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Introduction

The number of particles produced in ultra-relativistic nucleus-nucleus collisions is well
described by the statistical model. In this model, the particle yields depend on temperature
and chemical potential. In this research project, we will try to describe higher moments
of the multiplicity distribution.

In Chapter 1, the statistical moments will be formally introduced, defined and
elaborated. We will focus on the first four central moments especially, as those are the
most important ones when considering the heavy-ion collisions. They are called mean,
variance, skewness and kurtosis and they contribute significantly to a better under-
standing of the heavy-ion collisions and the subsequent particle production, which will
also be emphasized in the text. Also, the canonical and grandcanonical formalism will be
introduced as well as the so-called "scaled variance” which is widely used when describing
fluctuations.

Chapter 2 concerns the application of the mathematical apparatus obtained in
Chapter 1 in exploring multiplicity fluctuations within a simple model, where only one
particle species bears the conserved quantum number. In this research project, the simple
pion gas was chosen. After that, the formalism for a full hadron gas will be provided and
the method called ”saddle-point expansion” will be introduced.

In Chapter 3, the topic of chemical equilibrium and the fluctuations there will be
elaborated. At the very first, the exact charge conservations in statistical systems will be
introduced and the quantity called the microscopic correlator within the grandcanonical
ensemble (GCE) will be defined, which is also very useful for the description of fluctua-
tions. Subsequently, the conservation laws will be imposed into the equations using delta
functions. Then the CE form of the microscopic correlator will be introduced based on
those conservation laws.

Afterwards, the fluctuations in a hadron resonance gas model will be introduced and
the corresponding thermodynamic susceptibilites - similar to Chapter 1 - will be defined
and the first four cumulants in the ideal hadron gas will be written down. At the end of
Chapter 3, the loss of chemical equilibrium and the chemical freeze-out parametrization
will be dealt with and the effect of resonance decays will be taken into account, which
includes the generalization of the first four cumulants in the ideal hadron gas for the
case that the effect of resonance decays is assumed. Finally, the particle correlation after
resonance decays parametrized by the so-called ” generating function” will be introduced.

In Chapter 4, the formalism laid down in Chapter 3 will be further generalized in order
to account for the case of chemical non-equilibrium. We will reintroduce the formula for
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the particle pressure and adjust it to the state of chemical non-equilibrium. Furthermore,
we will write down the formulae for particle fluctuations as well as other cumulants from
Chapter 3 and implement the state of chemical non-equilibrium.

At the end, a summary of the information on multiplicity fluctuations we have collected
so far will be provided, along with a brief outlook.



Chapter 1

Calculation of the statistical
moments within the statistical model

Statistical moments are an important mathematical tool used to describe and calculate
multiplicity fluctuations in the statistical model. The m-th central moment ¢,,(X), where
m € N is defined as follows:

em(X) = E(X — EX)"™

where FX is the mean value of the statistical quantity X. We will further concentrate
on the first four moments only, as those are of great significance. They are defined and
called as follows:

mean: M = ¢,

variance: 02 = ¢,

skewness: S = @3/@3/2

kurtosis: k = ¢, /3

Sometimes, a constant —3 is added to kurtosis, because it may or may not be in-
cluded, which depends on whether we want the kurtosis of the Gauss distribution to be
equal to zero. In further calculations, this factor is not accounted for. The importance
of skewness and kurtosis becomes obvious from Figure [1.1] where also the meaning of
those two moments is depicted: skewness measures the assymetry of the probability
distribution, kurtosis its ”tailedness”.

1.1 Grandcanonical and canonical formalism

We usually assume that we work with grandcanonical or canonical ensemble, whose
event-by-event distributions of conserved quantities are characterized by the moments
(M, o, S, k) defined above. In order to be able to directly compare theoretical predictions
and experimental measurements, we also introduce the following:
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Figure 1.1: Explanation of skewness and kurtosis [I].
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The grandcanonical partition (GC) function is given by
w— ()Y

ZGC()‘]') = Hexp Z n—j

(1.5)

n;=1

and the single particle partition function by

() = (F1) 5 T
J

(%) . (1.6)

The products runs over all types of hadrons and the sum is necessary due to the quantum

statistical distribution.
Furthermore, K, is the modified Bessel function (see Appendix), V is the volume

of the hadron gas,
j = GXP(?)

is the fugacity for each particle species j, m; is the hadron mass, p; is the chemical

potential of a particle species j,



is the spin degeneracy and the upper sign holds for fermions, lower sign for bosons.

Canonical formalism is a little more complicated, as it cannot be factorized into one-
species expressions, as is the case for the GC formalism. However, we may introduce the
Wick-rotated fugacities:

A= expli Y ¢i 0]

and the canonical partition function will now be expressed as:

3

1 27 ]
H il / d¢i€_lQi¢z‘
i=1 2m Jo

where Zgc is the GC partition function given by Eq. ((1.5)).

7=

) Zac(N)) (1.7)

We will now introduce the vector of total charges
Cj = (Q1,Q2,@Q3) = (B, 5,Q)
and the vector of charges of the hadron species j
G = (915 250 43.5) = (bj> 8, 4;)

where @), B, S denote the charge, the baryon number and the strangeness, respectively.
Let h be a set of hadron species with the corresponding fugacity factor ;. We may

then write
Aj = ApA
and have now everything we need to write down the explicit form of the first four statistical
moments:
(Nh) = Zl (Zf%h 1= Z ) 2 o (1.8)
jEh nj=1 Q

1[0 0Z
48 =7 |5 (W52 )| e =

I Z5 L
>N ”jzj(nj)%Jr
jeh n;=1 Q
Z Z z(n; Z Z (1) Z n]q] R (1.9)

jeh n;=1 keh np=1
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1.2 Asymptotic fluctuations in the canonical ensem-
ble

The canonical partition function is given by Eq. (1.7)). We will now introduce a way to
compute this integral using the so-called ”saddle-point expansion”.
The integration is performed on the complex w unit circle parametrized as:

w; = explig;].

