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Abstract:
High energy heavy ion collisions provide means to study properties of nu-

clear matter under the extreme conditions. It is expected that a new state
of matter called quark-qluon plasma is created during these collisions. Fem-
toscopic measurements of two-particle correlations at small relative momenta
reveal information about the space-time characteristics of the system at the
moment of particle emission. The correlations result from quantum statistics,
final-state Coulomb interactions, and the strong final-state interactions between
the emitted particles.

This work presents a status report of a STAR analysis of unlike-sign kaon
femtoscopic correlation in Au+Au collisions at

√
sNN=200 GeV, including the

region of φ (1020) resonances, in which due to the strong final-state interac-
tion will be sensitive to the source size. The experimental results are compared
with HYDJET++ simulations and to a theoretical prediction that includes the
treatment of resonance formation due to the final-state interactions.

Key words: Correlation femtoscopy, unlike-sign kaon correlation function, STAR
experiment, HYDJET++, Lednicky model.
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Abstrakt:
Vysokoenergetické srážky těžkých iontů jsou klíčem ke studiu jaderné hmoty

za extrémních podmínek. Očekává se, že během nich může dojít k vytvoření
nové fáze jaderné hmoty, takzvaného kvark-gluonové plazmatu. Měření dvoučás-
ticových korelací při malých relativních hybnostech poskytují informaci o časo-
prostorových rozměrech v okamžiku emise částic. Korelace jsou výsledkem kvan-
tové statistiky, Coulombické interakce a silné interakce působící mezi emito-
vanými částicemi.

V této práci jsou prezentovány výsledky měření korelačních funkcí neidentick-
ých kaonů ze srážkách zlata při energii

√
sNN=200 GeV na experimentu STAR.

Tyto korelační funkce obsahují oblast resonance φ(1020), ve které jsou kvůli pů-
sobení silné interakci ve finálním stavu ciltivé na velikost zdroje. Experimentální
výsledky jsou porovnány se simulacemi z modelu HYDJET++ a s teoretickými
předpovědmi, které obsahují přítomnost resonancí díky interakci ve finálním
stavu.

Klíčová slova: Korelační femtoskopie, korelační funkce neidentických kaonů,
STAR experiment, HYDJET++, Lednický model.
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Chapter 1

Femtoscopy

Femtoscopy, measurements of two particle correlations at small relative mo-
menta, is a unique tool for measuring the space-time characteristics of the par-
ticle emitting source. In this chapter, we introduce a theoretical background
of this technique known as femtoscopy and it will be shown its application in
heavy ion collisions.

1.1 Historical background of femtoscopy
In 1950’s Robert Hanbury Brown and Richard Q. Twiss invented a technique
[1] allowing to measure space characteristics of stellar objects. This technique
was based on measurement of the photon intensity interferometry.

A few years later, similar technique was used in particle physics by G.Goldhaber,
S. Goldhaber, W.-Y. Lee and A. Pais [2]. They observed enhancement of iden-
tical pion pairs at low relative momentum, which were produced in proton-
antiproton annihilation:

p̄+ p→ π± + π± + nπ0 + . . . . (1.1)

Observed correlations, as they correctly asserted, came from a quantum statis-
tics.

However, the main share of developing the femtoscopy is owed to by Russian
scientists and mathematics G. I. Kopylov and M. I. Podgoretsky, who explained
that correlations are results of the fact that likelihood of emission of particle a
with momentum pa is modified by the emission of particle b with momentum pb
and two particle relative wave function ψ(q, r), where q = pa− pb is the relative
momentum and r is the relative distance of particle a and b.

As a reference to R. Hanbury Brown, R. Q. Twiss and their pioneering in
measurement of space-time structure, in femtoscopy we use terms like "HBT",
"HBT radia" and so on.

13



1.2 Derivation of correlation function
Correlation function, as was derived for general case by Koonin and Pratt, can
be expressed as

C (~p1, ~p2) =

∫
d3rS (r, k∗) |ψ1,2 (r, k∗)|2 , (1.2)

where S (r, k) is source function describing emission of two particle in relative
distance r with relative momentum q = p1− p2 = 2k∗. The interaction of these
particle is encoded into two particle relative wave function ψ1,2 (r, k∗).

In the following part of the section, we show derivation of two particle cor-
relation function, but no so generally as previous one.

The probability to emit particle with four-momentum p from position x is
characterized by single particle emission function S(x, p) and by integration over
the whole source

P (~p) =

∫
d4xS(x, p), (1.3)

we can obtain the total probability P (~p). For two independent particles, the
probability of emission of two particles with four-momentum p1, p2 from x1, x2
is

P (~p1)P (~p2) =

∫
d4x1d

4x2S(x1, p1)S(x2, p2) =

∫
d4x1S(x1, p1)

∫
d4x2S(x2, p2).

(1.4)
Due to the fact that the emission of two particles from one source is connected
via the wave function ψ reflecting their interaction, we have to calculate with
it. Therefore, the previous term is modified into

P (~p1, ~p2) =

∫
d4x1d

4x2S(x1, p1)S(x2, p2) |ψ (~q, ~r)|2 . (1.5)

Subsequently, one can define the correlation function as a ratio of the proba-
bility of emission of two particle and the probability of emission each particle.
Experimentally the two particle correlation function is constructed as the ra-
tio of the measured two particle inclusive spectra and single-particle inclusive
spectra [3] i.e.:

C (~p1, ~p2) =
dN12/

(
d3p1d

3p2
)

(dN1/d3p1) (dN2/d3p2)
=

P (~p1, ~p2)

P (~p1)P (~p2)
=

=

∫
d4x1d

4x2S(x1, p1)S(x2, p2) |ψ (~q, ~r)|2∫
d4x1S(x1, p1)

∫
d4x2S (x2, p2)

.

