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1. Introduction

First, let me start with an example. Let us consider a two-dimensional
electric particle of charge e (i.e. electron) and mass m in the presence of a
uniform magnetic field perpendicular to the system plane. At this point solv-
ing the eigenvalue/eigenfunction problem is well analysed in many quantum
mechanics books. But provided that such particle interacts with a point per-
turbation with varying support, we come to remarkable spectral problem.

The Hamiltonian of the system mentioned above can be chosen in the
form

H = −[(∂x − iBy)2 + ∂2
y ] + βδ(y) , (1)

where B is the strength of the magnetic field, δ(y) is the Dirac delta function
and β is the strength of the perturbation potential. By virtue of the Fourier
transform we can rewrite (1) in the momentum representation as follows

H = −∂2
y +B2(y + q)2 + βδ(y) , (2)

where q = px

B
is the location of the perturbation on the y axis. The Hamilto-

nian of the unperturbed system

H0 = −∂2
y + V (y) , V (y) = B2(y + q)2 (3)

has a discrete spectrum. The principal aim of this work is to analyse the
q-dependence of the eigenvalues of the operator H.

There are more examples of systems for which the investigation of eigen-
values reduces to spectral properties of operators having the form (2). The
operator (2) can be chosen to describe a short-range impurity in a potential
well, where V (y) would be the confining potential of the well and β would
characterize the impurity potential (β < 0 for attractive impurities and β > 0
for repulsive ones). Besides, taking β > 0 we obtain Hamiltonian of a charged
particle tunneling through moving barrier.
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2. Spectral analysis of perturbed Hamilto-
nian H

First, let us summarize basic results of the spectral properties of the
operator H0 in L2(R) denoted by the differential equation

H = −∂2
y + V (y) , (4)

where the potential V is bounded from below and V ∈ L2
loc(R). Such operator

belongs to class of so-called Schrödinger operators.In this case the expression
(4) defines an essentially self-adjoint operator on C∞

0 (R). It’s obvious that
in our case limy→±∞V (y) = +∞

The spectrum of H0 consists of so-called Landau levels, that is σ(H0) =
{λn = B(2n+1) |n ∈ N0}. We see that σ(H0) is discrete, bounded from below
and λj < λk for all j < k , j, k ∈ N0. The multiplicity of each eigenvalue is
1. The eigenfunctions can be written in the form

Φn = e−
ξ2

2 Hn(ξ) ,

where Hn = (−1)neξ2
( d

dξ
)ne−ξ2

are the Hermitean polynomials and ξ =√
B(y + q).
These solutions can be written [1] in terms of confluent hypergeometric

functions

ψ± =
√
πe−

B(y+q)2

2

[
M(B−λ

4B
, 1

2
;B(y + q)2)

Γ(3B−λ
4B

)
∓

∓2
√
B(y + q)

M(3B−λ
4B

, 3
2
;B(y + q)2)

Γ(B−λ
4B

)

]
, (5)

where

M(a, b; z) =
+∞∑
j=0

(a)j

(b)j

zj

j!
,

(a)n = a(a+ 1)(a+ 2)...(a+ n− 1) , a0 = 1

and ψ± is L2(R) in ±∞.

At this point we have an orthonormal system Φn of eigenfunctions of the
operator H0 corresponding to the eigenvalue λn. The resolvent R0(ζ) of the
operator H0: R0(ζ) = (H0 − ζ)−1 has an integral kernel G0(y, z; ζ) which we
call the Green function of H0. We can write [4]

G0(y, z; ζ) =
∞∑

n=0

κ(n)∑
k=1

(λn − ζ)−1Φn,k(y)Φn,k(z) , (6)
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where κ(n) is the multiplicity of eigenvalue λn. In our case κ(n) = 1 for
all n ∈ N . By virtue of the Mercer theorem the series (6) converges locally
uniformly on R2 × ρ(H0).