The canonical partition function may then be written as

1 e
Z5 = W ]{dej{de]{dewBBleSIwQQl expz,zj(l)w%w?ng (1.12)

J

where z;(1) is the one-particle partition function given by

zi(1) = (2J;+ 1) (2‘;)3 /dgpexp [—, [p?+m3| . (1.13)

Obviously:
wy” = exp[—BInwg, (1.14)
wo? = exp[—Q Inwg), (1.15)
and
wg® = exp[—SInwg] (1.16)

where (), B, S denote the charge, the baryon number and the strangeness, respectively.
Let

g() = wi " wy wg (1.17)

B

S
ps =17 (1.19)

Q
Q=1 (1.20)

and .
f(W) = —ppInwp — psInws — pg Inwg + Z %w%wg’“wgﬂ (1.21)
k

We may now write

2.5 = gmays § du s § dugo(@) exolv 1 () (122



1.2.1 Scaled variance

Fluctuations can be described by using the so-called "scaled variance” w [7] of a multi-
plicity distribution: ,
(N?) — (N)
w oy (1.23)
where N is the multiplicity of any hadron species, which includes primary or final (i.e.
after resonance decays [7] hadrons or the sum of an arbitrary number of hadron species.
Once the quantum statistics is neglected and in the absence of any other dynamical effects,
the multiplicity distribution of any primary hadron is a Poisson, which means w = 1.
Having performed the calculations in Eq. and Eq. , we can rewrite the scaled

variance as the sum of a Poissonian term, which means 1, and a canonical correction term:

—q;

Zjeh <NJ>

25 e D5
Zth (Nj) 2 ken 2r(1) ( Zc;k + - %(;k)

w=1+

(1.24)

1.2.2 Saddle-point expansion

We may now introduce the method of the saddle-point expansion. Let wy = (Ap, A\g, Ag)
be the saddle point. Then obviously

0f (@)

8wk

|l = 0.

We will now try to find the explicit solution of a complex d-dimensional integral

d
I(v) = [H/F dwk] g(@)e? /@)

where 'y is the k-th path of integration.

If v is large, then only a small segment around the saddle point wj contributes to
the total integral value. We may then write

v Neuf(ﬁo)# : I ’LU_) e—%VETHf
I(v) ~ L [g/_m dtk] g(w(#))

where H is the Hessian matrix of f(w).

We may now summarize the procedure as follows: at first we choose a real inte-
gration variable t:
W — Wok = ezd)ktk

where ¢, denotes the phase.

Consequently, the original path is "deformed” into a line in the complex plane.



After that, we expand g(w) into a Taylor series around @ = wy.

Finally, we assume that H is diagonalizable, so we can find a matrix A such that
H’ = AHAT.
The integral will now have the following expression:

1
(2rv)ddetH lo(

d d
1 1 829(75) Aim A
v [_5 —~ awkawm’% 21: h; o+

—

I(v) == exp(v f(wp)) wo)+

where v and «; are constants dependent only on function f and its derivatives.



Chapter 2

Multiplicity fluctuations for a simple
model

2.1 Multiplicity fluctuations for a classical pion gas

Since pions are composed of u and d quarks only and they are mesons, it is obvious
that
Q = (07 07 Q)
and the saddle point
Wy = )\Q.
Furthermore, the only charged pions are 7 and 7~, which is why they are the only ones
considered. Let v =V, g(w) = 1/w, f(w) = —pgInw+ 2= (w+ =). Then using Eq. (1.25)

we obtain

1 :
Zg == ¢ dwgw, " exp [Z zﬂ(l)wg] (2.1)

271 —

For the spin s, pion mass m and the single-particle partition function, we assume the
following:

Jﬁ+ = Jﬁf = 0; My+ = My— = 139.57 MeV

zjay = (2J; + 1)(2‘;)3 /dg’pexp(—\/]o2 +m3) = (2‘;)3 /d:”pexp(—\/]o2 +m?) (2.2

The partition function Z7 will have the following form:

~ _ Zcc 1 1 1 (1)  alle) 1
% = Ag \ 2mf (M) [/\Q+V< A Ao A%f”@\@)) 29

+ OV

20



and

« _ Zec 1 1 1 a(Ae)
ZQ*Qi - )\84-1 27Tf"(>\Q)[1+Vh<)\Q)+(qJ 1) >‘Q (2'4>

— -1 -2 |+ 02,

1
2 2o f" (M)

If we assume the thermodynamical limit V' — oo, we obtain the mean number of pions:

Z7T
(rf) = oz Zgl = N+ oV = (7)., + O(Vh) (25)

which suggests that in the thermodynamical limit, the mean number of pions corresponds
with that in grandcanonical formalism.

We may now write down the final expressions of scaled variances (as defined above in
Eq. (1.23) and Eq. ((1.24)) for both net charge and total particle number distributions:

lim e =1 — T lac (2.6)
Voo (T ae + (T )ae

o =1 — (M ac— (™ e
I = T T e 20

where w4 denotes positive and negative pions, respectively, w., denotes all charged pions
and () o denote the mean multiplicities of the respective pions in the GC ensemble.

2.2 Multiplicity fluctuations for a full hadron gas

We may now consider the general case of multi-hadron gas carrying total charges
{Qi} = (B, S,Q) [7]. Assuming the asymptotic expansion of the canonical partition func-
tion, the Hessian matrix of the function f, which is defined in Eqs and , is
diagonalizable and takes the following form:

02 f (@) 1
H 0 p— — pu—
" <w0) anz ann ’wo Vg, @n

Qi + Z qi,j (Qn,j — Oin) <Nj>Gc (2.8)
J

lth

where ¢ ; is the {"* charge of the j hadron species. Due to the symmetry and the matrix

being real, we may perform the diagonalization using an orthogonal matrix A:
H' = diag(hy, hy, hs) = AHAT (2.9)

where h; are the Hessian eigenvalues.