(1.6)

For continuing in the derivation, we have to specify particle, with which we will
work. Simpler case that can occur, it is a situation when identical particles
do not interact. On the other hand, as shown in [4], [5], the calculation with
interacting pacticles is more complicated, but not impossible.
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1.2.1 Identical non-interacting particles
In case of non-interacting identical particles, we use a quantum statistics, namely
Bose-Einstein statistics for bosons and Fermi-Dirac for fermions, for construc-
tion of the wave function that is then expressed as

ψ =
1√
2

[
e
i
(
x1

′
−x1

)
p1e

i
(
x2

′
−x2

)
p2 ± ei

(
x1

′
−x2

)
p1e

i
(
x2

′
−x1

)
p2

]
, (1.7)

where xi is emission point and x
′

i is point, where the particle were detected.
According to the indistinguishable of particles, as the Fig. 1.1 shows, the wave
function have to be either symmetric (sign +) for bosons or antisymmetric (sign
-) for fermions respectively.

Fig. 1.1: The schema of source emitting particles. Taken from [6] .

By squaring this wave function and applying relations for the relative pair
momentum q and the relative distance r, we can obtain

|ψ|2 = ψψ∗ =
1

2
(2± 2 cos ((~p1 − ~p2) ( ~x1 − ~x2))) =

= 1± cos ((~p1 − ~p2) ( ~x1 − ~x2)) = 1± cos (~q · ~r) .
(1.8)

As we will see subsequently, it is suitable to rewrite the emission source function
into terms of the relative and average variables. Therefore we define the average
pair momentum as

K =
p1 + p2

2
=
P

2
. (1.9)

and the average pair position

x =
1

2
(x1 + x2) (1.10)

15



respectively.
Thanks to these two expressions, the Eq. 1.5 is simplify into∫

d4x1S (x1, p1) d4x2S (x2, p2) |ψ (~q, ~r)|2 =

=

∫
d4xd4rS

(
x+

r

2
,K +

q

2

)
S
(
x− r

2
,K − q

2

)
|ψ (~q, ~r)|2 =

=

∫
d4xd4rS

(
x+

r

2
,K
)
S
(
x− r

2
,K
)
|ψ (~q, ~r)|2 =

=

∫
d4r |ψ (~q, ~r)|2

∫
d4xS

(
x+

r

2
,K
)
S
(
x− r

2
,K
)
,

(1.11)

where we have just neglected the relative pair momentum. This approximation
is ”the smoothness assumption” and it is valid for small q.

Now, we rewrite the definition of the correlation function by putting this
equation and the Eq. 1.8 into the Eq. 1.6 and we gain

C
(
~P , ~q
)

= 1±
∫
d4r cos (~q · ~r)

∫
d4xS

(
x+ r

2 ,K
)
S
(
x− r

2 ,K
)∣∣∫ d4xS (x,K)

∣∣2 =

= 1±

∫
d3r cos (~q · ~r)

∫
dt
∫
d4xS

(
x+ r+~βt,

2 ,K
)
S
(
x− r+~βt,

2 ,K
)

∣∣∫ d4xS (x,K)
∣∣2 .

(1.12)

Finally, we define the relative source function

S ~K (~r) =

∫
dt

∫
d4xS

(
x+

r + ~βt,

2
,K

)
S

(
x− r + ~βt,

2
,K

)
(1.13)

and two particle correlation function arrives as

C
(
~P , ~q
)

= 1±
∫
d3r cos (~q · ~r)S ~K (~r)∣∣∫ d4xS (x,K)

∣∣2 . (1.14)

The last adjustments have been allowed by the fact that two emitted particles
are on-shell and therefore components of q are not independent, but they are
related by

q0 = ~β · ~q, (1.15)

where
~β =

~K

K0
≈

~K

Ek
. (1.16)

As can be seen, for identical non-interacting particles the correlation function
is a Fourier transformation of the relative source function, into which the time
information is convoluted. Hence the time-structure of the source is studied by
comparison with the model describing four-dimensional particle emission.
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From practical reasons, as the fitting, it is common to assume that the
parametrization of single particle emission function has Gaussian form

S (x, p) =
1

π2R3τ
e−( rR )

2−( tτ )
2

, (1.17)

where R is the source radius and τ is the emission duration. In such a case, the
Fourier transform exists and it is an analytical function

C (~q) = 1± e−~q
2R2

. (1.18)

The correlation function for different source size R is in the Fig. 1.2, where we
have just used Bose-Einstein statistics (sign +).

| [GeV/c]q|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|)q
C

F(
|

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R = 3 fm
R = 4 fm
R = 5 fm

| [GeV/c]q|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|)q
C

F(
|

0

0.5

1

1.5

2

R = 5 fm

Fig. 1.2: L: the correlation function for non-interacting identical particles and
for different source size R. R: the correlation function for like-sign particle.

1.2.2 Interacting particles
The previous derivation assumes non-interacting particles. However, in particle
physics is more easy to measure charged particles. These particles feel attractive
or repulsive potential of Coulomb interaction. As a result of this interaction, we
observe a suppression, or enhancement, of the measured like-sign, or unlike-sign
respectively, two particle correlation function at low ~q, as the Fig. 1.2 illustrates.
The Fig. 1.2 shows a correlation function, which is constructed for like-sign pair
described by Bose-Einstein statistics and Coulomb interaction.

