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Abstrakt

Z predpovedi Kvantovej Chromdynamiky (QCD) existuje fázový prechodu od stavu
hadrónov do stavu neviazaných gluónov a kvarkov - Quark-Gluonová Plazma (QGP).
Tento stav hmoty existuje pri extrémne vysokej teplote alebo hustote. Predpokladá sa,
že až niekoľko milisekúnd po Veľkom Tresku, bol vesmír v plazmovom kvark-gluónovom
stave.

V dnešnej dobe, vďaka technickému pokroku a vôli objavovať nové veci, ľudia
dokážu experimentálne vytvoriť takýto stav hmoty v špeciálnych laboratóriách, ako
je Brookhaven National Laboratory v New Yorku alebo CERN v Ženeve. Tieto labor-
atóriá majú urýchľovače, ktoré umožňujú vykonávať ultra-relativistické ťažké ionové
kolízie, počas ktorých môže vzniknúť QGP. To nám dáva príležitosť študovať fázu
hmoty v neviazanej oblasti QCD, formovanie hadrónovej hmoty a interakcie medzi
hadrónmi.

V tejto práci prezentujeme predbežnú analýzu femtoskopických meraní korelácie
dvoch pozitívne nabitých piónov pri malej relatívnej hybnosti pomocou STAR údajov
z kolízií p− Au pre

√
sNN = 200GeV . Korelácia zahŕňa Bose-Einsteinovú a Coulom-

bovú interakciu. Silná interakcia tu nie je zahrnutá pretože je zanedbateľná. Získané
korelačné funkcie sú fitované Gauss a Levy funkciami. Tieto jednoduché fity neza-
hŕňajú oblasť malej relatívnej hybnosti q ∼ 0.05GeV/c, pretože nie sú schopné opísať
Coulombovú interakciu. Na záver sa ziskané výsledky porovnávajú s výsledkami z
podobných experimentov.

Kľúčové slová: Kvantová Chromodynamika, Kvark-Gluonová Plazma, Korelačná
Femtoskopia,
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Abstract

According to prediction of the Quantum Chromodynamics (QCD), there is a phase
transition from a state of hadrons to a state of deconfined gluons and quarks, this
state of matter is called the Quark-Gluon Plasma (QGP). This state of matter exists
at extremely high temperature or density. It is believed that up to a few milliseconds
after the Big-Bang, the Universe was in a quark–gluon plasma state.

Nowadays, thanks to technical stride and volition to explore new things , people are
able to create such a state of matter experimentally in the special laboratories such as
Brookhaven National Laboratory in New York or CERN in Geneva. These laboratories
have accelerators that allow to perform ultra-relativistic heavy ion collisions during
which the QGP can be created. This gives us the opportunity to study a phase of
matter in the deconfined region of QCD, the formation of hadronic matter and the
interaction between hadrons.

In this work, we present a preliminary analysis of femtoscopy measurements of
correlation of two positive charged pions at small relative momenta, using STAR data
from p − Au collisions at

√
sNN = 200GeV . The correlation includes Bose-Einstein

and Coulomb interaction. The strong interaction is not included here because it is
negligible. Obtained correlation functions are fitted by Gauss and Levy functions.
These simple fits do not include an area of small relative momentum q ∼ 0.05GeV/c

because they are not able to describe Coulomb interaction. At the end of this work
obtained results are compared with results from similar experiments.

Keywords: Quantum Chromodynamics, Quark-Gluon Plasma, Correlation Femto-
scopy
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Chapter 1

Introduction

Quantum Chromodynamic (QCD) is a type of quantum filed theory which describes
the strong interaction between the fundamental particles quarks and gluons. These
particles make up hadrons, which are splitted either into baryons (formed by three
quarks such as the proton,neutron) or into mesons (formed by quark-antiquark pair
such as the pion, kaon). Isolated quarks have not been observed so far.

In the prediction of QCD there is a possibility of transition from a state formed by
hadrons to a state which is composed from deconfined quarks and gluons - the Quark-
Gluon Plasma (QGP). It is believed that this state of matter was at the beginnig of
the universe.

In present, QGP can be also created in laboratories and it can be studied. However
this system exists only for a very short period of time with typical space-time extents
on the order of 10−14m. Using the Correlation Femtoscopy one can obtain information
about the space-time characteristics of the system at the moment of particle emission.

This work is a preliminary analysis of two positive pion femtoscopy for p − Au

collisions at
√
sNN = 200GeV . It is divided into six chapters. In the first chapter

we introduce a brief overview of the Standart Model, Quantum Chromodynamics and
Quark-Gluon Plasma. In the second chapter one can find a description of the geometry
and space-time evolution of the collision. At the and of this chapter some signatures
of the QGP are given. The third chapter contains describtion of the STAR detector
at RHIC. Theoretical backgrounds of femtoscopy is discussed in chapter four. Here,
the derivation of the two-particle correlation function for identical particles as well as
parametrization of the coordinate system are shown, then the main idea of the non-
identical correlation femtoscopy is described and the ending of this chapter contains
information about femtoscopy in the dynamical system. The used data set and applied
selection criteria for construction of correlation functions are discussed in chapter five.
The last chapter summarizes our results. Here, some correlation functions are created
for several multiplicity and kT bins. These functions are fitted by Gauss ane Levy

1



CHAPTER 1. INTRODUCTION 2

function and from these fits one obtains the HBT radii, λ parameter and levy (α)
parameter. Subsequently, these results are compared with each other and with results
from differents experiments.



Chapter 2

Quark-gluon plasma

2.1 Standart model

The following subsection is mostly cited from [33]
The whole Universe is made from a few basic building blocks called fundamental
particles which are governed by four fundamental interactions. Our understanding
of how these particles and three of the forces are related to each other is encapsulated
in the Standart model of particle physics. Every piece of matter is made of fundamental
particles. These particles are divided into three classes: fermions, gauge bosons and
Higgs boson.

2.1.1 Fundamental particles

Fermions are particles with spin of 1/2 and respect the Pauli exclusion principle. These
particles can be splitted into two groups called quarks and leptons. There are six
particles in each group which are grouped into three generations.

The quarks are distinguished according their flavor as up (u), down (d), strange (s),
charm (c), bottom (b) and top (t). Each quarks carries a fraction of the elementary
charge (2/3 or −1/3) and one of the three colors (red, green, or blue). In nature the
quarks have never been observed individually, but only inside bound colorless strongly
interacting particles called hadrons which are divided into mesons and baryons. Mesons
are bound states of quark-antiquark pairs while baryon are bound states of three quarks.

The leptons are also grouped into the three generations where each generation con-
sists of one lepton and its corresponding neutrino, i.e. electron (e−), electron neutrino
(νe), muon (µ), muon neutrino (νµ), tau (τ), tau neutrino (ντ ). Electron, muon and
tau carry the elementary charge while corresponding neutrinos carry no charge. For
every quark and lepton there is also a corresponding antiparticle, the particle with the
same mass and opposite charge.

3



CHAPTER 2. QUARK-GLUON PLASMA 4

The gauge bosons are vector particles with a spin of 1 that carry any of the funda-
mental interactions of the nature. This class contains gluon (g), photon (γ), Z boson
(Z) and W boson (W±). The massless electricaly neutral photon is associated with the
electromagnetic interaction. The gluons are mediators of the strong interaction while
the massive ellectrically neutral Z bosons and electrically charged W± bosons mediate
the weak interaction.

The Higgs boson (H) is the scalar particle which gives mass to other fundamental
particles.

Following figure (Fig.2.1) shows the overview of all previously discussed fundamental
particles and their properties.

Figure 2.1: Fundamental particles in the Standart model and their properties. Taken
from [13].

2.1.2 Fundamental interactions

The Standart model contains three fundamental interactions, namely strong, weak
and electromagnetic. Each of these interactions is characterized by the corresponding
gauge theory with a symmetry group and can be explained as exchange of mediators,
the already discussed gauge bosons.

The mediator of the electromagnetic interaction is the photon and this interaction
is described by the Quantum Electrodynamics. Since the photon has zero mass, the
range of this force is infinity. On the other hand, the weak interaction is mediated
by the massive W± and Z bosons, and therefore the range of this force is very short.
These two forces can be united into the electroweak interaction.
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The last fundamental force, which is contained in the Standart model, is the strong
interaction with gluons as the mediators. Although the gluons are also massless
particles like the photons, the strong interaction can reach up only units of fermi -
10−15m. This behavior is quite interesting and can be explained by the Quantum
Chromodynamics (QCD), which will be discussed in detail in the following section.

Although the Standart model does not contain the gravitation force and its medi-
ator, the graviton, and can not give an explanation of some phenomena, such as the
non-zero mass of neutrino, it is one of the most widely accepted theoretical models in
the particle physics.

Table 2.1 shows the summary of the fundamental interactions, their mediators, the
range and the relative force with respect to the strong interaction.

Fundamental fource Exchange boson Mass (in MeV/c2) Expected range

Electromagnetic Photon (γ) 0 ∞
Weak W±, Z0 W± = 80600 10−17 − 10−16m

Z0 = 93160

Strong Gluon (g) 0 10−15m

Gravity ? Graviton ? Not known to exist ∞
expected 0

Table 2.1: Fundamental interactions in the Standard model and their properties.

2.2 Quantum chromodynamics

The Quantum Chromodynamics (QCD) is the gauge theory that describes the strong
interaction, between quarks and gluons, with the SU(3) symmetry group. As mentioned
above the mediatiors of this fundamental force are the massless gluons that carry the
supplementary colour (anti-colour) charge. There are three different color charges (Red,
Green and Blue) that create eight different gluons that occur in our world. The quarks
interact with each other, with the possibility to change the relevant colour [10].

2.2.1 The Coupling constant and Asymptotic freedom

The strength of the strong interaction depends of a factor which is called the coupling
constant αs. The exchange of one gluon is proportional to a factor g2 = 4παs. In the
figure below (Fig.2.2, right panel), each of the two vertices where the gluon and the
quark get in touch contributes a factor of g =

√
4παs. [2]

In QCD this constant αs is not a constant at all because it decreases (increases)
with increasing (decreasing) four momentum of the exchanged gluon (Q). The αs lies
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in the range 0.1−0.3 at values of Q that can be probed experimentally, see in (Fig.2.2,
left panel). The coupling constant αs effectively depends on the four-momentum Q
transferred in the interaction as [31]

αs(Q) =
12π

(33− 2Nf )ln
Q2

ΛQCD

where Nf is the number of the of the quarks flavours and ΛQCD is a scale parameter
introduced by the renormallization process and is approximately equal to 200MeV. [27]

Asymptotic freedom is one of the features of QCD that causes bonds between
particles to become asymptotically weaker as momentum (energy) increases. This
means that quarks interact weakly at high momenta (energies) and strongly at low
momenta (energies), preventing of unbinding of baryons or mesons.

