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Abstrakt: Z predpovedi kvantovej chromdynamiky (QCD) existuje fázový prechod
od stavu hadrónov do stavu neviazaných gluónov a kvarkov - quark-gluonová plazma
(QGP). Tento stav hmoty existuje pri extrémne vysokej teplote alebo hustote. V
súčastnosti je možné experimentálne vytvoriť QGP v laboratóriách, ako je BNL alebo
CERN, v ktorých môžme študovať fázu hmoty v neviazanej oblasti QCD, formovanie
hadrónovej hmoty a interakcie medzi hadrónmi. V tejto práci prezentujeme pred-
bežnú analýzu korelačných femtoskopických meraní dvoch identických nabitých piónov
z kolízií p+Au pre

√
sNN = 200GeV z experimentu STAR v RHIC. Získané 1D kore-

lačné funkcie vykazujú závislosť na multiplicite a na transverzálnej hybnosti páru. Tak-
tiež sú fitované Gauss a Levy distribúciami s cieľom získať informácie o veľkosti systému
v čase kinetického zmrazenia. Okrem toho sú konštruované aj 3D korelačné funkcie,
ktoré vykazujú podobné správanie a umožňujú jasne sledovať silné nefemtoskopické
účinky.

Klíčová slova: QCD, kvark-gluonová plazma, korelačná femtoskopia,
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Title:
Correlation femtoscopy in proton-gold collisions at the STAR experiment

Author: Lukáš Holub

Abstract: According to prediction of the quantum chromodynamics (QCD) there is
a phase transition from a state of hadrons to a state of deconfined gluons and quarks
- the quark-gluon plasma (QGP). This state of matter exists at extremely high tem-
peratures or densities. Nowadays, it is possible to create QGP in the laboratories such
as BNL or CERN in which we can study a phase of matter in the deconfined region
of QCD, the formation of hadronic matter and the interaction between hadrons. In
this work, we present a preliminary analysis of the femtoscopy measurements of two
identical charged pions from p+Au collisions at

√
sNN = 200GeV from STAR experi-

ment at RHIC. The obtained 1-dimensional correlation functions show dependence on
multiplicity and transverse pair momentum. There are also fitted with Gauss and Levy
distributions in order to extract an information about the size of the system at the time
of kinetic freeze-out. Moreover, 3-dimensional correlation functions are constructed as
well, showing a similar behavior and allowing to clearly observe strong non-femtoscopic
effects.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is a type of quantum field theory which describes
the strong interaction between the fundamental particles, quarks and gluons. These
particles make up hadrons, which are divided either into baryons (formed by three
quarks such as the proton, neutron) or into mesons (formed by quark-antiquark pair
such as the pion, kaon). Isolated quarks have not been observed so far.

In the prediction of QCD there is a possibility of transition from a state formed by
hadrons to a state which is composed from deconfined quarks and gluons - the quark-
gluon plasma (QGP). It is believed that this state of matter existed at the beginning
of the Universe.

In present, QGP can be also created in laboratories where it can be studied. How-
ever, this system exists only for a very short period of time with typical space-time
extents of the order of 10−15m. Using the correlation femtoscopy one can obtain in-
formation about the space-time characteristics of the system at the moment of particle
emission.

This work presents a first analysis of femtoscopic correlations of two identical
charged pion from p+Au collisions at

√
sNN = 200GeV . The whole thesis is divided

into six chapters. In the first chapter we introduce a brief overview of the Stand-
ard Model, QCD and QGP. In the second chapter is a description of the geometry
and space-time evolution of the collision. At the end of this chapter basic signatures
of the QGP are discussed. The third chapter contains description of the STAR de-
tector at RHIC. Theoretical backgrounds of femtoscopy are discussed in chapter four.
Here, the derivation of the two-particle correlation function for identical particles as
well as parametrization of the coordinate system are discussed. Then the main idea
of the non-identical correlation femtoscopy is described. Subsequently, femtoscopy in
the dynamical system and non-femtoscopic correlation are discussed. At the end of
this chapter results from other femtoscopic experiments are shown. The last chapter
summarizes our own analysis of the STAR experimental data. It discusses the applied

1
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selection criteria for construction of correlation functions and measurements. The cor-
relation functions are extracted for several multiplicity and kT bins. The measured
1-dimensional correlation functions are fitted by Gauss and Levy distributions. From
these fits we obtain the parameters describing the extents of the particle-emitting
sources. 3-dimensional correlation functions are extracted at the end of this chapter.
Here the multiplicity and kT dependence of these functions can be observed together
with strong non-femtoscopic effects.



