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1. INTRODUCTION

1.1 Hilbert lattice as quantum logic

As we know classical probability theory allows us to assign to any element of a given
set of events Ω, the sample space, a probability for its realization which we want to express
on the algebra D given by all possible logical combinations of events. We represent logical
combinations with the set-theoretic operations of intersection (which represents and), union
(which represents or), and complement (which represents not). Thus D is obtained by Ω
closing it under these operations. Kolmogorov’s axioms1 allow us to extend a probability
measure p from Ω to the entire algebra D.

Quantum probability theory is deduced in the following way: given a separable Hilbert
space H, every one-dimensional subspace (every normalized vector) corresponds to a simple
event, so that H can be considered the sample space. We generate an algebra of events
L 2 by closing the sample space under the operations of span, intersection and orthogonal
complement. These operations correspond to the lattice-theoretic operations of join (denoted
by ∨), meet (denoted by ∧) and orthocomplement (denoted by ⊥). Vector can be represented
as the (one-dimensional) subspace that is spans which in turn can be represented by the
projection operator which projects on it. The probability measure p satisfies Kolmogorov’s
axiom 3 only when the subspaces representing the events are orthogonal. Hence we see
that even though in classical probability theory the feature such as orthogonal (compatible)
statements does not exist, it is not possible to neglect this in the quantum probability theory.

1.2 The Birkhoff-von Neumann concept of quantum logic

In 1936 Birkhoff and von Neumann postulated that the quantum logic, i.e. the algebraic
structure that should replace the logic (Boolean algebra) of a classical system has the same
structure as an abstract projective geometry. By an abstract projective geometry Birkhoff
and von Neumann meant an orthocomplemented, modular lattice. They were aware of the
fact that the lattice of projections on an infinite dimensional Hilbert space is not modular,
thus it was not the Hilbert lattice to represent the logic of quantum system. They were not
only searching for a non-commutative (i.e. quantum) logic but also for a non-commutative
generalisation of classical probability theory. To be able to obtain normalised measure,
the projection structure should be modular. Since with non-modularity of P(H), with H

1 Kolmogorov’s axioms:
(1) p(∅) = 0,
(2) p(¬a) = 1− p(a),
(3) p(a ∪ a′) = p(a) + p(a′)− p(a ∩ a′).
2 The algebra of quantum-mechanical events is denoted by L because it forms a lattice.
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infinite dimensional, there is no dimension function3, it was considered by von Neumann as
an obstacle to accepting the usual Hilbert space quantum mechanics as a non-commutative
probability theory.

Back in 1927, the paper of Hilbert, Nordheim and von Neumann attempts an axiomatic
description of quantum mechanics starting with the amplitude4 φ(x, y;F1, F2) of the density
for relative probability. The quantity w defined by

φ(x, y;F1, F2)φ(x, y;F1, F2) = w(x, y;F1, F2) (1.1)

is assumed to give the probability density for the probability that for a fixed value y of the
quantity F2 the value of the quantity F1 lies between a and b, i.e. this probability is given
by ∫ b

a

w(x, y;F1, F2)dx . (1.2)

This probability is called relative because w is not normalised. In the above mentioned paper
the amplitudes are identified with kernels of integral operators, and since the assumption is
made that every operator is an integral operator, the Dirac function must be allowed as a
kernel. In particular, the relative probability density for the probability that a quantity has
simultaneously the value x and y turns out to be given by δ(x − y). The interpretation of
this probability density given in the paper is that the probability relation between a quantity
to itself distinguishes the value of the quantity infinitely sharply. Although this seems to
be reasonable, the authors were fully aware that the Dirac function as they used it was
not mathematically legitimate. It turned out, however, that a new, conceptual difficulty
arises even if the ”problematic” Dirac function is eliminated from the formalism: infinite
probabilities appear in the theory.

In this paper crucial role is played by ”statistical Ansatz” stating that the relative
probability that the values of the pairwise commuting quantities Si lie in the intervals Ii if
the values of the pairwise commuting quantities Rj lie in the intervals Jj are given by

Tr
(
E1(I1)E2(I2) . . . En(In)F1(J1)F2(J2) . . . Fm(Jm)

)
(1.3)

Ei(Ii), Fj(Jj) being the spectral projections (belonging to the respective intervals) of the
corresponding operators Si and Rj. The reason why von Neumann calls the probability in
(1.3) relative is discussed in [12].

As long as the probability in (1.3) is finite, no distinction between relative and absolute
probability is significant since in this case it can be normalised. However, von Neumann
realizes that the relative probability in (1.3) can be infinite. This happens if any of Ii or Jj

contains parts of the continuous spectrum of Ri or Sj. Von Neumann justified the usage of
infinite probability in one of his papers published in 1927 and showed that each elementary

3 Dimension function is a map d : L 7→ [0, 1] having the following properties:
(i) d(I) = 1; d(A) = 0 if and only if A = 0, A ∈ L;
(ii) if A ∧B = 0 then d(A + B) = d(A) + d(B);
(iii) if A,B are perspective (i.e. if they have a common complement), then and only then d(A) = d(B).
4 In quantum mechanics, a probability amplitude is a complex-valued function that describes an uncertain

or unknown quantity. For example, each particle has a probability amplitude describing its position. This
amplitude is then called wave function. This is a complex-valued function of the position coordinates.
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unordered ensemble can be described by a statistical operator, a positive, non-zero operator
U today known as density matrix describing ensembles of systems prepared in different
quantum states. In particular, the density matrix is defined as

ρ =
∑

i

λiPi , (1.4)

where Pi are one dimensional projections determined by a single state vector νi. The expec-
tation value of an observable Q in the statistical ensemble described by ρ is given by

< Q >ρ= Tr(ρQ) =
∑

j

< νj, ρQνj > . (1.5)

This interpretation has serious conceptual difficulties: the main problem is that the
statistical operator I is not normalised, i.e. its trace is infinite, as it is the trace of any
infinite dimensional projection. This concept was fortunately successfully completed in 1936
by classifying the factors and by discovering the type II1 factor: there exists an a priori
probability on this lattice which is given uniquely by the trace. Von Neumann really became
unfaithful to the Hilbert space formalism which was clear from his famous letter to Birkhoff,
where he writes:

I would like to make a confession which may seem immoral: I do not believe
absolutely in Hilbert space anymore. After all Hilbert space (as far as quantum
mechanical things are concerned) was obtained by generalizing Euclidean space,
footing on the principle of conserving the validity of all normal rules . . . Now
we begin to believe that it is not the vectors which matter, but the lattice of all
linear (closed) subspaces. Because: 1) The vectors ought to represent the physical
states, but they do it redundantly, up to a complex factor only, 2) and besides,
the states are merely a derived notion, the primitive (phenomenogically given)
notion being the equalities which correspond to the linear closed subspaces. But
if we wish to generalize the lattice of all linear closed subspaces to a Euclidean
space to infinitely many dimensions, then one does not obtain Hilbert space, but
that configuration which Murray and I called case II1. (The lattice of all linear
closed subspaces of Hilbert space is our ’case I∞’.)5

It is the uniquely determined trace τ on a type II1 factor which von Neumann interpreted as
the proper a priori probability in quantum mechanics. A trace is just the unique (positive,
linear, normalized) functional invariant with respect to all unitary transformation. Since
the physical symmetries of the system are generally expressed as representations of the
symmetry group on the algebra of observables by unitaries, the existence of unique trace
means physically that the probability is determined uniquely as the only (positive, linear)
assignment of values in [0, 1] to the events that is invariant with respect to any conceivable
symmetry.

Another reason why von Neumann and Birkhoff found lattices very significant (in von
Neumann’s words 6) is:

5 Reader can refer to [12] for more detailed discussion over this topic as this is not the prime concern of
this work. We only wanted to sketch out briefly various approaches to quantum logic and its history.

6 This excerpt quoted from [12]
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Essentially if a state of a system is given by one vector, the transition probability
in another state is the inner product of the two which is the square of cosine
of the angle between them. In other words, probability corresponds precisely
to introducing the angles geometrically. Furthermore, there is only one way to
introduce it. The more so because in the quantum mechanical machinery the
negation of a statement, so the negation of a statement which is represented
by a linear set of vectors, corresponds to the orthogonal complement of this
linear space. And therefore, as soon as you have introduced into the projective
geometry the ordinary machinery of logics, you must have introduced the concept
of orthogonality. . . . In order to have probability all you need is a concept of all
angles, I mean angles other than 90◦. Now it is perfectly quite true that in
geometry, as soon as you can define the right angle, you can define all angles.
Another way to put it is that if you take the case of an orthogonal space, those
mappings of this space on itself, which leave orthogonality intact, leave all angles
intact, in other words, in those systems which can be used as models of the logical
background for quantum theory, it is true that as soon as all the ordinary concepts
of logic are fixed under some isomorphic transformation, all of probability theory
is already fixed.

Note: In this work we use the Birkhoff and von Neumann approach. Simply put,
the basic role is played by the convex set of positive norm-one functionals called states ;
quantum propositions7 are identified with projections in Hilbert spaces. The basic axioms
of C∗-algebraic quantum mechanics can be summarized into these points:

(i) The set of all observables of a quantum system S is the self-adjoint part of a C∗-algebra
A.

(ii) The set of all states of a quantum system S is the state space, S(A), of the C∗-algebra
A.

(iii) The value ρ(a), where ρ ∈ S(A) and a ∈ As.a. is the expectation value of an observable
a on the condition that a system S is prepared in the state ρ.

(iv) Evolution of a system S is given by a specified class of morphisms of the C∗-algebra
A (unitary maps, automorphisms, completely positive maps).

(v) Given independent quantum systems S1 and S2 represented by C∗-algebras A and
B, respectively, the smallest composite system containing S1 and S2 is given by the
minimal tensor product8 S1 ⊗min S2.

1.3 The problem of hidden variables

An attack towards the orthodox view stating quantum mechanics to be a complete
theory came in 1935 from Einstein, Podolsky and Rosen (so-called EPR paradox ) in their

7 an observable with two possible values 0,1. In C∗-algebraic quantum mechanics the system of observables
is given by the self-adjoint part of a C∗-algebra.

8 See definition of the tensor product in the section Operator algebras: C∗-algebras or [7].
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famous paper ”Can quantum-mechanical description of physical reality be considered com-
plete?”. This motivated the search for alternative interpretations of quantum theory based
on the assumption of hidden variables. This problem is not purely physical as one might
have thought but has commonly been associated with the question of validity of certain very
general philosophical (metaphysical) principles, such as the principle of determinism or the
philosophical standpoint known as realism. This problem has not been settled once for all
but has always been rephrased within every new framework of quantum theory that has been
created. Simply put, some theoreticians suggested the existence of hidden space on which
the states would possess zero or at least an arbitrarily small pointwise dispersion, which is
convenient to be viewed as a ”measure of statistical character of quantum states”.

A turning point which was subject to controversy was so-called von Neumann’s impossi-
bility proof, which is the first definite result in this field falsifying determinism. Von Neumann
investigates the statistical character of quantum mechanics and the problem of quantum me-
chanical probabilities in connection with the probabilities occurring in classical statistical
mechanics. The significance of keeping in mind this context of von Neumann’s proof comes
from the fact that the concept of state in classical statistical mechanics already raises the
problem of determinism in that it contradicts the state concept in classical mechanics: the
classical statistical mechanical state is (in today’s terminology) a probability measure. The
reason why this probability measure should indeed be viewed as a physical state is that it
can be identified with thermodynamical states - as far as one can derive thermodynamic
relations with its help - on the other hand, this state concept is incompatible with the state
concept of classical mechanics because, unlike in the case of classical mechanical state (which
is identified with a single point in the phase space), the physical quantities possess a non-zero
dispersion in a statistical mechanical state.

Physicists insisted on accepting classical statistical mechanical states as physical states.
It was due to accepting the following reasoning: A classical statistical mechanical system
consists of a large number of particles interacting and moving according to the laws of clas-
sical mechanics and, therefore, the point representing the whole system in the phase space
also moves deterministically. To describe the motion of the phase point would require both
the exact knowledge of the initial states of all the particles and the ability to solve large
number of differential equations. But one is unable to solve so many equations of motions,
since the initial conditions are not known either. For this reason it was logical to describe
the system by probabilities, although the real physical system is at every moment in some
well defined state as understood in classical mechanics.

These well defined real physical states in the sense of classical mechanics, i.e. the single
phase point can be identified with the Dirac measures concentrated at these points with the
Dirac measures being nothing but dispersion-free states in classical statistical mechanics.
The classical mechanical states in this interpretation can be considered as our inability to
give the precise (pure) state the system is in.

The historic significance in von Neumann’s impossibility proof was that pure quantum
states are not dispersion-free, thus one has to meet the challenge of interpreting probability
in quantum mechanics. This conclusion was critisized by theoreticians who tried to refutate
von Neumann’s impossibility proof by constructing hidden variable theories. There also were
attempts aiming at producing stronger impossibility proofs by weakening von Neumann’s
assumptions that had been questioned. This resulted in two different axiomatic approaches
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to quantum mechanics after 1932: the one based on lattice theory and the other one for-
mulated in terms of the operator algebra theory. It is the theory of von Neumann algebras
that connects these two approaches. Later, von Neumann’s definition of hidden variables
and impossibility proof was generalized in the operator algebraic approach by Misra.

It should be mentioned that three main theorems against hidden variables hypothesis
(so-called no-go theorems) are von Neumann’s theorem, the Bell inequalities and Kochen-
Specker theorem9.

1.4 Jordan-algebraic formulation of quantum mechanics

One of the essential ”ingredients” of quantum mechanics are observables. In C∗-algebraic
approach they are taken to be the self-adjoint part of a C∗-algebra A. The C∗-algebra
contains a lot of non-self-adjoint elements and can therefore hardly be considered the most
essential structure for the observables. Since the C∗-product of two self-adjoint elements in
general is not self-adjoint, the observables do not even form a C∗-subalgebra but only a real
subspace. But they do form an algebra under the product

a ◦ b =
1

2
(ab+ ba) (1.6)

which is commutative but not fully associative anymore. Instead, one has

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2) (1.7)

which is equivalent to the power-associativity of A. The classification of finite-dimensional,
formally real Jordan algebras10 gives two classes of special algebras: self-adjoint matrix
algebras over the reals, the complexes or the quaternions and spin factors. In addition,
there is one exceptional (i.e. non-special Jordan algebra, the self-adjoint 3× 3-matrices over
the octonions.)

The Jordan-algebraic approach to quantum mechanics was initiated by Jordan, von
Neumann and Wigner who studied finite dimensional formally real Jordan algebras. The
restriction to finite dimensions was removed by von Neumann. Jordan operator algebras
(linear spaces of self-adjoint operators on a Hilbert space closed under the Jordan product)
first were studied by Segal, Topping and Størmer. The self-adjoint part of a C∗-algebra or a
von Neumann algebra is a special case of a JB algebra or a JBW algebra, respectively.

9 see Theorem 164
10 See definitions in this work.



2. OPERATOR ALGEBRAS

2.1 Preliminaries in topology

Starting point in the theory of topology is definition of neighborhood. Let V be a normed
vector space. Then for arbitrary x ∈ V and ε > 0 the set Uε(x) := {y ∈ V | ||x − y|| < ε}
is called ε-neighborhood of x. Let F ⊆ V , then for each ε > 0 the set Uε(F ) := {y ∈
V | ||y − x|| < ε , for all x ∈ F} is called ε-neighborhood of the set F ⊆ V .