Now we shall consider the self-adjoint operator H in the space L2(R)
defined by

H = H0 + βδ(y − q) , (7)

which we obtain by argument shift in (2). According to the Krein resolvent
formula (see appendix ) H is defined by its resolvent R(ζ) with the integral
kernel

G(y, z; ζ) = G0(y, z; ζ)− [Q(ζ) + β−1]−1G0(y, q; ζ)G0(q, z; ζ) , (8)

where Q(ζ) is the so-called Krein function. From the condition∫
R
|G0(y, z; ζ)|2dy <∞ ,∀y ∈ R and ζ ∈ ρ(H0)

we get Q(ζ) ≡ Q(ζ, q) = G0(q, q; ζ). Hence

Q(ζ) =
∞∑

n=0

κ(n)∑
k=1

(λn − ζ)−1|Φn,k(q)|2. (9)

The following lemmas will be useful for finding σ(H).

Lemma 1. For every y0 ∈ R the relation Φn,k(y0) 6= 0 is valid for in-
finitely many values of the index n.

Lemma 2. For a fixed q ∈ R the following statements are true:

(i) ζ 7→ Q(ζ, q)) is a meromorphic function of ζ ∈ C with infinitely many
simple poles. The poles of this function are exactly those points λn for
which there exists k ∈ {1, ..., κ(n)} such that Φn,k(q) 6= 0.

(ii) ∂Q(ζ,q)
∂ζ

> 0 if ζ ∈ ρ(H0)
⋂R.

(iii) For real E the function E 7→ Q(E, q) increases from −∞ to +∞ as E
varies between any two neighbouring poles.

(iv) For every ζ ∈ H0 the function y 7→ G0(y, q; ζ) does not vanish identi-
cally in R.

(v) Q(ζ, q) → 0 as Rζ → −∞ locally uniformly with respect to q ∈ R.
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Proofs of this lemmas can be found in [4].

Proceeding further, let us fix q ∈ R. Considering the function ζ 7→ Q(ζ, q)
which has the form (9) we have the set of all its poles. Let us arrange these
poles in an increasing sequence λn0 < λn1 < ... < λnk

< ... . Further we
shall assume that if a point ζ = λn does not belong to the sequence, then
the function Q(ζ, q) is equal to its continuous extension to the point. The
resolvent R(ζ) = (H−ζ)−1 is a bounded operator for all ζ ∈ ρ(H) = C\σ(H)
and has the integral kernel G(y, z; ζ). According to Lemma 1 and Lemma 2
for any ζ 6= λnk

the function G0(., q; ζ) does not vanish identically on R.
From here we get that σ(H) is determined by the pole of the resolvent, that
is

Q(ζ, q) + β−1 = 0. (10)

The equation (10) is known as dispersion equation. Said in other words, every
ζ satisfying the dispersion equation belongs to the spectrum σ(H). H being
the self-adjoint operator results in σ(H) ⊂ R. Thus equation (10) has only
real solutions.

Lemma 2 says that for real E the function E 7→ Q(E, q) increases from
−∞ to +∞ as E varies between any two neighbouring poles, which means
that in each interval (λnj−1

, λnj
), j ∈ N , the equation Q(E, q) = −β−1 has a

solution. These solutions can be arranged in an increasing sequence ε1(q) <
ε2(q) < ... . If β > 0, equation (10) has no other solutions; otherwise it has
an additional solution ε0(q) lying in the interval (−∞, λn0) [4].

In the case of Schrödinger operator we will use the following representa-
tion of the Green function G0. Let ζ0 ∈ ρ(H0) and Ψ±(y; ζ0) are functions
(5). Then

G0(y, z; ζ0) =
Ψ+(max(x, y); ζ0)Ψ−(min(y, z); ζ0)

ω(ζ0)
, (11)

where
ω(ζ0) = W (Ψ+(y; ζ0),Ψ−(y; ζ0))

is the Wronskian of Ψ+(y; ζ0) and Ψ−(y; ζ0). In a neighbourhood of the point
ζ0 the functions Ψ±(y; ζ) can be chosen to be analytical ones of ζ. It follows
from the elementary properties of the resolvent of H0 which has the integral
kernel, the Green function G0, that the function ω(ζ0) has only simple zeros
which coincide with the eigenvalues λn of the operator H0. From (9) and (11)
we obtain

Q(ζ, q) =
Ψ+(q; ζ)Ψ−(q; ζ)

ω(ζ)
. (12)
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Because for ζ ∈ R and ζ < λ0 the functions Ψ±(y; ζ) can be chosen to be
strictly positive for all y ∈ R, ∂Q

∂ζ
> 0 and limζ→−∞Q(ζ, q) = 0 for all q ∈ R,

we have
ω(ζ) > 0. (13)

In our case the Wronskian has the form

ω(ζ0) =
4π
√
B

Γ(3B−ζ0
4B

)Γ(B−ζ0
4B

)
.

