangian (Equation 2.8), a direct way should be to
solve the Euler-Lagrange equations. During evaluation of these equations
many mathematical problems appear which are hard to solve even with us-
ing of a computer capacity. Therefore, an approximate solution has to be
used which is offered by the perturbative QCD (pQCD) or by the lattice
QCD (lQCD, and by many other models). The goal of pQCD is to rewrite
the explicit solution to the perturbative series in order of the coupling αS
which includes a free solution and a solution containing an interaction. This
method was summarised by R. Feynman to so called Feynman rules. They
are very easy and straightforward to use for a computation of many quantum
variables of a process in QCD.
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Figure 2.2: The Feynman diagram of the scattering of quark-quark. [4]

Previous statement is valid until the first order of pQCD (the leading or-
der, LO), for example the scattering of two quarks which is depicted in Figure
2.2. With higher orders, more diagrams have to be counted in the invariant
amplitude of the process and the complexity of the computation increases.
The first problem is occurring with the loops (see Figure 2.3). One of the
Feynamn rules orders to integrate over momentum of all virtual particles
in the loop within the full momentum-space (due to the Lorentz invariance,
there is no natural cut-off). The result is a logarithmic UV divergence of
the invariant amplitude and further of also the cross section of the process,
which is obviously in contradiction with the experimental data. The theory
is in this state unable to produce any observable (finite) values. An answer
for this problem lies in the renormalization. It is worth to mention that so
far αS is true constant with no dependence on any parameter.

The renormalization procedure solves the problem with UV divergences in
a way of replacing them to a relations between ”bare” quantities and measur-
able ones1. For more clear description of the procedure a toy model/theory
it is considered with only one free parameter g0 and a physical quantity F (x)
which can be expressed as a perturbative series of this parameter:

F (x; g0) = g0 + g2
0F1(x) + g3

0F2(x) + . . . , (2.10)

Fn(x) are only functions of x. For the purpose it is assumed that one these
functions F1(x) is logarithmically divergent and therefore its form could be
defined as follows:

F1(x) = C

∫ ∞
0

dt

t+ x
, (2.11)

1”Bare” quantities are represented with a lower index 0 and physical ones without.
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Figure 2.3: The Feynman diagrams of the scattering of quark-quark with the
gluon (b) loop and fermion loop (a).[4]

where C is an arbitrary constant. As a real example, could be used QED
or QCD with the parameters coupling αS0 or electric charge e0 as the pa-
rameter g0 and the function could represent a cross section of a quark-quark
or electron-electron scattering. As was mentioned before and is clear from
Equation 2.10, the divergence is included with the higher term proportional
to g2

0. The method itself is divided into two steps: the regularisation and the
renormalization. The divergences are during the regularization removed and
the observable becomes dependent on a auxiliary regularization parameter
Λ: F (x; g0) → F (x; g0,Λ). In this simple case, the regularization process is
only a cut-off of edges of a divergent integral (the infinity in F1 is replaced
with Λ) but there are many other schemes how can be the regularization
done.

Now, the physical observable F should be expressed in the pertubative
series of the measurable quantity g:

F (µ) = g, (2.12)

where µ is an arbitrary point in which F has been measured (F only depend
on g0 and with this measurement the theory is fully specified) and it is usually
called the renormalization scale. For the next progress, the relation between
g and g0 is established and used for the formulation of F in g series (with
dependence on µ too):

F (x; g0,Λ) = g0 + g2
0F1(x,Λ) + g3

0F2(x,Λ) + . . . ,

g0 = g + δ1 + δ2 + . . . , (2.13)

δn are called contrapart terms (δn ≈ gn). Last step is removing the parame-
ter Λ with a limit Λ→∞. If it is the case that the theory is renormalizable
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Figure 2.4: The Feynman diagram of a propagation of a electron with the
loops (a), the polarization effect of a medium with electric charge (b).[5]

according to renormalizability hypothesis then it should be possible to ex-
press F as a well defined perturbative series of the physical parameter g and
with dependence on the renormalization scale µ (and also the limit with Λ
exists). Whole process can be symbolized:

F (x; g0)→ F (x; g0,Λ)→ F (x; g, µ,Λ)

→ F (x) = F (x; g, µ) = lim
Λ→∞

F (x; g, µ,Λ) (2.14)

The renormalization redefines the bare constant αS0 to the physical one αS
(not only the coupling but also the other parts of Lagrangian are affected
and physical opposites ones are defined) [28].

The further text is more focused on a property of coupling αS/E for QCD
and QED which is called running, as another consequence of the renormal-
ization. This discussion is going to be led in qualitative manner (only a few
final formulas are used) for more information see [29].

In the context of QED it can be explained with help of the Figures 2.4
and the effect called vacuum fluctuations. During this process, a two particle
state is created from one particle in accordance with the Heisenberg energy-
time relation. For QED it means that from one photon an electron-positron
pair can be generated and after a certain time they annihilate back to a
photon. For the free photon propagator it means that these vacuum fluctu-
ations/loops have to be included into it (usually called a ”dressed” propaga-
tor) which causes divergences and they are removed with the renormalization
procedure. Results of the process are cancellation of the divergences and a
running behaviour of the coupling (the electric charge).

For an external observer it appears to be very similar to the polarization
effect for molecules in an electric field which is caused by an electric charge.
If they surround this electric charge then a screening effect is applied and
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Figure 2.5: The antiscreening effect of QCD with the Feynamn diagram of
this process. [5]

they decrees its value with the opposite direction of their electric fields to an
effective charge, which is lower than the original one. This type of behaviour
is due to the abelian nature of QED.

In the previous text it was mentioned that QED, in contrary to QCD,
lacks the self interaction of photons. That is the key why in QCD the screen-
ing and the opposite effects appears, the anti screening, and for QED only
the screening one is included. Almost the same procedure has to be applied
for QCD: loops have to be added in the free propagator of a gluon and the
renormalization procedure should be used to avoid divergences. Unlike QED,
the self interaction of gluons, which in this context means gluon loops (the
Figure 2.3 (b)), are also present along the fermions loops (the Figure 2.3
(a)). The overall effect can be seen from Figure 2.5 which shows how the
gluon loops increase an effective color charge of a quark, the antiscreening,
and how the fermion loops decrease the charge, the screening. In the result
the effect of the antiscreening is much more dominant than the screening one
and the color charge is increased to the effective one.