Definition 1 A topological space, also called an abstract topological space, is the set X
together with a collection of open subsets τ that satisfies the four conditions: (i) ∅ ∈ τ (ii)
X ∈ τ (iii)

⋂n
α=1 aα ∈ τ for finite n ∈ N and (aα)α=1,··· ,n ⊆ τ (iv) for an arbitrary system

(aα)α ⊆ τ it holds that
⋃

α aα ∈ τ .
Definition 2 Topological space (X, τ) is said to fulfil (separation) axiom: (i) T1, if for
each pair of points x, y ∈ X, x 6= y there exists neighborhood U(x) such that y /∈ U(x)
(ii) T2, if for each pair of points x, y ∈ X, x 6= y there exist disjoint neighborhoods U(x)
and U(y) (iii) T3, if for each x ∈ X and closed set F such that x /∈ F there exist disjoint
neighborhoods U(x) and U(F ) (iv) T4, if for each pair of disjoint closed sets F,G there exist
disjoint neighborhoods U(F ) and U(G). Space, in which axioms T1 and Tj , j = 1, . . . , 4
hold, is called Tj-space.

Definition 3 T2-space is called a Hausdorff space.

Definition 4 A topological space (X, τ) is said to be disconnected if it is the union of two
disjoint nonempty open sets. Otherwise, X is said to be connected. A totally disconnected
space is a space in which all subsets with more than one element are disconnected. A
topological space is said to be compact if each of its open covers has a finite subcover.

A subset K of vector space K is called convex if αx+ (1−α)y ∈ K whenever x, y ∈ K
and α ∈ [0, 1]. A face F in K is a convex subset of K such that if αx + (1 − α)y ∈ F for
x, y ∈ K and α ∈ [0, 1], then x, y ∈ F . An element x ∈ K is called an extreme point of the
set K if the set F = {x} is a face of K, i.e. if x = αy+(1−α)z, y, z ∈ K, α ∈ [0, 1], implies
y = z = x.

Definition 5 Let X be a Hausdorff locally convex topological vector space. A subset A of
X is called a cone in X if x ∈ A and λ ∈ R, λ > 0, implies λx ∈ A, and (−A)

⋂
A = {0},

where −A = {−x : x ∈ A}. If A is a convex subset we talk about convex cone.

2.2 C∗-algebras

Definition 6 A vector space A over a field T with a binary composition (a, b) 7→ a · b ∈ A
is called algebra if it satisfies
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a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a,
α(a · b) = (αa) · b = a · (αb),

for all a, b, c ∈ A, α ∈ T . If T = C or T = R we call A a complex or real algebra,
respectively. A is called unital if there is unit, e ∈ A, such that a ·e = e ·a = a, for all a ∈ A.
A is called associative if (a · b) · c = a · (b · c), for all a, b, c ∈ A. A is called commutative
(abelian) if a · b = b · a for all a, b ∈ A.

Let Ω be a set of operations defined on algebra A. Such algebra is usually denoted by
ordered doublet (A,Ω). Each set D ⊆ A such that D is algebra (with respect to the same
operations) is called subalgebra of algebra A. Generally, unit in A does not have to be an
element of D.

Since operator algebras are our prime concern, the elements of algebras will always be
operators (matrices or projections in special cases, see def.).

Definition 7 An associative complex algebra
(
A,+, ·, ∗

)
is called ∗-algebra (involutory,

involutive) if, for all a, b ∈ A and λ ∈ C, the operation ∗ (involution) obeys the following
rules: (i) a∗∗ = a, (ii) (a+ b)∗ = a∗ + b∗, (iii) (λa)∗ = λa∗, (iv) (ab)∗ = b∗a∗.

Note 8 An element a∗ ∈ A is called the adjoint of a ∈ A. Let A be ∗-algebra, S ⊂ A.
Denote by S adjoint part of A, i.e. S∗ := {a∗ | a ∈ S}. We say that S is self-adjoint if, and
only if, S∗ = S. An element a such that a = a∗ is called hermitian (self-adjoint).

Definition 9 LetA be a complex ∗-algebra with the norm || · || .A is said to be an involutive
Banach algebra if the following conditions are satisfied for all a, b ∈ A: (i) ||ab|| ≤ ||a|| · ||b||
and (ii) ||a∗|| = ||a||. A C∗-algebra is an involutive Banach algebra satisfying (iii) ||a∗a|| =
||a||2 for all a ∈ A. A C∗-subalgebra B of a C∗-algebra A is defined as the normed closed
∗-subalgebra of A.

For an arbitrary set S ⊂ A denote by A(S) an algebra generated by S, which is defined
as the smallest subalgebra (in terms of inclusion) ofA containing S. In particular, C∗-algebra
generated by the elements a1, a2, . . . , an will be denoted by C∗(a1, . . . , an).

Note 10 Since the condition (i) with (iii) implies (ii) in the previous definition, it suffices
that an involutive Banach algebra satisfies (i) and (iii) only.1

Despite the fact that generally C∗-algebras do not have to be unital, we will (without
loss of generality) assume only unital C∗-algebras in this work unless stated otherwise. This
is possible due to the fact that if Ã is an algebra obtained by appending the unit to nonunital
C∗-algebra A, then the norm || · ||A in A extends uniquely to a norm || · ||Ã in Ã, which
makes Ã a C∗-algebra.

An example of finite-dimensional C∗-algebra is the complex algebra of n × n complex
matrices Mn(C) endowed with the standard arithmetic operations, matrix norm and the
involution sending a matrix a ∈ Mn(C) to its adjoint matrix a∗. Finite-dimensional C∗-
algebras are direct sums of algebras of this type.

Another very important example is the ∗-algebra of all bounded operators on a Hilbert
space H denoted by B(H). Such algebra with the operator norm

||a|| := sup{||aξ|| | ξ ∈ H, ||ξ|| = 1}
1 Indeed, ||a||2 = ||a∗a|| ≤ ||a|| · ||a∗|| ⇒ ||a|| ≤ ||a∗|| and ||a∗||2 = ||a∗∗a∗|| ≤ ||a∗∗|| · ||a∗|| ⇒ ||a∗|| ≤

||a∗∗|| = ||a||. Thus we have ||a|| ≤ ||a∗|| ≤ ||a|| which implies ||a∗|| = ||a||.



2.2 C∗-algebras 11

is a C∗-algebra.
Let A = Mn(C), B = Mm(C) be matrix algebras. Then their tensor product denoted

by A ⊗ B is the algebra Mmn(C). For a = (aij) ∈ A and b = (bkl) ∈ B, the tensor product
a⊗ b is the nm× nm matrix

a⊗ b =


b11a b12a . . . b1ma
b21a b22a . . . b2ma
. . .
bm1a bm2a . . . bmma

 .

Let A be a C∗-algebra. The tensor product A ⊗ B(Hn), where dimHn = n, can be
identified with the algebra Mn(A) of all n× n matrices with entries in A and usual matrix
operations. A more general than this is the tensor product A⊗B(H) which can be identified
with the algebra of infinite matrices over A.

Let S ⊂ B(H). A commutant of S is the set S ′ := {B ∈ B(H) : BC = CB, C ∈ S}.
Bicommutant of S is the set S ′′ :=

(
S ′

)′
.

Definition 11 The center, Z(A) of a C∗-algebra A is the set Z(A) := {a ∈ A | a · b =
b · a, ∀ b ∈ A}.
Definition 12 A projection in a C∗-algebra A is a self-adjoint idempotent, i.e. an element
p ∈ A such that p = p2 = p∗. The set of all projections in a C∗-algebra A will be denoted
by the symbol P (A).

Indivisible part of this work is the function calculus in the theory of C∗-algebras, which
is a consequence of the Gelfand Theorem and turns out to be very practical tool that helps
us to view C∗-algebras as the algebras of continuous functions on locally compact Hausdorff
spaces (see def.).

Let X be a locally compact Hausdorff space. Let us say that a continuous function f on
X vanishes at infinity, if for each ε > 0 the set {x ∈ X | |f(x)| ≥ ε} is compact. Let us denote
by CC

0 (X) (resp. C0(X)) the ∗-algebra of all continuous complex (resp. real) functions on X
vanishing at infinity, where the ∗-operation assigns to each function its complex conjugate.
Let us endow C0(X) with the norm ||f || := supx∈X |f(x)|. Then C0(X) becomes an abelian
C∗-algebra. In particular, if X is a compact space, then the algebra C0(X) coincides with
the algebra C(X) of all continuous complex functions on X.

Definition 13 Let A be abelian C∗-algebra. A character ω on A is a nonzero linear map
ω : A 7→ C for which ω(a · b) = ω(a) · ω(b) and ω(a∗) = ω(a).

Let A be a C∗-algebra, x ∈ A. The spectrum of x (in symbols σ(x)) is the set

σ(x) := {λ ∈ C | (x− λ · I) is not invertible inA} ,

where I denotes the unit in A. The spectrum Ω(A) of an algebra A is the set of all characters
on A endowed with the topology of pointwise convergence on elements of A. It can be proved
that Ω(A) is a locally compact Hausdorff space (see def.) and that Ω(A) is compact if and
only if A is unital. The Gelfand transform is the map τ : A 7→ C0

(
Ω(A)

)
defined for all

a ∈ A by the formula
τ(a)(ω) = ω(a) ,

for all ω ∈ Ω(A).
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Theorem 14 (Gelfand) For each abelian C∗-algebra A the Gelfand transform is a ∗-
preserving isometric isomorphism of A onto C0

(
Ω(A)

)
.

As a corollary of the Gelfand Theorem it is possible to identify the algebra C∗(x) with
the algebra C0

(
σ(x) \ {0}

)
, where x ∈ A is a normal element, i.e. x∗x = xx∗. It is not

constitutive to go into details here. Reader can refer to [9]. For a normal element x ∈ A we
denote by f(x) the element in C∗(x) that corresponds to the function f ∈ C0

(
σ(x) \ {0}

)
.

Then the assignment f → f(x) is the function calculus. If x is a normal operator on a
Hilbert space H and xξ = λξ for a unit vector ξ ∈ H and λ ∈ C, then f(x)ξ = f(λ)ξ for
any f ∈ C0

(
σ(x) \ {0}

)
.

Theorem 15 (Complex spectral theorem) Let A be a unital C∗ algebra and x a
self-adjoint element in A. Let C∗(x) denote the C∗ subalgebra of A generated by x and the
unit I. Then there is a canonical isometric isomorphism of C∗(x) onto CC(σ(x)).

Definition 16 A closed subset I of A is called the closed right (left) ideal if I · A ⊂ I(
A · I ⊂ I

)
. A closed subset in A is called closed (two-sided) ideal if it is simultaneously

left and right closed ideal. Zero subalgebra {0} ⊂ A is referred to as a trivial ideal.

Definition 17 The C∗-algebra having no nontrivial ideals is called simple.

Definition 18 Let A and B be two C∗-algebras. A linear map π : A 7→ B is called ∗-
homomorphism if it satisfies π(a · b) = π(a) · π(b) and π(a∗) = π(a)∗, for all a, b ∈ A.

Note 19 Since for any ∗-homomorphism it holds that ||π(x)|| ≤ ||x|| for all x ∈ A, it is
continuous.

Definition 20 ∗-homomorphism of C∗-algebra A into B(H) is called ∗-representation of A
on a Hilbert space H. An injective ∗-homomorphism of A onto B is called ∗-isomorphism. If
the kernel of a ∗-representation satisfies Ker π = {a ∈ A |π(a) = 0} = {0} then π is called
faithful.

2.2.1 States and representations

In this work a crucial role is played by investigation of properties of positive functionals on
C∗-algebras which is due to the fact that (under certain conditions) a probability measure
on such algebra can be represented by a positive functional.

Definition 21 An element x of a C∗-algebra A is called positive (or non-negative) if x = a∗a
for some a ∈ A.

Definition 22 A linear form f : A 7→ C on a C∗-algebra A is called a positive functional if
f(a) ≥ 0 whenever a ≥ 0.

Note 23 Any positive functional on C∗-algebra is bounded.

Definition 24 A real non-negative functional f : V 7→ R is called seminorm (or pseudonorm)
if it holds that

f(x+ y) ≤ f(x) + f(y), f(αx) = |α|f(x) ,

for all x, y ∈ V , α ∈ C.

Definition 25 A positive functional ρ on a C∗-algebra is called a state if ||ρ|| = 1.
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The convex set of all states on A will be denoted by S(A) and called the state space of
A. The extreme points of S(A) are called pure states. A subset S of the state space S(A)
is called order determining if, and only if, ρ(a) ≥ 0 for all ρ ∈ S implies that a ≥ 0.

Definition 26 Let A be a C∗-algebra. A vector ψ ∈ H is called cyclic for the representation
π of A on Hilbert space H if the set π(A)ψ = {π(a)ψ | a ∈ A} is dense in H.

Definition 27 A partially ordered vector space is a real vector space A with a proper convex
cone A+. We write a ≥ b, or b ≤ a for a, b ∈ A, if a−b ∈ A+. An element e ∈ A+ is called an
order unit for A if for all a ∈ A there is λ > 0 such that −λe ≤ λe. We say A is Archimedean
if na ≤ e for all n ∈ N implies a ≤ 0. In this case A has a norm given by

||a|| = inf{λ > 0 : −λe ≤ a ≤ λe} .

This norm is called the order norm. A is said to be an order unit space if A has an order
unit and A is Archimedean. If A is furthermore a Banach space with respect to the order
norm then A is called a complete order unit space.

Proposition 28 Let ρ be a positive functional on unital C∗-algebra A and let a, b ∈ A then

|f(a∗b)|2 ≤ f(a∗a)f(b∗b). (Cauchy − Schwarz inequality) (2.1)

The following Theorem deserves a special attention as it constructs very useful tool
for obtaining the value of a positive functional by an inner product. It is known as the
Gelfand-Naimark-Segal (G.N.S.) construction.

Theorem 29 (Gelfand-Naimark-Segal) For any positive functional f on a unital C∗-
algebra A there is a Hilbert space H, ∗-morphism π : A → B(H), and a cyclic vector,
ψ0 ∈ H, such that

f(x) =
(
π(x)ψ0, ψ0

)
. (2.2)

Moreover, the triplet
(
π,H, ψ0

)
is unique up to a unitary transformation between the corre-

sponding Hilbert spaces.

Proof. The Hilbert space shall be constructed starting with C∗-algebra A. Recall that inner
product is linear in the first slot and conjugate linear in the second. Let f be a positive
functional on A. Then the map ϕ : A×A → C such that ϕ(a, b) := f(b∗a) defines a positive
conjugate symmetric sesquilinear form. Indeed, for all α ∈ C and a, b, c ∈ A we have that
(i-a) ϕ

(
αa+ b, c

)
= f

(
c∗(αa+ b)

)
= f

(
αc∗a+ c∗b

)
= αf

(
c∗a

)
+ f

(
c∗b

)
= αϕ

(
a, c

)
+ϕ

(
c, b

)
,

(i-b) ϕ
(
a, αb+ c

)
= f

(
(αb+ c)∗a

)
= f

(
αb∗a+ c∗a

)
= αf

(
b∗a

)
+f

(
c∗a

)
= αϕ

(
a, b

)
+ϕ

(
a, c

)
,

(ii) ϕ
(
a, b

)
= f

(
b∗a

)
= f

(
(a∗b)∗

)
= f

(
a∗b

)
= ϕ

(
b, a

)
, and finally (iii) ϕ(a, a) = f(a∗a) ≥ 02.