The Eq. (1.22) can now - using the approximation (1.25) and the functions f and g
defined as ((1.21)) and ([1.17]), respectively - be rewritten as

_ Zac 1 bj 85\ 1
Z@—q“- o )\gﬂ)\gﬂ)\gﬂ (27T)3V3d€tH)\B )‘S )‘Q {1 + V

1 3

=1

1 3

i=1 i=1

3

1 ’ A A;
—5z (b =1 = 2) P
B

ArL'QAZ'Q 1 ’ Ai3 i
- %(31 —1)(s; —2) (Z » > - 2)\%(%’ (g —-2) (D "

AﬂAig 1 3 AilAi3
~1)(s-2) (D - —1)(g; — 2

B 2)\@)\3 hl )\B >\S )‘Q

=1

+O(V 2

where v and «; are constants dependent only on function f and its derivatives (as is the

case in Eq. (1.25).

It should be noted here that the hessian matrix H and its eigenvalues, as well as
the diagonalizing matrix A, is independent of the volume V' and so is function f given

by Eq. (L.21)).

The expansion above has been performed for the partition function ch_q;- given by
Eq. (1.22). If we do the same with the partition function Z5 given by Eq. (1.12), we
immediately obtain

25 s g
D \INING = A, (2.11)

lim
V—o00 C:j

That means that if the large volume limit is taken into account, the suitability of the
usual grand-canonical formalism is restored, which can be expressed as

Zﬂ_ -’. s .
lim 20—~ = Z)AgAINE = (N)ge - (2.12)
o Q
Let us now denote: ;
M, = lh— (2.13)
i=1 i

We may now - using Eq. (2.10)) - immediately write
AL

25-G—a bib;
Q—4;—dk k0; SkS] qrq;
B My + —= My + M33 (214)
chiq; V )\2 AZ )\2
bisj + sib; brq; + biqn Skq; + qkS; 9
DS T KD gy 4 2T Oy SR TSy
Nphs 12 + Ao 13+ Nods +0(V™7)
A
= = ikt O(V )

%

0~ (s~ 2) (Z AQAB) by 22l ) osls 2 1) | aole )

2.10)

).



The scaled variance as defined by Eq. (1.24]) will now have the following form:

Zjeh <NJ>G(J Zkeh <Nk>GC Cjk

4 Zjeh (Nj)ee +ovT) (215)

wh:1—|—

We will now for a moment consider the scaled variance w; of a single hadron species. We
will also neglect baryon number and strangeness, thus considering electric charge only.
The hessian matrix is obviously diagonal with only one non-zero element in the matrix

M: .
0*f
Mss = (3 3 ’w()) (2.16)

Furthermore, if we neglect hadrons with two or more units of electric charge, we obtain
the following expression for C[7]:

2
qrq; qrq; 1 4rqj V/\
Cip = Mgy = 20000 = 2.17
o= M= e = s Weaw - 2
Varq; B Varq;

Q+2( Yo (hMae + (W )ge
where (h*) denotes the mean multiplicities of positive and negative hadrons, respectively,

and Q = (h") e — (W) e

If we plug this expression into Eq. (2.15) and assume that for a single hadron
species j = k and qu- = 1, we immediately obtain:

: <Nj>Gc
lim w; =1+ ) (2.18)
Voo (h)ae + (h)ae
Similarly, the scaled variances of all negative, positive and charged hadrons now read as
follows: (hi>
lim wy ~1— GC (2.19)
Vo0 (h) e + (W )ge
: (W = (h )ac
lim we, ~ 1 — (2.20)
Voo () e+ (P )ae

where wy denotes positive and negative hadrons, respectively, w., denotes all charged
hadrons and (h*), denote the mean multiplicities of the respective hadrons in the GC
ensemble.

This is obviously similar to the classical pion gas case, both of which was also
proved in [7].



Chapter 3

Multiplicity fluctuations for a
resonance gas model with chemical
equilibrium

Since we have at this point presented all the necessary formalism concerning the
calculation of multiplicity fluctuations, it seems only fitting that we now proceed towards
systems where chemical equilibrium is a priori assumed. At first, we will present a certain
generalization of what we laid down above.

As statistical models provide a valid description of hadron multiplicities in relativistic
nucleus-nucleus collisions [2], we may further concentrate on multiplicity fluctuations in
high energy nuclear collisions. Last but not least, the microscopic correlator providing a
possibility to calculate the fluctuations of different observables [2], as well as the generating
function comprising the inclusion of resonance decays will be introduced.

3.1 Exact charge conservations in statistical systems

Let us now assume the canonical ensemble (CE). Our primary aim is to include dif-
ferent types of hadrons while keeping (B, S, @) (introduced in Chapter 1) exactly fixed.
For simplicity, we will assume a system of non-interacting Bose or Fermi particles, char-
acterized by their occupation numbers n, ;, with ¢ denoting the particle species and p the
particle momentum. For fermions, the occupation numbers are n,; = 0,1, whereas for
Bosons, they are n,; = 0,1,.... The grand canonical ensemble (GCE) average values and
the fluctuations of n,; are the following:

1
(np) = (P T — /T = (3.1)
Vpi = (A1) = ((npi = (mp3))") = () (147 (1)) (3.2)

where v; € {—1,0,1} denotes the Fermi distribution, the Boltzmann approximation and
the Bose distribution, respectively.
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The chemical potential y; is given by the following equation:

fi = qipq + bipp + sips (3.3)

where ¢;,b;, s; denote the electric charge, the baryon number and the strangeness of a
particle of species ¢, respectively; uq, pp, jts are the corresponding chemical potentials
regulating the average values of these global conserved charges in the GCE [2].