Because Γ(z)Γ(z + 1
n
)...Γ(z + n−1

n
) = (2π)

n−1
2 n

1
2
−nzΓ(nz) (see [1]), taking

z = B−ζ0
2B

and n = 2, we can rewrite the Wronskian as follows

ω(ζ0) =

√
πB2

3B−ζ0
2B

Γ(B−ζ0
2B

)
.

The spectrum of H consists of all εn = εn(q) that satisfy the dispersion
equation of the form √

π

B
2

εn(q)−3B
2B Γ

(
B − εn(q)

2B

)
×

× e−Bq2
[
M(B−εn(q)

4B
, 1

2
;Bq2)

Γ(3B−εn(q)
4B

)
− 4Bq2M(3B−εn(q)

4B
, 3

2
;Bq2)

Γ(B−εn(q)
4B

)

]
+ β−1 = 0. (14)

Theorem 1. The spectrum of the operator H is a discrete one and con-
sists of four non-intersecting parts σk (k = 1, 2, 3, 4) which are described as
follows.

(i) The part σ1 consists of all the solutions εj(q) of equation (14) which are
different from the eigenvalues λn of the operator H0. Each solution εj(q)
is a simple eigenvalue of the operator H, the corresponding normalized
eigenfunction has the form

Φ̂j(y) = G0(y, q; εj(q))
[
∂Q

∂E
(εj(q), q))

]− 1
2

.

(ii) The part σ2 consists of all the eigenvalues λn of the operator H0 satis-
fying equation (14) and such that Φm,k(q) = 0 for all k = 1, ..., κ(m).
Each point of σ2 is an eigenvalue of the operator H of multiplicity
κ(m) + 1; an orthonormal bases of the corresponding eigensubspace is
spanned by the functions Φm,k and the function

Ψm(y) = G0(y, q;λm)
[
∂Q

∂E
(λm, q)

]− 1
2

.
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(iii) The part σ3 consists of all the eigenvalues λm of the operator H0 which
do not satisfy equation (14) and such that Φm,k(q) = 0 for all k =
1, ..., κ(m). Each point of σ3 is an eigenvalue of the operator H of mul-
tiplicity κ(m); an orthonormal bases of the corresponding eigensubspace
is spannes by the functions Φm,k.

(iv) The part σ4 consists of all the eigenvalues λm of the operator H0 for
which κ(m) ≥ 2 and which are poles of the function ζ 7→ Q(ζ, q).
(i.e., for which Φm,k(q) 6= 0 at least for one k). Each point of σ4 is an
eigenvalue of the operator H of multiplicity κ(m)−1; the corresponding
eigensubspace is the orthogonal complement of the function

F̂m(y) = Φm,1(q)Φm,1(y) + ...+ Φm,κ(m)(q)Φm,κ(m)(y)

in the eigensubspace of the operator H0 associated with λm.

Proof of Theorem 1 can be found in [4].

Lemma 3. Let the potential V (y) be an even function. If Φm(q) = 0,
then Q(λm, q) = 0.

Proof of Lemma 3 can be found in [4].

In our case the eigenfunctions Φm,k of the Schrödinger operator H0 satisfy
Φm,k = Φm,1. That is k ∈ {1, ..., κ(m)} = {1} (each eigenvalue λm, m ∈ N
has multiplicity κ(m) = 1) . Therefore Lemma 3 and Theorem 1 both imply
that the set σ4 from Theorem 1 is empty.

Lemma 3 and Theorem 1 also imply:

Corollary. Let the potential V (y) be an even function. Then:

(a) For β 6= +∞ all the eigenvalues of the operator H are simple and belong
either to the set σ1 or to the set σ3 from Theorem 1.