Chapter 2

Quark-gluon plasma

2.1 Standard model

The Standard model is a gauge field theory based on the symmetry group SU(3) ⊗
SU(2) ⊗ SU(1) that was developed in stages from later half of the 20th century up
to mid of 1970s. The purpose of this theory is to describe a relationship between
fundamental particles that are governed by fundamental interactions. As we
know the whole Universe has four fundamental interactions, namely

1. the Electromagnetic interaction

2. the Weak interaction

3. the Strong interaction

4. the Gravitational interaction.

The first three interaction can be "simply" and well described by the Standard model
however this model omits the gravitational interaction. The problem is that the
quantum theory describes micro-world while the general theory of relativity describes
the macro-world and it is difficult to fit these two theories into the one single frame-
work. In spite of the fact that we are not able to include one fundamental interaction
into this model, it still works well because of the fact that for the minuscule scale of
particles, the effect of gravity is so weak as to be negligible [18]. But this is not the
only problem. There are also important questions that it does not answer, such as

• What is dark matter or dark energy?

• What happened to the antimatter after the big bang?

• Why are there three generations of quarks and leptons with such a different mass
scale?

3
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2.1.1 Fundamental particles

The term fundamental particles is a naming of group of particles whose substructure
is unknown. In general, these particles can be divided into two subgroups: the funda-
mental fermions and the fundamental boson.

Fundamental fermions

Fundamental fermions are particles with spin of 1/2 that respect the Pauli exclusion
principle. These particles can be splitted into two groups called quarks and leptons.
There are six particles in each group which are grouped into three generations.

The quarks are distinguished according their flavor as

u c t

d s b.

Each quark carries a fraction of the elementary charge either (2/3) or (−1/3) and
one of the three colors: red, green, or blue. In nature the quarks have never been
observed individually, but only inside bound colorless strongly interacting particles
called hadrons which are divided into mesons and baryons. Mesons are bound states
of quark-antiquark pairs while baryon are bound states of three quarks.

The leptons are also grouped into the three generations where each generation
consists of one lepton and its corresponding neutrino.

e− µ− τ−

νe νµ ντ .

Electron, muon and tau carry the elementary charge while corresponding neutrinos
carry no charge.

For every quark and lepton there is also a corresponding antiparticle, the particle
with the same mass and opposite charge.

Fundamental bosons

The fundamental bosons are vector particles with a spin of 1 that carry any of the
fundamental interactions of the nature. This class contains gluon (g), photon (γ), Z
boson (Z0) and W boson (W±). The massless electrically neutral photon is associated
with the electromagnetic interaction. The gluons are mediators of the strong interaction
while the massive electrically neutral Z bosons and electrically charged W± bosons
mediate the weak interaction.

The Higgs boson (H) is the massive scalar spin-zero elementary particle that ex-
plains why the other elementary particles, except the photon and gluon, are massive.

Following figure (Fig.2.1) shows the overview of all previously discussed funda-
mental particles and their properties.
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Figure 2.1: Fundamental particles in the Standard model and their properties. Taken
from [16].

2.1.2 Fundamental interactions

As we mentioned above the Standard model contains three fundamental interactions,
namely strong, weak and electromagnetic. Each of these interactions is characterized
by the corresponding gauge theory with a symmetry group and can be explained as
exchange of mediators, the already discussed gauge bosons.

The mediator of the electromagnetic interaction is the photon and this interaction is
described by the Quantum Electrodynamics (QED) that is an abelian gauge theory with
the symmetry group U(1). Since the photon has zero mass, the range of this force is
infinity. The QED Lagrangian for a spin-1/2 field interacting with the electromagnetic
field is given in natural units by the real part of

LEM = ψ̄(iγµ(∂µ + ieAµ + ieBµ)−m)ψ − 1

4
FµνF

µν , (2.1)

where γµ are Dirac matrices, ψ is a bispinor field of spin-1/2 particle (e.q. elec-
tron/positron field), Aµ is the covariant four-potential of the electromagnetic field
generated by the electron itself, Bµ is the external field imposed by external source
and Fµν is the electromagnetic field tensor.