We will now lay down the formalism concerning the average number of particles
of species ¢ denoted as (NN;), the number of positive, negative and all charged particles
denoted as N, , N_ and N, respectively [2]:

) =3 (i) = 5% [ o o (34

p

(Np)= )N, (N =D (V) (Nay= ) (Ny) (3.5)
1,g;>0 i,q; <0 i,q; 70
where V' is the system volume and g; is the degeneracy factor of particle of species i (a
number of spin states). The momentum integral (3.4) holds in the thermodynamic limit
V — o0.

We may now define the microscopic correlator [2]:
(AnyiAng ;) = vy 005k = (M) (1+ % (1p,3)) 050 (3.6)

where the average values of (n,;) are given by Eq. (3.1]).

The aforementioned enables us to calculate the fluctuations of different observ-
ables in the GCE. Due to the presence Kronecker factors in Eq. , it becomes obvious
that only the Bose and Fermi effects for the fluctuations of identical particles on the
same level are relevant in the GCE, as this has to correspond with Eq. .

In order to account for the effect of exact conservation laws, we will introduce
the equilibrium probability distribution denoted W (An, ;) describing the deviations of
different sets {n,;} of the occupation numbers from their average value given by Eq. (3.1).

If the GCE is assumed, each An,; fluctuates independently according approxi-
mately to the Gauss distribution law for An,; [2], with mean square deviation being
An2; =v?
b b A )2
Tpi
Wg.c.e.<Anp,i) X HGXP [_(#} (37)

2
pii 20y,



This may make an elaboration necessary. We may consider the sum of n,; in a
small momentum volume (Ap)? with the center at p. Once (Ap)?3 is fixed and V — oo,
the average number of particles inside (Ap)? will be large. Each particle configuration
inside (Ap)? consists of (Ap)? - gV/(27) > 1 statistically independent terms, each with
average value (n,;) given by Eq. and variance v ; given by Eq. [2]. Using
the central limit theorem, we can immediately prove that the fluctuations inside (Ap)?
should be Gaussian. Since n,,; is always convolved with a smooth function of p, we can
write the Gaussian distribution sum directly for n,, ;.

3.1.1 Imposition of exact conservation laws

The primary aim is to provide an explicit form of the microscopic correlator defined by
Eq. with three conserved charges @), B, S (denoting the electric charge, the baryon
number and the strangeness, respectively - see previous Chapters) in the CE, which means
that global charge conservation laws are imposed on each microscopic state of the system.
The respective charges - for example the electric charge () - can be written in the form

Q= Z qiAny ;.

j &

We introduce an exact conservation law as the restriction on the sets of the
occupation numbers {n,;}, which means only those sets satisfying

AQ =) qAn,; =0
P,

can be realized. We may now implement the three conservation laws into the distribution
given by Eq. (3.7):

Wee(Any) o< [ [ exp { (A”’” } (Z qunm> ) (Z biAnm) ) (Z siAnpﬂ-)(?).S)

Dyi

+oo A

o / dAgdNpd A H exp [—(;—2) + i Any, ;i + iNb; Any ;i 4 1A szAnm} )
oo b

In further calculations, we will use the generalized form of distribution (3.8]), which uses

the integration along imaginary axis in A-space. By completing squares, we can easily

obtain:
(Any; — Av2.qs — \v2 by — M2 s0)?
Wee. (Anyi; Ay Ao, As) X Hexp [ P €Vpid 21}; L %) (3.9)
D,
A A2 )\2

+— 9 plql + ?Up ,Lb§ ?Up,is'? - )\q/\sviiqisi - )\q>\bU72;7iQibi — )\b/\sviibisi

We may now perform the CE averaging as follows
+i00 “+oo
dAgdNpd s dng, i We e (AN 55 Ay Ab, As
(- >C.6A _ f b f H P, ( pyis \gy \b ) (3.10)

f“‘” dX\gdNpdNs [T H LAy We e (Angis Ag, Ao, As)



and the CE microscopic correlator reads

<Anp,iAnk,j> = U;Z'(Sijépk (311)

C.e.
2 2
Up,iVk,j

Al
— (qibj + qbi) Mgy — (bis; + bjs;) Mys]

[qiq; My + bibj My, + s;5; Mgs + (qis; + q55:) Mys

where the first term on the right hand side corresponds to the microscopic correlator in
the GCE as given by , while the other terms appear due to the global CE charge
conservations and the resulting (anti)correlations among different particles (i#j) and |A|
is the determinant of matrix

etc. The sum Zpi means that we integrate over momentum p and sum over hadron-
resonance species i. M;; stand for the corresponding minors of the matrix A, e.g.:

Agb)  A(b) )

Mo = et 300 (o

The microscopic correlator can thus be used to calculate correlations and fluctuations of
different physical quantities in the canonical ensemble.

We may now present the particle number fluctuations. The correlations in the
GCE and CE, respectively, read as follows:

<ANiANj>g_C.€. = Z <A’rlp7iATLk7j> = Z Uf?,i (312)
Dk P
and
(ANAN;) . = > (AnyiAng ), - (3.13)
p,k

The CE scaled variance now has the following form:

ot = W e —u ey

_Zk vi,i
Al

(q1'2qu + b?Mbb + S?Mss =+ quSiqu - 2sz1qu - 2biSiMbs)]



where

i (AND)) e, Doy i
T (AN 30, (npa)

w (3.15)

We have used the fact that (N;).. = (N;) at V. — oo, where (N;) is defined by
Eq. (3.4). It should be pointed out that the particle number fluctuations and correlations
in the CE - albeit different from those in the GCE - can obviously be obtained in terms
of quantities calculated within the GCE. However, the method cannot be used to obtain
the finite volume corrections, as Eq. is obtained in the thermodynamic limit and

thus V-independent.

3.2 Fluctuations in a hadron resonance gas model

We may describe fluctuations in the number of particles of species ¢ in a thermally and
chemically equilibrated Hadron Resonance Gas (HRG) using the corresponding suscepti-
bilities defined as

o _ 0(rP/T)*

X = /T | (3.16)

where [ € N.