There is also a strong interaction between emitted particles, especially unlike-
sign pairs. The derivation of the correlation function, which take into account
all these effect, can be found in [4], [5].

1.3 Coordinate system
According to typical symmetry, the classical Cartesian system is not optimal.
The most common one for femtoscopy is the Bertsch-Pratt coordinate system

17



[3]. The Bertsch-Pratt coordinate system, sometimes named as "out-side-long
system", is connected with emitted pair of particles and it is characterized by
three axis, namely longitudinal, outward and sideward axis. The longitudinal
axis is parallel to the beam - typically in laboratory system z-axis. The direction
of the outward axis is parallel to pair transverse momentum kT . The last axis,
the sideward axis, is chosen so that it would be perpendicular to the longitudinal
and outward axes. Into this coordinate system, components of each four vector
V are transformed:

Vlong = Vz

Vout = (PxVx + PyVy) /PT

Vside = (PxVy − PyVx) /PT

(1.19)

where P = (P0, Px, Py, Pz) is pair momentum.

Fig. 1.3: The Bertsch-Pratt coordinate system. Taken from [5] .

For the femtoscopy with non-identical particles, the pair’s rest frame (PRF)
is the most suitable. In PRF, each particle has the same momentum

~k∗ = ~k1 = − ~k2 (1.20)

and hence the relative pair momentum is

~q = 2 ~k∗. (1.21)

1.4 Parametrization of correlation function
To extract information from the measurement, we have to parametrized ex-
perimentally constructed correlation function and the emission function. The
easiest parametrization of the single particle emission function, as shown by the
Eq. 1.17, is Gaussian. Although it is known that real sources, especially pion

18



source, deviate from Gaussian. Observed deviation is ascribed to resonance de-
cay, which cause the exponential tails. By using Gaussian parametrization, then
the one-dimensional correlation function is expressed as

C(qinv, ~K) = 1 + λ(qinv) exp
(
−q2invR2

inv( ~K)
)
, (1.22)

where λ is the lambda parameter, Rinv is the source radius and qinv defined as

qinv =
√

(E1 − E2)2 − (~p1 − ~p2)2. (1.23)

The three-dimensional correlation function in case of the absence of an infor-
mation about the event plane is

C(~q, ~K) = 1 + λ( ~K) exp
(
−R2

o( ~K)q2o −R2
s( ~K)q2s −R2

l ( ~K)q2l

)
. (1.24)

1.4.1 λ parameter
The lambda parameter, sometimes called as the incoherence factor, contains
information about all imperfections, which happens during the measurement
of the correlation function. These imprecisions, like misidentified particles as
well as admixture of particles coming from resonance decay, cause that mea-
sured correlation function is smaller then the theoretical function and hence the
lambda parameter was introduce to compensate their influence. For ideal case,
the lambda parameter is equal to unity.

1.5 HBT radii and model predictions
The expansion and space-time evolution of the measured source cause the col-
lective flow, which produced the correlation of the total momentum of the pair
and position of the emission, noted as x-p correlations. The information about
the dynamic structure of the source is encoded into the correlation function and
therefore the measured Rout, Rside and Rlong, known as HBT radii, can not be
simply identified as the sizes of the whole system. The HBT radii depend on
the total momentum of the pair and measure the size of the regions emitting
particles, called as ”homogeneity region”. The different size of the homogeneity
region for various transverse pair momentum kT , as is shown in the Fig. 1.4, is
a result of "the thermal smearing effect" [7].

The thermal smearing effect is caused by superposition of thermal motion
with radial motion. Without the thermal motion all particles with the same
momentum vector would be emitted from the same spatial point. However the
thermal motion smears the point-like emission and create a larger homogeneity
region. The strength of this effect depends on particle mass as well as its velocity.
The lighter particles in comparison with the heavier ones are smeared more over
the volume of the source as is illustrated in the Fig. 1.5. The mean emission
point is shifted from the center and the magnitude of the shift increases with
mT .
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Fig. 1.4: Homogeneity region for different pair transverse momenta.
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Fig. 1.5: The homogeneity region - the top panel is pion, the middle panel is for
kaons and botton for proton. Left-hand side is for βx = 0.907 and the right-hand
side is for βx = 0.974. Taken from [7].

The evidence of such behavior, we can observe on falling the Rout. The
similar behavior, which is caused by the longitudinal flow, is observe on falling
the Rlong with pT as 1/

√
mT , which is shown in the Fig. 1.6. This data set was

made from the existing measurement of the pion radii by different experiments
at the AGS, SPS and RHIC.

For these measurement data were used from the most central Au+Au or
Pb+Pb collisions. As can be seen from the Fig. 1.6, for different energies,
which change over two orders, the mT dependence of Rl is surprisingly the
same.

20



2

4

6

8

2

4

6

8

2

4

6

8

E895 E866 CERES NA44 WA97 WA98 PHENIX PHOBOS STAR

Fig. 1.6: World data set mT dependence of HBT parameters. Taken from [3].

For this reason, to obtain complete information about the source, except
measuring the HBT radii we have to compare of them to models of the heavy-
ion collisions. In femtoscopy it is common to use a family of simplified models
which use hydro-inspired parametrization of the particle emitting source. There
are many such models. One of the most commonly used is the blast wave model
[7] of Retiere and Lisa. Some of them can be quite sophisticated, including
such effects like resonance and particle decay. Example of this model, can be a
HYDJET++ [8], which is also used for analysis presented in this work.