The weak interaction is mediated by the massive W± and Z bosons, and therefore
the range of this force is very short. The theory of the weak interaction is called
quantum flavourdynamics (QFD). However, the term QFD is rarely used because the
weak interaction is best understood in terms of electro-weak theory (EWT). The non-
abelian gauge theory EWT is a quantum field theory that is unified description of
electromagnetism and weak interaction. The unification is accomplished under an
SU(2)L⊗U(1) gauge symmetry group. The corresponding gauge bosons are the three
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W bosons of weak isospin from SU(2) (W1, W2, and W3), and the B boson of weak
hyper-charge from U(1) all of which are massless. From the combination of these gauge
bosons, one is able to obtain W±, Z0 and γ bosons. The general form of Lagrangian
for the EWT can be written as

LEW = LK + LN + LC + LH + LHV + LWWV + LWWV V + LY , (2.2)

where LK is the kinetic term that contains all the quadratic terms of the Lagrangian,
which include the dynamic terms and the mass terms, LN and LC contain the inter-
action between the fermions and gauge bosons, LH contains the Higgs three-point and
four-point self interaction terms, LHV contains the Higgs interactions with gauge vec-
tor bosons, LWWV contains the gauge three-point self interactions, LWWV V contains
the gauge four-point self interactions, LY contains the Yukawa interactions between
the fermions and the Higgs field.

The last fundamental force, which is contained in the Standard model, is the
strong interaction with gluons as the mediators. Although the gluons are also mass-
less particles like the photons, the strong interaction can reach up only units of fermi
- 10−15m. This behavior is quite interesting and can be explained by the quantum
chromodynamics (QCD), which will be discussed in detail in the following section.

Although the Standard model does not contain the gravitation force and its pre-
sumed mediator the graviton and can not give an explanation of some phenomena it
is one of the most widely accepted theoretical models in the particle physics.

Table 2.1 shows the summary of the fundamental interactions, their mediators and
the ranges.

Fundamental fource Exchange boson Mass (in MeV/c2) Expected range

Electromagnetic Photon (γ) 0 ∞
Weak W±, Z0 W± = 80600 10−17 − 10−16m

Z0 = 93160

Strong Gluon (g) 0 10−15m

Gravity ? Graviton ? Not known to exist ∞
expected 0

Table 2.1: Fundamental interactions in the Standard model and their properties.

2.2 Quantum chromodynamics

The quantum chromodynamics (QCD) is the non-abelian gauge theory that describes
the strong interaction, between quarks and gluons, with the SU(3) symmetry group.
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As mentioned above, the mediators of this fundamental force are the massless gluons
that carry the supplementary color (anti-color) charge. There are three different color
charges (red, green and blue) that create eight different gluons that occur in our world.
The quarks interact with each other, with the possibility to change the relevant color
[10]. Since leptons do not interact with gluons, they are not affected by this sector.
The QCD Lagrangian of the quarks coupled to the gluon fields is given by

LQCD =
∑
ψ

ψ̄i(iγ
µ(∂µδij − igsGa

µT
a
ij)−mψδij)ψj −

1

4
Ga
µνG

µν
a , (2.3)

where ψi is the Dirac spinor of the quark field and i=(r,g,b) represents color, γµ are
the Dirac matrices, Ga

µ is the 8-component (a=1,2,3,...8) SU(3) gauge field, T aij are 3x3
Gell-Mann matrices (generators of the SU(3) color group), Ga

µν are the field strength
tensors for the gluons and gs is the strong coupling constant.

2.2.1 The QCD coupling constant

The strength of the strong interaction is encoded into a factor which is called the coup-
ling constant that is usually denoted as αs. The exchange of one gluon is proportional
to a factor g2s = 4παs. Each of the two vertices where the gluon and the quark get in
touch contributes a factor of gs =

√
4παs. [2]

In QCD the coupling constant αs actually is not a constant at all because it effect-
ively depends on the transferred four-momentum Q as [15].