The susceptibilities can be related to the cumulants of the distribution of particle

o W = ), = (317)
& = o (AN, = T (AN?) 3.1

& = s (AN, = 1 (AN) 3.19)

& = o (AN, = o (AN - 3(an2)?) (3:20

where AN; = N; — (N;) and the subscript ¢ denotes the corresponding cumulant value.

It is obvious that the first three cumulants are equal to the corresponding central
moments, but the fourth cumulant is given by a combination of fourth and second
central moments (for the corresponding formalism see Chapter 1). The cumulants will
be discussed later on in this Chapter. If we assume an equilibrium HRG model in the
GCE formulation, thermally produced and non-interacting particles and anti-particles
are uncorrelated [8]. The susceptibilities of the net-distributions can thus be written as:

= (R (3.21)

where i denotes the species of the antiparticle and i the species of the particle.



As we have already mentioned in Chapter 1, some ratios of the susceptibilities can
be expressed in terms of the first two central moments, those being the mean M, the
variance o, and in terms of the skewness S and the kurtosis k, as we can see in Eq. (|1.1)),

The dependence of susceptibility ratios (1.1)), (1.2) and (1.3) on the collision en-
ergy +/s is depicted in Fig. [3.1, The full squares depict experimental data on net

proton fluctuations as measured by the STAR collaboration for the two most central
collision classes (0-10%). Empty circles stand for the susceptibility ratios for the
net baryon number fluctuations in the full HRG model, the empty triangles show
the corresponding ratios for the net proton fluctuations with respect to primordial
protons and anti/protons. The solid curves show the corresponding Skellam limits for
a Boltzmann gas of baryons and anti-baryons.

We may now write down the specific equilibrium pressure P, which is given by
the sum of the partial pressures of all particle species ¢ included in the model []]:

1

P/T4 = VT3 Z In Zﬂ]\l/{,/B<‘/7 T7 UB, HQ, MS)) (322)
where v
InZ,,/" = 4[% /d?’k’ln(l T z exp(—e;/T)). (3.23)

The single-particle energy (see Chapter 1) is equal to

€ = \/k?+m?

with m; being the particle mass, g; the degeneracy factor, V' the volume and z; being the
fugacity given by

2z = exp((Bips + Qipiq + Sips)/T) = exp(pi/T). (3.24)

We may also perform the partial derivative of the pressure with respect to the particle
chemical potential p;, which gives us the density of particles ¢:

() = o [ Phfroe (T (3.25)

where fpp/pg is the Fermi-Dirac/Bose-Einstein distribution function for (anti-)baryons
Or mesons.

3.2.1 The first four cumulants in the ideal hadron gas

In this subsection, the aforementioned cumulants of primary particles ¢ will be discussed
[9]. We may plug Eq. (3.24)) into Eq. (3.23)), thus immediately obtaining

ng +o00
I Zi(T,V, i) = 5 / +p°dpn[l + exp(—(E; — ;) /T)], (3.26)
0
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Figure 3.1: Ratios of susceptibilities as function of the collision energy. Taken from []].



where E; = /p? + m? is the single particle energy.

Using Eq.(3.26), we may now calculate the first four cumulants. The mean num-
ber of primary particles 7 is calculated (see formalism in Chapter 1) as follows:

o - . 0 . ng oo 2
Ci=M=(N;) = {(T@M) In ZZ] . =53 /0 p-dp n; (3.27)

where 1
- expl(E; — p) /T £ 1

The variance and higher order cumulants have the following form:

n;

2
Hi %
. Vgi oo 2
= ﬁ/o p-dp n;(1 Fny), (3.29)
8 3
Cy = ((AN)?) = (Ta ) InZ; (3.30)
i TV
Vg e 2 2
= 27T2/0 p“dp n;(1 F 3n; + 2n;), (3.31)
o \*
Cy = ((AN)*) —3((AN;)?)* = (T ) In Z, (3.32)
O
TV
Vgi [T 5 2 3
52 p dp n;(1 F Tn; + 12n; F 6n). (3.33)
0

3.3 Loss of chemical equilibrium and chemical freeze-

out parametrization

We may conclude that the chemical composition of a HRG in local thermal and chemical
equilibrium is determined by the independent chemical potentials p; of each
individual species, their masses and the temperature [§]. However, the created matter
expands rapidly, causing the density to decrease and leading to an enhancement of
the particle mean free path. Consequently, there must be a specific set of parameters
(T, pl?, ule, p,g), where reactions like baryon-antibaryon annihilation (pp — wrmnm)
become too rare to maintain chemical equilibrium among different particle species
[8]. This particular set of parameters describes the chemical freeze-out. The chemical
freeze-out is an instant at which chemical equilibrium is lost, the chemical composition
of the gas is frozen-out and after which only elastic scatterings occur frequently enough
to maintain local thermal equilibrium until even these become too rare and the particles



start to stream freely after the kinetic freeze-out [§].

We may assume that chemical equilibrium is not completely lost just after the
chemical freeze-out. If the temperature 7' is high enough, specific reactions in form of
resonance regenerations and decays (e.g. 7m — p — 7m) continue to occur, which means
that resonances are still in chemical equilibrium with their decay products.

We may assume the hadronic matter to be in a state of partial chemical equillib-
rium, which means that the chemical potentials of all stable hadrons p; become
T'—dependent, while the chemical potentials of the resonances (whose effects will be
discussed in the next Section) g become functions of the pup:

HR = Zﬂh (M) g -
h
The sum runs over all stable hadrons and

<nh>R = Z bfnﬁr

is the decay-channel averaged number of hadrons h produced in the decay of resonance
R, where b]" is the branching ratio of the decay-channel and njf, = 0,1,... is the number
of hadrons h formed in that specific decay-channel.

The temperature is parametrized by a polynomial function of pg:
T7(pgy) = a = b(pgy)* — e(p)’ (3.34)
where a = (0.166 4 0.002)GeV, b = 0.139 + 0.016GeV~!, ¢ = (0.053 £ 0.021)GeV 3.