Figure 2.2: Left) It shows a compilation of the values for αs, derived from many
different experiments, and for different momenta Q of the exchanged gluons. Taken
from [6]. Right) Two quarks exchange a gluon with momentum Q, and depending on
the colour charge of the quarks, this exchange results in an attraction or a repulsion
between both quarks. Taken from [2].

For comparison, in quantum electrodynamics (QED) the coupling constant, better
known as fine structure constant, is a pure number, without dimensions of length
or mass, independent of the momentum of the photon that is exchanged and has the
value α = e2/4π ≈ 1/137. This value is about 50 times smaller than in the case of
coupling constant in QCD. That is why the strong interactions are strong.[2]

2.2.2 Color confinement

In the following idea one can understands the main idea of the color confinement.
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Suppose, for example, we have a quark-antiquakr pair which is in a color singlet
state. One may try to separate the quark from the antiquark by pulling them apart.
The interaction between the quarks gets stronger as the distance between them gets
arger, similar to what happens in the spring. In fact, when a spring is stretched beyond
the elastic limit, it breaks to produce two springs. In the case of the quark pair, a new
quark-antiquark pair will be created when pulled beyond certain distance. Part of the
stretching energy goes into the creation of the new pair, and as a consequence, one
cannot have quarks as free particles, see in (Fig.2.3, right panel).[1]

Figure 2.3: Left) The potencial between quark-antiquark pair in case of no light quarks
in the QCD vacuum. Right) The QCD string spanned between the static quark-
antiquark pair breaks due to light light quark-antiquark pair creation. Taken from
[22]

The above discussion was only for imagination. However, to understand what really
happens, one must make very difficult calculations in QCD. It can be shown that the
effective quark-antiquark potential is well approximated by Cornell potential, see in
(Fig.2.3, left panel)

V (r) = −4αs
3r

+ kr

where k is the string tensor that represents the strength of the quark confinement, r is
the distance between quarks and αs is the coupling constant.

The first term of the potential is well known Coulomb potential that depends on the
factor 1/r. The second term, a string potential, is more interesting because this term
causes the fact that quarks can not never be seen in isolation under normal conditions.
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2.3 Quark-gluon plasma

There are many questions in QCD phenomenology but one of the most important
and interesting is what the properties are at the extreme densities and temperatures
where the quarks and gluons are in a deconfined state [10]. Such a state of matter is
known as the Quark Gluon Plasma (QGP). As mentioned above, under normal densities
and temperatures the matter is in the well known confined hadronic state. However,
everything changes when temperature and density of the system are extremely high.
At these extreme values the QCD predicts a phase transition from hadronic state to
the QGP. This phase transition can be seen in (Fig.2.4).

According to lattice QCD calculations the critical temperature of the phase trans-
ition is around Tc ≈ 170MeV . At this temperature the energy density is εc ∼
1GeV/fm3, we expect to achieve the asymptotic freedom regime [10]. The QGP
can be also established during the adiabatic compression of the nuclear matter at the
temperature T ≈ 0MeV . Since it is believed that the system can reach such a high
baryon chemical density µB, where the binding between the quarks will be broken up
and the QGP will be formed. In the (Fig.2.5) is shown a phase diagram of QCD.

Figure 2.4: The energy density divided by the 4rth power of the temperature, computed
on the lattice with different number of sea flavours, shows a marked rise near the critical
temperature. The arrows on top show the limit for a perfect Bose gas. Taken from
[17].
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Figure 2.5: Schematic QCD phase diagram for nuclear matter. The solid lines show the
phase boundaries for the indicated phases. The solid circle depicts the critical point.
Taken from [8].

It is believed that in the first moments of the Universe, a few microseconds after the
Big Bang, the temperature and preassure of the matter were sufficient high to create
a deconfined state of quarks and gluons - QGP. At the present time, such conditions
are not very usual in the nature. One of the places where the QGP should exist is the
center of the neutron stars. However, more convenient is to observe the QGP in the
early moments of the ultra relativistic heavy-ion collisions. This deconfined medium
exists only for a few microseconds so it is nearly impossible to directly observe QGP
within this small lifetime. However the detection of various particles in QGP might
prove to be useful as signatures and plasma diagnostic tools. It is recognized that
there may be no unique signal which will alone lead to the identification of quark
gluon plasma. Instead, a number of different signals come out from the medium which
may be treated as QGP signatures. These signals include, for example Photons and
Dileptons, Strangeness enhancement, J/ψ suppression, Jet Quenching, Elliptic Flow
or Heavy Quarks. Some of them will be discussed in the next chapter.



Chapter 3

Heavy-ion collisions

In order to change the hadronic matter into the phase of deconfined quarks and gluons
the temperature of the system must be above Tc and density above εc. To reach such
a temperature and density on the Earth, the ultrarelativistic heavy-ion collissions are
used. In laboratories like CERN (Geneva, Switzerland), BNL (New York, USA), GSI
(Darmstadt, Germany), and GANIL (Caen, France), nuclei are accelerated at energies
that range from MeV to TeV beam energies.

3.1 Geometry of heavy-ion collision

Geometry of the collition in relativistic heavy-ion collisions is characterized by a degree
of the overlap of two nuclei. The distance parameter | ~b | is a parameter which char-
acterizes the overlapping region and is defined as the distance between the center of
nuclei, where ~b is perpendicular to the beam direction. A pictorial view of relativistic
heavy-ion collisions is presented in (Fig.3.1).

In the region of overlapping, the ’participating’ nucleons interact with each other,
while in non-overlapping region, the ’spectator’ nucleons continue along their traject-
ories [49]. However it is difficult to measure the impact parameter directly in the
experiment. Therefore the centrality (c) is defined and measured instead of the impact
parameter

c =

∫ b
0
dσ
da
da∫∞

0
dσ
da
da

The most central collisions correspond to ~| b | ∼ 0 fm, or in another words, total
overlapping of the nuclei. On the other hand, no overlapping area is for the most
peripheral collisions correspond to ~| b | ∼ 2Rfm, where R is radius of the nucleus.
All centrality classes are shown in (Fig.3.2). Nuclei are Lorenz contracted in beam
direction therefore the maximum time of overlapping is determined as τ = 2R

γc
, where

γ is Lorentz factor and c is speed of light.

10
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Figure 3.1: Nucleus-nucleus collision with impact parameter b.

3.2 Space-time evolution of the collision

Different phases of evolution of the matter are predicted according to theoretical models
and on the basis of data collected so far. Nuclei that are accelerated to ultrarelativistic
energies become Lorentz-contracted. In heavy-ion collisions, a large number of nucleons
is involved in the processes while the collision takes place in a very tight region.

As is mentioned in previous chapter, the formation of QGP is possible only if
critical temperature and energy density are reached. If the system does not reach such
conditions after collision of the nuclei then the system will run into a hydrodynamical
evolution that is not too interesting in study of QGP, the left side of the (Fig.3.3).

In the right side of the (Fig.3.3), it is shown the evolution of the heavy-ion collision in
the case of QGP formation. This evolution can be divided into the following phases.[5]

• Pre-equilibrium - (t . 1 fm/c), nucleons pass through each other and partons
(quarks and gluons) scatters among each other and give rise to an abundant
production of deconfined quarks and gluons. During the scattering, partons lose
part of their initial energy in the interaction region which is called fire-ball. At
this stage a large quantity of photons is also produced, direct photons, real or
virtual. Virtual photons decay in lepton-antilepton pairs.

• Thermalization - (t ∼ 1 − 10 fm/c), elastic and inelastic interactions between
partons in QGP lead to the thermalization phase. Inhelastic interactions can
modify the flavour composition of particles. Due to its internal pressure, the
system at thermal equilibrium rapidly expands. While expanding, the system
begins to convert into hadron gas. This is the mixed phase of QGP and hadron
gas.
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Figure 3.2: Distributions of the number of participants for the corresponding centrality
classes from Glauber Monte Carlo calculation. Taken from [23]

• Hadronization - (t ∼ 20 fm/c), the expanding system of QGP cools down and
reaches the transition temperature. At this point the hadronization begins and
quarks and gluons of the QGP condensate into new hadrons.

• Thermal freeze-out - elastic scatterings between hadrons cease and kinematical
spectra of the resulting matter also become fixed, After this moment, hadrons fly
out freely.

There are three characteristic times during the evolution. The first one is Initial form-
ation time (τ0), at this time the pre-equilibrium stage of the collision ends. The second
time is Chemical freez-out time (τch), where inelastic collisions cease and chemical com-
position of the matter is fixed. The last one is thermal freez-out time (τf ), when system
is so diluted that even elastic collisions cease.

As mentioned above, the only way how we can get any information about the QGP
is to inferred them from the properties of the particles remaining after the thermal
freez-out. Later, in this chapter, we described some signatures of the QGP.

3.3 Signatures of the QGP

In experiments, after thermal freeze-out, we can obtain information about the early
stage of the collision by detection of hadrons. There are observables that can provide
information about the early stages of the collisions and possible QGP phase. Some of
these observables we will discuss in this section.
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Figure 3.3: Evolution of a central heavy ion collision in a Minkowski-like plane. Taken
from [5]

3.3.1 Direct photon

As every thermal source the QGP also emit thermal radiation, real and virtual photons
which are produced in quark-antiquark annihilation (qq̄ → gγ) and Compton scattering
(gq̄ → γq) processes, see in (Fig.3.4). These direct photons and leptons only interact
through electromagnetic interaction and have a large mean free path compared to the
size of the fireball so they escape the system without re-scattering carrying information
on the earliest deconfined stage. [36]

However, to measure direct photons experimentally is difficult because there is also
large backgroud of photons which are emitted during the hadronic gas phase. Thanks
to this difficulty there is no clear spectra of photons coming from the QGP phase that
confirm existence of this phase.

Figure 3.4: Lowest order contributions to photon production from the QGP: Compton
scattering (left) and quark-antiquark annihilation (right). Taken from [43]
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3.3.2 Strangeness Enhancement

The nuclei, that are used in ultrarelativistic heavy-ion collisions, are made of u and
d quarks. Therefore, any strange quarks or antiquarks observed in experiments have
been made from the energy of the colliding nuclei. The temperature for dissolving of
hadrons is equivalent to the mass of strange quarks and antiquarks. This means that
with the high energy and gluons density in the QGP the abundance of strange quarks
and antiquarks, produced by gluon fussion, should be enhanced as compared with lower
energy and purely hadronic collisions [36]. Therefore, it is important to observe yield
and ratios of the strange hadrons at different energies.

The following figure (Fig.3.5) shows the enhancement of strange particles in heavy
ion collisions (PbPb collisions at 158 A GeV/c) as compared to pBe collisions at 40 A
GeV/c. The enhancement increases with the strange quark content (Ω−sss, Ξ−dss, Λuds)
[21].