1.5.1 HYDJET++
HYDJET++ (HYDrodynamics plus JETs) is Monte Carlo heavy ion event gen-
erator for simulation of relativistic heavy ion AA collisions [8]. It is considered
as a superposition of the soft, hydro-type state and the hard state resulting from
multi-parton fragmentation. The soft part of HYDJET++ is based on the pa-
rameterization of relativistic hydrodynamics with present freeze-out conditions
used for the chemical and thermal freeze-out hypersurfaces during generating
the thermal hadronic state. HYDJET++ includes the longitudinal, radial and
elliptic flow effect ant the decays of hadronic resonances. HYDJET++ have
been successfully tuned for description of Au+Au collisions at

√
sNN=200 GeV

as well as for collisions at energy reached in LHC. As a example, we can shown
the comparison of particle ratios from HYDJET++ with the experimental data
shown in the Fig. 1.7.

The decays of the resonance allows to study the effect of non-primary particle
on the relative space-time shift as shown in the Fig. 1.8, where the measured
HBT radii from π−π correlation are compared to theoretical from HYDJET++.
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Fig. 1.7: The particle number ratios from HYDJET++ (blue points) compared
with the experimental data (black points). Taken from [8].

Fig. 1.8: The HBT radii from π+π+ correlation function for central Au+Au
collisions (open circles) and results from HYDJET++: no weak decays(dashed
line), with weak decays (solid line). Taken from [9].

1.6 Experimental correlation function
Experimentally, the correlation function is constructed as the ratio of two-
particle distributions:

C(~q) = N
A(~q)

B(~q)
=

real pair

mixed pair
. (1.25)
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The numerator, A(~q), is two-particle distribution obtained from the single events.
On the other hand, the denominator, B(~q) is two-particle distribution formed
from the event mixing procedure. By using this procedure, we remove non-
femtoscopis correlations, since each particle in the pair comes from different
event. Finally, the correlation function have to be normalized to unity. The
normalization N is calculated in region, where we do not observe correlation
effects.
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Chapter 2

Kaon femtoscopy

In this chapter, we present motivation for unlike-sign kaon femtoscopy. Also
previous results from like-sign kaon correlation measurement will be introduced.

2.1 Motivation for unlike-sign kaon femtoscopy
In standard HBT measurement we study correlation function, which as shown in
previous chapter, reflects particle emission source and two-particle interaction
described by wave function. The correlations result from quantum statistics,
final-state Coulomb interactions, and the strong final-state interactions (FSI)
between the emitted particles. The formalism is well establish for region of low
qinv, where we observe these correlations.

The idea of this analysis is try to use the region of higher qinv in the sys-
tem where narrow resonance is presented. As has been predicted [4], that the
correlations due to the strong FSI will be sensitive in region of the resonance
the source size and momentum-space correlations. Such a measurement can
provide complementary information to the measurements at the very low rela-
tive momenta. Even these measurement will be more statistically advantageous,
it also brings challenges as possibility of break-down of basic assumptions like
smoothness assumption as well as equal-time approximation.

The systems of unlike-sign kaon and unlike-sign π−Ξ pairs are ideally suited
for testing this extension of femtoscopy formalism as it contains narrow φ(1020)
resonance, Ξ∗(1530) resonance respectively.

The femtoscopy with π − Ξ has been already performed [5]. However these
measurements were done with statistics from year 2004 and therefore the results
were statistically challenged as shown in the Fig. 2.1.

The main advantageous of this analysis will be higher available statistics.
Also there will be cleaner probe of the emitting source due to smaller contam-
inations from the resonance decays compared with pions. Therefore the kaon
source function is better parametrized by the Gaussian as shown in the Fig. 2.2,
where the kaon source function is compared to pion emission function. As we
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Fig. 2.1: Experimental π−Ξ correlation function decomposed into spherical har-
monics compared to FSI calculations with gauss, blast wave and HYDJET++.
Taken from [5].

can see on pion emission function, the resonance decays cause exponential tails
and hence the Gaussian parametrization is insufficient. It should be also noted,
that STAR extracted the HBT radii from like-sign correlation, which are also
shown in the Fig. 2.2. Even the kaon analysis was done with different kT bins
and centralities than we plan to use in our analysis, results of them can be used
as reference for us.
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Chapter 3

Analysis

A detailed description of the analysis is given in this chapter. Consecutively we
introduce selection criteria, cuts and methods used in this analysis.

3.1 Data sample
For this analysis, we use data sample noted as vpd-zdc-mb-protected which was
recorded during Au+Au collisions at

√
sNN=200 GeV in 2011 by the STAR

experiment. The minimum bias collisions were triggered by using VPD and ZDC
detectors with offline trigger ID: 350003, 350013, 350023, 350033 and 350043.
The total number of available events for analysis is 730.94 million.

Due to the fact that the development of analysis software is underway and
we use a raw data, which are saved in MuDst files and to analyze them can
take up to a few weeks, the presented results were obtain by using ∼400 million
events.

3.2 Event selection and centrality binning
Firstly, we apply event cut to select only collision which takes place in the middle
of the detector in order to keep the same detector acceptance. Therefore, the
vertex z position (along the beam axis) has to be smaller than 30 cm from the
center of TPC.

Even thought the data sample is noted as protected and so the effects of
the pile-up should be remove, we require in order that the difference between
the vertex reconstruction from TPC and VPD would be smaller than 5 cm.
The phenomenon pile-up occurs when there is small time difference between
two collisions and not all particles from the first collision have yet leave the
detector.

The Fig. 3.1 shows these two selection criteria applied on the data sample.
As we can see, the majority of the events fulfill these cuts.
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Fig. 3.1: Left: distribution of the vertex z position after cut. Right: distribution
of the vertex z position reconstructed by the TPC and VPD before cut. Red
lines represent used cut.