Now, the toy model with the observable F is exploited for more quan-
titative explanation of the running of coupling. A very interesting fact of
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Figure 2.6: The graph of the strong coupling constant αS as a function of
the energy scale Q. [6]

each renormalizable gauge theory is that the precise value of the coupling
at some energy scale must be put in the theory; but, on contrary, the de-
pendence on the energy scale is predicted within the theory. In the previous
text, the renormalization scale µ was defined as a random point at which
the measurement of F had been done and the coupling g acquired a specific
value (g = g(µ)). The contingency of the choice of this point means that
for another one µ′ and a coupling g′ a following formula should be valid :
F (x) = F (x;µ, g) = F (x, µ′, g′) (still the same prediction for F ). It is inter-
preted as an invariance of the theory when an arbitrary renormalization scale
is used. This transformations (in the sense of the pair: (µ, g)) creates a group
which is called the renormalization group2 and it can be shown that any cou-
pling of this type of theory should meet following equation, renormalization
group equation (RGE):

mu2dα(µ)

dµ2
= β(αS(µ)) = − (b0α

2 + b1α
3 + ...) , (2.15)

where β(µ) is the so called beta function and b0 is the 1-loop coefficient etc.

2This type of group has no dynamical effect or information.
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For b0 in the case of QCD is valid:

b0 =
1

12π
(11CA − 4nfTR) =

1

12π
(33− 2nf ), (2.16)

where CA = 3 is a constant associated with gluon emission from a quark,
nf stands for a number of flavours of quarks and TR = 1

2
represents the

color factor [6]. If µ is taken close to a momentum transfer of some process
(µ ≈ Q) than it can be interpreted as relative strength of the strong force. In
the perspective of first approximation (the 1-loop coefficient) the RGE can
be integrated (nf = 3):

αS(Q2) =
αS(Q2

0)

1 + 7
4π
αS(Q2

0) ln(Q
2

Q2
0
)

=
1

C ln(Q
2

Λ2 )
, (2.17)

where Λ ≈ 200 GeV is a constant of divergence of this expression. The
running of the coupling is depicted in the Figure 2.6. For a momentum
transfer Q going to values near ∞, the αS decreases and the strong interac-
tion between them loses its power and quarks behave as free, the asymptotic
freedom. At this scale the pQCD is valid and can be used for calculations
of strong processes (the scale must be proportional to Λ). On contrary for
Q going to values near 0, the αS increases and the interaction binds quarks
in a hadron state, the color confinement. Now, this explains why there is no
direct proof which would show the existence of quarks. For this values of Q
another approach has to be utilized and most of the time lQCD or another
models are exploited.

The further part of the project introduces physical model for a high en-
ergy process of hadrons, especially, the hard scattering of protons.
During electron-proton scattering according to the parton model, an electron
is interacting with a proton mediated by a virtual photon (corresponds to
electro-magnetic interaction), where a distribution of the proton momentum
p is reflected with the structure functions F1(x,Q2) and F2(x,Q2): Q2 = −q2,

q represents a momentum of the photon and x = Q2

2pq
stands for the Bjorken

scaling variable3. From the point of view of the parton model, this process
is interpreted as an incoherent scattering of a virtual photon on free par-

3It can be expressed as a parton’s fraction of the longitudinal momentum of the scat-
tered proton.
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tons because the high energy characteristic4. This fact allows to define the
structure functions as follows:

F (x,Q2) ≈
∑
i

xfi(x), (2.18)

where fi(x) are called the parton distribution function and define a prob-
ability that the parton i carries the fraction x of the proton’s momentum
p (see Figure 2.7). In the frame of this model they are independent of the
momentum transfer Q (the Bjorken scaling).

With more discoveries in the field of the strong interaction (for example a
gluon) and the resulting improvement of the parton model (at this time, it is
not just model but part of QCD) to the quark-parton model, the formula for
the cross section of the hadron-hadron (hadron A and B) scattering acquires
a following form (consequence of the factorisation theorem):

σAB =
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σab(x1, x2, µ

2
R, µ

2
F ), (2.19)

where the sum goes over all partons a/b in the hadron A/B, µR is the renor-
malization scale, µF is the factorisation scale, σab is the cross section between
the parton a and b. To modify the formula 2.19 for a practical usage, σab
should be included in the form of pQCD:

σab = [σ0 + αS(µ2
r)σ1 + · · · ]ab, (2.20)

where σn are members of a perturbative series in the αS. The combination
of this equation and the previous one allows very ”simple” approach to the
computation of the cross section only with the knowledge of PDFs of protons,
which are universal for each process, and the cross sections of partons.

PDF can be divided into two categories: valence and sea PDF:

fvalence ≡ fq − fq̄ ∧ fsea ≡ fq̄ (2.21)

where fq is PDF of a quark and fq̄ is PDF of a antiquark. The definitions
represent the fact that in a hadron the creation of a pair quark-antiquark
from a gluon is instantly present as also the radiation of a gluon from a

4According to the de Broglie wavelength, λ = ~
p , a resolution enlarges with a higher

momentum, and the time dilatation, the partons behave as free particle.
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quark or a gluon. The consequence of these two processes and already men-
tioned information are depicted in the Figure 2.7 in a (also in b with some
exceptions). It can be seen that the gluon PDF increases (see Equation 2)
for very low x and it slowly decreases for higher ones and the same behaviour
can be observed for the sea PDF (it is connected with the creation and the
annihilation of qq̄ to a gluon). A very interesting characteristic of valence
PDF is that they can be integrated with almost expected result from the
definition of a proton’s composition: uud quarks. For this case, a value of
the integral of a valence u quark PDF is 2 and of a d quark is 1, which is the
wanted result. In this perspective, a more common image of proton as the
composite state of two u quark and one d quark and the nowadays approach
to a proton with an infinite number of quarks, antiquarks and gluons meet
each other.

The reason, why the introduction of factorisation scale in Equation 2.19
was needed, has a relation with new divergences, which occur during a ra-
diation of gluons from partons. This process is governed by the splitting
functions Pq/g→q/g(x) which express the probability that a parton will radi-
ate or split to additional partons with a fraction of his momentum x. For
a collinear region (an angle θ between the original parton and the emitted
parton goes to 0), the cross section p→ p′p∗5 can be expressed as follows:

dσp→p′p∗ ≈
αS
2π

dy

y
dxPq/g→q/g(x) ≈ αS

2π

dp2
T

p2
T

dxPq/g→q/g(x),

→ αS
2π

dp2
T

p2
T

dx
4

3

[
1

x
+

(
1

x
− x
)2
]

(2.22)

where y = 1+cos(θ)
2

is the redefined angle, pT is the transverse momentum
of the emitted parton with the fraction x. To evaluate this equation one is
encountered with new infrared (IR) divergences. The first one becomes from
the case when a created parton is very near to the initial one
(y → 0 ⇔ pT → 0), called collinear/parallel divergence, and the second one
appears during a radiation of a gluon with zero energy (zero fraction of the
momentum), called soft/mass divergence.