The baryon-chemical potential can be given as a function of /s:

d
fo _ B

where dg = (1.308  0.028)GeV, e = (0.273 + 0.008)GeV 1.

(3.35)

All the parameter values are taken from [8]. If we want to investigate the /s—dependence
of the electric charge and strangeness chemical potentials -up and pg- we have to require

the following [§]:
(net)

Ng (T7 UBs 1S, :uQ) = 07 (336>
(net)

nQ (T7 :uB)/“LSmuQ) = xn(éld) (T7 /'LBnuSa/'LQ)‘ (337>

where x € (0,1) ., e. g. x >~ 0.4 for Au + Au and Pb + Pb collisions present in the initial
state [§].

Just as in case of Eq. (3.35)), ,ug’ and 1° can be parametrized as functions of /s.
Here, the parameters are dg = —0.0202GeV, eq = 0.125GeV~! and d; = 0.224GeV,
eg = 0.184GeV 1.



3.4 Effect of resonance decays

We will now finally take the resonance decays into account. As we have already mentioned,
the chemical potential of the resonances pugr depends on the chemical potential of stable
hadron species py. As such, the resonances significantly affect the evolution of the created
strongly interacting hadronic matter and their decays exercise a major influence on the
final numbers of the stable hadrons and the fluctuations therein [8]. We may now consider
the derivative of P/T* with respect to j,/T as defined in Eq. . Considering that
only the chemical potentials y, are independent of each other (while the pg depend on

r), We obtain
s0(P/TY),
& 9/ T) 7 = (Ni) + XR: (Ng) (nh) g (3.38)

where (V) and (Ng) are the means of the primordial numbers of hadrons and resonances,
respectively. The sum runs over all the resonances in the model.

In agreement with the QCD equations of state [§], there are 26 particle species we consider
stable, those being: 70, 7%, 7=, KT, K—, K° Ky,n and p,d,\°,0%, 0% 07,2° ==, Q" and
their respective anti-baryons.

We will now demonstrate this using the example of fluctuations in the final num-
bers of protons and neutrons. Since pp is p,-dependent and under assumption of
fixed, average numbers of produced protons as determined by the branching ratios of the
resonance decays, we may write:

<N,,> = (N + Y (NR) (n) (3.39)

((AN,)2) = (AN + 7 (ANR)?) () (3.40)
((AN,)?) = (AN + D~ (ANR)?) () (3.41)

((am,)")

The same holds for antiprotons; p is then replaced by p. The related susceptibilities are

= ((AN)) + ) " {(ANR)") (n,), (3.42)

c

given by
=X N () (3.43)
R

In reality though, the actual numbers of decay products follow a multinomial distribution,
since resonance decays are probabilistic processes. Said multinomial distribution results in
fluctuations on the final particle numbers, which makes it necessary for them to be taken
into account. If we assume a grandcanonical ensemble, the corresponding cumulants of
the final proton distribution read as follows [§]:

(M) = (Vo) + >~ Nm) () (3.44)



((AN) = (AN?) + 37 ((ANR) )5+ 3 (Ne) (Any)?) . (3.45)

(857) = @8+ S (an0 o o
+ 32 ANR 2> (np) g <(A”p) >R + Z (Nr) <(Anp>3>3

(aN)") = <<ANp>4>C+Z<<ANR>4> (mo) (3.47)
+ 62( (ANg)® {(An,)?) +Z< (ANR)? [ ((Any)*)?

+ 4(n ) Anp —1—2 NR (An,) >R’C.

The factors ((Any)?) g, ((Anp)?)g and ((Ang)?*) g, vanish for those resonances which
have only one decay-channel or for which the number of formed hadrons nﬁr of
species h is the same in each decay-chanel r. As mentioned before, the subscript
¢ denotes the value of the corresponding cumulant. The first three cumulants are
equal to the corresponding central moments, which is why we can omit the subscript,
whereas we cannot omit if we consider the fourth cumulant, which differs from the fourth

central moment. That is why we retained the subscript ¢ in both Eq. (3.42)) and Eq. (3.47).

We may now - exactly as in the previous Section - compute the ratios of suscep-
tibilities as defined before. We should mention that in our framework primordial
protons and anti-protons are uncorrelated and no baryonic or anti-baryonic resonance
decays into an anti-proton or proton, the formula given by Eq. remains valid for
the susceptibilities of the net proton distribution even when resonance decays are included.

In Fig. 3.2 we see the dependence of ratios of susceptibilities as function of the
collision energy /s and the comparison with Fig. , where the resonance decays
were not taken into account. The empty squares show the same as in Fig. the
empty diamonds show the average influence of the resonance decays on the net-proton
fluctuations. The empty triangles depict the full impact of resonance decays and
include the probabilistic contribution.

3.4.1 Particle correlation after resonance decays and the Gen-
erating Function
As we have already mentioned, the resonance decay has a probabilistic character, which

causes the particle number fluctuations in the final state. The main goal of this subsection
is to provide information on how to determine the particle correlation. The statistical cen-
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tral moments can be found from the following function called the generating function:

=1 (Z il A?§T> (3.48)

where b is the branching ratio of the r—th branch, nf the number of i—th particles
produced in that decay mode and r runs over all branches with requirement Y b = 1.
The \; are auxiliary parameters set to one in the final formulae.

The averages from resonance decays can expressed as:

_ 5,
N, = ; (N} = Aia—)\iG = ER:NRZbﬁ npt = ZNR i) g (3.49)

d d
NN, = ER:(N]\H =gy <Aja—AjG) (3.50)
= > [Na(Ng = 1) (n;) g (n;)  + Na (ning) ],

where (ngn;) = >, bfnfinf,.

The origin of the formula defined by Eq. (3.48)) is given by the fact that the nor-
malized probability distribution P(N},) for the decay of Ng resonances is the following:

(b1 Nk )
= Ng! H N (Z Ni — NR> , (3.51)
where Nj, denotes the numbers of R—th resonances decaying via r—th branch.