Figure 3.5: Hyperon enhancements E as a function of the number of wounded nucleons
at 158 (top) and at 40 (bottom) A GeV/c. Taken from [21]

3.3.3 Flow

Flow is a collective effect of a bulk matter which obviously cannot be produced as a
result of superposition of independent nucleon-nucleon collisions [49]. According to
class of the collision centrality we can distinguish bewtween isotropic and non-isotropic
expansion.
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Radial flow

In the case of central collisions there is a symmetry of the initial state in azimuth and
overlaping region of the nuclei is circular in the transverse direction (b ∼ 0). Under
such conditions, any pressure gradient causes azimuthally symmetric collective flow of
the outgoing particles, which is called ‘radial flow’ [49]. It is known that the effect of the
radial flow in the spectra is well described by the phenomenological hydrodynamical
model called blast-wave model in low mT region [26].

Elliptic flow

In the non-central collisions (b � 0) the overlaping region of two nuclei has a spatial
anisotrophy like an almond shape as ilustrated in (Fig.3.6, left). Thanks to this spatial
anizotrophy the pressure gradient is not azimuthally symmetric and establishes a cor-
relation between momentum and position points [49]. The pressure gradient is bigger
in the direction of the short X-axis than in the direction of the long Y-axis. Therefore
more particles are emitted to the direction of the short axis. In other words, the spatial
anisotropy makes an anisotropy in momentum space as shown in (Fig.3.6, right).

Figure 3.6: Left Overlaping region of two nuclei in non-central collisions in coordinate
space. Right Anizotrophy in momentum space due to spatial anizothophy.

Azimuthal distribution of emitted particles is represented in the form of Fourier
expansion

Ed3N

dp3
=

d3N

2πpTdpTdy
[1 + 2v1cos(φ− ΦR) + 2v2cos[2(φ− ΦR)] + ...]

where pT is the transverse momentum, y is the rapidity, φ the azimuthal angle of
the outgoing particle, ΦR is the azimuthal angle of the reaction plane in the laboratory
frame. The Fourier coefficient v1 and v2 represent the strength of the radia and elliptic
flow. The terms ,sin[n(φ−ΦR)], are not included in the Fourier expansion because they
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vanish due to the reflection symmetry with respect to the reaction plane, see (Fig.3.7).
The reaction plane angle ΨR,(Fig.3.7, right), is not known, and is estimated using the
transverse distribution of particles in the final state. The estimated reaction plane is
called the event plane [30].

Figure 3.7: Left Geometry of the collision and φ, the azimuthal angle of one of the
outgoing particles. Right Φ, the reaction plane angle. Taken from [30]

In the (Fig.3.8) is shown v2 for charger hadrons as a function of pT in Au+Au
collisions. Solid lines represent a hydrodynamical calculation including a first-order
phase transition with a freez-out temperature of 120MeV . In the low pT region the
mass ordering can be seen, that is v2 for a particle with a lighter mass is larger. This low
pT region is well reproduced by the hydrodynamical calculation. However for higher
values of pT , v2 saturates and for π,K is smaller than for proton [25].

Figure 3.8: v2 for charged hadrons, π, K, p as a function of pT in Minimum bias events
in Au+Au collisions at sNN = 200 GeV. Taken from [25]



Chapter 4

STAR experiemnt

The Solenoid Tracker At the RHIC (STAR) is a detector designed to investigate the be-
havior of strongly interacting matter at high energy density and to search for signatures
of quarkgluon plasma (QGP) formation. This experiment is based on the accelerator
RHIC in BNL.

4.1 Relativistic Heavy Ion Collider

In present, RHIC is the second-highest-energy heavy-ion collider and the only spin-
polarized proton collider which is located at Brookhaven National Laboratory (BNL)
in Upton, New York, the United States of America.

It consists of two, hexagonally shaped and 3834m long circular independent rings
in which can be accelerated various ions such as protons or gold nuclei in opposite
direction, and collide them at several crossing points around the rings. In this rings,
stored particles are deflected and focused by superconducting magnets. There are six
interaction points where the two rings cross, allowing the particles to collide. Simple
schematic drawing of the RHIC is shown in (Fig.4.1).

The types of particle combinations explored at RHIC to this day are p+ p, p+Al,

p+ Au, d+ Au, h+ Au, Cu+ Cu, Cu+ Au, Au+ Au, and U + U . The speed of the
projectiles is typically 99.995% of the speed of light. For Au+Au collisions, the range
of center of mass energy is 7.7 − 200GeV per nucleon-pair. The designed luminosity
is 2× 1026 cm−2s−1 for gold ions and 1.4× 1031 cm−2s−1 for protons, however current
luminosity for gold ions is 87× 1026 cm−2s−1 thanks to stochastic cooling.

Before particles reach te RHIC storage rings they have to pass through several
stages of boosters. For protons whole process start in linear accelerator (LINAC),
where protons obtain energy of 200MeV . Subsequently, they are sent through the
Booster into the Alternating Gradient Synchroton (AGS) where their obtain more
energy. When they have sufficient amount of energy, they are injected into the RHIC

17
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storage ring over the AGS-to-RHIC transfer line (AtR). For ions the scenario is little bit
different. The heavy-nuclei are first of all partially stripped of their electrons and then
injected into Booster by the Electron Beam Ion Source (EBIS). In Booster, particles
are more accelerated and stripped of another electrons, then they are injected into the
AGS. Here in AGS, ions are stripped of all electrons and also accelerated to sufficient
energy in order to be injected into the RHIC storage rings through AtR.

In present, only the STAR detector is running but in the past, there were also
PHENIX, BRAMS, PHOBOS detectors but they completed their programmes in 2015,
2006 and 2005 respectively.

Figure 4.1: A schematic drawing of the RHIC accelerator complex. Taken from [11]

4.2 STAR detector

The STAR detector is a flexible detection system that can simultaneously measure
many experimental observables. Measurements of the momentum of particles are made
at midrapidity over a pseudo-rapidity range (−1 < η < 1) with full azimuthal coverage
(0 < Φ < 2π) . Identification of particles is also made in range (−1 < η < 1) . The
detector system contains the TPC, SVT, EMC, TOF, external TPC, solenoid mag-
net, electronics, data acquisition, and trigger as major systems. The detection system
consists of TPC and SVT inside a soleniodal magnet to enable tracking, momentum
analysis, particle identification via dE/dx and location of primary and secondary ver-
tices. STAR magnet has an outer radius of 3.66 m and a length of 6.85 m and is
capable to produce a uniform magnetic field of 0.25− 0.5 T along the beam axis [4].

There are also forward detectors, such as the Beam-Beam Counter (BBC) and the
Endcap Electromagnetic Calorimeter (EEMC). Around the STAR magnet is located
the Moun Telescope Detector (MTD) which covers 45% of azimuthal angle in range
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(−0.5 < η < 0.5). The MTD, the primary Vertex Position Detector (pVDP) and the
Zero Degree Calorimeter (ZDC) are located outside of the magnetic field.

In 2014, Heavy Flavor Tracker (HFT) detector was installed. It is the innermost
detector of the system which consists of three detectors. The outermost part of HFT
is a doubled-sided silicon strip detector (SSD), the intermediate silicon tracker (ITS)
is a silicon pad detector and the innermost detector is the pixel detector (PXL) which
is composed of MAPS technology [3].

In following figure (Fig.4.2) the sketch of the STAR detector can be seen.

Figure 4.2: The sketch of the STAR detector system. Taken from [3]

For our work the most important detectors of the STAR detector are TPC and
ToF. For event selection the trigger system is used which is based on the pVPD and
ZDC. Following subsections will describe these parts.

4.2.1 TPC detector

TPC is a part of the STAR detector which records the tracks of particles, measures
their momenta and identifies the particles by measuring their ionization energy loss. Its
pseudo-rapidity range covers (−1.8 < η < 1.8) with full azimuthal coverage (0 < Φ <
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2π) and over the full range of multiplicities. Particles are identified over a momentum
range from 100MeV/c to greater than 1GeV/c and momenta are measured over a
range of 100MeV/c to 30GeV/c.

The TPC is situated in a large solenoidal magnet that operates at 0.5T . It sur-
rounds the beam-beam interaction region and its drift volume is limited by 2 concentric
field cage cylinders, of radii 50 cm and 200 cm with the length 4.2m. The STAR TPC
is shown schematically in (Fig.4.3). The paths of primary ionizing particles passing
through the gas volume are reconstructed with high precision from the released sec-
ondary electrons which drift to the readout end caps at the ends of the chamber.
The uniform electric field which is required to drift the electrons is defined by a thin
conductive Central Membrane (CM) at the center of the TPC, concentric field-cage
cylinders and the readout end caps.

Figure 4.3: STAR TPC overview. Taken from [37]

The TPC is filled with P10 gas (10% methane, 90% argon) regulated at 2 mbar
above atmospheric pressure and the gas circulates with rate of 36, 000 l/h (full volume
of the TPC is 50, 000 l). The main property of this gas is a fast drift velocity which
peaks at a low electric field. There is a central membrane held at 28 kV that, together
with the equipotential rings along the inner and outer field cage, create a uniform drift
field of 135V/cm from the central membrane to the ground end caps where the readout
chambers are located.

The readout system is based on Multi-Wire Proportional Chambers (MWPC) and
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consists of 12 sectors. Each sector is divided into the inner and outer subsector with
13 and 32 pad rows, respectively. While the outer subsection has continuous pad
coverage for better dE/dx resolution and contains in total of 3942 pads with dimensions
6.2×19.5mm, the inner subsection is designed for precise tracking and consists of 1750
pads with size of 2.85 × 11.50mm. The inner subsection has small pads arranged in
widely spaced rows, since each pad in row 1 through 8 and in row 8 through 13,
respectively is separated by the 48mm and 52mm space. The detailed schema can be
found in (Fig.4.4).

By passing of charged particles through the volume of the P10 gas, the atoms of the
gas are ionized. The ionization electron drifts towards the endcaps at a constant velo-
city of ∼ 5.45cm/µs and hence maximum drift time in the TPC is ∼ 40µs. The drifting
electrons avalanche in the high fields at the 20µm anode wires providing an amplific-
ation of 1000 to 3000. The induced charges from the avalanche are then collected by
the several read-on pads.

Figure 4.4: The anode pad plane with one full sector shown. The inner sub-sector is on
the right and it has small pads arranged in widely spaced rows. The outer sub-sector
is on the left and it is densely packed with larger pads. Taken from [37]

Performance of the TPC

The track of an infinite-momentum particle passing through the TPC at mid-rapidity
is sampled by 45 pad rows, but a finite momentum track may not cross all 45 rows.
It depends on the radius of curvature of the track, the track pseudorapidity, fiducial
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cuts near sector boundaries, and other details about the particle’s trajectory. While
the wire chambers are sensitive to almost 100% of the secondary electrons arriving at
the end-cap, the overall tracking efficiency is lower (80− 90%) due to the fiducial cuts,
track merging, and to lesser extent bad pads and dead channels. There are at most a
few percent dead channels in any one run cycle [37].