There is no way how to measure the impact parameter directly and so we
must try to obtain information about the centrality from the measured multi-
plicity of charged hadrons. The raw data contains uncorrected reference mul-
tiplicity and to each value of the uncorrected reference multiplicity we assign
the centrality of the collisions. To more precise determine the centrality, we
would have to calcule the corrected multiplicity, which is non-trivial function of
the uncorrected reference multiplicity, vertex z position and ZDC coincidence.
It also depends on seven parameters and their value have to be experimen-
tally measured for each run number and reflect the detector acceptance in given
period.

The definition of the corresponding centrality to given multiplicity is based
on Glauber model simulations and is shown in the Fig. 3.2.
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Fig. 3.2: The multiplicity distribution and corresponding centrality.
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As was mentioned in previous chapter, for constructing correlation func-
tion, we have to obtain uncorrelated two-particle distributions. In this analysis,
mixed pairs are calculated so that each particle from one event is mixed with all
particles from the sub-classes of similar events. Each classes contains 10 events
and classification is done according to vertex z position and multiplicity. We
use 10 bins for dividing distribution of primary vertex position (1 bin per 3 cm)
and 7 bins for the multiplicity distribution (1 bin per 100). This used mixing
procedure allows us to remove all non-femtoscopics correlations.

3.3 Track selection
From the events which passed the previous mentioned cuts, we can select suitable
tracks. The tracking is done by using the TPC detector.

We selected the tracks in the pseudorapidity region |η| < 1 with number of
hits used for fitting the track shape nHitsFit≥15. To reduce contribution from
non-primary kaons, we applied a DCA cut. Track, which has distance of closest
approach of the extrapolated track to the primary vertex smaller than 3 cm can
fulfill this cut. The application of these cuts is shown in the Fig. 3.3.

The last cuts, which were used are on transverse momentum pT . Only track
with pT > 0.15 GeV/c and with momentum p > 0.15 GeV/c are selected.
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Fig. 3.3: Left: distribution of the pseudorapidity. Right: distribution of the
DCA.

3.4 Kaon identification
The cuts described above were used for selection of quality tracks. Now, we
need to apply cuts for particle identification, in our case kaon identification.
The main subdetectors used in analysis presented in this work are TPC and
ToF. Especially ToF is very precise to kaon identification since it allows to
separate of charged kaons from other hadrons up to momentum ∼1.5 GeV/c.
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3.4.1 nSigma cut
Besides of tracking, the TPC is also using for calculation of the specific ionization
loss dE/dx. The energy lost by a particle as it travels through a given gas is
described by the Bethe-Bloch formula. For a given momentum, each particle
species (different mass) will have a different velocity and a different dE/dx. Due
to this fact, we can identify particle as is shown in the Fig. 3.4.

Fig. 3.4: dE/dx of charged particles measured by TPC.

We suppose that measured distribution of the energy loss, dE/dxmeas, has a
Gaussian shape with a mean value described by theoretical value of dE/dxtheo
and standard deviation unit σ. In our analysis we use nσ cut defined as

nσ =
ln
(
dE/dxmeas

dE/dxtheo

)
σdE/dx

. (3.1)

By applying of this cut, we are able to eliminate particles, which do not lay
in given distance from the expected dE/dx expressed in terms of σ. In our
case, we require |nσK |<3. The Fig. 3.5 shows the distribution of nσK versus
momentum. As can be seen, in higher p there is significant contaminations of
pions and protons.

3.4.2 cut with ToF
In our analysis, the ToF is the most important detector for kaon identification.
With the ToF, we can measure relative particle velocity β and it gives us to
opportunity to separate of charged kaons of other hadrons and electrons up to
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momentum ∼1.55 GeV/c as is shown in the Fig. 3.6. And therefore we have to
focus on track with signal from the ToF and momentum p < 1.55 GeV/c.

Fig. 3.6: 1/β of charged particles measured by ToF.

The measured relative particle velocity is consequently used for calculation
of particle mass m according to the relation

1

β
=
√

1 +m2/p2, (3.2)

where p is measured by the TPC. The kaon mass is mK = 0.493667 GeV/c2,
m2
K = 0.243707 GeV2/c4 respectively. Thus only particle with 0.21 < m2 < 0.28

GeV2/c4 can fulfill our last selection criteria.
This cut helps us to distinguish between kaons and other hadrons as is illus-

trated by the Fig. 3.7 and we can obtain very clean kaon sample.
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Fig. 3.7: Distribution of mass square of particle vs nσK . Red lines represent
nσK cut and black lines represent cut on particle mass.

3.5 Pair cut
Even with a clean kaon sample the two particle distribution contains detectors
effect arise from the tracking imperfection, which shows up at low relative mo-
mentum qinv of measured correlation function. These effects are track splitting
and track merging. In following subsections, we describe way how to remove
them.

3.5.1 Track splitting
A case, when one single particle is reconstructed as two track, is called as the
track splitting [6] and it causes an enhancement of pairs at low relative momen-
tum qinv. To remove these split tracks we have to compare the location of the
hits for each track in the pair in the pad-rows in the TPC and to assign a value
of "splitting level" (SL) calculated as:

SL =

∑
i Si

Nhits1 +Nhits2
, (3.3)

where

Si =


+1. . . one track leaves a hit on pad-row
-1. . . both tracks leave a hit on pad-row
0 . . . neither track leaves a hit on pad-row,

(3.4)

where i is the pad-row number of the TPC, and NHits1 and NHits2 are the
total number of hits associated to each track in the pair. The SL ranges from
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-0.5 to 1. The value -0.5 corresponds for certainly distinct two tracks. On
the other hand, if the quality of pair is equal to 1, it is possible split track.
The principle of this antisplitting cut is shown in the Fig. 3.8, where the four
different cases are presented.