The scaled variance w’ due to decays of R—th resonances will then read

b (N p = (N _ (0 — (i _ 25, b7 (n)* — (32, i)’
R <Ni>R B <”i>R B Zr bﬁni,r . <3.52>

We can immediately see that Eq. lb is equal to 0, if either nf;, are the same
in all decay channels or if there is only one decay channel, which would mean b =
Also, Eq. (3.49) and (3.50) assume fixed values of Ng, while in reality, Ng fluctuates,

due to which we finally arrive at

= W+ () (3.53)

where the scaled variance
(N&)r — (NR)7
<N R>T
corresponds to the thermal fluctuation of the number of resonances.

(3.54)
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Chapter 4

Multiplicity fluctuations for a
resonance gas model with chemical
non-equilibrium

We will now concentrate on the multiplicity fluctuations while considering a resonance
gas model with chemical non-equilibrium. Before we do that, we will summarize some of
the facts we have stated in the previous Chapters. The effect of resonance decays will also
be taken into account. As such, we approximate the hadron gas by a collection of free
particles [6], distributed according to

drd® E — !

where p; is the total chemical potential and E = y/m? + p? and + depends on whether
the particle is a fermion or a boson, g; = 2J; + 1 is a spin degeneration factor corre-
sponding to the statistical weight (¢ = 3,95k =4,9,=9,...).

The pressure generated by the distribution (4.1)) is given by

P:T;igi/%ln{liexp(Mi;E)}. (4.2)

where we assumed a unit volume V' = 1.

4.1 Chemical potentials in a HRG model with chem-
ical non-equilibrium

In order to be able to lay down the formalism describing the state of chemical non-
equilibrium, we have to consider the chemical potentials first. They start building up
once the chemical equilibrium is lost. We assume that the population of the excited states
remains in equilibrium with the particles formed in their decay [6]. Furthermore, we set
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the chemical potential of the mother equal to the sum of the chemical potentials of the
daughters. If there are several decay channels (i. e. more than one) open, we multiply the
various final state configurations with the corresponding branching ratio.

Let us for example consider the states p(770), A(1231) and ay(1320). Considering
the aforementioned assumptions, this leads to

Hp = 2,uﬂ'a

pa = iz + [N

and
fay = 2.81ur + 0.1 + 0.15,,.

The condition for partial equilibrium determines the chemical potentials of the excited
states as functions of the potentials corresponding to the stable particles

o={m,K,n N\ Z=Q}
- see Chapter 3 - which occur as end products of the decay chain
=y dip, (4.3)
where df is the mean number of stable particles emerging in the decay of the level i.

We consider only configurations for wich the number of particles and antiparticles
is the same (e.g. uy = py. Furthermore, if we take the SU(3) limit of lattice QCD
into account, the situation simplifies remarkably. The chemical potentials of the stable
mesons take a common value j,, whereas the stable baryons take a value of py. In the
SU(3) limit, € is unstable and decays into ZK. Consequently, the equation of state (i.e.
Eq. involves only two independent chemical potentials and reads

P = P<T7MW7MN)'

Due to the high level splittings generated by m, —m,,, the various members of a multiplet
develop somewhat different chemical potentials in the course of the expansion. The as-
sumption is that the effect is proportional to the number of strange quarks or antiquarks
contained in the particle, which would then mean

PA — UN = Hs — UN = fiz — U5 = UK — fr, (4.4)

o — pa = 3(px — fix)- (4.5)
If we use this approximation, reactions such as 7% — KN are in equilibrium, because
they conserve the number of strange quarks and antiquarks. For n we use

ty = (Apx — fix) /3.



This value is suggested by ideal mixing where the probability that this particle contains
an sS pair. Therefore, the chemical potentials of the various levels can be rewritten in
terms of p,, px and py:

i = d;" i+ CZ@‘K,UK + JiN,uN (4.6)
where the coefficients are determined by the conditions of the partial chemical equilibrium
mentioned earlier:

- 1 -

di" =df — gd;.? —d} —d¥ — 2dF — 24, (4.7)

_ 4 _

4" =df + i+ AN + dF + 24 + 3d?, (4.8)
4" =dN + d + &+ dF + d2. (4.9)

We may also write down the number densities conjugate to pir, px, pn. The densities will
be denoted n,, ng and ny, respectively:

R = OP/Op, =Y _di"n;, (4.10)
fix = OP/Opx = Y di' ni, (4.11)
iy = OP/Opy =Y _ di' .. (4.12)

where n; is the occupation number of the level ¢ per unit volume.

Obviously, the coefficient c?iN is equal to one for baryonic levels and equal to zero
for mesonic levels. Thus, the number density nx counts the number of baryons and
antibaryons per unit volume.

The coefficient nx enumerates strange quarks and antiquarks. This is to be under-
stood the following way: the excitations decay according to the branching ratios given
in the particle data tables and count the strange valence quarks contained in the
stable particles emerged in these decays. For low T, nx counts the kaons occuring after
disintegration of the excited states.

If strange baryons are rare, n, counts the pions emerging if all resonances decayed.