However ϕ(a, a) = 0 does not generally imply that a = 0. So far, except for the strict
positivity, ϕ has the properties of an inner product. Such limitation can be superseded by
factoring A 3. Define a set If := {a ∈ A|f(a∗a) = 0}. Now we will show that If is the left
ideal in A 4 (A · If ⊂ If ), i.e. we need to show that f

(
(ab)∗(ab)

)
= 0 for all (a, b) ∈ A×If ,

which is just a matter of straightforward computation using the Cauchy-Schwarz inequality:

2 By definition of positive functional f ∈ A∗.
3 Our aim is to construct Hilbert space which is a complete space endowed with the scalar product.
4 By definition of ideal If is automatically a subspace in A.
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0 ≤ |f
(
(ab)∗(ab)

)
|2 = |f

(
b∗a∗ab

)
|2 = |f

(
b∗(a∗ab)

)
|2 ≤

≤ f
(
(a∗ab)∗(a∗ab)

)
f
(
bb∗) = 0,

implying that f
(
(ab)∗(ab)

)
= 0.

Define an inner product on quotient A|If
= A+ If by(

ã, b̃
)

:= f
(
b∗a

)
,

where a, b are representatives of equivalence classes ã, b̃ ∈ A|If
, respectively. This definition

must be correct independently of the representatives a ∈ ã, b ∈ b̃. For this, it is enough to
show that f(b∗a) = 0 whenever at least one of elements a, b is an element of If . This
condition is fulfilled since the righthand side of inequality

0 ≤ |f(b∗a)|2 ≤ f(bb∗)f(a∗a)

is (by definition of If ) zero whenever either a or b is an element of If . Because a and b
were chosen arbitrarily, we are done with this. The Hilbert space H will be obtained by
completion of A|If

.
The next point will be construction of the representation π. For all a ∈ A define map

π0 : A|If
7→ A|If

by π0(a)̃b = ã · b, where b is the element representing the class b̃ ∈ A|If
.

The definition is correct, since If is the left closed ideal in A. We have that

(i) π0(a)(λb̃+ c̃) = a · (λb+ c)∼ = λã · b+ ã · c = λπ0(a)̃b+ π0(a)c̃

(ii) ||π0(a)̃b||2 = ||ãb||2 = (ãb, ãb) = f((ab)∗(ab)) =
= f(b∗a∗ab) ≤ f(b∗eb)||a∗a||A = f(b∗b)||a∗a||A = ||b||A|If

||a||A <∞,

for arbitrary ã, b̃, c̃ ∈ AI|f , λ ∈ C, where e is the unit inA|If
. Hence, π0 is linear bounded and

||π0(a)|| ≤ ||a||A. Since by construction H = A|If

5, π0 extends uniquely to π ∈ B(H) such
that ||π0|| = ||π||. It is necessary to verify that π is a representation, i.e. ∗-homomorphism,
which (because of the existence of a continuous extension of π0) is enough to be done on
A|If

only. Linearity of π follows from linearity of π0 (which has already been shown) and
the existence of its continuous extension (by definition of π). It is sufficient to show that for
arbitrary a, b ∈ A, c̃, d̃ ∈ A/If , the formulas (i) π(a·b)c̃ = π(a)π(b)c̃ and (ii) π(a∗)d̃ = π(a)∗d̃
hold, which is true:

(i) π(a · b)c̃ = (a · b · c)∼ = (a · b)∼c̃ = ã · b̃ · c̃ = π(a)π(b) c̃
(ii) (c̃, π(a∗)d̃) = (c̃, (a∗d)∼) = f(c∗a∗d) = (ãc, d̃) = (π(a)c̃, d̃).
We will prove the existence of cyclic vector ψ0 of the representation π. Let e be the unit

in A|If
and ẽ the corresponding equivalence class. Since π(a)ẽ = ãe = ẽ for all a ∈ A|If

,
we have that π(A|If

)ẽ = A|If
. From the construction of H, definition of cyclic vector and

H = A|If
= π(A)ẽ we have that ẽ is the cyclic vector of the representation π. We will

denote the cyclic vector by the symbol ψ0. For all a ∈ A|If
we have that

(ψ0, π(a)ψ0) = (ẽ, π(a)ẽ) = (ẽ, ã) = f(e∗a) = f(ea) = f(a) .

To summarize the procedure, we have shown that for each positive functional f ∈ A∗

there is at least one ordered triplet {H, π,Ψ0} with the properties stated in the Theorem.

5 H is also a Banach space.
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Such ordered triplet will be called a G.N.S.-triplet and π a G.N.S.-representation.
To complete the proof it remains to show that if {H′

, π
′
, ψ

′
0} is another triplet with the

properties stated in the Theorem, then there exists a unitary operator U ∈ B(H,H′
) such

that ψ
′
0 = Uψ0 and Uπ(a) = π

′
(a)U for all a ∈ A. Suppose {H′, π′, ψ′0} 6= {H, π, ψ0} is

another G.N.S.-triplet. Put H0 = π(A|If
)ψ0 = A|If

, H′
0 = π′(A|If

) and define bijection
U0 : H0 7→ H′

0 by U0π(a)ψ0 = π′(a)ψ′0 , for all a ∈ A|If
. We will show that U0 is an

isometry.
(i) U0 is norm-preserving:

||U0π(a)ψ0||2H′ = ||π′(a)ψ′0||2H′ = (π′(a)ψ′0, π
′(a)ψ′0) =

= (ψ′0, (π
′(a))∗π′(a)ψ′0) = (ψ′0, π

′(a∗)π′(a)ψ′0) = (ψ′0, π
′(a∗a)ψ′0) =

= f(a∗a) = (ψ0, π(a∗a)ψ0) = (ψ0, π(a∗)π(a)ψ0) =
= (ψ0, π(a)∗π(a)ψ0) = (π(a)ψ0, π(a)ψ0) = ||π(a)ψ0||2.

(ii) U0 is linear:

U0[(λπ(a) + π(b))ψ0] = U0(π(λa+ b)ψ0) = π′(λa+ b)ψ′0 =
= λπ′(a)ψ′0 + π′(b)ψ′0 = λU0π(a)ψ0 + U0π(b)ψ0.

Both U0 being an isometry with H0 = A|If
= H and H′

0 = H′
imply the existence

of unique continuous extension of U0 ∈ B(H0,H′
0) to U ∈ B(H,H′). Setting a = e yields

U0π(e)ψ0 = π
′
(e)ψ

′
0. Because π(e) = I, then Uψ0 = ψ

′
0. We get that Uπ(a)ψ0 = π

′
(a)ψ

′
0 =

π
′
(a)Uψ0, which after application of the operator π

′
(b) yields

π′(b)Uπ(a)ψ0 = π
′
(b)π

′
(a)Uψ0 = π

′
(ba)Uψ0 =

= π
′
(ba)ψ

′
0 = Uπ(ba)ψ0 = Uπ(b)π(a)ψ0 ,

ψ0 is a cyclic vector in H, that is π(A)ψ0 = H. In other words, the subspace π(A)ψ0 is
dense in H. From here and

π
′
(b)U(π(a)ψ0) = Uπ(b)(π(a)ψ0)

we have equality of the operators π
′
(b)U = Uπ(b) for all b ∈ A, which completes the

proof.

Definition 30 Let π be a ∗-representation of a C∗-algebra A on a Hilbert space H. A
closed subspace F ⊂ H is called invariant for a representation π if π(F ) ⊂ F .

Note 31 The previous definition is equivalent to saying that the orthogonal projection p of
H onto F is in the commutant π(A)

′
. In this case π can be decomposed into the direct sum

π = pπ ⊕ (1− p)π . (2.3)

The representation pπ is called a subrepresentation of π.

Definition 32 Two ∗-representations π1 and π2 of a C∗-algebra A are called equivalent
if there is a ∗-isomorphism τ : π1(A)′′ 7→ π2(A)′′ between bicommutants such that π2 =
τ ◦ π1. The representations π1 and π2 are called unitarily equivalent if the automorphism τ
above is implemented by a unitary map. The representation π2 is called subequivalent to
a representation π2 if it is equivalent to some subrepresentation of π2. A ∗-representation
is called irreducible if it has no nontrivial invariant subspace, i.e. if it cannot be written as
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nontrivial direct sum of ∗-representations. Two representations π1 and π2 of A are called
disjoint if no subrepresentation of π1 is equivalent to any subrepresentation of π2.

Note 33 Two irreducible representations are either unitarily equivalent or disjoint.

Proposition 34 (Segal) Let A be a unital C∗-algebra. A state ρ ∈ S(A) is pure if, and
only if, its G.N.S. representation is irreducible.

2.2.2 Lattice theory and projection structure

Definition 35 We say that relation R is ordering on the set A if, and only if, R is reflexive,
weakly antisymmetric and transitive on A. We say that elements a, b ∈ A are comparable
with respect to R if < x, y >∈ R or < y, x >∈ R. If < x, y >∈ R, then we write x ≤r y.

Note 36 We shall write ≤ instead of ≤r. The set A endowed with partial ordering ≤ shall
be denoted by doublet (A,≤) and called partially ordered set (poset in the abbreviation). If
a ≤ b then we say ”a is smaller than b”, or ”b is greater than a”. If a ≤ b but a 6= b then we
write a < b and say ”a is strictly smaller than b”.

Definition 37 Let ≤ be an ordering on the set A and let X ⊆ A. We say that a ∈ A is
an upper (a lower) bound of X if b ≤ a (a ≤ b) for all b ∈ A. The element a is the least
upper bound (the greatest lower bound) of A if a ≤ a′ (a′ ≤ a) for any a′ which is an upper
(a lower) bound of A.

Note 38 Any subset of poset has at most one least upper (resp. greatest lower) bound.

Definition 39 The partially ordered set (L,≤) is called a lattice if for any two elements
a, b ∈ L there exists the least upper bound denoted by a ∨ b and the greatest lower bound
denoted by a∧ b of the set {a, b}. The lattice is said to have zero and unit elements if there
are elements 0, 1 ∈ a such that 0 ≤ a and a ≤ 1 for every a ∈ L.

Note 40 We shall always assume every lattice to have a zero and unit elements. Such
lattices are called bounded.

Proposition 41 In a lattice L the following equalities hold

(i) idempotency: a ∧ a = a, a ∨ a = a,

(ii) commutativity: a ∧ b = b ∧ a, a ∨ b = b ∨ a,

(iii) associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c, a ∨ (b ∨ c) = (a ∨ b) ∨ c,

(iv) absorption: a ∧ (a ∨ c) = a, a ∨ (a ∧ b) = a,

furthermore, (i) - (iv) determine the lattice completely.

Definition 42 The lattice L is called complete if any subset of L has both the greatest
lower and the least upper bound. The lattice L is called σ-lattice if any countable subset of
L has the greatest lower and the least upper bound.

Definition 43 The element a ∈ L is an atom in L if b ≤ a implies b = a or b = 0. The
lattice L is called atomic if for any b ∈ L there exists an atom a such that a ≤ b. The
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lattice is called completely atomistic if any element is equal to the least upper bound of all
the atoms it majorizes, i.e. if for any 0 6= a ∈ L it holds that

b =
∨
i

ai , ai ≤ b (2.4)

where ai is atom.

Definition 44 The lattice L is called

(i) distributive if for any a, b, c ∈ L it holds that

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) . (2.5)

(ii) modular if the following condition holds

if a ≤ b then a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) . (2.6)

If a ≤ b then a ∨ b = b and so the modularity equality is equivalent to

if a ≤ b then a ∨ (b ∧ c) = b ∧ (a ∨ c) . (2.7)

Definition 45 Let L be a lattice. The map

a 7→ a⊥ (2.8)

is called orthocomplementation and a⊥ is called the orthocomplement of a if the following
properties are satisfied:

(i) (a⊥)⊥ = a,

(ii) If a ≤ b then b⊥ ≤ a⊥,

(iii) a ∧ a⊥ = 0,

(iv) a ∨ a⊥ = 1.

If an orthocomplementation is defined on a lattice L, then the lattice L is called an ortho-
complemented lattice. If a and b are elements in an orthocomplemented lattice, then they
are called orthogonal if a ≤ b⊥.

Definition 46 Boolean algebra is an orthocomplemented, distributive lattice. A Boolean
algebra which is also a σ-lattice is called Boolean σ-algebra.

Within the lattice theory, [12] defines state as the map ρ : L 7→ [0, 1] additive on
orthogonal elements of an orthocomplemented lattice L such that ρ(I) = 1.

Definition 47 The state ρ on a lattice L is called a Jauch-Piron state if the condition

ρ(a) = ρ(b) = 0

implies
ρ(a ∨ b) = 0 .

The lattice L is called Jauch-Piron lattice if every state on L is a Jauch-Piron state.
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The set P (A) of all projections in a C∗-algebra A is a poset. It holds that e ≤ f in P (A)
if, and only if, e f = f e = e. If A is unital, then the structure P (A) is an orthomodular
poset with the complement p⊥ = I−p. Further we shall need to define relation of equivalence
in P (A), which can be done in the sense of Murray-von Neumann.

Definition 48 An element v ∈ A is called a partial isometry if

v∗v = p , (2.9)

where p ∈ P (A).

Definition 49 Two projections p, q ∈ P (A) are called (Murray-von Neumann) equivalent
(in symbols p ∼ q) if

p = v∗v and q = vv∗ (2.10)

for some v ∈ A.

Proposition 50 The relation ∼ is an equivalence on the set P (A).

Definition 51 The projection p is said to be subequivalent to a projection q (in symbols
p . q) if there exists projection u such that p ∼ u and u ≤ q. The projections p and q in
a unital C*-algebra A are said to be unitarily equivalent (in symbols p ∼u q) if there is a
unitary map u ∈ A such that p = u∗qu.

Note 52 Orthogonal equivalent projections are always unitarily equivalent.

Definition 53 A projection p in a C∗-algebra A is said to be infinite if there is a projection
q ∈ A such that p ∼ q < p. If p is not infinite, then p is said to be finite. A C∗-algebra A is
finite if, and only if, all projections in A are finite. A unital C∗-algebra is said to be finite
(resp. infinite) if its unit is a finite (resp. infinite) projection. A projection in B(H) is finite
if, and only if, it is finite-dimensional. Hence, B(H) is finite if, and only if, dim H <∞.

Definition 54 A unital C∗-algebra is said to have real rank zero if the invertible elements
are dense in the set of all self-adjoint elements.

2.3 von Neumann algebras

The standard notation as in the previous part is preserved. In this paragraph H will be an
infinite-dimensional separable Hilbert space, i.e. a Hilbert space with countable orthonormal
basis. As we will see, it is possible to define von Neumann algebras either topologically or
algebraically (see von Neumann bicommutant Theorem). Before doing this we shall need to
introduce some new definitions.

2.3.1 Compact operators and traces

Definition 55 The operator x ∈ B(H) is called compact if it maps the unit ball of H onto
a pre-compact set. The set of all compact operators on H will be denoted by K(H).