The track of a primary particle passing through the TPC is reconstructed by finding
ionization clusters along the track. The clusters are found separately in x, y and in z
space. The local x axis is along the direction of the pad-row, the local y axis extends
from beam-line outward through the middle of an perpendicular to the pad-rows, the
local z axis lies along the beam axis. These clusters are split using an algorithm then
looks for peaks with a valley between them and then ionization is divided between the
two tracks.

Particle identification by TPC

Energy loss in the TPC gas is a valuable tool for identifying particle species. It works
especially well for low momentum particles but as the particle energy rises, the energy
loss becomes less mass-dependent and it is hard to separate particles with velocities
v > 0.7c. STAR is able to separate pions, kaons and protons with a very good accuracy
up to 1.2GeV/c. This requires a relative dE/dx resolution of 7% [37].

Energy loss of charged particles by ionization, mentioned above, can be calculated
using the Bethe-Bloch formula

−〈dE
dx
〉 = 2πNAr

2mc2ρ
Z

A

z2

β2
[ln(

2mc2β2WMax

I2
)− β2 − δ2

2
] (4.1)

where NA is Avogadro’s number, r is classical radius, m is mass of particle, c is speed of
light in vacuum, ρ is density of the material, Z and A are atomic number and weight of
material, WMax is maximum energy transfer in a single collision, I is mean excitation
energy and δ is density correction.

(Fig.4.5) shows the energy loss for particles in the TPC as a function of the particle
momentum. As can be seen, the energy loss for particles is mass ordered which means
that heavier particles lose more energy in comparison to the lighter for the same mo-
mentum.

4.2.2 ToF

In the STAR experiment, the particle identification is done by TPC thanks to its
wide and azimuthally complete acceptance about the collision zone. However, it has a
problem to identify the charged hadrons such as π&K, (p) if their momentum is above
∼ 0.7 (1.0)GeV/c. Therefore, the Time Of Flight (TOF) system, with a total timing
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Figure 4.5: The energy loss distribution for primary and seconday particles in the
STAR TPC as a function of the pT of the primary particle. The magnetic field was
0.25T . Taken from [37]

resolution of 100 ps in the STAR geometry, was developed to improve the particle
identification ability of the STAR experiment for the particles with momenta in range
0.6− 3GeV/c. The system was fully installed in 2010.

The system consists of two separate detector subsystems, one called the Pseudo Ver-
tex Position Detector (pVPD) and the other called the Time of Flight Patch (TOFp).
Detector (pVPD) is the start detector and the Time-Of-Flight Patch (TOFp) is the
stop detector. The electronic signals from these detectors define the time intervals of
interest for particle Time of Flight measurements. The pVPD consists of two identical
detector assemblies that are positioned very close to the beam pipe and outside the
STAR magnet. The TOFp sits inside the STAR magnet immediately outside the TPC,
see in (Fig.4.6). The signals from these detectors are carried to electronics racks on the
so-called South Platform next to STAR for digitization and interfacing with the STAR
data stream. For more details see [35].

Particle identification by ToF

Digitization is done versus a clock, and those digitized signals are subtracted, as

(stop time− clock)− (start time− clock) = stop time− start time ≡ τ (4.2)
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Figure 4.6: A scale drawing of the locations of pVPD and TOFp detectors in relation
to the STAR TPC and the RHIC beam pipe. Taken from [35]

so long as the clocks used on both the start and stop sides are the same to 10− 20 ps

in every event. The Leading edge time is sampled by 25 ps binning [44].
This time τ , is associated with reconstructed tracks in the STAR TPC by track

extrapolation to the TOF detectors. The TPC detector provides the momentum p,
and total length L, so we can calculate inverse velocity [12]

1

β
=
cτ

L
(4.3)

where c is speed of light. From the relativistic particle momentum we obtain

p = mβγ ⇒ p2 = β2(m2 + p2) (4.4)

where m is particle mass, one can derive the relation between β and p where the only
one unknown parameter is the mass of the particle

1

β
=

√
(
m2

p2
+ 1) (4.5)

(Fig.4.7) shows behavior of 1/β as a function of momentum. Solid black lines are
predictions from (4.5) for π, K and p.

4.2.3 Trigger system

It is a pipelined system which is based on the input from the fast detectors to control the
event selection for slower tracker detectors. This system is divided into four different
layer levels - from 0 to 3. Interactions that pass selection criteria in these four successive
trigger levels are sent to storage [20].

Level 0 is the fastest and analyzes raw data to determine whether a requested type
of interaction occured in crossing. To decribe the interaction one requires to detect
particle multiplicity and distribution of the particles in η, σ space. Data that are in this
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Figure 4.7: Particle Identification by STAR TOF. Taken from [44]

level are mostly from the Zero Degree Calorimeter (ZDC), Beam Beam Counter(BBC),
Multi-Wire Counter (MWC) and The Central Trigger Barrel (CTB). When the data
pass through Level 0 they reach another levels. Level 1 and 2 operate in the time
period of several milliseconds during which these data are more detailed analyzed in
order to determine whether the event meets more finely grained criteria. If it does not,
then the digitization process is aborted and the detectors are free for a new trigger.
The last, Level 3 makes the final decission. If the data pass through this level so they
will be sent to storage.

ZDC decetors are located at nearly identical positions along the beamlines on the
both side of the intersection regions at the distance of 18.25m outside of the RHIC
magnet. Due to this magnet the charged particles are deflected from zero degree region
which means that they are not measured by ZDCs. Therefore, ZDCs measure the
energy of the neutral particles mainly non-interacting spectator neutrons but also from
collisions. There are three modules in the ZDC detector where each module consists
of a series of tungsten plates alternating with layers of wavelength shifting fibers that
route Cherenkov light to a photo-multiplier (PMT). The CTB is the detector consists
of 240 scintilator slats which cover the outer shell of the TPC. Its pseudo-rapidity
range covers (−1 < η < 1) . These slats are divided into 4 cylindrical bands where
each band cover 1/2 unit of psudo-rapidity. It triggers on the flux of charged particles
in the midrapidity region [20]. BBC detector is a set of scintillator installed around the
RHIC beam pipe. It consists of two parts which are situated on the EAST and WEST
pole of the STAR magnet, 3.75m from the center of interaction region, see in (Fig.4.2).
It is a versatile tool for polarized proton beam diagnostics. The BBC setup provides
an excellent minimum bias trigger and it covers pseudo-rapidity range 3.4 <| η |< 5.0

.For more technical details about BBC, see [46].



Chapter 5

Femtoscopy

In this chapter we will look on the basics of quantum interference of two identical
particles which is also known as Hambury-Brown and Twiss (HBT) interferometry.
We will describe historical and theoretical background of the femtoscopy and then
application in particle physics.

5.1 Brief history of femtoscopy

In 1956 Robert Hambury-Brown and Richard Q. Twiss introduced a novel method
based on photon intensity interferometry, which was an alternative way to Michelson
interferometry how to measure sizes of the stellar objects.

In their experiment two photo-detectors are placed in the far field zone of a chaotic
radiation source. A correlation between the signals from the two detectors is measured.
Hambury and Twiss found that photons emitted by thermal source are not independent.
Such a far field zone with photo-detectors is shown in (Fig.5.1). Inner part of the

Figure 5.1: The Hambury Brown-Twiss intensity interferometer at Narrabri, New South
Wales, Australia. Taken from [9]

detectors were covered by mirrors with diameter of 156 cm. These mirrors focused

26
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light from the star into the cathode of the photomultipliers. The output signals from
both photomultipliers were processed and afterwards the correlation function between
the intensity of the photons, which were received by the mirrors, could be obtained.

In particle physics, somewhat similar technique was used by Gerson Goldhaber,
Sulamith Goldhaber, Wonyong Lee and Abraham Pais in the 1960s. In proton and
anti-proton collisions they observed an angular correlation between identical pions and
using the symmetrized wave funtion for identical pions they reproduced the angular
distribution. They concluded that this effect originated from the quantum statist-
ical effect which is called Bose-Einstein correlation [38]. In 1970s G. I. Kopylov and
M.I.Podgoretsky developed the theoretical background and mathematical formalism of
two particle correlation. Because of typical space and time extents of order of tens
fermi the term "Femtoscopy" has been used.

5.2 Intensity interferometry of two identical particles

Here we will describe theoretical overview of intensity interferometry of two identical
particles and its application in heavy ion collisions.

Suppose that we have a certain source which emits two identical particles from
different points, x1 and x2. This source is characterized by the emission function
S(x, p) which can be viewed as the probability that particle with four-momentum p

is emitted from the space-time point x in the collision region, so if we want to know
probability that source emits one particle with momentum p we have to integrate over
the whole source

P (~p) =

∫
dx4S(x, p)|p0=Ep , (5.1)

where emission funtion is evaluated on-shell i.e. p0 = Ep =
√
m2 + ~p2. We also assume

that there is no final state interaction between particles. These emitted particles are
observed by two detectors that are located at x′1 and x′2. In (Fig.5.2) we can see that
there are two possible routes, shown as solid and dashed lines, how paticles can reach
detectors. In a case of identical particles there is no way how to distinguish between
them in quantum mechanics, therefore we have to symmetrize the wave funtion for the
case of bosons or antisymmetrize for the case of fermions.

Ψ12(x1, x2) =
1√
2

[Ψ1(x1)Ψ2(x2)±Ψ1(x2)Ψ2(x1)],

=
1√
2

[A1A2e
−ip1(x1

′−x1)e−ip2(x2
′−x2) ± A1A2e

−ip1(x1
′−x2)e−ip2(x2

′−x1)],
(5.2)

where Ψi(xi) is a wave funtion for a single particle emitted from point xi with a mo-
mentum pi and Ai is an amplitude. The signs (±) correspond to symmetrized or



CHAPTER 5. FEMTOSCOPY 28

Figure 5.2: Diagram of quantum interference between two identical particles.

anti-symmetrized funtion. The positive sign is for symmetrized funtion (bosons) while
the negative sign is for anti-symmetrized funtion (fermions).

Then the probability density is written as

| Ψ12(x1, x2) |2=
1

2
| A1 |2| A2 |2 [2± ei(x1−x2)(p1−p2) ± e−i(x1−x2)(p1−p2)], (5.3)

=| A1 |2| A2 |2 [1± cos((p1 − p2)(x1 − x2))],

(5.4)

where the second term in (Eg. 5.4) represents the strength of the correlation in HBT
effect. Therefore the correlation becomes strong when the relative difference r or
relative momentum q are small and on the other hand, there is almost no correlation
for large values of q and r.