(a) For β = +∞ the set σ3 is empty, and all the eigenvalues λm from the
spectrum of H are doubly degenerate.

(b) λ0 does not belong to the spectrum of all the operators H, while every
eigenvalue of the form λ2m+1 belongs to the spectrum of any operator
H = H(q = 0, β).
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Our next aim is to analyse the q-dependence of the eigenvalues εj(q). Let
us introduce the notations first:

λ−1 = −∞

X−1 = R

Xn = {q ∈ R : Φn,j(q) 6= 0 for all j = 1, ..., κ(n)} (n ≥ 0).

The following theorem will be useful for us:

Implicit function theorem. If f1, ..., fn are continuously differentiable
functions on a neighbourhood of the point (x0, y0) = (x0

1, ..., x
0
n, y

0
1, ..., y

0
m) ∈

Rn × Rm, if f1(x0, y0) = f2(x0, y0) = ... = fn(x0, y0) = 0, and if the n × n
matrix (J )i,j = ∂fi

∂xj
is nonsingular at (x0, y0), then there is a neighbourhood

U of the point y0 = (y0
1, ..., y

0
m) in Rm, there is a neighbourhood V of the

point x0 = (x0
1, ..., x

0
n) in Rn, and there is a unique mapping ϕ : U 7→ V

such that ϕ(y0) = x0 and f1(ϕ(y), y) = ... = fn(ϕ(y), y) = 0 for all y ∈ U .
Furthermore, ϕ is continuously differentiable.

In our case m,n = 1, f(x0, y0) = Q(x0, y0) + β−1 = 0, (Ek(q), q) =
(x0, y0) ∈ (λk−1, λk) × (Xk−1

⋂
Xk). The function E 7→ Q(E, q) is contin-

uously differentiable on each set (λk−1, λk) × (Xk−1
⋂
Xk). For any fixed

q ∈ Xk−1
⋂
Xk, the function E 7→ Q(E,Q) is real-analytic on the interval

(λk−1, λk) as a function of E. Further we have

∂f

∂x
≡ ∂

∂E

[
Q(E(q), q) + β−1

]
=
∂Q

∂E
(E(q), q).

It follows from Lemma 2 that ∂Q
∂E
6= 0 on the set (λk−1, λk) × (Xk−1

⋂
Xk),

which implies that det|J | 6= 0 therefore the matrix J is non-singular. Thus
the premises of the Implicit function theorem are satisfied. Therefore the
equation (14) for any q ∈ Xk−1

⋂
Xk has a unique solution Ek(q) ∈ (λk−1, λk).

Let us recall that k ∈ N for β > 0 or k ∈ N0 = N ⋃{0} if β < 0.

Proposition 1. Each function Ek(q) has a continuous extension on the
whole real line R.

The result of the Implicit function theorem and Proposition 1 is the fol-
lowing theorem:

9



Theorem 2. For each fixed 0 6= β ∈ (−∞,+∞] there is a sequence
(En(q)) of continuous functions of q ∈ R such that the following properties
are satisfied:

(i) λn−1 ≤ En(q) ≤ λn for all n.

(ii) En(q) ≤ En+1(q) for all admissible values of n.

(iii) For each q the set consisting of all En(q) and all the numbers λm with
κ(m) ≥ 2 is the complete collection of all the eigenvalues of the operator
H = H(q, β).

(iv) If λn−1 < En(q) < λn, then En(q) is the unique solution of the disper-
sion equation (14).

(v) If λn is a pole of the function ζ 7→ Q(ζ, q) (i.e. if Φn,k(q) 6= 0 at least
for one k), then λn−1 < En(q) < λn.

(vi) Provided that λn is not a pole of the function ζ 7→ Q(ζ, q) (i.e. Φn,k(q) =
0 for all k), we have the following:

(a) If Q(λn, q) + β−1 < 0, then En(q) = λn < En+1(q).

(b) If Q(λn, q) + β−1 > 0, then En(q) < λn = En+1(q).

(c) If Q(λn, q) + β−1 = 0, then En(q) = λn = En+1(q).