Theorem 56 (Riesz-Schauder) Let x ∈ B(H) be a compact operator. Then (i) each
nonzero point of σ(x) is an eigenvalue of x, (ii) each nonzero eigenvalue of a has a finite
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multiplicity 6, (iii) σ(x) has at most one limiting point λ = 0, (iv) the set of eigenvalues is
countable:

σ(x) = {λj : j = 1, . . . , N}, N ≤ ∞ ,

and it is always possible to achieve that |λj| ≥ |λj+1|, j = 1, 2, . . .; if N = ∞, then
limj→∞ λj = 0.

Theorem 57 (Hilbert-Schmidt) For each normal compact operator x ∈ B(H) there is
an orthonormal basis consisting of the eigenvectors of x.

Definition 58 Let x ∈ B(H) and

||x||1 =
∑
e∈E

(|x|e, e) , (2.11)

where E is an orthonormal basis of H and |x| =
√
x∗x. The operator x ∈ B(H) is said to

be the trace class operator if ||x||1 < ∞. The set of all trace class operators on H shall be
denoted by L1(H).

Note 59 The positive number ||x||1 is the same for all orthonormal bases of E and is called
the Hilbert-Schmidt norm of the operator x.(

L1(H), || · ||1
)

is an involutive ∗-algebra with respect to the usual adjoint operation
such that L1(H) ⊂ K(H). L1(H) is a self-adjoint ideal in B(H). A self-adjoint operator x is
of trace class if, and only if, x =

∑
n λnpn, where (pn) is a sequence of pairwise orthogonal

one-dimensional projections and
∑

n |λn| < ∞. For each x ∈ L1(H) the sum
∑

e∈E (xe, e)
converges and the number

tr x =
∑
e∈E

(xe, e) (2.12)

is called the trace of x. Moreover if x ∈ L1(H), then tr(xy) = tr(yx) for all y ∈ B(H).

Definition 60 The weak operator topology on B(H) is given by the system of seminorms
a ∈ B(H) 7→ |(ax, y)|, where x, y ∈ H. The strong operator topology is given by the system
of seminorms a ∈ B(H) 7→ ||ax||, where x ∈ H. The σ-weak (ultraweak) topology is given by
the system of seminorms induced by the trace class operators, that is a ∈ B(H) 7→ |tr(ta)|,
where t ∈ L1(H).

Definition 61 C∗-algebra that can be faithfully represented as a strongly operator closed
∗-subalgebra of B(H) is called the von Neumann algebra (W ∗-algebra).

On a ∗-subalgebra M of B(H) the weak operator, strong operator and ultraweak closed-
ness are equivalent.

Theorem 62 (von Neumann Bicommutant) A unital ∗-subalgebra M of B(H) is a von
Neumann algebra if, and only if, M ′′ = M , where M ′′ is the bicommutant of M .

The center Z(M) = M
⋂
M ′ of von Neumann algebra M is an abelian von Neumann

subalgebra of M .

Definition 63 A von Neumann algebra M is called the factor if Z(M) consists of scalar
multiples of the unit of M only. For each projection p ∈ P (M) we define the central cover,
c(e), of e as the smallest central projection majorizing e.

6 The geometric multiplicity of an eigenvalue λ of a is the dimension of the subspace of vectors x for which
ax = λx.
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If z is a central projection and p ∈ P (M), then c(zp) = zc(p). Moreover, c(e) =
sup{u∗eu |u ∈ U(M)}.

2.3.2 Normal states and homomorphisms

Definition 64 Let M be a von Neumann algebra acting on a Hilbert space H. A bounded
functional ϕ on M is called normal if ϕ(uα) → ϕ(u) whenever uα ↗ u in Msa.

Theorem 65 Let M be a von Neumann algebra. The following conditions are equivalent:
(i) ϕ is a normal functional (ii) ϕ is weakly operator continuous on the unit ball of M (iii) ϕ
is strongly operator continuous on the unit ball of M (iv) ϕ is a completely additive measure
on the projection lattice P (M), i.e.

ϕ
(∑

α

pα

)
=

∑
α

ϕ(pα) , (2.13)

for any system of pairwise orthogonal projections, {pα}, in M (v) ϕ is continuous in the
ultraweak topology.

It follows from the previous proposition that any normal functional on M is given by a
trace class operator t ∈ L1(H) such that

ϕ(x) = tr(tx) , (2.14)

for each x ∈M .

Definition 66 Let ϕ be a state on von Neumann algebra M . The projection p is called the
support of ϕ if ϕ(I− p) = 0 and ϕ(q) > 0 for any subprojection q of p.

Note 67 Every normal state has a support.

Note 68 The set of all normal states on M will be denoted by Sn(M). It is a convex
compact set that is weak∗-dense in the state space S(M).

Definition 69 Let π : M 7→ N be a ∗-homomorphism between von Neuman algebras M
and N . The map π is called normal if uα ↗ u in Msa implies that π(uα) ↗ π(u) in N .

If π is a normal ∗-homomorphism, then the algebra π(M) is a von Neumann subalgebra
of N . If π is a faithful ∗-homomorphism of M onto N , then π is a normal ∗-isomorphism.
A state on a von Neumann algebra is normal if, and only if, its G.N.S. representation is
normal.

2.3.3 Projection lattice

The projection lattice P (M) of von Neumann algebra M is a complete orthomodular lattice
endowed with the equivalence relation ∼.

Definition 70 A projection e ∈ M is called σ-finite (relative to M) if each orthogonal
family of nonzero subprojections of e is countable. M is said to be a σ-finite algebra if the
unit of M is a σ-finite projection.

Note 71 Every algebra acting on the separable Hilbert space is σ-finite, the converse is not
true.
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Proposition 72 (Paralellogram rule, Kaplansky formula) Let e, f be arbitrary
projections in the von Neumann algebra M . Then

(e ∨ f)− f ∼ e− (e ∧ f) . (2.15)

Let 0 6= I ⊂ N, (eα)α∈I and (fα)α∈I be two families of pairwise orthogonal projections
such that eα ∼ fα ,∀α ∈ I. Then ∑

α∈I

eα ∼
∑
α∈I

fα . (2.16)

Theorem 73 (Comparability theorem) For any pair e, f ∈ P (M), there exists a central
projection z ∈M such that

ze . zf and (I− z)e & (I− z)f . (2.17)

Definition 74 A projection e ∈ M is called abelian if the hereditary subalgebra eMe is
abelian.

2.3.4 Classification theory

We shall classify von Neumann algebras according to decomposition into direct sum with
its direct summands being of certain types. Those express something like the ”degree of
noncommutativity” of such von Neumann algebra.

Definition 75 A von Neumann algebra is said to be Type I algebra if there is an abelian
projection e ∈M such that c(e) = I.
Definition 76 Let n ∈ N be cardinal number. If the unit in a von Neumann algebra M
can be written as a sum of n equivalent abelian projections, then M is said to be of Type
In. Each algebra of Type In is called homogenous Type I algebra.

Note 77 Type I1 algebras are just abelian von Neumann algebras.

For every von Neumann algebra M of type I and each cardinal less than card M there is
a unique central projection zα such that zαM is zero or Type Iα and such that

∑
α zα = I. All

Type Iα algebras are ∗-isomorphic copies of A
⊗
B(Hα), where A is an abelian von Neumann

algebra and Hα is a Hilbert space such that dim Hα = α. Type I algebra is finite if, and
only if, it is a direct sum of countably many Type In, n < ∞ algebras. Let e ∈ P (M)
where M is a Type I algebra. Then there are orthogonal projections e1, e2, e3 such that
e = e1 + e2 + e3, e1 ∼ e2 and e3 is abelian.

Definition 78 A totally disconnected compact Hausdorff topological space is called a Stone
space (stonean space). The space is called hyperstonean if it is stonean and if for any
nonzero positive real function f ∈ C(X) there is a positive normal functional ρ on C(X)
with ρ(f) 6= 0.

The finite Type I homogenous algebras can be indentified with the algebras Mn(C(X)),
whereX is a hyperstonean space. This algebra can also be represented as algebra C(X,Mn(C))
of all continuous functions on a hyperstonean space X with values in matrix algebra Mn(C).
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The algebras of Type I contain many abelian hereditary subalgebras. Next, von Neu-
mann algebras that have no nonzero abelian hereditary subalgebra shall be investigated
further.

Definition 79 A von Neumann algebra is said to be of Type II if it has no nonzero abelian
projection but has a finite projection e such that c(e) = I. The finite algebras of Type II
are called Type II1, the infinite ones are called Type II∞. A von Neumann algebra is called
semifinite if it is a Type I or Type II or a direct sum of algebras of these types.

Definition 80 Let M be a von Neumann algebra with the center Z(M). The center-valued
trace T : M 7→ Z(M) is a linear map such that: (i) T (xy) = T (yx) for all x, y ∈ M (ii) T
is identity on Z(M) (iii) T (x) > 0 whenever x ∈M is positive operator.

Theorem 81 Any finite von Neumann algebra admits exactly one center-valued trace, T .
Moreover, T has the following properties: (i) T (zx) = zT (x) for all z ∈ Z(M) and x ∈ M
(ii) T (e) ≤ T (f) for projections e, f if, and only if, e . f (iii) ||T || ≤ 1 (iv) T is ultraweakly
continuous.

The following proposition classifies von Neumann algebras in terms of the traces.

Proposition 82 Let T : M 7→ Z(M) be a center-valued trace on M . Then the following
holds:

(i) If M is of Type In, then T (P (M)) consists of all elements of the form

1

n
z1 +

2

n
z2 + · · ·+ n− 1

n
zn−1 + zn , (2.18)

where z1, . . . , zn are pairwise orthogonal central projections.

(ii) If M is of Type II1, then T (P (M)) consists of all positive elements in the unit ball of
Z(M).

A state ρ is called tracial (or a trace) if ρ(x∗x) = ρ(xx∗). Significant property of von
Neumann algebras is that if ρ is a state on Z(M), then ρ ◦ T is a unique tracial state on M
extending ρ.

Let M be a factor. Type In factors are matrix algebras Mn(C). Here, the center-valued
trace is normalized matrix trace, i.e. T (e) ∈ { k

n
| 0 ≤ k ≤ n} for all projections e ∈M . This

is not the case of Type II1 factors. The restriction of faithful tracial state on Type II1 factor
to projection lattice attains all values in the interval [0, 1]. Thus Type II1 factors may be
thought of as ”continuous dimension” or ”continuous matrix” algebras.

Definition 83 A von Neumann algebra is said to be of Type III (or purely infinite) if it
contains no nonzero finite projection.

Proposition 84 Every von Neumann algebra is uniquely decomposable into direct sum of
algebras of Type I, II1, II∞ and III. In particular any von Neumann factor is one of the
Type I, II1, II∞ and III.

Proposition 85 If von Neumann algebra has zero Type I finite part, then for every projec-
tion e ∈M there exist orthogonal equivalent projections e1, . . . , en such that e =

∑n
i=1 ei. In

particular, for any projection e in an arbitrary von Neumann algebra there are projections
e1, e2 and e3 such that e = e1 + e2 + e3, e1 ∼ e2 and e3 is abelian.

Proof can be found in [9].
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2.3.5 Measures and quasi-functionals

Definition 86 Let P (M) be a projection lattice of a von Neumann algebra M , X a Banach
space, and let µ : P (M) 7→ X be a map satisfying

µ(e+ f) = µ(e) + µ(f) (2.19)

whenever ef = 0. Then µ is said to be a (finitely additive) X-valued measure on P (M).
If, moreover, sup{||µ(e)|| | e ∈ P (M)} < ∞, we say that µ is bounded. Further, if X is
the Banach space of all complex or real numbers, we call µ the complex or real measure on
P (M), respectively.

Theorem 87 (Gleason Theorem) Let M be a von Neumann algebra with no direct
summand of Type I2. Then each bounded complex measure on P (M) extends to a bounded
linear functional on M .

Proof of the Gleason Theorem is in [9].

Theorem 88 Let M be a von Neumann algebra with no direct summand of type I2 and let
X be a Banach space. Then each bounded X-valued measure µ on P (M) extends uniquely
to a bounded linear operator T from M to X.

Proof. µ is bounded if, and only if, there is K ≥ 0 such that ||µ(p)|| ≤ K for all p ∈ P (M).
We want to show that µ extends to a bounded linear map on V (M) = {P (M)}lin. Suppose
that x ∈ V (M) has the form x =

∑n
j=1 λjpj. We have to show that the definition of µ is

correct, i.e. not depending on the way of writing x as a linear combination of the projections.
Let ϕ ∈ X∗ and µ : P (M) 7→ X bounded X-valued measure. Since each functional on a

Banach space is bounded, ϕ◦µ is a bounded measure on P (M). By the previous Theorem ϕ◦µ
extends to a linear functional ϕ̂ ∈M∗. By [9] we have that ||ϕ̂|| ≤ 4 sup{|ϕ̂(p)| | p ∈ P (M)}.
Applying this we obtain

|ϕ ◦ µ(x)| ≤ ||ϕ ◦ µ|| · ||x|| ≤ 4 · ||x||sup{|(ϕ ◦ µ)(p) | p ∈ P (M)} ≤
7 ≤ 4||x||·sup{||ϕ||·|µ(p)| | p ∈ P (M)}= 4||x||·||ϕ||·sup{|µ(p)| | p ∈ P (M)} = 4||x||·||ϕ||·K.

By the Hahn-Banach Theorem there is ψ ∈ X∗, ||ψ|| = 1 such that

||
n∑
i

λiµ(pi)|| = |ψ(
n∑

i=1

λiµ(pi))| ≤ 4||ψ|| · ||x|| ·K = 4K||x|| .

This inequality immediately implies that if
∑k

i=1 αiqi is another expression of x as a linear
combination of projections q1, . . . , qk, then

0 ≤ ||µ(
n∑

i=1

λipi)− µ(
k∑

i=1

αiqi)|| = ||
n∑

i=1

λiµ(pi)−
k∑

i=1

αiµ(qi)|| ≤

≤ 4K||x− x|| = 0 ,

7 |(ϕ ◦ µ)(p) ≤ |ϕ| · |µ(p)|
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which implies that
∑n

i=1 λiµ(pi) =
∑k

i=1 αiµ(qi).
Define a map T : V (M) 7→ X by

T
( n∑

i=1

λipi

)
=

n∑
i=1

λiµ(pi) .

Since

||Tx|| = ||
n∑

i=1

λiµ(pi)|| ≤ 4K · ||x||

and by definition ||T || = sup{||Tx|| : ||x|| = 1} = 4K, we have that ||T || ≤ 4K and hence
T is bounded.

By definition, V (M) is dense in M . To complete the proof it is enough to apply con-
tinuous extension theorem, which says that T extends uniquely to a bounded operator from
M into X, B(M,X).

Definition 89 Let M be a von Neumann algebra. A map ρ : M 7→ C is called a quasi-linear
functional (also quasi-functional) if it satisfies:

(i) ρ is a linear functional on any abelian von Neumann subalgebra A of M ,

(ii) ρ(x+ iy) = ρ(x) + iρ(y) for all self-adjoint elements x, y ∈M ,

(iii) ρ is bounded on the unit sphere of M .

Moreover, we say that ρ is self-adjoint if ρ(x) ∈ R whenever x is a self-adjoint element of M .

The following proposition is a part of the proof of the Gleason Theorem.