SL	  =	  -‐0.5 SL	  =	  0.4 SL	  =	  1 SL	  =	  1

Fig. 3.8: Description of the anti-splitting cut, which shows four possible cases.
Red circles are hits assigned to one track, blue circles are assigned to the other.

To remove these split tracks, we have to require each pair has SL smaller than
a certain value. This value is experimentally determined from the correlation
function constructed for different SL, which are shown in the Fig. 3.9, where
the correlation functions for like-sign pair are. However we do not observe the
effect of the track splitting. As a cross-check of no presence of track splitting,
we can look at the distribution of pairs vs relative momentum qinv and splitting
level shown in the Fig. 3.10. In case that the correlation function should be
influent by the track splitting, we should have to observe enhancement of pairs
at low relative momentum and higher SL.

One of possible explanation of none track splitting can be that these tracks
were already eliminated by previous track cuts. In case we replace NHitsF it
cut by NHits cut, the situation is similar. Therefore, the major share on no
presence of track splitting is assign to criteria on signal from ToF.

Even we do not observe track splitting, so according to available high statis-
tics we can apply "standard" cut and SL<0.6 will be required.

3.5.2 Track merging
Besides of track splitting, it can happen two particles with similar momenta
are reconstructed as one track. Merged tracks cause a reduction of pairs at

35



(GeV/c)
inv

q
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

)
in

v
 C

F
(q

0

0.2

0.4

0.6

0.8

1

1.2

 

No SL Cut

SL < 0.8

SL < 0.6

Fig. 3.9: One dimensional like-sign correlation function for different values of
SL.

 (GeV/c)

invq

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SL

0.4−0.2−00.20.40.60.81
1

10

210

310

410

510

610

710

Fig. 3.10: Distribution of real pairs vs relative momentum qinv and splitting
level SL.

36



low relative momentum. Two hits are considered merged when the probability
of separating them is less than 99% according to the two-track resolution in
the TPC [6]. As was experimentally proved, to completed remove effect of track
merging, we have to required of all pairs to have a fraction of merged hits smaller
than 10%.

3.6 kT cut
The last cut, which we have done, is cut on the average pair transverse momen-
tum kT , which is defined as

~kT =

(
~p1 + ~p2

2

)
T

. (3.5)

With this cut, we can chance the size of measured volume, homogeneity region
and hence probe the dynamics of the system, during the constant centrality as
was already mentioned and described in the Fig. 1.4. In our analysis, we require
to have pairs with average transverse momentum between 0.05 and 1.25 GeV/c
and they were divided in 4 kT bins: 0.05-0.35, 0.35-0.65, 0.65-0.95 and 0.95-1.25
GeV/c. The Fig.3.11 shows a kT distribution of real pairs.
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Fig. 3.11: kT distribution of real pairs.

3.7 Overview of applied cuts and binning
For clarify, in Table 3.1 one can found the overview of applied cuts with brief
description. The Table 3.2 and 3.3 contain the overview of used binning for
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event mixing procedure and construction of correlation function.

Selection criteria Description of selection criteria
Event cut

|VZ | < 30 cm Position of event vertex
in the beam direction∣∣V TPCZ − V V PDZ

∣∣ < 5 cm Difference between the vertex z position
reconstruceted by TPC and VPD

Track cut
|η| < 1 Selection of acceptance in pseudorapidity

nHitsFit > 15 Number of hits in TPC gas
|DCA| < 3 cm Distance of closest approach of a track

to the primary vertex pozition
pT > 0.15 GeV/c Transverse momentum of the track
p > 0.15 GeV/c Momentum of the track

Kaon identification
ToF Required signal from the ToF

p < 1.55 GeV/c Momentum of kaon
|nσK | < 3 Distance from the expected dE/dx for kaons

in terms of standard deviation units
0.21 < m2 < 0.28 GeV2/c4 Mass of kaon

Pair cut
-0.5 < SL < 0.6 Split level
track merging No more than 10% of merged track

Table 3.1: The overview of used selection criteria.

Binning for event mixing
VZ 10 bins per 3 cm

Multiplicity 7 bins per 100

Table 3.2: The overview of applied binning for event mixing procedure.

38



Binning for correlation function
5 centralities 0-5%, 5-10%, 10-30%, 30-50%, 50-75%

4 kT 0.05-0.35, 0.35-0.65, 0.65-0.95, 0.95-1.25 GeV/c

Table 3.3: The overview of used binning for construction of correlation function.
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Chapter 4

Results

Using cuts and procedures described in the previous chapter we have obtained
correlation functions for like-sing and unlike-sign pair of kaons. In this chapter
the one dimensional correlation function for the 4 different kT bins and 5 differ-
ent centralities are presented. Also extraction of λ parameter and source radii
Rinv from fitting like-sign correlation function will be shown. With these param-
eters, we will be able to compare of unlike-sign correlation function with models
and study centrality and kT dependence in region of the φ(1020) resonance.

4.1 Like-sign correlation function
As already discussed in chapter 1, the correlation function is sensitive to the sizes
of the homogeneity regions. The size of these regions depends on the centrality
of the collisions as is shown in the Fig. 4.1, where the like-sign correlation
functions for different centralities are. These function are integrated over all kT
bins. At low relative momentum qinv, we can observe the superposition of Bose
- Einstein statistics and repulsive Coulomb interaction.