The basic principle, on which the cancellation of these divergences de-
pends, is the indistinguishable of a physical state that is a natural prepara-
tion for the jets physics. This idea is based on an inclusion of states which

5A parton p splits to two partons p′p∗.
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Figure 2.7: The graph of PDF (multiplied by the Bjorken scale x) from the
parametrisation MSTW 2008 in the NLO as a function of the Bjorken scale
x. [7]

can not be seen (soft/parallel gluon) to the observable ones. It includes some
kind of regularisation (cut off) for transverse momentum and energy, which
introduces the factorisation scale µF and a running characteristic of the par-
ton densities6. The factorisation scale is arbitrary and it is usually chosen
as a momentum transfer in a process: µ2

F = Q2. For the case of hadron and
PDF, µR distinguishes between short distance, parton with a higher trans-
verse momentum (see Equation 2) than µR, and long distance, soft or parallel
parton with a lower transverse momentum than µR, behaviour of QCD.

6Due to the splitting functions an evolution of PDF as a function of µR is not only a
differential equations but it is a complex integro-differential equations, called Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equation (DGLAP equation) [30]:

dfi(x, µF )

logµ2
F

=
αS

2π

∑
j

∫ 1

x

dx′

x′
Pj→i(

x

x′
)fj(x

′, µF ), (2.23)

where j goes over all partons that are able to split to parton i and x′ is fraction of
momentum of the original parton j. Integration is over x to 1 which means that the
parton j remains with a new fraction of momentum x

x′ after the split. These equation are
much more complicated then RGE. Different behaviour/evolution is covered in the Figure
2.7 for values Q2 = 10 and 104 GeV2.
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Experimental Framework

3.1 LHC and ATLAS detector

The LHC is the most modern and powerful device used for purposes of par-
ticle physics. Its main role is to collide accelerated beams of protons or
heavy ion nuclei. It is placed in the research centrum CERN in vicinity of
the city Geneva at the France-Switzerland border. Nowadays, the highest
centre-of-mass energy of the protons beams is

√
s = 13 TeV with a maxi-

mum luminosity of L = 1.58×1034 cm−2s−1. One of the largest experiments,
which are installed on LHC, is the ATLAS detector[8] (others included: CMS,
ALICE, LHCb).

ATLAS is a multi-purpose detector with an almost 4π coverage in a solid
angle. Main parts can be seen in the Figure 3.1. ATLAS is composed of
an inner tracking detector (ID), which is surrounded by a superconducting
solenoid magnet with a 2 T strength of magnetic field, a middle part elec-
tromagnetic and hadronic calorimeters, and the last sub-detector, a muon
spectrometer (MS).

The inner tracking detector consists of a pixel detector, a micro-strip semi-
conductor tracker (SCT) and a transition radiation tracker (TRT). The total
range which cover these detectors in pseudorapidity is |η| < 2.5. Their main
purpose is to determine the vertex position and momentum measurement of
charged particles with a sufficient precision which is achieved with their high
granularity. In May 2014, the ID was upgraded with a new innermost layer
of pixel detectors, the Insertable B-Layer (IBL) [31].

The second part of ATLAS, the calorimeters, is divided into inner and

30
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outer level. The inner level consists of the LAr-lead (liquid-Argon) calorime-
ters with a segmentation to electromagnetic barrel, hadronic and electromag-
netic end cap and forward calorimeters. The outer level includes hadronic
tile and extended tile barrel from steel and scintillating tiles. The calorime-
ter gain information about an energy of passing particles through interaction
with an absorber (steel, led) and detection with an active medium (scintilla-
tors). The central part (tile barrel) covers pseudorapidity |η| < 1.7 and the
end-cap and forward regions are extended up to |η| < 4.9. The requirements
for the resolution of the calorimeter system is shown in the Table 3.1 (all of
them was accomplished with and some of them also overcome).

Detector part Resolution requirement

EM calorimetry σE/E = 10%/
√
E ⊕ 0.7%

Hadronic calorimetry (jets)

barrel and enc-cap σE/E = 50%/
√
E ⊕ 3%

forward σE/E = 100%/
√
E ⊕ 10%

Table 3.1: The requirements for the calorimeter system resolution.[8]

The last of the detector is the muon spectrometer which is installed
around the calorimeters. Its main task is to determine tracks of muons
with very precise system of tracking chambers (region |η| < 2.7). Indispens-
able components of the muon spectrometer are three superconducting toroid
magnets (one barrel and two end-caps) whose magnetic field perform bend-
ing power up to 7.5 T/m (for end-caps and for barrel toroid it is up to
5.5 T/m).

For selection of recorded events from detected ones a trigger system has
to be used. It includes two levels where the first one is implemented as a
hardware part which reduces the frequency of events to 100 kHz and the
second one is a software-based high level trigger with the final output which
is less than 1 kHz.
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Figure 3.1: The scheme of the detector ATLAS.[8].

3.2 Physics of Jets

This part of the project concerns with the basic principles and definitions
of jet physics: ideal properties jet algorithm, jet definition, recombination
schemes and a brief characteristic of different types of jet algorithms with
most interest in the anti-kt clustering algorithm (currently the most preferred
algorithm in the ATLAS collaboration).

Before the introduction to the jet physics, definitions of the most utilized
kinematic variables are needed which is done in the Table 3.2. Only some in-
teresting properties are now discussed: transverse momentum pT , azimuthal
angle Φ and difference of rapidities y′ − y are Lorentz invariant, pseudora-
pidity is a first member of binomial expansion of the logarithm in y and they
are equal for the relativistic case. These two values refer to degree of scat-
tering: for η = 0 a particle is perpendicularly scattered and η =∞ a particle
continues with the beam’s direction.

Jet is a natural and convenient way how to approach problems which
are connected with high energy particle processes dominated by the strong
force. To summarise (some of these issues), for current detectors there is
no possibility to individually measure and record all particles created dur-
ing their interaction in accelerators and from the theoretical point of view,
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Transverse momentum pT =
√
p2
x + p2

y

Azimuthal angle Φ = cotg px
py

Rapidity y = 1
2

ln p0+pz
p0−pz

Pseudorapidity η = − ln tan Θ
2

Table 3.2: The definitions of basic kinematic variable, where the four mo-
mentum pµ = (p0, px, py, pz), Θ is polar angle between a particle trajectories
and z axis of a coordinate system within the center of a detector.

a radiation of a collinear or a soft gluon from a parton is problematic part
for computations (emerges IR divergences, see Equation 2). Both of these
complications lead to the establishment of a physical object, jet, which in-
cludes part of these particles related is some way (near in phase-space or
rapidity-azimuthal angular space) and also prevents the occurrence of IR
divergences.

Generally, the whole process of collision of two high energy hadrons is
a very complicated topic which can not be explained only by pQCD valid
for a short-range physics. There are many subprocesses which belong to a
domain of soft QCD with respect to energetic scale (they have a long-range
behaviour) and phenomenological models are needed for their characteriza-
tion. To partly understand when and how these distinct processes originate,
the hard scattering of protons is further briefly described with the help of
Figure 3.2.