Now, it is appropriate to define the correlation function CF as

CF (~p1, ~p2) =
P (~p1, ~p2)

P (~p1)P (~p2)
, (5.5)

where P (~p1, ~p2) is the probability of measuring two particles with momenta p1 and
p2 and P (~pi) is the probability of measuring of a single particle with momentum pi.
Probability P (~p1, ~p2) is described as

P (~p1, ~p2) =

∫
d4x1d

4x2S(x1, p1)S(x2, p2) | Ψ12 |2 . (5.6)

Using (Eq. 5.4) in (Eq. 5.6) we obtain

P (~p1, ~p2) = P (~p1)P (~p2)±
∫
d4x1d

4x2S(x1, p1)S(x2, p2)cos((p1 − p2)(x1 − x2)). (5.7)

In this point, it is good to define relative and average four-momentum and space-time
coordinate as follow

q = (p1 − p2) k =
1

2
(p1 + p2), (5.8)
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x = (x1 − x2) X =
1

2
(x1 + x2). (5.9)

If we assume that the emission function has a smooth momentum dependence we can
write

S(x1, p1)S(x2, p2) = S(X+
x

2
, k+

q

2
)S(X− x

2
, k− q

2
) ≈ S(X+

x

2
, k)S(X− x

2
, k) (5.10)

This step is the so-called smoothness approximation and it is only valid for suffi-
ciently small relative momenta.

Using the mentioned smoothness approximation, relative and average variables we
can rewrite (Eq. 5.7) as follow

P (~p1, ~p2) = P (~p1)P (~p2)±
∫
d4x cos(xq)

∫
d4X S(X +

x

2
, k)S(X − x

2
, k), (5.11)

where the term
∫
d4X S(X+ x

2
, k)S(X− x

2
, k) = D(x, k) is called the relative distance

distribution which gives us information about the source.
Then, the two-particle correlation function (Eq. 5.5) can be written as

CF (~q,~k) = 1±
∫
cos(xq)D(x, k)d4x∫

d4xd4XS(X + x
2
, k)S(X − x

2
, k)

= 1±
∫
cos(xq)D(x, k)d4x∫

D(x, k)d4x
(5.12)

where term D(x,k)d4x∫
D(x,k)d4x

= d(x, k) is a normalized relative distance distribution. Using
term d(x, k) in (Eq. 5.12) we obtain

CF (~q,~k) = 1±
∫
cos(xq)d(x, k)d4x (5.13)

From the equation (Eq.5.13) can be seen that there is a one to one relation between the
emission and correlation function, in which the correlation function is 4-dimensional
fourier transform of the emission function. However, to get information about emission
function from correlation function is quite difficult issue, because of measured particles
are on-shell, p0

1,2 = E1,2 =
√

(m2 + p2), while the four-momenta q and k are off-shell
and satisfy the relation

k · q =
1

2
(m2

1 −m2
2). (5.14)

Here, we introduce on-shell approximation which is used in many application

k0 ≈ Ek =
√
m2 + k2. (5.15)

Using the on-shell approximation and asking for the (Eq. 5.14) to be equal to zero we
get that only three of four relative momentum components are kinematically independ-
ent. Hence, the q-dependence of C(~q,~k) allows to test only three of four independent
x-directions of the emission function [47].
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This requirement is so-called mass-shell constraint and using it we obtain a
condition for the fourth variable of the four-momentum q in the form

q0 =
~k

k0
· ~q = ~β · ~q. (5.16)

With the mass-shell constraint, (Eq.5.13) can be written as

C(~q,~k) = 1±
∫
cos(~q · ~x)d~x

∫
d(~x+ ~βt, t, k)dt = 1±

∫
cos(~q · ~x)S~k(~x), (5.17)

where function S~k(~x) is defined as the relative source funtion. In a case when
the system is in the rest frame of the particle pair where β = 0, the relative source
function is a simple integral over the time argument of the relative distance distribution
d(~x, t, k) [47]. Here the correlation function is fourier transformation of the relative
source function into which the time dependence is convoluted. The deconvolution
of the time (t) and space (~x) variables must be done through models that describes
four-dimensional particle emission.

It is very useful to parametrize the source by a function for which its fourier trans-
formation has an analytic form. Here we assume that the spatial distribution is the
Gaussian distribution

S(x, p) =
1√

2πR2
exp(− x2

2R2
) (5.18)

where R is the standart deviation (source radius). Since the fourier transform of
Gaussian distribution is also Gaussian distribution, the correlation function can be
expressed analytically as follow

C(~q,~k) = 1± exp(−q2R2(~k)). (5.19)

Thus the correlation function is written as function of the relative momentum q and
the standard deviation R of a gaussian distribution of the particles-emitting source.
This obtained standart deviation R is usually called the HBT radius.

For one-dimensional analysis we use correlation function which is written as s func-
tion of a Lorentz-invariant relative momentum qinv

C(~q,~k) = 1± exp(−q2
invR

2
inv(

~k)), (5.20)

where Rinv is a one-dimensional source size and qinv is defined as

q2
inv = q2

x + q2
y + q2

z − q2
0, (5.21)

q0 = E1 − E2, (5.22)

where qi is the relative momentum in each direction of the coordinate space and q0 is the
energy difference between two particles, where the energy is dedined as E =

√
m2 + p2.

This one-dimensional analysis is usually performed in case of limited statistics and all
spacial and temporal information are convoluted into Rinv(~k).
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Figure 5.3: Correlation function constructed according to (Eq. 5.19) for three different
values of the source radius.

5.2.1 Bertsch-Pratt parametrization

For extraction of spatial information about the particle emitting source, the standard
Cartesian coordinate system is not the best. The most common coordinate system
for femtoscopic measurements is the so-called Bertsch-Pratt coordinate system often
known as the out-side-long system. In this system, the relative momentum is de-
composed into sideward (qside), outward (qout) and longitudinal (qlong) direction.

The longitudinal direction is parallel to the beam direction which is typically
in z-direction, outward direction is parallel to the pair transverse momentum kT =

(pT1 + pT2)/2 and sideward direction is perpendicular to both longitudinal and out-
ward directions. Such a decomposition can be seen in (Fig.5.4). The Bertsch-Pratt
coordinate system is hence unique for each pair of particles.

Each vector ~V can be decomposed into the Bertsch-Pratt coordinate system as
follow

Vlong = Vz

Vout =
(PxVx + PyVy)

PT

Vout =
(PxVx − PyVy)

PT

(5.23)

where P = (P0, Px, Py, Pz) is pair momentum and P 2
T = (P 2

x + P 2
y ).

The correlation femptoscopy of identical particles is usually constructed in the Lon-
gitudinal Center of Mass System (LCMS) of the emitted pair where pz1 + pz2 = 0, the
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component of pair momentum in long direction vanishes, therefore q0 can be rewritten
as follow

q0 = E1 − E2 =
~p1 + ~p2

E1 + E2

· (~p1 − ~p2) = ~β · ~q
LCMS
≈ βT qout (5.24)

where ~β = (βT , 0, βl) and q = (qout, qside, qlong). In LCMS the term βl = 0. Thus
the LCMS frame can be obtained by the boost from the laboratory frame along the
longitudinal axis. Additional boost of the LCMS frame in the out direction provides
the Pair Rest Frame (PRF). The correlation of non-identical parcticles are studied in
the PRF. In the PRF, both particles have the same momentum ~k∗ = ~k1 = −~k2 and
hence the relative pair momentum is q = 2~k∗.

Figure 5.4: The decomposition of ~q in Pratt-Bertsch coordinates.

In the Bertsch-Pratt parametrization, the most general form of correlation function
of two identical particles for a Gaussian source is expressed as

C(~q,~k) = 1± exp(−qµqνR2
µν), (5.25)

where µ and ν take out, side and long. R2
µν denotes the six HBT radii parameters

which have general form as follow

R2
out = 〈(x̃− βT t̃)2〉

R2
side = 〈ỹ2〉

R2
long = 〈(z̃ − βlt̃)2〉

R2
out,side = 〈(x̃− βT )ỹ〉

R2
out,long = 〈(x̃− βT t̃)(z̃ − βlt̃)〉

R2
side,long = 〈(z̃ − βl)ỹ〉

(5.26)
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where x̃ = ∆x = (x − 〈x〉), βl, βT are the components of the pair velocity and 〈...〉
denotes an average with the emission function

〈f〉(k) =

∫
d4x f(x)S(x, k)∫
d4x S(x, k)

(5.27)

For an azimuthally integrated analysis, the emission function has a reflection sym-
metry ỹ → −ỹ. This symmetry translates to a qs → −qs symmetry of the two-particle
correlation function. This means that the cross-terms R2

out,side = R2
side,long = 0. If

we choose as the reference frame the LCMS frame of the pair, where z̃ → −z̃, then
R2
out,long = 0. Afterwards, the correlation function is in the form of

C(~q,~k) = 1± λ(~k)exp(−q2
outR

2
out(

~k)− q2
sideR

2
side(

~k)− q2
longR

2
long(

~k)), (5.28)

where HBT radii measure the spatial and temporal extend of the collision system at
the freeze-out.

Here, we also define another parameter, the overal strength of the correlation, λ(~k).
The name of this parameter from history is chaoticity parameter, it generally ac-
counts for particles identification, long-lived decays or long-range tails in the separation
distribution. The value of chaoticity parameter is between 0-1. This λ(~k) parameter
is unity for a fully chaotic source and smaller than unity for a source with partially
coherent particles emission.

It is appropriate to mention that the azimuthally sensitive analysis can be also
performed, we will discuss it later in this thesis.

5.2.2 Final State Interaction

During the derivation of correlation function in the previous subsection we assumed
that there is only Bose-Einstein or Fermi-Dirac interference effect and no final state
interaction between the emitted particles. However, most HBT measurements in heavy
ion collisions are performed with charged particles therefore these particles feel long
range Coulomb interaction effects on the way from the source to the detector. Moreo-
ever, particles also feel the total electric charge of the source from which they are
emitted. Another kind of interaction which plays an important role between outgoing
particles is the strong interaction. This interaction is very important in proton-proton
correlation. Therefore, if we want to have more correct description of the correlation
function, the interaction must be taken into account.

In our analysis only the Coulomb interaction between outgoing particles plays an
important role. Interaction between particles and the source is negligible and strong
interaction is also sufficiently small so it can be also ignored.
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Coulomb interaction

AS mentioned above, in the case of charged particles the Coulomb interaction between
particles can not be neglected. This interaction causes a suppression for like-sign
particles while for unlike-sign it causes an enhancement of the measured correlation
function at low ~q.

To calculate the strength of the Coulomb interaction, we consider Schrödinger equa-
tion [36] which contains the Coulomb potential

[
h̄2∇2

2µ
+
Z1Z2e

2

r
]Ψc(~q, ~r) = EΨc(~q, ~r), (5.29)

where µ is the reduced mass and r is the relative distance between the two particles,
Z1 and Z2 are protons numbers of particles, e is the elementary charge and E is the
energy in the center of mass frame.