For the most central collisions, the source is the largest and kaons are emitted
at a greater relative distance from each other. Hence the repulsive Coulomb
interaction acting at low relative momentum qinv is weaker. On the other hand,
for peripheral collisions, the size of source is smaller. Therefore the particle are
emitted closest to each other and more feel the repulsive potential of Coulomb
interaction. In such case, at very low qinv Bose - Einstein statistics, which is
proportional to 1/Rinv, is pressed by Coulomb interaction.

Also, the size of the homogeneity regions can be controlled by the transverse
momenta of the pairs kT entering into the correlation function. With increasing
kT , the homogeneity lengths is getting smaller. The kT dependence of like-sign
correlation function is presented in the Fig. 4.2, where the correlation function
are measured for one centrality, but kT dependence is observed for all centrality
bins.
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4.2 Extraction of λ parameter and source radii
Rinv from like-sign correlation function

Experimental correlation function contains correlations, which are results of the
Coulomb interaction and therefore the fitting function is no the same as the one
presented by the Eq. 1.18. To remove these effect, the experimental correlation
functions were fitted by

CF (qinv) =
[
(1− λ) + λK (qinv) exp (−q2invR2

inv)
]
N, (4.1)

where K(qinv) is the Coulomb function integrated over a spherical source of size
corresponding the source radius Rinv, which is free parameter during fitting.
Other free parameters are normalization factor N and λ parameter.

By this method, the K+K+ as well as K−K− correlation function were
fitted and source radii Rinv, λ parameter and normalization N extracted as can
be seen in the Fig. 4.3 and the Fig. 4.4, respectively.

The Fig. 4.4 shows that in both cases the measured source radii Rinv in-
crease with the centrality and decrease with pair transverse momentum kT as
we expected. Difference between obtained value of source radii from K+K+

and K−K− correlation function, especially in the most central collisions, can
be caused by the higher contaminations of electrons in K−K−.

The previous measurement of like-sign correlation function [10], which is
discussed in chapter 4, was done for different centralities and different kT bins,
hence the comparison of our results with them is little complicated. But we can
make conclusion that there is a good agreement.

In the Fig. 4.4 we also see how measured λ parameter changes with in-
creasing transverse pair momentum kT . In the most cases, λ parameter reaches
maximum for kT between 0.35 and 0.65 GeV/c.

Even when we have used very clean kaon sample, the measured value of
λ parameter is around 0.6 . A weakening of correlation strength is therefore
ascribe to admixture of no-primary kaons, which are not correlated. For better
understanding of behavior of λ parameter, which is not trivial, in future we will
use more kT bins as well as stricter DCA cut.
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Fig. 4.3: L: Fitted K+K+ correlation function for different kT bins and for
centrality 30-50%. P: Fitted K−K− correlation function for different kT bins
and for centrality 30-50%.
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4.3 Unlike-sign correlation function
Despite using so far charged kaons, the correlation function for unlike-sign pairs
differs from earlier presented correlation function for like-sign pairs, but they are
still sensitive to the source size. Since each kaon in pair carries opposite charge,
the Coulomb interaction is now attractive. As can be seen in the Fig. 4.5, this
Coulomb interaction is dominant at low relative momentum qinv. In this figure,
one can observe significant peak at qinv = 0.252 GeV/c, which corresponds to
strong final state interaction between unlike-sign kaon.
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Fig. 4.5: One dimensional unlike-sign correlation function for different centrali-
ties.

As already discussed, for femtoscopy with non-identical particle, it is most
suitable to used pair’s rest frame, where each particle has momentum k∗ and
then to construct correlation function as function of k∗. This k∗ is the same
as the decay momentum of the system in its CMS. Therefore k∗ is directly
connected to the invariant mass Minv of the system. Since qinv = 2k∗, also
qinv is directly connected to the invariant mass. Especially in our case, relation
between invariant and qinv is given by formula

qinv =
√
M2
inv − 4m2

K . (4.2)

Hence the peak at qinv = 0.252 GeV/c really corresponds to φ(1020) resonance.
In this region, the centrality dependence as well as kT dependence, which

is shown in the Fig. 4.6, are observed. In both of them we can see that at
low qinv, where the Coulomb interaction exhibits the correlation function is
not so much sensitive as in the resonance region. In addition, in the φ (1020)
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resonance region the higher statistics is available, thus the correlation function
is not statistically impaired like in Coulomb region.
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Fig. 4.6: One dimensional unlike-sign correlation function for different kT bins.

One of the possible way how to learn something from the measured unlike-
sign correlation function is to compare with one obtained from model or cal-
culated theoretical prediction. In following two sections, we will introduce the
comparison with hydrodynamics model HYDJET++ and to Lednicky model.

4.4 Comparison of unlike-sign correlation func-
tion with HYDJET++ model

Firstly, we have compared of measured correlation functions with function,
which we obtained from hydrodynamics model. For our purpose, we have de-
cided to employ HYDJET++, which was already presented in previous chapter.

HYDJET++ contains default setup of parameters for describing Au+Au
collisions at

√
sNN = 200 GeV, which are summarized in Table 4.1. With this

setup were the observables like particle spectra and its ratio, v2, source radii
from π − π correlation were successfully described as was introduced also in
previous chapter.