Definition. The points for which condition (iv) of Theorem 2 is satis-
fied we shall call the non-singular points of the function En(q). If condition
(vi)/(a), (vi)/(b) or (vi)/(c) is satisfied, then q will be called singular point
of kind (a), (b) or (c), respectively.

In the next step we will evaluate the energy of bound state of the per-
turbed HamiltonianH. It can be proved that for β 6= +∞ we haveDom(H0) =
Dom(H) ⊂ C(R). Further if ψ ∈ Dom(H), then q(ψ) = q0(ψ) + β|ψ(q)|2
where q and q0 are the quadratic forms associated with the operators H and
H0, respectively; |ψ(q)|2 � h0(ψ) for any ψ ∈ Dom(H0). Thus for all q ∈ R
we obtain [4]

−β
2

4
≤ E0(q) . (15)

Let us denote the asymptotics of the so-called Krein function (as a func-
tion of q ∈ R). The potential V (y) satisfies limy→±∞ V (y) = +∞. The
set of all discontinuity points of the function V (y) is empty. It’s obvious
that V (y) decreases on the half-line y ≤ 0 and increases on the half-line
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y ≥ 0. V (y) is differentiable and there exists a point y0 > 0 such that
the derivative V ′(y) is a locally absolutely continuous function for |y| > y0,

and
∫
|y|>y0

|5V ′2(y)
4V 3(y)

− V ′′(y)
V 2(y)

|
√
V (y)dx < ∞. Then for any E ∈ R \ σ(H0)

Q(E, q) ∼ V (q)−
1
2 for q → ±∞ which implies that limq→±∞Q(q, E) = 0.

Moreover, provided that the set of all discontinuity points of the function
V (y) is finite (or empty), then if λn 6= E ∈ R for every n, Ψ+(s;E) 6= 0 and
Q′(E, s) = 0 (s ∈ R) we have Q′′(E, s± 0) < 0 [4].

The previous hypothesis and Theorem 2 lead to a final result of this
work: for the Schrödinger operator H0 the functions Ek(q) have the following
properties:

(i) Let β < 0 and k ≥ 1. Then the function Ek(q) attains the maximum
λk at those points q ∈ R for which Φk(q) = 0 and has no other points
of local maximum. Besides, Ek(q) > λk−1 for all q ∈ R.

(ii) Let 0 < β < ∞ and k ≥ 1. Then the function Ek(q) attains its min-
imum λk−1 at those points q ∈ R for which Φk−1(q) = 0 and has no
other points of local minimum. Besides, Ek(q) < λk for all q ∈ R.

(iii) Let β = ∞ and k ≥ 1. Then:

(a) λ0 < E1(q) for all q ∈ R.

(b) The function E1(q) attains its maximum which is equal to λ1 at
that point q for which Φ1(q) = 0 and has no other points of local
maximum or local minimum.

(c) For k ≥ 2 the function Ek(q) attains its minimum λk−1 at those
points q ∈ R for which Φk−1(q) = 0, and attains its maximum λk

at those points q ∈ R for which Φk(q) = 0; this function has no
other points of local maximum or local minimum.

(iv) Let the potential V (y) fulfills the properties as discussed above. Then:

(a) If 0 < β ≤ ∞, then limq→±∞Ek(q) = λk−1 for k ≥ 1.

(b) If β < 0, then limq→±∞Ek(q) = λk for k ≥ 0. For the same values
of β, there exists a unique point q0 such that E ′

0(q0) = 0, moreover,
E ′

0(q) > 0 if q > q0, and E ′
0(q) < 0 if q < q0.
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3. Conclusion

In this work we have showed that the spectrum of perturbed Hamilto-
nian H = H(q, β) apart from so-called Landau levels consists of absolutely
continuous bands varying between two adjacent Landau levels without cross-
ing them. For q → ±∞ these bands adhere to corresponding Landau levels,
which depends on the parameter β. Moreover, there exists unique point at
which the bound state of H attains its maximum/minimum according to the
value of β.
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4. Appendix

Self-adjoint extensions of symmetric operators

Assume Ȧ to be a densely defined, closed, symmetric operator in some
Hilbert space H with deficiency indices (1,1). If