During the crossing of accelerated beams in the LHC bunches of protons
collide. As mentioned, before the main process of a typical non-elastic colli-
sions is the hard scattering. One of the first experimental problems which has
be faced is the pile-up effect when more than one hard scatterings of protons
happen in the same bunch crossing. For the description in this work, the
pile-up effect is neglected and its consequences are no more further discussed
and the next description focuses only on single proton-proton scattering1.
According to Figure 2.7, it can be seen that large part of the fraction of pro-
ton’s momentum is typically carried by one parton and the hard scattering

1But, it must be remembered that without the pile-up a real simulation of this process
would be incomplete and for the current settings of LHC pointless.
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Figure 3.2: The scheme of the hard scattering of two partons with different
stages of the process, which are color distinguished: dark green represents
the hadronic states, light green stands for the hadronisation process, blue
and purple responds to the parton level and with red the partons incoming
to hard scattering are marked (further description in Section 3.2). [9]
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than takes place between one such parton from each parton. The first sub-
process, which happen before the hard scattering, is the initial state radiation
(ISR) when partons could radiate additional partons. The final result is a
creation of so called parton showers which is a composite effect of the par-
ton radiation applied on daughter partons. Very similar subprocess to ISR
takes place after the hard scattering, the final state radiation (FSR). One
the main differences between these two shower effects is their time-like and
space-like nature. Whereas ISR manifests as time-like shower, FSR occurs
as space-like shower. The hard scattering of partons is depicted as the red
big bulb and the partons (gluons) as blue helices outgoing form the green
incoming protons (the green bulbs with three lines, valence quarks, pointing
at them).

Another possibility for interaction is hidden in soft remnants of the pro-
tons which are coloured due to the hard scattering of one the partons. This
process a multi parton interaction (MPI) and in the Figure 3.2 it is rep-
resented as the purple helices, lines and blobs outgoing from the protons.
MPI participates in a broader effect called the Underlying event, where also
pile-up is included.

All these processes are included in the parton level interaction. After this,
the hadronization (the bright green) connects coloured objects to hadrons and
resonances (the dark green rounds) which can further decay to more stable
hadrons (pions). This stage is called the particle level and due to the low
energy characteristic it has to be described with sQCD, for example Lund
string model. The last stage of the process is the calorimeter level where the
previous particles mostly interact and part of/whole their energy is deposit
in the detector[32].
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3.3 Jet algorithm

During the development and usage of jet algorithms, many theoretical and
experimental requirements have been discovered [10].

• Fully Specified: The whole jet algorithm and its aspects should be
fully described: selection process, kinematic variables, possible correc-
tions etc.

• Theoretical well behaviour: This topic has a close connection to the
IR divergences which were mentioned in the Chapter 2 and is illustrated
in the Figure 3.3.

The first case of algorithm unwanted sensitivity is a collinear one which
is presented in the Figure 3.3 a). So called seed algorithms form a jet
around the most energetic particles (seeds). In the left part of the
diagram a), the middle particle serves as the seed and the jet is created
in its vicinity while in the right part of a), the collinear particle was
emitted and therefore the previous seed’s energy is decreased which
causes that the algorithm finds the new most energetic particle with
the following different creation of the jet.

The left part b) of the picture is related to the infrared sensitivity
of the algorithm. In the left part of b), the algorithm constructs the
two jets around the two particles but in the right part of b), when a
radiation of soft particle is present, the algorithm creates the jet around
all three particles which is a dangerous behaviour with regard to very
high probability of this process.

This behaviour is unwanted and for algorithm is required to not change
the content/creation of a jet because of these two effects.

• Detector Independence: There should no dependence on the exper-
iment (type of a detector etc).

• Order Independence: Jet algorithm should be able to reconstruct
jets for each level/order (parton,particle and calorimeter) of a hard
process development.

Precise definition of jet is made by the jet algorithm. Generally, they can di-
vided into two basic categories: cone and sequential recombination (cluster)
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Figure 3.3: The schematic depiction of infrared sensitivity a) and collinear
b) of the jet algorithm. Length of the arrow represents the value of energy
of a given particle. [10]

algorithms.

Cone algorithm:

Each algorithm, which belong to the class of cone algorithm, can be charac-
terized by an arrangement of particles to a cone. By particles an experimental
data from calorimeter (energies) or an other system of a detector (trajecto-
ries, momenta) are meant and pseudorapidity azimuthal angle η ×Φ is used
as the coordinate system for the cone (if they are massless rapidity instead
of pseudorapidity is preferred).

The first step of the jet algorithm with a given dataset is to choose a
proper starting particle/value of variable (further all the members of the
data are described as objects) and according this feature they can be more
distinguished to seed and seedless algorithms. The difference lies in choice of
the most significant object (for example the highest transverse momentum
pT or transverse energy ET

2) for seed algorithm and for seedless one no kind
of this rule is implemented(further only the seed one). The algorithm uses
the seed with the characteristics ηK , φK and absorbs all other objects which
are in a cone vicinity defined as:√

(ηi − ηK)2 + (φi − φK)2 ≤ R, (3.1)

where R is the radius of the cone. Next step in this process is to determine
the kinematic variables of this provisional jet (protojet) which are used in
the algorithm. For this purpose the recombination scheme is utilized, for

2It can be calculated from the energy E and the polar angle Θ: ET = E sin(Θ)
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example Snowmass scheme:

EK
T =

∑
i∈K

Ei
T , η

K =

∑
i∈K E

i
Tη

i

EK
T

, φK =

∑
i∈K E

i
Tφ

i

EK
T

(3.2)

where Ei
T , η

i and φi is transverse energy, pseudorapidity and azimuthal an-
gle of an i-th object in protojet. There exist many types of recombination
schemes and the mostly used is the E-Scheme which defined as only sum
of all pT i/ET i. With this step, the centre of protojet is shifted and the ra-
dius R includes new particles. Therefore, the recombination scheme must
be used again and this iterative process continues till the time when there
is no change in the position of the centrum of the protojet. Then another
seed, which is not comprised in the previous protojet, is chosen and process
is repeated. Problem of this algorithm is the possibility of overlapping jets
(one or more objects belong to more than one jet). For this reason a merg-
ing procedure is needed. Another serious issue is the common infrared and
collinear sensitivity in the case of a seed algorithm 3. This inconvenience was
solved in a another type of algorithms, the cluster algorithms.