The solutions of the (Eq. 5.29) are written in terms of the confluent hypergeometric
function F as follow

Ψc(~q, ~r) = Γ(1 + iη±)e−
1
2
~q·~rF (−iη; 1, z±),

z± =
1

2
qr(1± cos(θ)).

(5.30)

where θ is the angle between ~q and ~r, η± is the Sommerfield parameter which depends
on the particle mass and charge as

η± = ±me
2

4πq
, (5.31)

where minus (plus) sign is for unlike-sign (like-sign) particles. Then the symmetrized
Coulomb wave function is

Ψr(~q, ~r)
1√
2

(Ψc(~q, ~r) + Ψc(~q,−~r)). (5.32)

When we put this wave function to the (Eq. 5.6), then the contribution from the
Coulomb interaction to the correlation function can be calculated as follow

Pc(~q, ~r) =
1

2

∫
d~rρ(~r) | Ψr(~q, ~r) |2, (5.33)

where ρ(~r) is the distribution of the average distance between the particles in each pair
as they are emitted [36].

In the (Fig.5.5) we can see an example how interactions typically contribute into
the proton-proton correlation function.

5.3 Particle correlation of non-identical particles

Up to now we have considered only emission of identical particles for which the average
value of the projection of the separation vector in the PRF on any direction is equal
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Figure 5.5: Proton-proton correlation functions for the source size of 3 fm with inter-
actions. Taken from [49].

to zero due to symmetry. However, there are also cases when the emitted particles
are non-identical. For these situations one can study space-time asymmetries in the
emission. These asymmetries will lead to the non-zero average value of the projection
of the separation vector.

Before we start, we emphasize that each vector with sign (∗) is in the PRF. As in
the case of identical particles we assume, that Coulomb interaction dominates. Under
these circumstances the correlation function takes the form [32]

C(~p1, ~p2) = Ac(η)[1 + 2
〈r∗(1 + cos(θ∗))〉

ac
], (5.34)

where θ∗ is an angle between ~k∗ and ~r∗ vectors, ac is Bohr radius which depends on the
charges of the particles, Ac is the Coulomb factor and 〈...〉 denotes averaging which is
defined as 5.27.

For example, let us have opposite-sign particles. The term (1 + cos(θ∗)) is always
positive, while Bohr radius ac is negative. Therefore, the term 2〈r∗(1 + cos(θ∗))〉/ac
will be negative and will decrease the correlation. The decrease depends on the θ∗

angle. So, if the vectors ~k∗ and ~r∗ are aligned, (cos(θ∗) > 0), then the correlation is
weaker and for opposite pointing vectors, (cos(θ∗) < 0), the correlation is stronger.

The problem is that we can measure only ~k∗ vector, the method for measuring 〈~r∗〉
vector is not apparent. However, there is another way because we know how to measure
the total pair momentum ~P . The pairs of correlated particles can be divided into two
groups:

1. ~k∗ and ~P are aligned → cos(Ψ) > 0

2. ~k∗ and ~P are pointing in opposite direction → cos(Ψ) < 0
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where angle Ψ is between ~P and ~k∗. The main idea is sketched in (Fig.5.6). If the
consideration is restricted to the transverse plane, the angle φ between vectors ~r∗ and
~P is connected to the other two by a simple relation

Ψ = φ+ θ∗. (5.35)

From these three angles only Ψ angle can be measured experimentally. Here we define

Figure 5.6: Asymmetry in space-time emission seen by non-identical particle correla-
tions.

two functions. The first one is with pairs having cos(Ψ) > 0 and we will denote it as
C+. The second function is for pairs with cos(Ψ) < 0 which is denoted with C−. In
the most of the analysis, the ratio of these functions is performed C+/C− as can be
seen in (Fig. 5.7).

One can simply say that in case that the second particle is faster than the first
one, cos(Ψ) > 0, then the correlation is weaker because the first particle never catches
up the second particle. This fact corresponds with the left case in the (Fig.5.6). In
the second case, the first particle is faster then the second one, cos(Ψ) < 0. This first
particles catches up the second particle. For this case the correlation is stronger and
this fact corresponds to the right case in the (Fig.5.6). There is also assumption that
different particles do not origin from the same point, see below.
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Figure 5.7: Pion-kaon correlation functions which are constructed from central Au+Au
STAR data taken at

√
sNN = 130GeV by the STAR detector at RHIC. Top panel:

correlation function C(~k∗) for various pair combination. Middle and botton panel:
double ratio of correlation function C+(~k∗) and C−(~k∗). Taken from [15]

5.4 Femtoscopy and dynamical system

Up until now in our analysis, we have considered a case in which source was static.
In this case the size of static source measured by femtoscopy is the same as the whole
source size because particles are emitted towards random direction with their thermal
momenta from the source thus there is no correlation between the spatial and mo-
mentum distributions. However in case of the heavy-ion collisions, femtoscopy does
not measure the whole source size but it measures the so-called homogeneity re-
gion, which is defined as an area that emits particles with small ~q, for ilustration see
(Fiq.5.8).

The reason that these homogeneity regions do not correspond to the whole size of
the source is that in heavy ion-collisions one can watch that lengths of these regions
(HBT radii) depend on the quantities such as pair momentum, size of the whole source
and reaction plane.

Pair momentum

Here we assume that system is in LCMS frame and that the particles are emitted to
radial direction from the center of the source with velocity ~βT (~r). It is also assumed
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Figure 5.8: Whole source (yellow) with homogeneity region (blue) for pair momentum.

that the transverse velocity of particles is proportional to the distance from the center
of the source to their particle positions. Therefore the particles around the surface of
the source get larger momentum and thus the emission region measured as the HBT
radius would correspond to a smaller region around the surface for higher kT , and a
larger region for lower kT , see (Fig. 5.9). In the limit of kT = 0 the HBT radii become
closer to the whole size of the source [38].

Within a simple model with a Gaussion source approximation based on the hydro-
dynamics, the HBT radii are explicitly written as a function of kT (mT ) as follows

R2
s(mT ) =

R2
geom

1 +mTη2
f/T

, (5.36)

R2
o(mT ) = R2

s(mT ) +
1

2
(
T

mT

)2β2
T τ

2
0 , (5.37)

R2
l (mT ) = τ 2

0

T

mT

K2(mT/T )

K1(mT/T )
, (5.38)

where Rgeom is the actual source size, ηf is the flow rapidity, T is the temperature, βT is
the trnsverse pair velocity, τ0 is the freeze-out time and Kn is the n-th modified Bessel
function [48]. However the presence of the kT dependence of the HBT radii indicate
the dynamical expansion of the source.

Size of the system

In the case of hadron-hadron correlation, one can show that the extracted HBT radii
should depend on the quantity which represents the system size, such as centrality or
multiplicity.

In the (Fig. 5.10) the centrality dependence of pion source parameters are shown
as a function of mT =

√
m2
π + k2

T for six different centralities. We can see that for
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Figure 5.9: Expanding source with two different homogeneity regions. Taken from [38].

more central collisions the HBT radii are bigger which is consistent with initial source
size because for more central collisions the overlap of two nuclei is greater. Here we
can also see that with increasing of mT the HBT radii are decreasing that is consistent
with pair momentum dependence which was mentioned before.

Figure 5.10: HBT parameters vs mT for different 6 centralities. Data from Au+Au
collisions at

√
sNN = 200Gev. Taken from [36].

In the (Fig. 5.11) we can see that HBT radii are linearly scaled well with the 1/3

power of the number of participants Npart calculated by Glauber model. Here the
value Npart corresponds to the volume of the source and hence N1/3

part corresponds to the
radius of the source [38].
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Figure 5.11: The HBT radii for positive (blue square) and negative (red triangle) pion
pairs as a function of N1/3

part in Au+Au collisions at
√
sNN = 200GeV measured by

PHENIX experiment. Taken from [24].

Reaction plane

In the subsection Flow (2.3.3), we wrote down that for non-central collisions the source
shape is expected to be an elliptical shape, see in (Fig. 2.6). The initial spatial
anisotropy creates the momentum anisotropy in the final state which is called elliptic
flow and the expansion of the source is prefered into the in-plane direction. In that
case one can measure the shape of the source at freeze-out by studying oscillation of
the HBT radii with respect to the reaction plane. In the (Fig. 5.12) we can see that
lengths of the HBT radii Rs and Ro are different with respect to the reaction plane.
In general, the Φ dependence of the HBT radii is described by

R2
µ(kT ,Φ) = R2

µ,0(kT ) + 2
∑

n=2,4,6...

R2
µ,n(kT )cos(nΦ) µ = o, s, l, ol (5.39)

R2
µ(kT ,Φ) = R2

µ,0(kT ) + 2
∑

n=2,4,6...

R2
µ,n(kT )sin(nΦ) µ = os (5.40)

where R2
µ,n are the nth orger Fourier coefficients for radius term µ. These coefficient

can be computed as follow

R2
µ,n(kT ) = 〈R2

µ(kT ,Φ)cos(nΦ)〉 µ = o, s, l, ol (5.41)

R2
µ,n(kT ) = 〈R2

µ(kT ,Φ)sin(nΦ)〉 µ = os (5.42)
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Figure 5.12: A view on the HBT radii from different angle respect to the reaction
plane.

The 0th order Fourier coefficients are expected to be nearly identical to radii extracted
in an azimuthally integrated analysis. For more detail you can see [18]. In the (Fig.
5.13) we can see measurements of dependence of squared HBT radii on the reaction
plane angle with respect to 2th order for three centrality classes from STAR experiment.

HBT puzzle

For describing of transverse momentum distribution and elliptic flow at low pT <

2GeV/c a relativistic hydrodynamics could be used. Therefore it was natural to ex-
pect that this hydrodynamics could reproduce the observables of HBT interferometry
dominated by two particles with low momentum. In spite of the fact that variety of
hydrodynamic models have been calculated, none of them was not able to describe the
HBT radii from experiments. In the (Fig. 5.14) we can see some models which are
inconsistent with the data from Au+Au collisions at

√
sNN = 200GeV measured at

RHIC. A problem is that according to calculations the ratio Ro/Rs, which is sensitive
to the emission duration, should be much larger value than unity but the experimental
data almost shows unity. It is clear that models significantly overpredict this ratio.
Models also either underestimate or overestimate values of Ro, Rl and Rs. This failure
of hydrodynamic models in describing the HBT results from heavy ion collisions is
called the HBT Puzzle that has not been solved for a decade. Recently however,
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Figure 5.13: Squared HBT radii using radii relative to the reaction plane angle for
three different centrality classes from Au+Au collisions at

√
sNN = 200GeV . Taken

from [16].

Pratt provided a possible explanation of this puzzle, see [40], [41].