Proposition 90 Let M be a von Neumann algebra and µ : P (M) 7→ C a bounded measure.
Then µ extends uniquely to a quasi-linear functional µ̂ on M . If µ is real, then µ̂ is self-
adjoint.

Proof is in [9].
Now we will show an interesting application of the Gleason Theorem to multimeasures.

This can be viewed as another generalization of the Gleason Theorem. Before we get to the
application, a few definitions are needed to be pointed out.

Definition 91 Let A1, . . . , An be C∗-algebras with P (A1), . . . , P (An) being their respective
projection structures. Let X be a Banach space. The map m : P (A1) × · · · × P (An) 7→ X
is called an X-valued multimeasure (in short a multimeasure) if m is separately finitely
additive, meaning that, for each j = 1, . . . , n,

m(p1, . . . , pj−1, q1 + q2, pj+1, . . . , pn)

= m(p1, . . . , pj−1, q1, pj+1, . . . , pn) +m(p1, . . . , pj−1, q2, pj+1, . . . , pn) , (2.20)

where pi ∈ P (Ai), q1, q2 are orthogonal projections in P (Aj). If X = C, we call m the
complex multimeasure. Completely additive and σ-additive multimeasures are defined in
the standard way as measures separately completely additive and σ-additive, respectively.
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In case when n = 2 we call the multimeasure the bimeasure. Moreover, if A = A1 = A2 we
say that m is a bimeasure on A. A bimeasure m on A is said to be hermitian if

m(p, q) = m(q, p) (2.21)

for all projections p, q ∈ P (A).

Definition 92 Let X1, . . . , Xn be Banach spaces. Let F : X1× . . .×Xn 7→ X be an n-linear
map. F is said to be bounded if there is a constant K ∈ R+

0 such that, for each xi ∈ Xi,

||F (x1, . . . , xn)|| ≤ K||x1|| · · · ||xn|| . (2.22)

A smallest constant K for which this inequality holds is said to be the norm of F (in symbols
||F ||).
Theorem 93 Let M1, . . . ,Mn be von Neumann algebras, each having no direct summand of
Type I2. Suppose that m : P (M1)× . . .×P (Mn) 7→ X is a bounded X-valued multimeasure.
There is a unique bounded n-linear map F : M1 × . . .×Mn 7→ X which extends m.

Proof is in [9].

2.4 Jordan operator algebras

Consider an arbitrary (in general non-associative) algebra A. For each a, b ∈ A define
a map ◦ : A×A 7→ A by

a ◦ b =
1

2
(ab+ ba) . (2.23)

The map ◦ is
(i) linear: (a+λb)◦ c = 1

2
((a+λb)c+ c(a+λb)) = 1

2
(ac+ ca+λ(bc+ cb)) = a◦ c+λb◦ c,

(ii) commutative: a ◦ b = 1
2
(ab+ ba) = 1

2
(ba+ ab) = b ◦ a.

Linearity and commutativity both imply bilinearity. Also: (iii) a ◦ (b + c) = a ◦ b + a ◦ c,
(iv) (b + c) ◦ a = b ◦ a + c ◦ a, (v) λ(a ◦ b) = (λa) ◦ b = a ◦ (λb). Hence ◦ defines a bilinear,
commutative product on A. Thus AJ , which by definition is the vector space A with the
product ◦, is a commutative algebra. If A is associative, we call ◦ the special Jordan product
in A. In general, associativity of A does not imply associativity of AJ as the following
example shows. Let A = M2(R) and let

a =

(
1 0
0 0

)
, b =

(
0 0
0 1

)
, c =

(
0 1
1 0

)
.

Then (ab)c = a(bc) = 0, but 0 = (a ◦ b) ◦ c 6= a ◦ (b ◦ c) = 1
4
c.

However, the product ◦, if A is associative, satisfies the following weak form of associa-
tivity:

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 . (2.24)

Definition 94 Let A be an algebra with the product written (a, b) 7→ a ◦ b. A is called a
Jordan algebra if the following two identities are satisfied for all a, b ∈ A :

a ◦ b = b ◦ a (commutativity) (2.25)

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 (Jordan axiom) . (2.26)
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Jordan algebras are power associative. The powers are defined inductively by a0 = 1
and an+1 = a◦an (n ≥ 1). Put a◦k := a ◦ · · · ◦ a︸ ︷︷ ︸

k−times

, k ≥ 2. Note that a◦2 = 1
2
(a2 +a2) = a2. By

induction we get that a◦k = ak. Because of this we shall write ak instead of a◦k. For further
notation it is convenient to introduce the multiplication operator Ta : A 7→ A for a ∈ A by

Tab = a ◦ b . (2.27)

The power associativity can be put in the form of Lemma.

Lemma 95 Let A be a Jordan algebra and a ∈ A. Then, for m,n ∈ N,
(i) am+n = am ◦ an,
(ii) TamTan = TanTam .

Definition 96 A Jordan subalgebra is called reversible if it is closed under the Jordan
multiple product for all n ∈ N, and irreversible otherwise.

Definition 97 Let A be an associative algebra. By a Jordan subalgebra of A we mean a
subalgebra of AJ , i.e. a linear subspace of A which is closed under the Jordan product ◦.
Any algebra isomorphic to a Jordan subalgebra of an associative algebra will be called a
special Jordan algebra.

From here and definition of Jordan algebra it immediately follows that any special
Jordan algebra is a Jordan algebra. The converse is not true. The Jordan algebras which
are not special will be called exceptional. Example of exceptional Jordan algebra is H3(O),
where O is the field of octonions8.

Definition 98 Let A be an associative algebra. The Jordan triple product is defined by

{abc} =
1

2
(abc+ cba) . (2.28)

The Jordan triple product can be expressed in terms of the Jordan product

{abc} = (a ◦ b) ◦ c+ (b ◦ c) ◦ a− (a ◦ c) ◦ b . (2.29)

The Jordan multiple product is defined by

{a1, . . . , an} =
1

2
{a1 · · · an + an · · · a1} , (2.30)

and cannot be expressed in terms of the Jordan product if n ≥ 4. There exist Jordan
subalgebras of associative algebras which are not closed under the multilinear product.

The following Macdonalds’s Theorem has applications in extending validity of identities
to more general structures. We only mention its rephrased version.

Theorem 99 (rephrased Macdonald’s Theorem) Any polynomial identity in three
variables, with degree at most 1 in the third variable, and which holds in all special Jordan
algebras, holds in all Jordan algebras.

Theorem 100 (Shirshov-Cohn) Any Jordan algebra generated by two elements (and I,
if unital) is special.

8 see appendix
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For examples illustrating the use of the Macdonald’s and Shirshov-Cohn’s theorem, see [10],
section 2.4.16., page 35.

Consider an associative algebra A. Recall that by definition AJ is commutative but not
associative. This suggests two conditions: for any c ∈ AJ , a ◦ (c ◦ b) = (a ◦ c) ◦ b; or the
subalgebra AJ generated by given a, b is associative. Rewriting the first condition explicitly
yields abc − bac − cab + cba = 0. Put [a, b] := ab − ba, then the equation above can be
rewritten as

[
[a, b], c

]
= 0. It is evident that this is implied by the relation [a, b] = 0. As we

see now, the associativity of AJ is closely related to commutation relation. Before putting
this in the form of Lemma, we need to introduce commutation in a Jordan algebra.

Definition 101 Two elements a, b in a Jordan algebra A are said to operator commute if
the operators Ta, Tb commute, i.e. if (a ◦ c) ◦ b = a ◦ (c ◦ b) for all c ∈ A. By the center of A
we mean the set of all elements of A which operator commute with every other element of
A.

Lemma 102 The center of a Jordan algebra is an associative subalgebra.

In Jordan algebra A an element p ∈ A is called idempotent if p2 = p◦p = p; p, q ∈ A are
said to be orthogonal if p ◦ q = q ◦ p = 0. Let A be a unital, associative algebra containing
orthogonal idempotents p1, . . . , pn with sum I. Then we have a decomposition A =

⊕
i,j Aij,

where Aij = piApj. We ask if this is also possible for Jordan algebras. Note that piApj does
not make sense in the Jordan algebra, but {piApj} does.

It is convenient to introduce the operator

Ua,c(b) = {abc} . (2.31)

Let p be an idempotent in A. Let p⊥ = I− p. Then

p ◦ a =
1

2
(a+ {pap} − {p⊥ap⊥}) , (2.32)

which can be rewritten as Tpa = 1
2
(ida+ Upa− Up⊥a), or

Tp =
1

2
(id + Up − Up⊥) , (2.33)

where id is identity. Up and Up⊥ are orthogonal idempotent maps. We can rewrite the
previous formula as

Tp = Up +
1

2
(id − Up − Up⊥) + 0 · Up⊥ . (2.34)

Up, id − Up − Up⊥ and Up⊥ are mutually orthogonal idempotent maps with sum I. Thus Tp

has eigenvalues in the set {0, 1
2
, 1} and we have so called the Peirce decomposition of A with

respect to p:

A = A1 ⊕A 1
2
⊕A0 , (2.35)

where Aj is the eigenspace of Tp corresponding to the eigenvalue j ∈ {0, 1
2
, 1}.

In Jordan algebras, two idempotents p, q will be called orthogonal if p ◦ q = 0. The
following theorem generalizes the Peirce decomposition to the case of several orthogonal
idempotents. It is called the Peirce decomposition with respect to the set {pj}j=1,...,n ⊆ A.
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Theorem 103 Let A be a unital Jordan algebra. Suppose p1, . . . , pn are pairwise orthogonal
idempotents in A with sum I. Let Aij = {piApj}. Then Aij = Aji, and we have Peirce
decomposition with respect to p1, . . . , pn

A =
⊕

1≤i≤j≤n

Aij . (2.36)

Furthermore, the following multiplication properties hold:

Aij ◦ Akl = 0 if {i, j} ∩ {k, l} = ∅ , (2.37)

Aij ◦ Akj ⊆ Aik if i, j, k are all distinct , (2.38)

Aij ◦ Aij ⊆ Aii +Ajj , (2.39)

Aii ◦ Aij ⊆ Aij . (2.40)

Mn(R), Mn(C) shall denote the algebra of all matrices over R or C, respectively. For
convenience we shall use the symbolMn in the case when specification of field is not necessary.
Product in Mn is nothing but usual matrix product (aij)(bjk) =

∑
j aijbjk. The Hermitian

part of Mn is denoted by Hn. Defining product in Hn by a ◦ b = 1
2
(ab+ ba) we have Jordan

algebra structure (the field of real or complex numbers is associative algebra, however this
condition is not necessary). Hn shall be called a Jordan matrix algebra.

The matrix units in Mn are the elements eij, where 1 ≤ i ≤ n and 1 ≤ j ≤ n. eij

is a matrix in Mn whose (i, j) entry is 1, the others being zero. Obviously, e∗ij = eji,∑n
i=1 eii = I ∈ Mn and eijekl = 0 if j 6= k, eijejk = eik. Arbitrary matrix (aij) ∈ Mn can be

written as a linear combination of matrix units, i.e. (aij) =
∑

i,j aijeij.

Definition 104 Let p, q be orthogonal idempotents in a Jordan algebra A. They are said
to be strongly connected if there exists v ∈ {pAq} such that v2 = p+ q.

The following theorem gives condition under which a unital Jordan algebra is a Hermi-
tian Jordan matrix algebra, i.e. A ∼

= Hn.

Theorem 105 (The coordinatization theorem) Let A be a unital Jordan algebra.
Suppose that A contains n ≥ 3 pairwise orthogonal strongly connected idempotents with
sum I. Then A is isomorphic to Hn(R) for some ∗-algebra R.

Definition 106 A Jordan algebra A over the field R is called formally real if ai ∈ A for all
i = 1, . . . n and

n∑
i=1

a2
i = 0 implies a1 = . . . = an = 0 . (2.41)

Proposition 107 Suppose R = R, C, O or Q9. Let n ≥ 2. If R = O, assume n ≤ 3. Then
Hn(R) is formally real Jordan algebra.

Definition 108 Let A be arbitrary ring or algebra. A nonzero idempotent p ∈ A such that
for any nonzero idempotent q ∈ A with p · q = q · p = q implies q = p is called minimal.

One of the major contributions to the theory of Jordan algebras is the following theorem
made by Jordan, von Neumann and Wigner when they classified all simple finite-dimensional
formally real Jordan algebras.

9 Here Q denotes the field of quaternions (see appendix).
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Theorem 109 Every finite-dimensional, formally real, unital Jordan algebra A is a direct
sum of simple algebras. IfA is simple then it contains n ≥ 1 pairwise orthogonal and strongly
connected minimal idempotents with sum I. If n = 1, A ' R. If n ≥ 3, A is isomorphic to
one of Hn(R), Hn(C), Hn(Q) or, if n = 3, Hn(O).

Formally real Jordan algebra with n = 2 produces so-called spin factor which has specific
properties. Spin factors are discussed in the section 2.4.4

In the next section we introduce JB algebras, which can be viewed as a proper Banach
algebra version of the formally real Jordan algebras. Then we continue by JW and JBW
algebras.

Definition 110 (JC algebra) Let H be a complex Hilbert space and B(H) the algebra
of all bounded linear operators on H. Let B(H)sa denote the special Jordan algebra of all
self-adjoint operators in B(H) equipped with the operator norm. By a JC algebra we shall
mean any norm-closed Jordan subalgebra of B(H)sa. By a JC algebra we shall often call any
normed Jordan algebra isometrically isomorphic to a JC algebra.

Consider finite-dimensional algebras Hn(R), where R = R or C. Since Hn(C) = B(Cn)sa,
where Cn is the n-dimensional Hilbert space, Hn(C) is by definition a JC algebra. Hn(R) is a
norm-closed Jordan subalgebra of Hn(C) since the JC property of Hn(R) is hereditary from
Hn(C). Ultimately, we have that in finite dimensions, Hn(R) and Hn(C) are all JC algebras.

Definition 111 (Jordan Banach algebra) A Jordan Banach algebra is a real Jordan
algebra A equipped with a complete norm satisfying

||a ◦ b|| ≤ ||a|| · ||b||, a , b ∈ A . (2.42)

Definition 112 (JB algebra) A JB algebra is a Jordan Banach algebra A in which the
norm satisfies the following two additional conditions for a, b ∈ A :

||a2|| = ||a||2 , (2.43)

||a2|| ≤ ||a2 + b2|| . (2.44)

As usual, if A is unital, we shall denote the identity by I. Because I2 = I, by the previous
definition we have that ||I|| = ||I2|| = ||I||2 which (together with nonnegativity of the norm
|| · ||) implies that ||I|| = 1. Each JC algebra is a JB algebra. All finite-dimensional (unital)
formally real Jordan algebras are JB algebras, which is false in infinite dimensions.

2.4.1 Spectral theory

In this section we shall give a brief review of the spectral theory of the JB algebras. Two
spectral theorems will be included, one for general associative JB algebras and one for singly
generated ones.

LetX be a locally compact Hausdorff space. By CC
0 (x) (resp. C0(X)) we shall denote the

set of continuous complex (resp. real) functions on X vanishing at ∞. If X is compact, we
shall write C(X) instead of C0(X). CC

0 (X) along with pointwise multiplication, ∗ operation
f ∗(ω) = f(ω), and norm ||f || = supω∈X |f(ω)| is an abelian C∗-algebra with self-adjoint
part C0(X). Furthermore, if X is compact and f ∈ CC

0 (X) then spectrum σ(f) = f(X).
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C0(X) is an associative JC algebra under pointwise multiplication and supremum norm. The
following theorem says that the converse is true, too.