Cluster algorithm:

The cluster algorithm firstly computes for each pair i, j of objects from a
dataset following distances:

dij = min(k2p
T i, k

2p
Tj)

∆2
ij

R2
, diB = k2p

T i

∆ij =
√

(yi − yj)2 + (φi − φj)2 (3.3)

where kT i is momentum of the object i, R is radius in y × φ space and
p represents a degree of importance of momentum. In the next step the
minimum is chosen from these values and if it is dij then the algorithm
unites these two objects i, j into a protojet, with a recombination scheme
computes its kinematic variables and returns it to the input dataset. In the
case that diB is the minimum then the object i is labelled as a jet and it is
removed from the dataset. The algorithm continues until the input dataset
is empty.

3New cone algorithm usually works as seedless and they designed as infrared or collinear
safe, for example SIScone algorithm.
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Figure 3.4: The graph of parton level events after usage of anti kt
algorithm.[11]

According to the value of the parameter p, three main types of the clus-
ter algorithms are distinguished: Cambridge-Aachen for p = 0, anti-kt for
p = −1 and kt for p = 1 algorithm [10].

This type of algorithm, in contrary to others, prefers a creation of jets around
particles with the highest momenta. It can be seen from modified Equation
3.3 with the choice p = −1:

dij = min

(
1

k2
ti

,
1

k2
tj

)
∆2
ij

R2
, diB =

1

k2
ti

. (3.4)

The fractions in the distances dij and diB are disproportional to momenta of
the objects i, j and therefore the object with higher momentum prioritized
which is demonstratively depicted in the Figure 3.4. All jets are constructed
around the objects which possesses the highest values of momentum with a
regular jet shape of cone determined by the value of the parameter R. The
exceptions are present in the case when two high momentum objects are in a
distance lower then 2R. This leads to a distribution of softer objects around
the one with higher momentum. Therefore the anti-kt algorithm manifests a
good immunity of the jet shape against a radiation of soft particles [11].



Chapter 4

Monte Carlo prediction of αS

This chapter focuses on the practical/experimental part of the research project.
The main benefit should be the preparation for the measurement of a value
of the strong running coupling αS(Q2) for some given energetic scale (mostly
the mass of Z boson is chosen: Q2 = m2

Z) in the ATLAS detector at√
s = 13 TeV. The preparation concentrates on: the general way for deter-

mination of the value αS(m2
Z), contemporary results for αS predictions, the

Monte Carlo (MC) generator Pythia with a tune and PDF selection including
an uncertainty computation, sensible observables for the change of coupling
αS divided to three branches: inclusive and multi jet variables and expected
continuation for the diploma thesis.

4.1 Contemporary results for αS
from hadronic final state

The experimental data from high energy collision can be used as a test for
pQCD which also includes the prediction of αS as the running coupling de-
scribed by RGE. This section summarises current results for the measurement
of αS from the inclusive and the multi jet cross sections (these variables are
further discussed and with proper definitions). Several prediction was al-
ready performed with a range on the energetic scale Q from 5 GeV to
1400 GeV (range of the αS values).

One of the first measurements was made at the electron-proton collision
with the HERA and the PETRA accelerators in DESY. From this observa-
tions (the detectors H1, JADE and ZEUS) the energetic scale from 5 GeV to

40
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Figure 4.1: The measurement of the αS with the usage of the colliders:
HERA/PERTA, LEP and LHC (CMS). [12]

90 GeV was obtained [33, 12, 34, 35] where the last measurement (see [12])
derived the value: αS(m2

Z) =0.1172±(0.0004)exp(+0.0053
−0.0045)th

1.
The continuation (not chronologically) in the prediction of the αS value

on higher energetic scales from 10 GeV to 210 GeV was made with the CERN
accelerator LEP where was produced anhilations of electrons and positrons.
For this purposes the detectors ALEPH and OPAL was utilized [36, 37] with
the last result from article [36]:
αS(m2

Z) =0.1224±(0.0009)epx±(0.0009)stat±(0.0035)th.
Higher energy scale was acquired with the Tevatron collider. For the

Tevatron at Fermilab proton-antiproton collisions it was from 50 GeV to
400 GeV with the detector DZero [38, 39]: αS(m2

Z) =0.1191(+0.0048
−0.0071)total. The

results for the HERA/PETRA in DESY, LEP in CERN and Tevatron in
Fermilab can be seen in the Figure 4.1.

The highest energy measurements were preformed at the LHC for
proton-proton collisions with the CMS and ATLAS detectors from 130 GeV
to 1400 GeV. For the CMS detector, following center-of-mass energies were

1The abbreviation ”th” is for theoretical and ”exp” for experimental uncertainties.
Further the abbreviation ”tot” is used for total and ”stat” for statistical unc.
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Figure 4.2: The measurement of the αS with the usage of the detector CMS
at LHC. [13]

used:
√
s =2.76 TeV [13], 7 TeV [40, 41, 42] and 8 TeV [13]. The final result

is: αS(m2
Z) =0.1164(+0.0060

−0.0043)total and it is shown together with others in the
Figure 4.2 (also used variables are included).

The ATLAS detector was exploited with the energy 8 TeV [43, 14] with
the final outcome value: αS(m2

Z) =0.1127(+0.0063
−0.0027)total. The last prediction is

depicted in the Figure 4.3.

4.2 Method for αS prediction

The natural way how extract some information about an object of interests
is to measure its properties. General problem occurs when the wanted char-
acteristics can not be measured directly but only as effect/dependency of
some different aspect of the object. This example is valid for measuring the
value of the strong coupling αS. For each measurement some variable or a
set of variables has to be chosen and they must be expressed as the function
of αS. The exact case was mentioned in the connection with the Equations
2.10 and 2 where these variables are expressed as the perturbative series of
αS. This is the common assumption for the measurement of αS and can be
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Figure 4.3: The measurement of the αS with the usage of the detector ATLAS
at LHC and also a collection of results from other detectors (and accelerators)
is involved. [14]

generally formulated as follows [1]:

Vth(αS(µR/F ), µR/F ) =
N∑
n

cn(µR/F )αnS(µR/F ) +O(αN+1
S )︸ ︷︷ ︸

pQCD

+ O(
Λp

Qp
)︸ ︷︷ ︸

non-pQCD

, (4.1)

where Vth is the theoretical prediction for an experimental variable Vexp with
the uncertainty δVexp, cn(µR/F ) are the coefficients of the perturbative series
calculated until the order n = N , O(αN+1

S ) is member which represents the
higher orders N + 1 and O( Λp

Qp ) reflects a presence of the non-perturbative
contributions.

Each member of the Equation 4.1 defines/includes different kinds of pos-
sible theoretical uncertainties which together with the experimental result
Vexp defines total uncertainty of the αS value prediction:

• δVexp: experimental errors which represents the precision of the obser-
vation Vexp.

• pQCD: comprises the uncertainties from the higher orders N+1 which
can not be calculated in the current state of the art.
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• non-pQCD: effects appear from possible non-perturbative behaviour
of the theoretical prediction and it is proportional to the order p of
their corrections.