Therefore we employed HYDJET++ with the same setup and we have just
turn-off effect of JETs. From HYDJET++ we are able by applying the same
kinematic cuts, namely cut on pseudorapidy η and momentum p on kaon sam-
ple, to obtain unlike-sign correlation function. Since HYDJET++ does not
contain Coulomb interaction and strong final state interaction,only the peak in
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Parameter Value Parameter Value
Tch (GeV) 0.165 µI3 (GeV) -0.001
Tth (GeV) 0.100 τ (fm/c) 8
µB (GeV) 0.0285 4τ (fm/c) 2
µs (GeV) 0.007 R (fm) 10
µc (GeV) 0 γS 1

Table 4.1: Parameters of the HYDJET++ model used for simulations

the φ resonance region will be presented. This peak corresponds to the thermal
production of φ resonance.

For quantitative description, we have to do purity correction of measured raw
correlation function. Since λ parameter contains all imperfections, in femtoscopy
we can do purity correction via it according to formula:

CF corr =
CF raw − 1

λ
+ 1, (4.3)

where λ was obtained from fitting like-sign correlation function.
The comparison of the corrected experimental correlation function with func-

tion obtained from HYDJET++ is shown in the Fig. 4.7, where the correlation
for one centrality is presented. It should be noted that correlation function from
HYDJET++ are uncorrected.

Fig. 4.7: One dimensional unlike-sign correlation function for collisions with
centrality 10-30% compared with HYDJET++ simulations.

As we can see HYDJET++ produce correlation functions well especially in
the φ resonance region for all kT bins and for centralities.
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4.5 Comparison of unlike-sign correlation func-
tion to Lednicky model

For better understanding of measured unlike-sign correlation function, we have
done also theoretical calculation of them. The correlation function already pre-
sented as

C (~p1, ~p2) =

∫
d3rS (r, k∗) |ψ1,2 (r, k∗)|2 , (4.4)

contains two particle emission function S (r, k∗) and wave function |ψ1,2 (r, k∗)|
describing interaction of two emitted particle.

The simplest model for emission function is the Gaussian parametrization,
in which there is no correlation between the particle momenta and emission
coordinates. The size of source was chosen so that to be equal to value of source
radii Rinv obtained from fitting like-sign correlation function as shown in the
Fig. 4.4.

The interaction of two kaons was calculated by Lednicky model including the
treatment of the φ resonance due to the FSI as well as generalized smoothness
approximation.

In order to compare to an experimental correlation function, the clean the-
oretical function is transformed to a raw one via

CF raw = (CF corr − 1)λ+ 1. (4.5)

Also in this case, the λ parameter is coming from fitting like-sign correlation
function.

Fig. 4.8: One dimensional unlike-sign correlation function for the most central
collisions compared to Lednicky model.
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As we can see in the Fig. 4.8, for the most central collision Lednicky model
described correlation function well at low qinv, where the Coulomb and strong
interaction in s-wave are presented as well as at the resonance region. Observed
difference at low qinv for 0.65 < kT < 0.95 GeV/c can be possibly ascribed to
effect of residual correlation.

For case of collisions with centrality 10-30%, which are shown in the Fig.
4.9, there is still good agreement of Lednicky model with experimental con-
structed correlation function. However we may notice that for the higher kT
bin, Lednicky model starts to deviate from the measured correlation function
in description of correlation function in the φ region. One of possible explana-
tion of failure can be non-validity smoothness assumptions for pair with so high
transverse momentum.

With decreasing centrality, see the Fig. 4.10, Lednicky model produces cor-
relation function well at low qinv in region where the well-known Coulomb and
strong interaction are dominant. However in region of the φ resonance, the
correlation functions are considerably underestimated.

Fig. 4.9: One dimensional unlike-sign correlation function for collisions with
centrality 10-30% compared to Lednicky model.
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Fig. 4.10: One dimensional unlike-sign correlation function for collisions with
centrality 30-50% compared to Lednicky model.
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Chapter 5

Conclusions and Outlook

The main goal of this research project was to study space-time characteristics of
the system created in the heavy ion collisions with unlike-sign kaon femtoscopy.

As was predicted correlations due to the strong FSI in a system where a
narrow resonance is present will be sensitive, in the region of the resonance, to
the source size and momentum-space correlations. The system of unlike-sign
pairs is ideally suited for this measurement, since it contains narrow φ(1020)
resonance. In this research project a status report of a STAR analysis of unlike-
sign kaon femtoscopics correlations in Au+Au collisions at

√
sNN = 200 GeV

presented.
First, the kaon were selected from the minimum bias Au+Au collisions. Con-

sequently, the detector effects arising from tracking imperfection were removed
by the pair cut. Due to high statistics, we are able to construct one dimensional
correlations for 4 kT bins and 5 different centralities. The measured correlation
function have shown significant centrality dependence as well as kT dependence.

Finally, in order to compare of experimental correlation function to HYD-
JET++ simulations and with Lednicky model, the like-sign correlation function
were obtained and used for extraction of kaon emission source size Rinv and λ
parameter. The source radii Rinv increase with the centrality and decrease with
pair transverse momentum kT . The λ parameter was used for purity correction
of unlike-sign correlation function.

HYDJET++ model reproduces the correlation functions well in the region of
the resonance. In the most central collision, the Lednicky model also describes
the correlation function well in the region of the resonance as well as in region
of very low qinv, where the Coulomb interaction and strong interaction in s-
wave are presented. With decreasing centrality, the correlation function are
underpredicting in region of the resonance by Lednicky model.

The analysis of unlike-sign kaon femtoscopis correlation in Au+Au collisions
has not yet been finished. According to high statistics, it will be available to con-
struct three dimensional correlation. The future work will also include detailed
study of systematics uncertainties and efficiency for final comparison and extract
kaon emission source size from correlation function in region of the φ resonance.
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