Blast-wave model

As we mentioned above hydrodynamic calculations were not able to describe mo-
mentum distribution, elliptic flow and observables of the HBT interferometry at the
same time. One of the many ways how to solve it was Blast-wave model which is based
on the hydrodynamic calculations aiming to describe the system at the freeze-out with
a minimal set of paramaters.

Here we will use parametrization which was developed by Fabrice Retiere and Mi-
chael Annan Lisa [42]. This parameterization contains eight parameters T , ρ0, ρ2, Ry,
Rx, as, τ0 and ∆τ . The physical meaning of these parameters is given below.

The source is parametrized in the Cartesian coordinated system. The reaction plane
is the (x-z) plane. In the beam (z) direction the freeze-out distribution is infinite and
elliptical in the transverse (x-y) plane where the shape is controlled by the radii Rx
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Figure 5.14: Hydrodynamic and hybrid hydrodynamic/cascade models calculations in
comparison to RHIC data from Au+Au collisions at

√
sNN = 200GeV . Open symbols

represent data from π−, π− correlations and closed symbols for π+, π+ correlations.
Taken from [34].

and Ry. The spatial weighting of source elements is given by

Ω(r, φs) = Ω(r̃) =
1

1 + e(r̃−1)/as
(5.43)

where φs is the aimuthal angle of the source element and a fixed value of the normalized
elliptical radius

r̃(r, φs) =

√
(r cos(φs))2

R2
x

+
(r sin(φs))2

R2
y

(5.44)

corresponds to a given elliptical sub-shell within the solid volume of the freeze-out
distribution. The parameter as corresponds to a surface diffuseness of the emission
source. When as = 0, there is a hard edge, while as ≈ 0.3 the profile is a Gaussian
shape. This parameter is usually set to 0 for simplicity, see (Fig. 5.15).

A global temperature T is used to describe the spectrum of particles emitted from
source element at each point (x, y, z). This element is also boosted by a transverse
rapidity ρ(x, y). This boost is perpendicular to the elliptical sub-shell of the source
element profile, see (Fig. 5.16). Thus one can show that

tan(φs) = (
Ry

Rx

)2tan(φb) (5.45)

where φb is the azimuthal angle of the source velocity. For central collisions the flow
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Figure 5.15: The source weighting function Ω versus normalized elliptical radius r̃. The
surface diffuseness parameter is changed for several values. Taken from [42].

Figure 5.16: Schematic illustration of an elliptical sub-shell of the source. Here the
source is extended out of the reaction plane Rx < Ry. Taken from [42].

rapidity bost strength depends linearly on the normalized elliptical radius r̃. Thus,
in absence of an azimuthal dependence of the flow all source elements on the outer
edge of the source boost with the same transverse rapidity ρ0 in an outward direction.
For non-central collisions, the flow rapidity is given by adding a parameter rho2 which
characterizes the strength to the second order. Hence the flow rapidity is given as
follow

ρ(r̃, φs) = r̃(ρ0 + ρ2cos(2φb)). (5.46)

The source anisotropy enters into our parametrization in two independent ways and
each affects elliptic flow. The first, setting ρ2 > 0 means the boost is stronger in-plane
than out-plane. The second way is to set Ry > Rx for ρ0 6= 0 but ρ2 = 0. This case
also generates positive elliptic flow because there are more sources emitting in-plane
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than out-plane.
There is a assumption that this model is longitudinally boost-invariant. The as-

sumption is sensitive that the freeze-out accurs with a distribution in longitudinal
proper time τ =

√
t2 − z2. The model assume a Gaussian distribution peaked at τ0

with the width ∆τ as follow
dN

dτ
∼ exp(−(τ − τ0)2

2∆τ 2
). (5.47)

We note that although the source emits particles over a finite duration in proper time
τ , we assume that none of the source parameters changes with τ because calculation
of the time dependence of these parameters requires a true dynamical model which is
outside of this thesis.

The emission function of this model has a follow form

S(x,K) = mT cosh(η − Y )Ω(r, φs)e
−(τ−τ0)2

2∆τ2

∑∞
n=1(±)n+1e−nK·u/T , (5.48)

where upper (lower) sign is for bosons (fermions). he reduction of the sum to the first
term will transform the model to Boltzmann thermal distribution. After some steps
which can be wieved in [42] the emission function can be rewritten as follow

S(x,K) = mT cosh(η − Y )Ω(r, φs)e
−(τ−τ0)2

2∆τ2

∑∞
n=1(±)n+1enαcos(φb−φp)e−nβcosh(η−Y )

, (5.49)

where we define
α =

pT
T
sinh[ρ(r, φs)] (5.50)

β =
mT

T
cosh[ρ(r, φs)] (5.51)

. One can simplify the equation by setting Y = 0. Also, we introduce a function{
B
′
}

(K) =
∞∑
n=1

{
(±)n+1

∫ 2π

0

dφs

∫ ∞
0

rdr[2K1(nβ)B
′
(x,K)enαcos(φb−φp)Ω(r, φs)]

}
.

(5.52)
Then, pT spectrum can be calculated as follow

dN

pTdpT
=

∫
dφp

∫
d4x S(x,K) ∝ mT

∫
dφp{1}(K) (5.53)

and v2 is calculated as

v2(pT ,m) =

∫ 2π

0
dφp{cos(2φp)}(K)∫ 2π

0
dφp{1}(K)

. (5.54)

For us the most important conclusion from the work of Retiere and Lisa are HBT
radii and their dependence on the parameterization of the source. Using this paramet-
erization one can obtain that R2

l carries information about the lifetime of the source
and can be parametrized as follow

R2
l (mT ) = τ 2

0

T

mT

K2(mT/T )

K1(mT/T )
. (5.55)



CHAPTER 5. FEMTOSCOPY 46

and that this equation coincides with equation 5.38 from work [48].It is possible to show
that the R2

s contains only spacial information and the R2
o is sensitive to the temporal

extents of the source than the dynamical properties of the measured system can be
described by the ratio of R2

o and R2
s as well as the difference of R2

o and R2
s. For more

detailed analysis we recommend to read [42].

5.5 Experimental approach

In order to obtain the HBT radii from experiment, we have to fit the experimentally
measured correlation function by fitting function. The correlation function is defined
as follow

C(~q,~k) =
A(~q)

B(~q)
, (5.56)

where A(q) is the pair distribution with relative momentum ~q in the same event (real
pairs) while B(q) is the pair distribution with relative momentum ~q in the different
events (mixed pairs). Mixed pairs are made by event mixing technique. Here we select
several different events with similar global variables and then particle pairs are made
by choosing one particle from a event and choosing one particle from other event.
Therefore the mixed pairs does not include the HBT effect, while the real pairs, from
the same events, includes the HBT effect and interactions.



Chapter 6

Data analysis

In this work, we present the femtoscopy correlation of positive pions for p+Au collisions.
The following sebsections describe the analysis procedure where the data set, event
selection, track selection and pion identification are deal.

6.1 Data set

Our analyzed data originate from p+Au collisions at
√
sNN = 200GeV taken at the

STAR experiment at RHIC in 2015 (Run 15) which include daynumbers from 124 to
159 with a minimum bias trigger using the BBC and VPD detectors.

1. Production: P16id

2. Library: SL14g

3. Trigger: BBCMB, VPDMB-novtx, VPDMB-30

4. Offline Trigger ID: 500008, 500018, 500004, 500904

5. FileCatalog command: catalog:star.bnl.gov?production=P16id,
trgsetupname=production_pAu200_2015,filetype=daq_reco_MuDst,
daynumber[]124-159, filenamest_physics,collision=pAu200,sanity=1,available=1,
tpx=1,tof=1,storage!=HPSS"preferStorage="local" nFiles="all"

6. Total number of events: 3.77 billions

7. Number of events using triggers: ∼ 130M

When total events pass through the system one obtains ∼ 130M events and then event
cuts can be applied to this event cuts.
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6.2 Event selection

Figure 6.1: The distribution of the z-coordinate of the primary vertex position for
| Vz |< 30 cm.

For our analysis the selection of events in the center of the TPC is required, then
a cut on the position of the primary vertex along the beam direction (z-axis) was
applied. Our requirement for this cut is | Vz |< 30 cm, there Vz is the z-coordinate
of the primary vertex position which is measured by the TPC, see in (Fig.6.1), tails
of the histogram for primary vertex in z-direction do not contain enough counts and
therefore they are not added into analysis. It is known that Vz can also be calculated
by the VPD detectors. Therefore there is also another requirement, using a difference
between the vertex position measured by the TPC and VPD detectors in an absolute
value was less than 5 cm. To remove pile-ups and badly detected events.

Event Multiplicity

In our analysis the reference multiplicity was used. Usually, thanks to models we are
able to calculate centrality bins for the corresponding multiplicity however, in the case
of p−Au collisions a relevant model is not known. Therefore we have divided reference
multiplicity into the four intervals as can be seen in (Fig.6.2). For these multiplicity
bins we will construct correlation functions, see results. It was mentioned in previous
chapter, (4.5 Experimental approach), that the denominator of the experimental cor-
relation function, (Eq. 4.56), is formed by mixing particles from one event with all
particles from similar events in order to avoid any signal in the correlation function
that could be produced by mixing events with different characteristics. Therefore, in
our analysis, similar events are done according the position of the z-coordinate of the
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Figure 6.2: Distribution of the reference multiplicity for p-Au collisions divided into
the five bins.

primary vertex and uncorelated multiplicity. In our case primary vertex position is
within 30 cm for four multiplicity bins.

6.3 Particle selection

Particle identification was done by the TPC and ToF detectors. In the TPC, this
identification is based on the energy losses of the particles, which travel through a gas
inside the detector. This losses depend on the velocities at which particles travel in
the TPC. It means that for a given momentum, three particles with different masses
have different velocities and thus they have different dE/dx, see in (Fig.6.3). As was
mentioned in Chapter 3 (3.2.1 TPC detector), energy losses of charged particles by
ionization are calculated using the Bethe-Bloch formula, see (Eq.3.1). For us, the
positive charged pions are important but it can be seen that for high momentum there
is some contamination from other particles which is going to effect λ(~k) parameter. In
order to solve this contamination problem we also apply a cut on mass squared.

In analysis presented here, there is specific pT cut which was applied to single
tracks because the TPC enables to identify particles with the transverse momentum
larger than 0.15GeV/c. Moreover, we also applied another cut for momentum of single
particles due to limitations in the identification of pions due to mixing of the dE/dx
bands at high momentum, see (Fig.6.3). Therefor, only tracks with (0.15 < pT <

1.5GeV/c) and (0.15 < p < 1.5GeV/c) are included in the correlation functions. In
addition to make sure that emitted particles fall into the detector acceptance there is
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Figure 6.3: dE/dx vs. momentum of the particles for pions (red), kaons (blue) and
protons (green) and elentrons (pink).

a requirement for primary tracks to be in a pseudorapidity range | η |< 1.
However, as we mentioned the pion band is contaminated by the kaon and proton

and therefore we do not obtain only pions. In order to ged rid of the kaons and protons
the ToF detector was used. This detector measures the time of flight β. When this
information is combined with the measured momentum in TPC, the particle mass m
can be calculated by (Eq. 3.5). The ToF enables to separate charged pions from kaons
and protons up to 1.5GeV/c. Therefore, the last identification cut requires the track
to have the mass squared in the range 0.005 < m2 < 0.035, see (Fig.6.4).