These items constrain the selection of proper variables which should be
able to minimize them as much as possible.

4.3 Monte Carlo Generator Pythia

The Monte Carlo generator Pythia 8.235 [44] (further only Pythia 8) has
been chosen as a source of input data for this research project. The version
8.235 was used with respect to implemented possibility for computations of
PDF uncertainty variations.

Pythia 8 is of the most common MC generators for LHC physics written in
the C++ program language 2. In the present state, it is capable of simulating
collisions between hadrons (protons, pions) and leptons of the same family3

with possible parton and particle data output. One the biggest advantage of
Pythia is the opportunity to select a wide range of subprocess with a high
variety of other choices (for example: using of MPI with different PDF in
contrary to PDF in matrix element computation). Potential inconvenience
or disadvantage is the missing implementation of the higher orders of matrix
element computation (NLO and further). This fact is balanced/compensated
with many models which supply either missing perturbative members of the
variable series (replaced with parton showers) or non-perturbative effects
(hadronisation). The connection between the LO matrix elements for hard
particles/partons and the parton shower for soft and collinear particles could
be provided by matching and merging algorithm (for example POWHEG
strategy).[45]

4.3.1 Tune and PDF selection

The way how to approach a real data/processes with MC generator is to use
the tunes. As was mentioned, Pythia exploits, along the leading order of
matrix elements, also phenomenological models or approximations to higher

2Previous most used version Pythia 6 was written in Fortran 77.
3Electron-proton collision is not included.



CHAPTER 4. MONTE CARLO PREDICTION OF αS 45

orders of QCD as parton shower, hadronisation or multiple interaction mod-
els to describe effects which far beyond the scope of this first perturbative
order of QCD. The problem is that with fully specified models, which were
during their compilation in best accordance with an used data, a contradic-
tion during the application in Pythia can occur. For this reason, the models
are equipped with a set of free parameters which can be tuned for best con-
formity with current data.

In this work the tune A14 (ATLAS 2014) is used [46] with changed
from default settings/tuned MPI, ISR and FSR for leading order PDF:
MSTW2008LO[47], NNPDF23LO[48], HERAPDF15LO[49] and CTEQ6L1[50].
During the tuning process a data sensitive to additional jet radiation was uti-
lized: dijet azimuthal decorrelation, the 3/2 ratio etc. In accordance with
used A14, the same sets of PDF are used in Pythia.

4.3.2 Theoretical Uncertainty

There are two main sources of the theoretical uncertainties: PDF and the
factorization µF and renormalization µR scale.

For a computation of PDF uncertainties the recommendations of their
respective articles/groups or added information in the set itself (see the pre-
vious subsection) are followed. The MSTW2008LO and HERAPDF15LO
are based on the Hessian method which introduces the set of variations of
PDF to some central value. The process uses the χ2

glob test and its global
minimum χ2

min as the best fit for the N parameters of PDF set4. This result
is described as the central value F0 with the set of parameters (a0

1, ..., a
0
N) and

a new function with a help of the Taylor series is defined (with an assumption
that χ2

glob is quadratic about the minimum):

∆χ2
glob = χ2

glob − χ2
min =

N∑
i,k=1

Hik(ai − a0
i )(ak − a0

k), Hik =
1

2

∂2χ2
glob

∂ak∂ai
(4.2)

where Hik is the Hessian matrix which can be further inverted and diagonal-
ized. The result is a group of eigenvalues λk and ~vk eigenvectors (k ∈ N̂).
It can be shown that a deviation from the global minimum parameters

4Each PDF parametrization is described as a function with some set of parameters
which have to be experimentally determined.
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(a0
1, ..., a

0
N) can be expressed with the usage of these eigenvectors and there-

fore the parameters variations are defined with some additional condition for
the maximal deviation value (and also PDF variations Fk).

Final computation of the theoretical uncertainties for an asymmetrical
variations is made according to following formula, called the master equation:

∆F+ =

√√√√ N∑
i

[
max(F+

i − F0, F
−
i − F0, 0)

]2
, (4.3)

∆F− =

√√√√ N∑
i

[
max(F0 − F+

i , F0 − F−i , 0)
]2
, (4.4)

where F
+/−
i are positive or negative variations. For the case of symmetrical

variations, the simplified formula can be used:

∆F− =
1

2

√√√√ N∑
i

[
F+
i − F−i

]2
. (4.5)

Exception is made for the PDF set CTEQ6l1 where no theoretical uncer-
tainty variations have been done and for NNPDF23LO a different method
was utilized (see more discussion in the Source [51]). In this PDF set, the
theoretical uncertainties is computed as an ”envelope” of the variations to
the central value (maximum value from all variations).

A calculation of the scale uncertainties is very similar as is used for the
PDF set NNPDF23LO. It is also computed as an ”envelope” of variations
from default setted values where the following combinations of numbers are
used as the multiplicative factors for (µF ;µR): (1/2;1), (1;1/2), (1/2;1/2),
(2;1), (1;2), (2;2).

The PDF uncertainties is the most dominant from these two a therefore
for further discussion only this type is used and computed.

4.4 Data processing and selection of variables

The data were generated from Pythia with the center of mass
√
s = 13 TeV

in 17 p̂T bins from 50 to 4941 GeV (see Table 4.1) with 100 000 events per
p̂T bin as a result from collision of two protons with following set processes:
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MPI, ISF, FSR and hard QCD5 (and more others from the default and the
tune settings). As was mentioned, the anti-kt jet algorithm was used with
the parameter R = 0.4 on the particle level. The recombination scheme was
chosen as the E-scheme. Both of the are implemented in the interface of the
program FastJet (version 3.1.3) [52].

50 200 300 400 500 642 786 894 952
1076 1162 1310 1530 1992 2500 3137 3937 4941

Table 4.1: The edges of p̂T bins in GeV used for the data generation in
Pythia.

For further data processing some cuts had to be applied. The transverse
momentum cut pTmin = 50 GeV/c reflects the fact that the calorimeter sys-
tem has a finite resolution and therefore every possible momentum can not
be measured. The same logic is valid for application of the cut for rapidity
ymax = 3 and for variable y∗max = 3 (for dijet events) which is defined as
with rapidities y1, y2 of the two leading jets: y∗ = |y1 − y2|/26. For fur-
ther analysis a new quantities yboost is useful to define: yboost = (y1 + y2)/2
and mjj = m1 + m2 where m1,m2 are again the invariant masses of two
leading jets. These two rapidity quantities reflect the characteristic of the
hadron-hadron center-of-mass frame which is longitudinally boosted in the
comparison with the center-of-mass frame of the hard subprocess (see Figure
4.4).