Theorem 113 (The spectral theorem I.) Let A be an associative JB algebra. Then
there is a locally compact Hausdorff space X such that A is isometrically isomorphic to
C0(X). Furthermore, A is unital if and only if X is compact.

Proof. To make the proof more transparent let us summarize the idea of the proof. We will
endow Ã with certain operations, involution and norm to become an abelian C∗-algebra.
Both, the Gelfand transform theorem and characterization of abelian C∗-algebras then com-
plete the proof.

Let Ã denote the complexification of A, i.e. Ã := {a+ ib : a, b ∈ A}. Endowing Ã with
the product (a+ ib)(c+ id) = (a ◦ c− b ◦ d)+ i(a ◦ d+ b ◦ c) and involution (a+ ib)∗ = a− ib,
we obtain an involutive abelian complex algebra (note that Jordan product is always com-
mutative). Define

||a+ ib|| := ||a2 + b2||1/2, a, b ∈ A. (2.45)

We shall show that || || is a norm on Ã making Ã into an abelian C∗ algebra containing A
as its self-adjoint part.

Let z = a + ib ∈ Ã. Obviously ||z|| = 0 if and only if z = 0. Let λ ∈ C, then
||λz|| = |λ|||z||. Indeed, let λ = η + iξ, where η, ξ ∈ R, then

||λz|| = ||(ηa− ξb) + i(ξa+ ηb)|| = ||(ηa− ξb)2 + (ξa+ ηb)2||1/2 =

= ||η2a2 − ξ2b+ ξ2a2 + η2b2||1/2 = ||(η2 + ξ2)(a2 + b2)||1/2 =

= (η2 + ξ2)1/2||a2 + b2||1/2 = |λ|||z||.

We also have that ||z||2 = ||a2 + b2|| = ||(a− ib)(a+ ib)|| = ||z∗z||. Moreover if w ∈ Ã then
by the C∗ property of || ||,

||zw||2 = ||w∗z∗zw|| = ||(z∗z) ◦ (w∗w)|| ≤ ||z∗z|| ||w∗w|| = ||z||2||w||2,

which shows ||zw|| ≤ ||z|| ||w|| for all z, w ∈ Ã. It remains to show the triangle inequality.
Let z = a+ ib, w = c+ id belong to Ã. Then by definition of the product in Ã we have that

z∗w + w∗z = 2a ◦ c+ 2b ◦ d ∈ A .

Furthermore, by the defining properties of JB algebras and associativity of A we find

||a ◦ c+ b ◦ d||2 ≤ ||(a ◦ c+ b ◦ d)2 + (a ◦ d− b ◦ c)2|| =

= ||(a2 + b2) ◦ (c2 + d2)|| ≤ ||a2 + b2|| ||c2 + d2|| = ||z||2||w||2.

Now we will evaluate ||z + w||2. Note that z, w ∈ B(H). Norm of operator a ∈ B(H) is
defined as ||a|| := sup{||ax|| : x ∈ H, ||x|| = 1}. The norm || || is induced by an inner
product on H in the way ||(z+w)x||2 =< (z+w)x, (z+w)x >, which being estimated yields

< (z + w)x, (z + w)x >= ||zx||2 + ||wx||2+ < zx,wx > + < wx, zx >=

= ||zx||2 + ||wx||2+ < zx,wx > +< zx,wx > ≤
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≤ ||zx||2 + ||wx||2 + | < zx,wx > |+ |< zx,wx >|︸ ︷︷ ︸
=|<zx,wx>|

=

= ||zx||2 + ||wx||2 + 2| < zx,wx > | .

Employing the Schwartz inequality on the last term, | < zx,wx > | ≤ ||zx||||wx||, we can
write

||(z + w)x||2 ≤
(
||zx||+ ||wx||

)2
. (2.46)

Since (2.46) holds true in H it also does for all x ∈ H such that ||x|| = 1. Put

S1 := {||(z + w)x||2 : x ∈ H, ||x|| = 1},

S2 := {
(
||zx||+ ||wx||

)2
: x ∈ H, ||x|| = 1}.

It is evident that S1 ≤ S2 for all x ∈ H such that ||x|| = 1. Because z, w ∈ B(H) are
bounded, we have that sup S2 <∞. Hence sup S1 exists and with the help of the fact that
suprema preserve inequalities we get that

sup S1 ≤ sup S2 ,

which is nothing but

||z + w||2 ≤
(
||z||+ ||w||

)2
,

proving the triangle inequality.
A is norm-complete, i.e. every Cauchy sequence (aα)α has limit in A with respect to

metric induced by norm, i.e. ||aα||
n→∞→ ||a||. Now let (zn)n be a Cauchy sequence in Ã.

Put zn = an + ibn for all n ∈ N, where (an)n, (bn)n are Cauchy sequences in A with limits
a, b ∈ A, respectively. Employing the norm defined as above, we obtain

||zn|| = ||a2
n + ib2n||1/2 n→∞→ ||a2 + ib2||1/2 = ||z|| ∈ Ã ,

hence Ã is complete. Thus we have shown that Ã is an abelian C∗ algebra. By the Gelfand
transform theorem we have that Ã is isometrically isomorphic to C0

(
Ω(Ã)

)
, where Ω(Ã) is

the spectrum of algebra Ã. Put X := Ω(Ã). We already know that X is a locally compact
Hausdorff space and is compact if and only if Ã is unital.

If A is a unital Jordan algebra and a ∈ A, we denote by C(a) the smallest norm-closed
Jordan subalgebra of A containing a and I. Evidently C(a) is associative. The spectrum
σ(a) of a is defined in a usual way, i.e. to be the set of λ ∈ R such that a−λI does not have
an inverse in C(a).

Theorem 114 (The spectral theorem II.) Let A be a unital Jordan Banach algebra.
Let a ∈ A and suppose C(a) is a JB algebra in an equivalent norm ||| |||. Then C(a) is
isometrically isomorphic to C(σ(a)) with respect to ||| |||.

Proof. By the previous spectral theorem there is a compact Haudsorff space X such that
C(a) with the norm ||| ||| is mapped isometrically and isomorphically onto C(X). Thus σ(a)
as defined above equals the spectrum of a as an element in C(X). Thus by the complex
spectral theorem C(a) is isometrically isomorphic to C(σ(a)).
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Proposition 115 Let A be a unital Jordan Banach algebra such that C(a) is a JB algebra
in the given norm for each a ∈ A. Then A is a JB algebra.

Proposition 116 Suppose A is a complete order unit space which is a Jordan algebra for
which the distinguished order unit acts as an identity element, and suppose

−I ≤ a ≤ I ⇒ 0 ≤ a2 ≤ I, (2.47)

for all a ∈ A. Then A is a JB algebra in the order norm.

The set of all states (positive, norm-one linear functionals) in A will be denoted by
S(A). The set S(A) is convex for any JB algebra A. For any JB algebra, whether unital or
not, we call any extreme point of S(A) a pure state.

Lemma 117 Let A be a JB algebra and ρ a state on A. Then if a, b ∈ A, we have that
(i) ρ(a ◦ b)2 ≤ ρ(a2)ρ(b2),
(ii) ρ(a)2 ≤ ρ(a2).

In particular, the map a 7→ ρ(a2)
1
2 is a seminorm on A.

Proposition 118 If A is a unital JB algebra, then A is a complete order unit space with
the ordering induced by A+ and order unit the identity I. The order norm is the given one,
and a ∈ A satisfies −I ≤ a ≤ I ⇒ 0 ≤ a2 ≤ I.

Hence we see that the implication in the proposition 116 can be reversed in unital JB
algebras. For non-unital JB algebras this is not that clear. One might suggest that adjoining
an identity to a non-unital JB algebra would lead to the same result. However, the problem
is that while this is easy for C∗-algebras, it is not so simple to prove that we get a JB algebra
when we adjoin a unit to a non-unital JB algebra.

The next proposition gives a GNS representation of Jordan matrix algebras analogously
to the case of C∗-algebras.

Proposition 119 Let A = Hn(R), n ≥ 2, be a Jordan matrix algebra which is also a
JB algebra. Assume R is associative. Then there exists a ∗-representation of Mn(R) on a
complex Hilbert space carrying A isometrically onto a reversible JC algebra.

2.4.2 JBW algebras

The Jordan analogue to (abstract) von Neumann algebras are JBW algebras. Von
Neumann algebras are by definition ultraweakly closed C∗-algebras on a Hilbert space. The
corresponding Jordan algebras will be called JW algebras. JW algebras is a smaller class
than that of JBW algebras (see definition below).

Definition 120 Let M be a JB algebra. M is said to be monotone complete if each bounded
increasing set (aα) in M has a least upper bound a ∈M . A bounded linear functional ρ on
M is called normal if ρ(aα) → ρ(a) for each net (aα) as above. A set of functionals is called
separating if for any nonzero a ∈M there is a functional ρ in the set satisfying ρ(a) 6= 0.

Definition 121 (JBW algebra) Let M be a JB algebra. M is said to be a JBW algebra
if M is monotone complete and has a separating set of normal positive functionals.

Definition 122 Let H be a complex Hilbert space and B(H) the von Neumann algebra of
all bounded operators on H equipped with the ultraweak topology. A Jordan subalgebra M
of B(H)sa is called a JW algebra if M is ultraweakly closed.
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JW algebra may also mean a JB algebra which is isomorphic to a JW algebra like M
above. Since ultraweakly continuous linear functionals on B(H) are normal and since the
least upper bound of a bounded increasing net in B(H)sa is the ultraweak limit of the net,
JW algebra is a JBW algebra.

In the rest of the chapter, K will denote the set of all normal states. Note that state
is a norm-one positive functional, even if the JB algebra is non-unital. We denote by V the
real vector subspace of M∗ spanned by K.

As we see, topology is an integral part of the theory of ultraweakly closed algebras. Let
M be a JBW algebra. The weak topology is defined in the usual way (see von Neumann
algebras section). The strong topology on M is the locally convex topology defined by the

seminorms a 7→ ρ(a2)
1
2 , ρ ∈ K. If ρ ∈ K, then ρ(a2)

1
2 ≤ ||a2|| 12 = (||a||2) 1

2 = ||a||, hence

norm convergence implies strong convergence. Since ρ(a)2 ≤ ρ(a2), ρ(a2)
1
2 → 0 implies

ρ(a) → 0. Hence strong convergence implies weak convergence. Furthermore, if (aα) is a
bounded increasing net in M with least upper bound a ∈ M , written aα ↗ a, then (aα)
converges strongly to a. Indeed, if ρ ∈ K, then a− aα ≥ 0, so that

ρ
(
(a− aα)2

)
≤ ||a− aα||ρ(a− aα) ≤ ||a||ρ(a− aα) → 0 .

In the second equality we assumed aα ≥ 0 without loss of generality.
JBW algebras have one non-trivial property, namely that a JBW algebra is unital. For

proof and discussion, see [10].
Let M be a JBW algebra and a ∈ M . We denote by W (a) the weak closure of C(a).

If b, c ∈ W (a), then there are nets (bα) and (cβ) in C(a) which converge weakly to b and c
respectively. By [10] the operators Ta and Ua are weakly continuous for all a ∈M , whereM is
a JBW algebra. This implies that bα ◦ cβ → b ◦ cβ weakly with α, so evidently b ◦ cβ ∈ W (a).
Again, b ◦ cβ → b ◦ c weakly, so b ◦ c ∈ W (a). Thus W (a) is a subalgebra of M . Norm
topology is finer than the weak topology, which implies that W (a) is norm closed, hence is
a JB algebra. If (bα) is an increasing net in W (a) with least upper bound b, then bα → b
strongly, hence weakly. Thus b ∈ W (a), and W (a) is monotone complete. It is thus a JBW
algebra, since the states in K restrict to normal states on W (a). We may conclude, that
W (a) is a JBW algebra generated by an element a and I in a JBW algebra.

Lemma 123 Let M be a JBW algebra and a ∈ M . Then W (a) is an associative JBW
subalgebra of M isometrically isomorphic to a monotone complete C(X), where X is a
compact Hausdorff space.

An idempotent in a JB algebra will be called a projection. Just as in the theory of von
Neumann algebras they play important role in the classification theory. We wish to modify
the existing theory for von Neumann algebras to JBW algebras.

Lemma 124 Let A be a JB algebra and p, q projections in A. Then the following conditions
are equivalent:

(i) p and q are orthogonal.
(ii) p+ q is a projection.
(iii) p+ q ≤ I.
(iv) Upq = 0.
(v) UpUq = 0.
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Proposition 125 Let M be a JBW algebra, a ∈ M , and ε > 0. Then there exist
pairwise orthogonal projections p1, . . . , pn in W (a) and real numbers λ1, . . . , λn such that
||a−

∑n
i=1 λipi|| < ε.

Lemma 126 Let M be a JBW algebra and a ∈M . If p is a projection in M , the following
conditions are equivalent:

(i) p operator commutes with a.
(ii) p operator commute with all elements in W (a).
(iii) p operator commutes with all projections in W (a).

In classification theory the existence of the least upper and greatest lower bound of
family of projections is investigated. It shows that these bounds do exist in a JBW algebra.

The center of a Jordan algebra A is the set of elements in A which operator commute
with all elements in A. Since multiplication is separately weakly continuous in a JBW
algebra M , then center Z of M is an associative JBW subalgebra of M . Symmetry in M is
an operator s such that s2 = I.
Lemma 127 Let M be a JBW algebra with center Z. If a ∈ M then a ∈ Z if and only if
Usa = a for all symmetries s ∈M .

Definition 128 Let M be a JBW algebra with center Z. If p ∈M is a projection, then its
central support c(p) is the smallest projection in Z majorizing p.

Lemma 129 Let M be a von Neumann algebra and M a weakly closed Jordan subalgebra
of Msa, and assume that M generates M. Then the center of M is contained in the center
of M.

2.4.3 Classification theory

In the present section we shall generalize the projection lattice theory of von Neumann
algebras to JBW algebras.

Let M be a JBW algebra. We denote by P (M) the lattice of projections in M . Z will
denote the center of M , and PZ := P ∩ Z the set of central projections in M . As before,
we write p⊥ = I− p, if p ∈ P (M). P (M) is then an orthocomplemented lattice, since p ≤ q
implies q ∧ p⊥ = q − p and so q = p ∨ (q ∧ p⊥).

If s ∈ M is a symmetry, then Us is an automorphism of M and these automorphisms
generate a group IntM called the group of inner automorphisms of M .

Two projections p, q ∈M are called equivalent if there is α ∈ IntM such that q = α(p).
We then write p ∼ q. If α can be written as α = Us1Us2 , . . . , Usn , we write p ∼n q. If n = 1,
we say that p and q are exchanged by a symmetry. Note that in contrast with equivalence of
projections in a von Neumann algebra, p ∼ q implies p⊥ ∼ q⊥ in JBW algebras. Moreover
we have that c(p) =

∨
{q ∈ P : q ∼ p}.

Let M be a JBW algebra and p ∈ M a projection. Denote by Mp := Up(M) a JBW
subalgebra of M . A projection p ∈ M is called Abelian if Mp is associative; p is modular if
the projection lattice [0, p] of Mp is modular. If I is modular, M itself is called modular.