Ȧ∗φ(z) = zφ(z), φ(z) ∈ D(Ȧ∗), z ∈ C \ R, (16)

we have

Theorem 4.1. All self-adjoint extensions Aθ of Ȧ may be parametrized
by a real parameter θ ∈ [0, 2π) where

D(Aθ) = {g + cφ+ + ceiθφ− | g ∈ D(Ȧ), c ∈ C},

Aθ(g + cφ+ + ceiθφ−) = Ȧg + icφ+ − iceiθφ−, 0 ≤ θ < 2π, (17)

and
φ± = φ(±i), ‖φ+‖ = ‖φ−‖. (18)

Concerning resolvents of self-adjoint extensions of Ȧ we state

Theorem 4.2 (Krein’s formula) Let B and C denote any self-adjoint
extensions of Ȧ. Then we have that

(B − z)−1 − (C − z)−1 = λ(z)(φ(z), .)φ(z), z ∈ ρ(B) ∩ ρ(C), (19)

where λ(z) 6= 0 for z ∈ ρ(B)∩ρ(C) and λ and φ may be chosen to be analytic
in z ∈ ρ(B) ∩ ρ(A). In fact, φ(z) may be defined as

φ(z) = φ(z0) + (z − z0)(C − z)−1φ(z0), z ∈ ρ(C), (20)

where φ(z0), y0 ∈ C \ R, is a solution of (26) for z = z0 and λ(z) satisfies

λ(z)−1 = λ(z′)−1 − (z − z′)(φ(z)φ(y′)) z, z′ ∈ ρ(B) ∩ ρ(C) , (21)

if φ(z) is chosen according to (20).

Next we turn to the general case and assume that Ȧ is densely defined,
closed symmetric operator in H with deficiency indices (N, N), N ∈ N . Let
B and C be two self-adjoint extensions of Ȧ and denote by Å the maximal
common part of B and C (i.e., Å obeys Å ⊆ B, Å ⊆ C and Å extends
any operator A′ that fulfills A′ ⊆ B, A′ ⊆ C). Let M , 0 < M ≤ N , be
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the deficiency indices of Å and let {φ1(z), ..., φM(z)} span the corresponding
deficiency subspace of Å, i.e.,

Å∗φm(z) = zφm(z), φm(z) ∈ D(Å∗), m = 1, ...,M, z ∈ C \ R, (22)

and {φ1(z), ..., φM(z)} are linearly independent. Then the analog of theorem
4.2 reads

Theorem 4.3 (Krein’s formula for deficiency indices N > 1) Let B, C,
Å, and Ȧ be as above. Then

(B−z)−1−(C−z)−1 =
M∑

m,n=1

λmn(z)(φn(z), .)φm(z), z ∈ ρ(B)∩ρ(C), (23)

where the matrix λ(z) is nonsingular for z ∈ ρ(B) ∩ ρ(C) and λmn(z) and
φm(z), m,n = 1, ...,M , may be chosen to be analytic in z ∈ ρ(B) ∩ ρ(C). In
fact, φm(z) may be defined as

φm(z) = φm(z0) + (z − z0)(C − z)−1φm(z0), m = 1, ...,M, z ∈ ρ(C), (24)

where φm(z0),m = 1, ...,M , z0 ∈ C \R, are linearly independent solutions of
(22) for z = z0 and the matrix λ(z) satisfies

[λ(z)]−1
mn = [λ(z′)]−1

mn − (z − z′)(φn(z), φm(z′)), m, n = 1, ...,M,

z, z′ ∈ ρ(B) ∩ ρ(C), (25)

if the φm(z),m = 1, ...,M , are defined according to (24).

In general, we have

(B−z)−1−(C−z)−1 =
N∑

m,n=1

λ̃mn(z)(φ̃n(z), .)φ̃m(z), z ∈ ρ(B) ∩ ρ(C), (26)

where now φ̃m(z), m = 1, ..., N , are linearly independent solutions of

Å∗φ̃m(z) = zφ̃m(z), φ̃m(z) ∈ D(Å∗), m = 1, ..., N, z ∈ C \ R, (27)

and, in general, det λ̃(z) ≡ 0.
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