6.4 Pair cut

Since this is a preliminary work we will not discuss cuts that are intended to remove
the effects of two track reconstruction defects that have high impact on HBT. The
mentioned effects are

• Splitted tracks: one single particle reconstructed as two tracks

• Marged tracks: two particles with similar momenta reconstructed as one track
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Figure 6.4: The distribution of the mass squared of positively charged pions which was
determined by the TPC and ToF detectors.

k_T cuts

The only cut which will be apply to pairs will be tranverse momentum (kT ) cut. As was
already discussed, homogeneity regions are expected to depend on the pair transverse
momentum. Hence such cut enables to change the size of the measured volume at the
constant centrality and temperature of the system. Our requirement for this cut is to
have an average value between 0 < kT < 1.5GeV/c. This range was divided into five
bins: 0.0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5 GeV/c.

An example of one-dimensional correlation functions for selected data are shown in
(Fiq.6.5 and Fiq.6.6). Here, one can see a typical shape of the correlation function. For
small values of qinv the Coulomb interacion can be watched. As can be seen in (Fig.6.5),
with increasing the multiplicity the correlation function decreases and it means that
radius of the homogeneity region increases, see in (Fig.7.2). In (Fig.6.6) we can see
that with increasing of kT the correlation function also increases and that means that
radius of homogeneity region decreases. This corresponds with predicion from chapter
4 (4.4 Femtoscopy and dynamical system) and also with our results (Fig.7.2).
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Figure 6.5: One dimensional correlation functions for 3 multiplicity ranges and 0.0 <

kT < 0.3.

Figure 6.6: One dimensional correlation functions fot positive pions for multiplicity
range 0-60 and for 4 kT bins
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Results

In the previous chapter the data, which were used for a construction of the correlation
function, were analysed. In this chapter our experimental correlation functions for the
positive charged pions are studied in detail. Here we have to mention that we will
not consider track splitting and merging, purity and momentum correction or pile-up.
All these things can modify our correlation function however, for the purpose of the
preliminary analysis these corrections have to not be considered. The functions are
fitted with two simple models and are compared with other experimental correlation
functions from different experiments. In our analysis we will not consider and fit the
Coulomb part of the correlation function due to difficulty of fitting this area.

7.1 1D-Correlation function

The one-dimensional uncorrected correlation functions for Bose-Einstein correlation
(no FSI) are fitted by

CGauss(~q,~k) = 1 + λ(~k)e−(qinvRinv(~k))2

CLevy(~q,~k) = 1 + λ(~k)e−|qinvRL(~k)|α .
(7.1)

The first equation is well known Gaussian distribution, here qinv is the Lorentz invariant
momentum defined in (Eq. 4.21), Rinv is the Lorentz invariant radius and λ is the
chaoticity parameter. The second equation is the Levy distribution, here qinv, RL and
λ have the same meaning as in the case of the Gaussian distribution but α is the Levy
index called also index of stability, which can be equal to the values 0 < α ≤ 2. There
are two specific case, at α = 2; the Gaussian parametrization corresponded to the
normal (Gaussian) distribution function

S~k(~x) =
1√

2πR2
G

e
− (x−x0)2

2R2
G , (7.2)
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where the Gaussian scale parameter is R2
G = 〈x2〉 − x2

0, the standart deviation. An-
other specific case of the Levy distribution is at α = 1 which is called exponential
parametrization and it corresponds to the Cauche (Lorentzian) distribution function

S~k(~x) =
Rc

π(R2
c + (x− x0)2)

, (7.3)

with scale parameter Rc. For more details about Levy distribution see [39].
Figures (Fig.7.3 - Fig.7.6) show examples of one-dimensional correlation functions

for different reference multiplicity ranges: 0-60, 0-15, 15-30, 30-45, 45-60, respectively.
In each multiplicity range, kT is divided into five bins as was mentioned previous.
Due to poor statistic we have not considered and described correlation functions for
multiplicity bins 45-60.

One can see that fits do not include an area where the Coulomb interaction has a
significant influence, (small qinv). In order to fit this data with the Coulomb interaction
one has to use different models unlike (Eq.7.1) but this is not the main idea of this
work. As can be seen from comparison of the fits, almost in all cases the Levy fits better
describe data than the Gaussian fits which means that the source is of non-Gaussian
shape. In the figures we can also see χ2 however, in our cases this test is not very
useful because as can be seen fits do not do not describe data properly.

Results from fits of correlation functions for different multiplicities and kT bins are
presented in (Fiq.7.1 and Fig.7.2). Here the λ parameter and source radius Rinv and
RL are shown as a function of the multiplicity and pair transverse momentum kT .

As we mentioned, the source radii R decrease with the pair tranverse momentum
kT for the Levy distribution as well as for the Gaussian distribution. This behaviour
qualitatively agrees with the effect expected from a system undergoing a transverse
expansion where pairs with the larger transverse momentum are emitted from a smaller
homogeneity region than the pairs with the smaller kT , as it was discussed in Chapter
4. A dependence of the radii Rinv and RL on the multiplicity is already not such clear.
One would expect that with higher multiplicity the radii of the homogeneity region
increase however it is hard to confirm this fact from the (Fig.7.2). As we can see, for
the Gauss radii this dependence can be observed in a range of errors but for the Levy
radii such a behaviour is not observed. For this observation a more precise analysis
must be done.

The behaviour of the λ parameter is not monotonic. In the case of Levy distri-
bution, for small multiplicities this parameter decreases for lower kT bins and then
increases while for bigger multiplicities it is almost constant for lower kT bins and
then it increases. For Gaussian distribution this parameter decreases very weakly, it is
almost constant for lower kT bins but then it increases too.

For completeness, the behaviour of levy parameter (α) is pltted in (Fig.7.3-Fig.7.6)
on the left side down. We can see that the parameter complies with the condition
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0 < α ≤ 2. For a comparison, in (Fig.7.7) we present STAR preliminary analysis for
Au+Au collisions at 200GeV for centrality range 0-5% and for eight kT bins [14]. One
can see that a magnitude of the correlation functions is less than in our case. This agrees
with a fact that for a bigger source the correlation is weaker. One can also compare
that with higher kT the magnitude of the correlation increases, this corresponds with a
fact that for higher kT the homogeneity region is smaller and for smaller homogeneity
region the correlation is bigger. In (Fig.7.8) is shown a dependence of the λ parameter
and radius on kT . Here we see that behaviour is completely different as in our case.

(Fig.7.9) shows three ππ correlation functions versus qinv for p + p, d + Au and
Au + Au that have not been Coulomb corrected. As the system size decreases from
Au + Au to p + p, the width of the correlation function increases. Note that Bose-
Einstein correlations are not a small effect in d+ Au or p+ p collisions in comparison
to Au+ Au.
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Figure 7.1: Fit results: λ as a function of kT and multiplicity. Top panel is for Gaussian
distribution. Bottom panel is for Levy distribution.
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Figure 7.2: Fit results: Rinv and RL as a function of kT and multiplicity. Top panel is
for Gaussian distribution. Bottom panel is for Levy distribution.
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Figure 7.3: One-dimensional correlation function for positive pions for multiplicity 0-60
and five kT bins. The lines represent fits to the data by using (Eq.7.1). On the left
side down is plotted dependence of levy parameter (α) as a function of kT .

Figure 7.4: One-dimensional correlation function for positive pions for multiplicity 0-15
and five kT bins. The lines represent fits to the data by using (Eq.7.1). On the left
side down is plotted dependence of levy parameter (α) as a function of kT .
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Figure 7.5: One-dimensional correlation function for positive pions for multiplicity 15-
30 and five kT bins. The lines represent fits to the data by using (Eq.7.1). On the left
side down is plotted dependence of levy parameter (α) as a function of kT .

Figure 7.6: One-dimensional correlation function for positive pions for multiplicity 30-
45 and five kT bins. The lines represent fits to the data by using (Eq.7.1). On the left
side down is plotted dependence of levy parameter (α) as a function of kT .
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Figure 7.7: One-dimensional correlation functions for pions for centrality 0-5% and
eight kT bins. Taken from [14]
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Figure 7.8: Top panel: dependence of λ parameter on kT . Bottom panel: dependence
of Rinv on kT . Taken from [14]

Figure 7.9: Typical one-dimensional ππ correlation functions for the p + p, d + Au

and Au + Au systems at STAR. The p + p and d + Au correlation functions are from
minimum bias data while the correlation function from Au + Au is shown for central
collisions at

√
s = 200GeV . All are subject to the same kT cut. Taken from [28].



Chapter 8

Conclusion

The main goal of this work was to present a preliminary analysis of the femtoscopic
study of two-particle correlation function for positive charged pions. The presented
analysis was performed on a minimum bias data from p − Au collisions at

√
sNN =

200GeV collected by the STAR experiment.
Applying the selected criteria, the one-dimensional correlation functions for pairs of

positive pions were created, see (Fig.7.3-Fig.7.6). Functions were constructed for five
multiplicity and five kT bins. They were fitted by two simple models, Gaus and Levy
functions.

For these models the graphs of λ parameter versus kT , (Fig.7.1) and radius Rinv

(RL), (Fig.7.2) were created. From these figures one can see that there is a visible
dependence of Rinv, RL and λ parameters on multiplicity and kT . In case of the
Levy model, the dependence of λ on kT for small values is different as in the case of
Gauss model. For kT > 0.4GeV/c the λ parameter increases for both cases. However,
dependence of these parameters on the multiplicity is very similar. Parameters λ with
higher multiplicity are smaller than λ-s with smaller multiplicity for both cases.

In the case of radii, the behaviour for both cases is similar for kT . When the
pair momentum increases the radii decrease, as one can expect. However, multiplicity
dependence for these radii is not as unambiguous as in the case of the pair momentum.
For better results in that case we need a more precise analysis.

In (Fig.7.3 - Fig.7.6), on the left and down, the plots for levy parameter (α) were
created. Almost in all cases the condition (0 < α ≤ 2) is satisfied and for all cases this
parameter increases.

Comparing obtained data from our analysis for p−Au with results from Au−Au
we can see that there are no similarities in radii or λ parameter. To obtain a better
comparison one needs to do more precise analysis which will include some corrections
and limits which improve selected data from which the correlation functions are con-
structed.
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