4.2 Cumulants in a HRG model with chemical non-
equilibrium

We will now use a similar formalism as in Chapter 3, but will now implement the chemical
non-equilibrium. This is represented by the different expression for the total chemical
potential p;. Whereas for the chemical equilibrium, the potential reads

Wi = Bipp + Sipts + Qipo,



in case of chemical non-equilibrium, it is given by Eq. (4.6)). The expressions for the first
four cumulants - the first one C being the Mean M and the second one C5 being the
variance o - are the following:

o Vg +o00
Ci=M=(N)=|(T In Z; == 2dp n,, 4.1
| (Ni) K 8ui)n va 27TQ/O p dpn (4.13)
8 2
Cy = 0% = ((AN,)?) = (Ta ) InZ; (4.14)
Hi TV
Vg [+
_ 292/ p2dp (15 n), (4.15)
™ Jo
a 3
Cy = ((AN)?) = (T(9 ) In Z; (4.16)
Hi TV
oo
= Vg;/ p*dp n;(1 F 3n; + 2n?), (4.17)
27 Jo
a 4
Cy = ((AN)*) —3((AN;)?)* = (T ) In Z; (4.18)
Opi
TV
Vi e 2 2 3
= 55 p°dp n;(1 F Tn; + 12n; F 6n7). (4.19)
™ Jo
where B 1
exp[(E; — ;) /T] £ 1
B =/p* +m;
and
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with the partition function
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0




4.3 Effects of resonance decays

The equations in the previous section apply for all the particles in the system, as is the
case in the previous Chapter. If we want to include the resonance decays and write down
the cumulants for stable particles h, we receive the following equations from the previous
Chapter:

(Ni) = (Na) + > (Ni) {ra) (4.20)

((AN?) = (AN + 3 (ANR)?) (ma) s+ D (Nw) ((Am)?) . (421)

R

((AN)?) = ((AN)*)+ Z<<ANR>3> () (4.22)
+ SZ<ANR (i) g ((Ann)?) , + > (Ng) ((Any)*) ,

(AN)T) = (AN, + 2 ((ANa)") ) (4:23)
+ 62 ((ANR)") () ((Bm) >R+Z<ANR ) [3¢@m)?),

+ 4 () g ((Any)? +Z Ng) ((Any)*

Here, (np,)p = d7 introduced in the previous Section, Ny, is the final distribution of the
stable particle h, ANp = Ng — (Ng), (Anp)r = np — (M) -



Conclusion and Outlook

In Chapter 1, the mathematical apparatus necessary to perform all the calculations
was provided. Statistical moments in form of central moments were introduced along with
close elaboration of the first four moments (mean M, variance o, skewness S, kurtosis ),
which are of great importance for describing multiplicity fluctuations in the statistical
model. Moreover, the basics of canonical and grandcanonical formalism along with the
Wick-rotated fugacities which are useful for expressing the canonical partition function
in terms of the grandcanonical one were introduced and the first four statistical moments
were explicitly written down. Furthermore, the methods of computing the asymptotic
fluctuations in the canonical ensemble were provided and the corresponding method called
"saddle-point expansion” along with a quantity called "scaled variance”, which effectively
describes the fluctuations, was introduced.

In Chapter 2, a simple model in form of a classical pion gas and a full hadron
gas was considered and the corresponding calculations using the formalism introduced in
Chapter 1 were performed. In the former case, only one charge (the electric charge) was
considered, while the other two (strangeness and baryon number) were neglected. In the
latter case, all three charges were considered. The scaled variances for both net charge
and total particle number distributions were provided for both cases.

Chapter 3 provided formalism for multiplicity fluctuations in a hadron resonance gas
model with the assumption of chemical equilibrium. At first, the exact charge conservation
in statistical systems was elaborated and the exact conservation laws were implemented.
Afterwards, the hadron resonance gas model was introduced and the corresponding sus-
ceptibilities were defined. Using said susceptibilities, the first four cumulants in the ideal
hadron gas were derived. Subsequently, the loss of chemical equilibrium and the chemi-
cal freeze-out parametrization were elaborated, which enabled us to finally lay down the
formalism necessary for the resonance decays to be accounted for.

In Chapter 4, the multiplicity fluctuations for a resonance gas model with chemical
non-equilibrium were introduced. The corresponding adjusted chemical potentials were
introduced and the cumulants in a hadron resonance gas where chemical non-equilibrium
is taken into account were introduced and the resonance decays were also accounted for.
So far, only the comparison to the chemical equilibrium case was performed, as we have
used a simplified approximation in form of the SU(3) limit.

Contrary to the original goal, the chemical non-equilibrium case was not fully elabo-
rated. However, we have laid down the formalism we could base upon in further research.
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Appendix

In this Chapter, some brief trivia on Bessel functions and their practical use will be
presented. A brief theoretical overview concerning the mathematical apparatus used in
this research project will be provided. Specifically, the Bessel functions will be addressed.

Bessel functions

The Bessel functions were first defined by Daniel Bernoulli and later on generalized
by Friedrich Bessel. They are defined as canonical solutions y = y(x) of a differential
equation better known as the ”Bessel differential equation”:

d’y | dy

2 2 2 _

where the arbitrary complex number « is called the order of the Bessel function.

The Bessel functions can be distinguished according to the parameter a. If « is an
integer, we talk about cylinder functions or the cylindrical harmonics because they
appear in the solution to Laplace’s equation in cylindrical coordinates. Once « is a half-
integer (i.e. for each o there is an n € N such that o = n + 3), then we call the functions
y = y(z) the spherical Bessel functions and they are obtained when the Helmholtz
equation is solved in spherical coordinates.

Modified Bessel functions

The Bessel functions are well defined, even though their argument z is complex.
However, if a special case occurs - when this argument is purely complex - we talk about
the modified Bessel function (also called the hyperbolic Bessel function) of the
first kind (denoted as I,(z)) and of the second kind (denoted as K, (z)). Those are
defined by the following equations:

o0

1 T\ 2mta
La(e) = mz:[) m!T'(m + « + 1) <§> (4.25)
Ko (z) = Fizal®) = 1a(@) (4.26)

2 sin(an)
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Those solutions are two independent solutions of the modified Bessel equation:

' — + T (% + a?)y = 0. (4.27)

Unlike the classical Bessel functions, which oscillate as functions of a real argument in
both I,(z) and K,(z), the Modified Bessel functions grow exponentially. We will now
present the integral form of the Modified Bessel functions (assuming that Re(z) > 0):

L) = % /0 " exp(x cos(8)) cos(af)df —

sin(am)

/ exp(—zcosht — at)dt  (4.28)
0

™

Ko(z) = /0 " exp(—a cosh ) cosh(at)dt (4.29)
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