The first step after acquisition of data from Pythia was a research of the
inclusive cross section distributions which were compared to already pub-
lished articles about the inclusive cross sections [16]. The following vari-
ables were probed: dσ

dpT
, 1
σ
dσ
dΦ

, 1
σ
dσ
dy

, dσ
dmjj

and dσ
dpT y

. The cross sections dσ
dpT

,
dσ
dΦ

, dσ
dy

, dσ
dmjj

and their ratios for different values of αS with the PDF set

MSTW2008LO can be seen in the Figures 4.54.74.84.6. They were used also
as a control of correctly set parameters in Pythia and as can be seen no
unusual deviations7 are not present.

In the comparison with the Figure 4.10, where the inclusive pT cross
section in the intervals of y is shown, a good conformity with the Figure 4.9
can be found (a discussion about the theoretical uncertainties is further).

5In Pythia label: HardQCD:all = on.
6It is clear that the conditions for y and y∗ are the same.
7”Jumps” in the distributions or other ill behaviour.
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Figure 4.4: The boost effect and the definitions of yboost and y∗. [15]

For the further measurement of the strong coupling αS value and possible
probing of the pQCD theoretical description, variables sensitive to multi jet
final states are needed, for example the multi jet cross sections. The reason
for this type of quantities is due to the proportional behaviour of the higher
orders (n-th) of pQCD to O(αnS). For example the dijet event cross section
is proportional to α2

S and an additional radiation of hard parton in the final
state to three dijet event (another vertex has to be included) increases the
proportion to α3

S.
Few problems are hidden in the usage of the inclusive cross sections. The

first one lies in the dependence on a chosen PDF set which is according
to Equation 2.23 also dependent on the value of αS. Therefore the value
has to be inserted for the evolution of PDF as a function of µF = Q. The
second problem occurs with the uncertainty caused by theoretical prediction,
precisely, the PDF uncertainties, which have the dominant contribution and
blights the effort to perform a precise prediction.

The solution can be found in a normalization procedure when the multi jet
variable is divided by an inclusive or a dijet cross section and the uncertainty
is reduced. It can be also shown with an experimental data, that the highest
experimental uncertainty (the jet energy resolution) is almost cancelled by
these ratios. These facts lead to an introduction of ratio multi jet variables
as the proper ones for the αS measurement (for this reasons inclusive cross
sections are rejected for further work).

According to this characteristic some quantises with such properties can
be constructed. The usually used are following:

• Dijet Azimuthal Correlation ∆Φdijet: This variable includes the
fact about azimuthal distances between two leading jets.
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• Ratio R3/2: The ratio includes information about the ratio of the three
jet and the dijet events.

• Ratio R∆R: The ratio comprises the average number of neighbouring
jets.

• Ratio R∆Φ: The ratio contains the variable ∆Φdijet and probe its
rapidity and transverse momentum pT dependence.

In this research project and for further diploma thesis, the dijet azimuthal
correlation and probably (in the diploma thesis) the ratio R∆Φ are used as
the set of variables. Nevertheless, the option for another choice of variable is
still open as well the possibility of complex analysis with usage of more than
this set of variables.
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Figure 4.5: The differential inclusive cross section as the function of trans-
verse momentum pT for different αS values. The lower graph is the ratio
between given αS and αS = 0.118 normalized to αS = 0.118.
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Figure 4.10: The double differential inclusive cross section as the function of
transverse momentum pT and rapidity y. [16]
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Figure 4.11: The scheme of the azimuthal angle ∆Φdijet for the dijet system
with a different number of additional partons. [15].

4.4.1 Dijet Azimuthal Correlation

This quantity includes information about relative azimuthal angle of to lead-
ing jets: ∆Φdijet = |Φ1−Φ2| (Φ1,Φ2 are the azimuthal angles of two leading
jets). Form the Figure 4.11 can be seen, how precisely is the variable de-
pendent on the additional hard parton radiation in the final state (and on
new jet as the further result). In the first situation, when only two leading
jets are created, the azimuthal correlation is exactly equal to π which follows
from the kinematic constrains. In next schemes, additional parton radiations
are produced and this reduces the azimuthal correlation to be less then π.
Again, it can be computed from kinematics of this process that the three
jet final state is restricted with condition: ∆Φdijet ≥ 2π/3 and the four and
multi jet events have to acquire the value: ∆Φdijet < 2π/3. The way how
to approach this variable and use it for the αS measurement is through the
cross section of the event (differential cross section with the dependence on
the azimuthal correlation).

From already mentioned facts, the renormalization of ∆Φdijet is necessary.
This can be done with the total inclusive dijet cross section σdijet and the
complete definition is following:

1

σdijet

dσdijet
d∆Φdijet

. (4.6)

This observable was already several times measured by the DZero detector
at the Tevatron with

√
s = 1.96 TeV [53, 54] and also by the CMS detector

at LHC:
√
s = 7 TeV [55], 8 TeV [56], 13 TeV [17] and the ATLAS at LHC:√

s = 7 TeV [18] (at higher energies a different variable was chosen, see
further discussion). The most recent two results for ∆Φdijet are shown in the
Figure 4.12.
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Figure 4.12: The dijet azimuthal correlation by the ATLAS (left) and CMS
(right) detector in the pT interval.s [17, 18]

The plot of the ∆Φdijet can be seen in the Figure 4.13. It is shown together
with the ratio for different values of αS and also with the relative theoretical
uncertainties caused by PDF for the value αS = 0.118. The very low value
of the PDF relative uncertainties can be observed from the Figure 4.14. The
disturbing effect is mainly caused by the scales unc. and they restricts which
data are used for the αS value determination. In the frame of this work, same
calculation was attempted but with questionable results which indicated very
correctly low PDF unc. for the dijet azimuthal correlation but also for the
inclusive cross sections. This is with a contradiction with the result from the
ATLAS detector [16]. The possible cause is still missing and it should be
solved in the diploma thesis.

4.4.2 Ratio R∆Φ

The main advantage of this composite quantity is the possibility to express
the dependence of the dijet azimuthal correlation ∆Φdijet on transverse mo-
mentum pT and rapidity y and as follows also the same for the pQCD cal-
culations in contrary to ∆Φdijet which is proposed to be only pT dependent
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Figure 4.13: The differential dijet cross section as the function of dijet az-
imuthal correlation ∆Φ for different αS values. The lower graph is the ratio
between given αS and αS = 0.118 normalized to αS = 0.118.