Define central projections eI and eIII in M by
eI :=

∨
{q ∈ P : p is Abelian},

e⊥III := {p ∈ P : p is modular}.
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Definition 130 Let M be a JBW algebra and let eII = I − eI − eIII with eI , eII and eIII

defined as above. M is said to be of type I (resp. II, III) if eI = I (resp. eII = I, eIII = I).
Theorem 131 Let M be a JBW algebra. Then M can be split uniquely into a direct sum
of parts of Type I, II and III, the different parts being characterized as follows:

(i) M is of Type I if and only if there is an abelian projection p ∈M with c(p) = I.

(ii) M is of Type II if and only if there is a modular projection p ∈M with c(p) = I, and
M contains no nonzero abelian projection.

(iii) M is of Type III if and only if it contains no nonzero modular projection.

Just like in the case of von Neumann algebras it is possible to define a finer decomposi-
tion. Any JBW algebra has the largest central modular projection. If this is 0, M is called
purely nonmodular; if it is I, M is called modular. We say M is of Type II1 if it is modular
and of Type II, and it is of Type II∞ if it is purely nonmodular and of Type II. If M is of
Type III, it is purely nonmodular.

Lemma 132 Let M be a JBW algebra with projection lattice P . If p, q ∈ P , then there is
a symmetry s ∈M such that Us{pqp} = {qpq}.
Proposition 133 Let M be a JBW algebra with projection lattice P . Let p, q ∈ P and
suppose p ⊥ q and p ∼2 q. Then p ∼1 q.

The character of the following propositions is purely technical; they shall be used later only
as technical tool in proofs of other theorems.

Proposition 134 Let M be a JBW algebra with projection lattice P . Suppose p, q ∈ P
are nonzero and equivalent. Then there are nonzero p1, q1 ∈ P such that p1 ≤ p, q1 ≤ q and
p ∼1 q1.

Proposition 135 Let M be a JBW algebra with projection lattice P , and let J be an index
set. Let p, q, pα, qα ∈ P , α ∈ J , satisfy p ⊥ q, p =

∑
α∈J pα, q =

∑
α∈J qα and pα ∼1 qα for

all α ∈ J . Then p ∼1 q.

Proposition 136 Let M be a JBW algebra with projection lattice P . Let pi, qi ∈ P ,
i = 1, 2, satisfy p1 +p2 = p ∈ P , q1 + q2 = q ∈ P , p1 ⊥ q2, p2 ⊥ p1 and pi ∼1 qi. Then p ∼1 q.

Lemma 137 (The halving lemma) Let M be a JBW algebra with projection lattice P .
Suppose M has no direct summand of Type I. Then there is p ∈ P with p ∼1 p

⊥.

Proposition 138 Let M be a JBW algebra with projection lattice P . Suppose M has no
direct summand of Type I. Then there are pi ∈ P , i = 1, 2, 3, 4, such that p1+p2+p3+p4 = I,
and pi ∼1 pj for all i, j.

Now we shall classify and discuss JBW algebras of type I, which may be quite different
from type I von Neumann algebras (for example spin factors).

Definition 139 Let M be a JBW algebra and n cardinal number. We say M is of Type In
if there is a family (pα)α∈J of abelian projections such that c(pα) = I,

∑
α∈J pα = I and card

J = n. We also say M is of Type I∞ if M is a direct sum of JBW algebras of Type In with
n infinite.

Note 140 If M is a JBW algebra of type In and e is a nonzero central projection in M then
Me is of type In.
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Theorem 141 Each JBW algebra of Type I has a unique decomposition

M = M1 ⊕M2 ⊕ . . .⊕M∞ , (2.48)

where each Mn is either 0 or is a JBW algebra of Type In.

Definition 142 A JBW algebra is called a JBW factor if its center consists of real multiples
of the identity only.

Proposition 143 Let M be a JBW factor of Type I. Then there exists n ∈ N ∪ {∞}
such that M is of Type In. Let M be a JBW factor of Type In, 3 ≤ n < ∞. Then M is
isomorphic to one of Hn(R), Hn(C), Hn(Q) or Hn(O) in the case n = 3.

2.4.4 Spin factors

Let H be a real Hilbert space, and suppose a : H 7→ A is a linear map of H into a C∗-algebra
A satisfying the cannonical anticommutation relations:

2a(f) ◦ a(g) = a(f)a(g) + a(g)a(f) = 0 , (2.49)

2a(f) ◦ a(g)∗ = a(f)a(g)∗ + a(g)∗a(f) = (f, g)I , (2.50)

for all f, g ∈ H = L2(R). Setting b(f) = a(f) + a(f)∗ we obtain

b(f) ◦ b(g) = a(f) ◦ a(g)∗ + a(f)∗ ◦ a(g) +
(
a(f) ◦ a(g) + a(f)∗ ◦ a(g)∗

)
.

The first term in the bracket is by (2.49) zero. The second term in the bracket satisfies

a(f)∗ ◦ a(g)∗ =
1

2

(
a(f)∗a(g)∗ + a(g)∗a(f)∗

)
=

=
1

2

((
a(g)a(f)

)∗
+

(
a(f)a(g)

)∗)
=

(a(g)a(f) + a(f)a(g)

2

)∗
=

=
(a(f)a(g) + a(g)a(f)

2

)∗
=

(
a(f) ◦ a(g)

)∗
= 0∗ = 0 ,

thus
b(f) ◦ b(g) = a(f) ◦ a(g)∗ + a(f)∗ ◦ a(g) .

Adding (2.50) to its conjugation

a(g) ◦ a(f)∗ = a(f)∗ ◦ a(g) =
1

2
(f, g)I =

1

2
(f, g)I ,

yields
b(f) ◦ b(g) = (f, g)I f, g ∈ H, (2.51)

in particular ||b(f)|| = ||f ||, and b is an isometry of H into Asa, such that b(H) + RI is
a JC algebra A. If (fn)n∈J is an orthonormal basis for H then the set {I, b(fn)}n∈J is a
set of symmetries with the properties b(fn) ◦ b(fm) = δmnI, whose closed linear span is A.
The JC algebra A and the set {b(fn)}n∈J shall be called a spin factor and a spin system,
respectively.
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Now let B be a real unital Jordan algebra. A spin system in B is a collection P of
at least two symmetries different from ±I such that s ◦ t = 0 whenever s 6= t in P . Let
H0 denote the linear span of P in B. Then any two elements a, b ∈ H0 can be written as
a =

∑n
i=1 αisi, b =

∑n
i=1 βisi, where s1, . . . , sn are distinct symmetries in P . We have that

a ◦ b =
n∑

i,j=1

αiβj(si ◦ sj) =
n∑

i=1

αiβi(si ◦ si) = (
n∑

i=1

αiβi)I ,

thus H0 is a pre-Hilbert space with inner product defined by

< a, b > I = a ◦ b . (2.52)

We are however interested in the algebra obtained from the subalgebra H0 + RI of B by
completing H0.

Proposition 144 Let H be a real Hilbert space of dimension at least 2. Let A = H ⊕ RI
have the norm ||a+ λI|| = ||a||+ |λ|, a ∈ H, λ ∈ R. Define a product in A by

(a+ λI) ◦ (b+ µI) = (µa+ λb) + (< a, b > +λµ)I , (2.53)

where a, b ∈ H, λ, µ ∈ R. Then A is a JB algebra.

Definition 145 A unital JB algebra generated as a JB algebra by a spin system will be
called a spin factor.

Proposition 146 For each cardinal number n ≥ 2 there is, up to isomorphism, a unique
spin factor generated by the spin system of cardinality n.

Theorem 147 Any finite-dimensional, formally real, unital Jordan algebra which is also
simple and contains two minimal projections with sum I is a finite-dimensional spin factor.

Algebras H2(R) and H2(C) are finite-dimensional spin factors. Orthonormal basis for
the inner product space H(R), H(C) consists of the first two (resp. three) matrices of the
following list: (

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
. (2.54)

Note that these matrices are the Pauli spin matrices in M2(C). This is why we denote our
spin systems by P . Also note that these matrices satisfy the definition of a spin system
above.

Definition 148 We call a symmetry in a JB algebra nontrivial if it is not ±I.
Let A = H⊕RI be a spin factor. If a ∈ H, λ ∈ R, then σ(a+λI) = {λ−||a||, λ+ ||a||}.

By this it is evident that nontrivial symmetries in a spin factor A = H ⊕ R are the unit
vectors in H.

Theorem 149 Let M be a JBW algebra. Then M is a JBW factor of Type I2 if and only
if M is a spin factor.

Theorem 150 Let A be a JB algebra of real dimension at least 3. Then A is a spin factor
if, and only if, A is a JW factor of Type I2.
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So far we have that each JBW factor of type I2 is a spin factor. Now we shall review
general JBW algebras of type I2 and global characterizations of the previous results.

If M is a JBW algebra of Type I2 with center Z, we may assume that Z = C(X), where
X is a compact Hausdorff space. Any element a ∈ M can be considered as a continuous
function on X with values in JBW factors of Type I2, i.e. for each t ∈ X we have a(t) =
x(t)p(t) + y(t)q(t), where x(t), y(t) ∈ R, and p(t) and q(t) are abelian projections in a I2
factor with sum I.
Lemma 151 Let M be a JBW algebra of Type I2 with center Z. If a ∈ M then there
exist x, y ∈ Z and a projection p ∈ M with c(p) = c(p⊥) = I such that a = xp + yp⊥. In
particular, if s is the symmetry s = 2p− I then a = z + ws with z, w ∈ Z.

If s = 2p− I is a symmetry then s+ I = 2p and s− I = 2p⊥. We write c(s± I) for the
central supports of p, p⊥ respectively. Thus the symmetry from the previous lemma has the
property that c(s± I) = I.
Lemma 152 Let M be a JBW algebra of type I2 with center Z. Let

N = {ws : w ∈ Z, s a symmetry in M with c(s± I) = I} .

If s, t are symmetries in N then s ◦ t ∈ Z.

Proposition 153 Let M be a JBW algebra of type I2 with center Z. Let N be as in the
previous lemma. Then N is a vector subspace of M , and M = Z

⊕
N .

Definition 154 Let M be a JBW algebra of type I2. A spin system (sα)α∈J in M is
called locally maximal if for every nonzero central projection e ∈M the family (esα)α∈J is a
maximal spin system in eM .

Lemma 155 Let M be a JBW algebra of type I2 with center Z. Suppose (s1, . . . , sk),
k ∈ N, is a locally maximal spin system in M . Then every operator a ∈ M can be written
uniquely in the form

a = z0 +
k∑

i=1

zisi , z0, . . . , zk ∈ Z . (2.55)

Definition 156 Let M be a JBW algebra of type I2. Let k ∈ {2, 3, . . .} ∪ {∞}. We say
M is of type I2,k if there is a locally maximal spin system (sα)α∈J in M with card J = k if
k <∞, and card J is infinite if k = ∞.

Proposition 157 Let M be a JBW algebra of type I2,k, k <∞. Let Z denote the center of
M , and X be a compact Hausdorff space such that Z ' C(X). Then M ' C(X,Vk), where
Vk is a spin factor of dimension k + 1, k ≥ 2 contained in M2n(C) if k ∈ {2n− 1, 2n}.
Theorem 158 Any JBW algebra of type I2 is a direct sum of JBW algebras of type I2,k.

We have not covered JBW algebras of type In, 3 ≤ n <∞ yet. The following theorem
proposes decomposition of such algebras in terms of direct summands.

Theorem 159 Let M be a JBW algebra of type In, 3 ≤ n <∞. Then M is a direct sum

M = M1 ⊕M2 ⊕M3 ⊕M4 , (2.56)

where M4 = 0 if n 6= 3, such that all factor representations of Mi are onto JBW factors
isomorphic to Hn(R), Hn(C), Hn(Q) and Hn(O).
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3.1 Hidden variables in von Neumann algebras

Definition 160 Let L be an orthomodular lattice. By a dispersion-free state on L we mean
a finitely additive probability measure on L with values in the set {0, 1}.
Theorem 161 (Hamhalter, (1993)) The projection lattice P (M) of a von Neumann
algebra M which has neither a non-zero abelian nor a type I2 direct summand admits no
dispersion-free state.

The following proposition reduces the investigation of dispersion-free states to simple
matrix algebras instead of applying the Gleason Theorem for von Neumann algebras of
infinite dimension.

Theorem 162 Let M be a von Neumann algebra with no non-zero abelian direct summand
and no type I2 direct summand. The following statements hold:

(i) Any subalgebra of M which is ∗-isomorphic to M2(C) is contained in a subalgebra
C ⊕D of M satisfying the following properties: C is either zero or it is ∗-isomorphic
to M4(C); D is either zero or it is a copy of M2(C) contained in another subalgebra of
M which is ∗-isomorphic to M3(C).

(ii) M contains a unital subalgebra ∗-isomorphic to one of the following matrix algebras:
M2(C), M3(C), M2(C)⊕M3(C).

Statement (i) is summarized and statement (ii) proved in [9].
As a result of the previous theorem it is enough to prove the non-existence of dispersion-

free states on algebras M3(C) and M4(C).

Definition 163 A Hidden space of a given quantum system is a set, Ω, with a σ-field, A
of subsets of Ω with the following properties: for each quantum observable A and for each
quantum state ρ there is an A-measurable function fA : Ω 7→ R and a probability measure
µρ on A, such that the following conditions are fulfilled:

(i) For each Borel set B ⊂ R the probability that the value of an observable A is in B
equals µρ(f

−1
A (B)), provided that the system is in the state ρ.

(ii) (Function Principle) If A and B are observables such that B = g(A), where g is a
real Borel function, then fB = g ◦ fA.

Condition (ii) means preserving transformation rules for observables.

Theorem 164 ( Kochen-Specker ) Let B(H) be an algebra of bounded operators on
a separable Hilbert space H of dimension at least 3. There is no σ-field (Ω,A) and a map
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a 7→ fa assigning to each self-adjoint element a ∈M an A-measurable real function fa on Ω
such that fg(a) = g ◦ fa for any real continuous function g on R.

In 2004, Döring proved that hidden space does not exist for any von Neumann algebra
without a type I2 and a non-zero abelian direct summand that acts on a separable Hilbert
space. This result can be extended to all von Neumann algebras without abelian and a type
I2 direct summand. The following theorem cited from [7] tells us that only the validity of
the Function Principle is enough for excluding a hidden space without being necessary to
specify the set of states.

Theorem 165 Let M be a von Neumann algebra without a Type I2 direct summand and
with no non-zero abelian direct summand. There is no σ-field (Ω,A) and a map a 7→ fa

assigning to each self-adjoint element a ∈ M an A-measurable real function fa on Ω such
that fg(a) = g ◦ fa for any real continuous function g on R.

Proof. We shall prove that existence of such σ-field (Ω,A) implies existence of a dispersion-
free state on P (M) which shall be in contradiction with Theorem 164.

Let (Ω,A) be the σ-field with the properties stated above. Fix ω ∈ Ω. Let us consider
the map s : Msa 7→ R, s(a) = fa(ω). If p ∈ P (M), then p2 = p. Put m(x) = x2, we have
that

fp(ω) = fp2(ω) = fm(p)(ω) = m
(
fp(ω)

)
= fp(ω)2 ,

hence s(p) ∈ {0, 1}.
Let us now take orthogonal non-zero projections p, q ∈ M and put x = p + 1

2
q. Let g, h be

continuous real functions on R such that g(1) = h(1
2
) = 1 and g(1

2
) = h(1) = 0. Since

g(x) = g
(
p+

1

2
q
)

= g(1)p+ g
(1

2

)
q ,

(the same holds analogously for h) we have that g(x) = p and h(x) = q. Setting u = g + h
and using the Function Principle we obtain

s(p+ q) = s
(
g(x) + h(x)

)
= s

(
(g + h)(x)

)
= s

(
u(x)

)
= fu(x)(a) = u

(
fx(ω)

)
=

= g
(
fx(ω)

)
+ h

(
fx(ω)

)
= fg(x)(ω) + fh(x)(ω) = s

(
g(x)

)
+ s

(
h(x)

)
= s(p) + s(q).

Hence s is a finitely-additive dispersion-free measure on P (M). It remains to show that
s(I) = 1. It is a consequence of the fact that s(I) = fI(ω) = 1 for all ω ∈ Ω, where I = b(I)
and b is a constant unit function on R. We have showed that s induces a dispersion-free
state on P (M), which is in contradiction with Theorem 161.

The problem of hidden variables is solved for von Neumann algebras without Type I2
or non-zero abelian direct summand. It turns out that hidden variables do not exist in these
type of algebras. In the case of C∗-algebras we have the following theorem.

Theorem 166 (Hamhalter, (2004)) Let A be a simple infinite unital C∗-algebra. Then
A does not admit any dispersion-free quasi-state.

How does this theory apply to direct measurement of quantum observables? Mea-
surement of quantum systems is always accompanied by an error. Hence it is very strict to
demand a dispersion-free state. It is more natural to ask whether there is a hidden space on
which the quantum states would have smaller, or even better, arbitrarily small dispersion.
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The latter is called the problem of approximate hidden variables and was introduced by G.
W. Mackey in 1968.

Definition 167 Let ρ be a state on the projection structure P (A) of a C∗-algebra A. The
overall dispersion, σ(ρ) of ρ is defined by

σ(ρ) = sup{ρ(p)− [ρ(p)]2 | p ∈ P (A)} . (3.1)

Note 168 By the previous definition σ(p) ∈ [0, 1
4
] for all p ∈ P (A) and σ(p) = 0 iff

ρ(p) ∈ {0, 1}, i.e. iff ρ is dispersion-free state.

Theorem 169 (Hamhalter, (2004)) Let A be a unital real rank-zero algebra having no
representation onto an abelian C∗-algebra. Then

σ(ρ) ≥ 2

9
, (3.2)

for any state ρ on A.

3.2 Hidden variables in JBW algebras

In this section we seek generalization of the results of hidden variables theory to JBW
algebras.

Theorem 170 Let M be a JBW algebra without associative and Type I2 direct summand.
Then there is no finitely-additive dispersion-free state on P (M).

Proof. Let M be a JBW algebra with the properties stated above. Suppose that there exists
finitely additive dispersion-free measure on P (M). Let us decompose M as follows

M = z1M ⊕ z2M ,

where z1M is of type I modular part and z2M has no type I modular part. Let ρ be a
non-zero 0− 1 state on M .

1) Suppose ρ(z2) = 1. By Proposition 138 there are pairwise orthogonal projections
p1, . . . , p4 ∈ P (M) such that z2 = p1 + · · · + p4 and pi ∼1 pj for all i, j ∈ {1, . . . , 4}. Hence
these projections are contained in a subalgebra of isomorphic copy of algebra of matrices
M4(R), which we denote by {p1, . . . , p4} ⊆ M4(R). Since the existence of non-zero 0 − 1
state on algebra of real symmetric matrices 4× 4 is excluded, we have that ρ(a) = 0 for all
a ∈M4(R). This property is hereditary to {p1, . . . , p4} ⊆M4(R), thus ρ must be identically
equal zero, i.e. ρ(z2) = 0 which is a contradiction.

2) Now assume that M is of type I. By Theorem 141 M can be uniquely decomposed
in the way

M =
∞⊕

n=3

Mn ,

where Mn is either zero or type In, 3 ≤ n < ∞. Now let Mn be a direct summand in the
sum above. Mn is either zero or type In. If the latter is true then there are n orthogonal
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abelian projections qj,n ∼1 qk,n for all j, k ∈ {1, . . . , n} such that for the unit In ∈ Mn we
have that

n∑
j=1

qj,n = In , 3 ≤ n <∞ .

Put k := [n
3
] being the whole part of n

3
; n = 3k+r, where r ∈ {0, 1, 2} satisfies n ≡ r(mod 3).

Now put

fn :=
k∑

j=1

qj,n , gn :=
2k∑

j=k+1

qj,n ,

hn :=
3k∑

j=2k+1

qj,n , un :=
n∑

j=3k+1

qj,n .

On employing Proposition 135 we obtain fn ∼1 gn ∼1 hn and un .1 hn. We can write

In = fn + gn + hn + un .

Now put

f :=
∞∑

n=3

fn , g :=
∞∑

n=3

gn ,

h :=
∞∑

n=3

hn , u :=
∞∑

n=3

un .

By Proposition 135 h ∼1 g ∼1 f and u .1 h, such that h+ g + f + u = I. Now consider the
following two possibilities:

(i) ρ(u) = 0, {h, g, f} ⊆M3(R). If ρ(h+g+f) 6= 0, then ρ is non-zero on M3(R), which
is a contradiction.

(ii) ρ(u) = 1 and {h, g, f, u} ⊆ M4(R), then u is contained in M4(R) thus ρ(u) = 0
which is a contradiction again.

We have showed that if ρ is a 0− 1 state on M , then it is identically zero, proving the
statement of the Theorem.

Theorem 171 Type I2 JBW algebras always admit 0− 1 state.

Proof. Let us denote by Uk a spin factor Uk = Hk ⊕ RI, where Hk is the Hilbert space of
dimension k ∈ N∪{∞} and I the identity operator. We shall start the proof by investigating
the explicit form of orthogonal projections in Uk.

Let p ∈ Uk be a projection. Since Uk = Hk ⊕ RI, there exists a unique pair (ξ, λI) ∈
Hk × RI such that p = ξ + λI. Projection is idempotent, i.e.

ξ + λI = p = p2 = p ◦ p = (ξ + λI) ◦ (ξ + λI) =
= 2λξ + (< ξ, ξ > +λ2)I .

Solving the equation above we get

ξ(2λ− I) + (< ξ, ξ > +λ2 − λ)I = 0 ⇒ λ =
1

2
, ||ξ|| = 1

2
.
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The vector ξ ∈ Hk such that ||ξ|| = 1
2

can be written in the form ξ = 1
2
x, where x ∈ Hk such

that ||x|| = 1. Hence if p and q are two minimal orthogonal projections in Uk with sum I
then

p =
1

2
x+

1

2
I ,

q = −1

2
x+

1

2
I .

Define ρ : Uk 7→ R by

ρ(αx+ βI) = α+ β ,

where x is the unit vector in Hk and α, β ∈ R. We will show that ρ is a finitely-additive
probability measure on Uk with values in the set {0, 1}:

(i) ρ(I) = ρ(0 + 1 · I) = 0 + 1 = 1,

(ii) ρ(0) = ρ(0 + 0 · I) = 0 + 0 = 0,

(iii) Let n ∈ N and {aj}j∈{1,...,n} ⊂ Uk be set of pairwise orthogonal projections. It is
evident that only two of them are non-zero, for instance a1 := p, a2 := q and ak = 0 for
k ∈ {3, . . . , n}. If p, q are non-zero orthogonal projections in Uk then p+ q = I. Hence
ρ
(∑n

j=1 aj

)
= ρ(p+ q) = ρ(I) = 1 = 1 + 0 + · · ·+ 0 = ρ(p) + ρ(q) + ρ(0) + · · ·+ ρ(0) =∑n

j=1 ρ(aj).

(iv) Positivity of ρ follows from the fact that ρ takes values only in the set {0, 1}.

To complete the proof we shall need to extend the results to whole Type I2 algebra with
the help of the fact that Type I2 algebra is isomorphic to direct sum of C(X,Uk). Fix
x ∈ X and define f, g ∈ C(X,Uk) to be minimal orthogonal projections with sum I, i.e.
f(x) ◦ g(x) = (f ◦ g)(x) = 0 and (f + g)(x) = f(x) + g(x) = I. We have that

1 = ρ(I) = ρ((f + g)(x)) = ρ(f(x) + g(x)) = ρ(f(x)) + ρ(g(x)) ,

ρ(0) = ρ((f ◦ g)(x)) = ρ(f(x) ◦ g(x)) = 0 .

Thus ρ is a dispersion-free state on C(X,Uk). The proof is complete.

Corollary 172 Let A ⊂ B(H) be JBW algebra without associative and Type I2 direct
summand. There is no σ-field (Ω,D) and a map a 7→ fa assigning to each self-adjoint
element a ∈ A a D-measurable real function fa on Ω such that fg(a) = g ◦ fa for real
quadratic polynomial g on R.

Proof. The proof is analogous to the proof in Theorem 165, i.e. assuming such field exists
we find dispersion-free state on A which is a contradiction.

Theorem 173 M2(C) admits the Function principle.
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Proof. We have already proved that algebra M2(C) admits 0 − 1 state (recall that it is a
finitely-additive probability measure with values in the set {0, 1}, hence it is bounded). By
Proposition 90 such states extend uniquely to a 0 − 1 quasi-functional on M2(C). Denote
by Ms.a. a self-adjoint part of M2(C) and by S the separating set of 0− 1 quasi-functionals
on M2(C) defined on orthogonal pairs. For each A ∈ Ms.a. define map FA(µ) : S 7→ R
by FA(µ) = µ(A). Since A ∈ Ms.a., by virtue of spectral decomposition we have that
A = λ1p1 +λ2p2, where p1, p2 are orthogonal idempotents with sum I. Let f ∈ C(R). Matrix
function then has the form f(A) = f(λ1)p1 + f(λ2)p2. Hence

Ff(A)(µ) = µ(f(A)) = µ(f(λ1)p1 + f(λ2)p2) = 1f(λ1)µ(p1) + f(λ2)µ(p2) ,

f ◦ FA(µ) = f(µ(A)) = f(µ(λ1p1 + λ2p2)) = f(λ1µ(p1) + λ2µ(p2)) .

Since µ ∈ S and p1, p2 have the properties stated above, it is either

µ(p1) = 1 and µ(p2) = 0

or vice versa. Without loss of generality we shall assume that the first is true. Then evidently

Ff(A)(µ) = f(λ1) = f ◦ FA(µ) ,

completing the proof.

Note 174 Theorem 171 can be viewed as a result of Theorem 173. Indeed, the Function
principle implies the existence of non-zero 0− 1 state.

1 Recall that quasi-functional is additive with respect to commuting elements. Indeed, p1, p2 being or-
thogonal projections with sum I commute with each other,

p ◦ q = q ◦ p = pq = qp = 0 .



4. CONCLUSION

In this work we have studied and seeked possible generalization of Kochen-Specker theo-
rem to Jordan algebras. The reason for doing this is simple: JBW algebras are more natural
for conceptual fundamentals of quantum mechanics (as briefly summarized in the section
1.4). Going deep into highly non-trivial structural theory of Jordan algebras we have proved
that JBW algebras without associative and Type I2 direct summand do not admit 0 − 1
state. Generalization of Kochen-Specker Theorem to JBW algebras has been proved (see
Corollary 172, p. 43). Thus, interpreting quantum mechanics in JBW algebras in terms of
hidden variables is not possible in dimensions equal or greater than 3.

The Function Principle (FP) has very remarkable statute in the theory of hidden vari-
ables because it is very closely related to existence of 0− 1 states; FP implies the existence
of 0− 1 state. FP is not admitted in JBW algebras without associative and Type I2 direct
summand. By contrast to this the algebra of complex matrices M2(C), spin factor and Type
I2 JBW algebra admit the FP.



46 Conclusion



APPENDIX





Appendix 49

Algebras of quaternions and octonions

I. Introduction

In this paragraph we briefly summarize the algebras of complex numbers, quaternions
and octonions. Essential for all these algebras is the existence of the real unit element e0 and
a different number of adjoined hyper-complex units en. For the case of complex numbers
n = 1, for quaternions n = 3 and for octonions n = 7. The square of the unit element e0 is
always positive and the squares of the hyper-complex units en can be positive or negative

e2n = ±e0 . (.1)

Mainly the negative sign in (.1) is used, in that case norm of the algebra is positively defined.
Taking positive sign in (.1) leads to so-called split algebras with the equal number of terms
with the positive and negative signs in the definition of their norms.

II. Quaternions

William Hamilton’s discovery of quaternions in 1843 was the first time in history when
the concept of two-dimensional numbers was successfully generalized.

General element of the quaternion algebra can be written using only the two basis
elements i and j in the form

q = a+ bi+ (c+ di)j ,

where a, b, c, d ∈ R. The third basis element of the quaternion (ij) is possible to be obtained
by composition of the first two.

The quaternion reverse to q, the conjugated quaternion q∗ can be constructed using the
properties of the basis units under the conjugation (reflection)

i∗ = −i, j∗ = −j, (ij)∗ = −(ij) .

When the basis elements i and j are imaginary, i.e. i2 = j2 = −1 we have Hamilton’s
quaternion with the positively defined norm

N = qq∗ = q∗q = a2 + b2 + c2 + d2 .

For the positive squares i2 = j2 = 1 we have the algebra of split-quaternions. The unit
elements i, j have the properties of real unit vectors. The norm of a split-quaternion

N = qq∗ = q∗q = a2 − b2 − c2 + d2 ,

has (2+2)-signature and in general is not positively defined.
The quaternion algebra is associative and therefore can be represented by matrices. We

get the simplest non-trivial representation of the split-quaternion basis units if we choose
the real Pauli matrices accompanied by the unit matrix.

The independent unit basis elements of split quaternions i and j have the following
matrix representation

i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
.
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The third unit basis element (ij) is formed by multiplication of i and j and has the repre-
sentation

(ij) =

(
0 1
−1 0

)
.

The squares of Pauli matrices give the unit matrix

(1) =

(
1 0
0 1

)
with different signs, i.e.

i2 = j2 = (1) , (ij)2 = −(1) .

Conjugation of the unit elements i and j means changing of signs of matrices i, j and (ij),
thus

ii∗ = jj∗ = −(1) , (ij)(ij)∗ = (1) .

III. Octonions

Octonions were discovered by Graves and Cayley in 1844-1845. For the construction of
the octonion algebra with the general element

O = a0e0 + anen , n = 1, 2, . . . , 7

where e0 is the unit element and a0, an are real numbers, the multiplication law of its eight
basis units e0, en usually is given. For the case of ordinary octonions

e20 = e0 , e2n = −e0 , e∗0 = e0 , e∗n = −en ,

and norms are positively defined

N = OO∗ = O∗O = a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 + a2
6 + a2

7 .

The multiplication rules obey the form

(enem) = −δnme0 + εnmkεk ,

where δnm is the Kronecker symbol and εnmk is the fully anti-symmetric tensor with the value
εnmk = +1 for the following values of indices

nmk = 123, 145, 176, 246, 257, 347, 365 .
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