Figure 4.14: The ratio of data and theoretical prediction with the PDF and
scale uncertainties.[18]
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(see Figure 4.12).
The definition of the ratio R∆Φ has from as follows:

R∆Φ(HT , y∗,∆Φmax) =

d2σ(∆Φdijet<∆Φmax)
dHT dy∗

d2σ(inclusive)
dHT dy∗

, (4.7)

where the numerator is the double differential cross section of the dijet event
which satisfies the condition ∆Φdijet < ∆Φmax in variables HT (it further
discussed) and y∗ and the denominator is the same double differential cross
section but inclusive one. Results for this quantity is expressed in the ∆Φmax

which corresponds to the topology of the originated final state, the hardness
of the two leading jet. This parameter is usually set to be: 7π/8, 5π/6, 3π/4
and 2π/3. The introduction of R∆Φ requires a new momentum variable HT .
The reason lays in the hard multi parton state as the result from the two
parton state with the branching process/radiation. The problem why it can
not be expressed only as differential of the PT = pT1 + pT2 or leading pT is
their noninvariance during the branching process. If more then two jets are
created the variable PT = pT1 +pT2 and pT change their values and therefore
also the definition for the R∆Φ which could be binned in these variables. Due
to this fact, almost invariant HT is used as scalar sum pT with the additional
conditions:

HT =
∑
j∈C

pT i, C = [ j |(pTj > pTmin) ∨ (|yj − yboost| < y∗)] (4.8)

The last result for the center-of-mass energy is shown in the Figure 4.16
for the three regions of y∗: 0.0–0.5, 0.5–1.0 and 1.0–2.0. and can be compared
with the picture from the ATLAS detector 4.15 [14]. The main differences
between them are mainly caused by distinct binning and by insufficient size
of used data sample in Figure 4.15 which causes that some bins disturbs a
natural ”continues” behaviour (but it is still conserved in the range of the
error bars). It is easily to observe how this variable reflects the perturbative
QCD topology (LO, NLO) with the different sampling in ∆Φ.



CHAPTER 4. MONTE CARLO PREDICTION OF αS 57

Figure 4.15: The ratio quantity R∆Φ for the different intervals of variables
y∗ and ∆Φmax. [14]
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4.5 Expected continuation

In the following diploma thesis, many ways for an improvement and con-
tinuations are open. The first one is to finish the whole analysis and the
measurement with the dijet azimuthal correlation and use it for a quanti-
tative comparison between the theoretical prediction made with Pythia and
the experimental data from the ATLAS detector. This procedure itself in-
cludes wide range of further subtasks which has to be done, for example:
the treatment of experimental uncertainties, unfolding procedure for exper-
imental data, corrections for non-perturbative effects choose some analyti-
cal/statistical method to extract the value for αS.

The second and very probable choice is to generate new data sample for
the theoretical prediction with another Monte Carlo generator. In this case,
some other generators are for this process available: Herwig or Sherpa (and
a few others). This has been already done by my college Vladimı́r Žitka and
it will be further implemented after proper discussion.

Another way could be use some other program for the theoretical pre-
diction than the Monte Carlo generators. For this purposes, the program
FASTNLO++ can be exploited. In the current papers, it is a usual manner
how the prediction is solved with some advantages in contrary to Pythia.,
for example fast and easy change of PDF set. This switch between two PDF
sets in Pyhia and generations with their variations is very time consuming.



Chapter 5

Summary and Conclusion

The purpose of this research project was to become acquainted with topic of
the running coupling constant αS in a theoretical and experimental way and
to make a preparation for the following diploma thesis which would focus on
the measurement of αS.

The coupling constant αS is one of the basic parameters of the Standard
Model and participates in almost each calculations of QCD. For this reason
the beginning of this work concerns with the theoretical description of the αS
properties in the framework of QCD. The first Chapter 1 aims to introduce
the Standard Model as a theory which try to explain the Particle Physics.
Further section is dedicated to the historical view of the QCD: from the first
attempts to explain hadrons till the proposal of the color charge and the
establishment of QCD as the gauge quantum field theory.

The second Chapter 2 discusses the main effects which are related to the
coupling constant αS and to the hard hadron-hadron scattering: the running
nature of αS and the renormalization procedure, quark-parton model and
parton distribution functions. It is shown that due to the renormalization
of QCD the strong coupling constant becomes running, dependent on the
renormalization scale µR = Q.

The third Chapter 3 includes basic information about the ATLAS de-
tector and its components, the hard scattering of protons and participated
subprocesses like the multi parton interaction, the final state and the initial
state showering. The last part is dedicated to jet and jet algorithms and
their properties with a further focus on the anti-kt algorithm.

The last Chapter 4 of this research project deals with the topic of the
experimental measurement of the coupling constant αS and its theoretical
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prediction. An introduction to following themes is included: the contempo-
rary results for the αS value from the PETRA and HERA in DESY, Tevatron
in Fermilab and LHC in CERN and method for the αS prediction.

The main part of the Chapter concerns with the theoretical prediction
together with the discussion about proper variable which would be sensitive
to perturbative QCD and therefore to αS. For these purposes, the dijet az-
imuthal correlation was chosen (and probably for the diploma thesis also the
ratio R∆Φ) according to the Equation 4.6. The data generation was carried
out with the help of the Monte Carlo generator Pythia with ATLAS tune A14.
The total number of generated event is 1700000 with center-of-mass energy√
s = 13 TeV for four PDF sets: MSTW2008LO, CTEQ6l1, NNPDF23LO

and HERAPDF15LO. From this sample, the inclusive cross sections were ob-
tained: dσ

dpT
, 1
σ
dσ
dΦ

, 1
σ
dσ
dy

and dijet dσ
dmjj

(see Figures 4.54.74.84.6). The double

differential cross section d2σ
dpT y

was also compared with the same quantity from

ATLAS measurement and the good conformity can be found (see Figures 4.10
and 4.9) which served as the fact of the proper functional data generation.
The dijet azimuthal correlation 1

σ
dσ
dΦ

is depicted in the Figure 4.13 with the
PDF set MSTW2008LO and also the variable R∆Φ in the Figure 4.16 with
the same set and αS = 0.118. From the decreasing tendency of 1

σ
dσ
dΦ

can be
derived the strong dependence on the additional parton radiation and further
on αS which is presented in its ratio plot.

One element of the analysis was the computation of the PDF theoretical
uncertainties, which were unsuccessful due to unknown reasons and will be
solved for the diploma thesis. It can be deduced that due to the previous
conformity in results, the data sample should be at least partly correct and
also the theoretical uncertainty computation which was already probed in
my bachelor thesis with a correct outcome.

In the last part of the Chapter the possible continuation is mentioned.
One of the most probable ways could be the comparison between theoretical
prediction presented in this work (after certain improvements) and the ex-
perimental data from the ATLAS detector. The computation of the αS value
would be following the step in this analysis. An optional approach might be
to exploit another variable then the dijet azimuthal correlation, for example,
the ratio R∆Φ or another one. Very essential changes are also still open, for
example, to use different Monte Carlo generator (Herwig, Sherpa) or com-
pletely different method of theoretical prediction (program FASTNLO++).
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