αs(Q
2) =

αs(µ
2)

1 + β0αs(µ2) ln (Q
2

µ2 )
with β0 =

11Nc − 2nf
12π

(2.4)

where Nc is the number of colors (3 - red, green, blue) and nf is the number of
flavours (6 in the Standard model), µ2 is called renormalization scale that is introduced
by the renormalization process.

For comparison, in the quantum electrodynamics (QED) the coupling constant,
better known as fine structure constant, is

α(Q2) =
α(µ2)

1 + β0α(µ2) ln (Q
2

µ2 )
with β0 = − 1

3π
. (2.5)

We know that the running QED coupling constant decreases with decreasing Q2 to the
asymptotic value α(0) ≈ 1/137. However, running QCD coupling constant increases
with decreasing Q2 and for small values of Q2, αs can be about 50 times greater than
QED coupling constant and that is why the strong interaction is strong.

This behavior of the αs results in the confinement of quarks and explains the fact
that they are never seen in isolation but only in strongly interacting matter. Let us
demonstrate the main idea of the color confinement.
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Suppose, we have a quark-antiquark pair which is in a color singlet state. One may
try to separate the quark from the antiquark by pulling them apart. The interaction
between the quarks gets stronger as the distance between them gets larger, similar to
what happens in the spring. In fact, when a spring is stretched beyond the elastic limit,
it breaks to produce two springs. In the case of the quark pair, a new quark-antiquark
pair will be created when pulled beyond certain distance. Part of the stretching energy
goes into the creation of the new pair, and as a consequence, one can not have quarks
as free particles, see in (Fig.2.2, right panel).[1]

Figure 2.2: Left) The behavior of potential between quark-antiquark pair. Right)
The QCD string between the static quark-antiquark pair breaks due to light quark-
antiquark pair creation. Taken from [43]

The above discussion was only for imagination. However, to understand what really
happens, one must make very difficult calculations in QCD. It can be shown that the
effective quark-antiquark potential is well approximated by Cornell potential [79], see
in (Fig.2.2, left panel)

V (r) = −4αs
3r

+ kr (2.6)

where k is the string tension that represents the strength of the quark confinement, r
is the distance between quarks and αs is the coupling constant.

The first term of the potential is well known Coulomb-like potential that depends
on the factor 1/r. The second term, a string potential, is more interesting because this
term causes the fact that quarks can never be seen in isolation under normal conditions.

However, at very large Q, the coupling strength between color charged particles is
so small that quarks and gluons can be thought to be free particles. This property
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of the strong interaction is known as asymptotic freedom. The αs lies in the range
0.1− 0.3 at values of Q that can be probed experimentally, see in (Fig.2.3).

Figure 2.3: It shows a compilation of the values for αs, derived from many different
experiments, and for different momenta Q of the exchanged gluons. Taken from [6]

2.3 Quark-gluon plasma

According to prediction of the QCD there is a possible state of matter that is no longer
confined in the hadron interiors but can propagate in the whole volume occupied by
the system. This state of matter is called quark-gluon plasma (QGP) and can exist at
extremely high temperature or density. At these extreme conditions the QCD predicts
a phase transition from hadronic state to the QGP. An example of the phase transition
can be seen in (Fig.2.4). However, one can ask himself whether the existence of such
a state of matter is not in conflict with the confinement hypothesis. We note that the
plasma is white as a whole. Thus, the color charges are still confined in the colorless
system.

Due to the difficulty of calculations of the soft QCD, the properties of the had-
ronic matter are poorly known at the moderate temperatures. This difficulty lies in
the strength of the strong interaction. While the perturbative expansion, where the
system is treated as non-interacting, appears to be the only effective and universal
computational method in the quantum field theory, a large value of the QCD coupling
constant excludes applicability of the method for the system of quarks and gluons.
However, the QCD possesses a remarkable property, that we mentioned above, called
the asymptotic freedom. Therefore, the interactions with a large momentum transfer
can be treated in the perturbative way [63].
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An increase of the transferred momentum can be done by increase of the temper-
ature of the whole system. According to lattice QCD calculations the critical tem-
perature of the phase transition is around Tc ≈ 170MeV . At this temperature the
energy density is εc ∼ 1GeV/fm3 and we expect to achieve the asymptotic freedom
regime (smallness of the coupling constant) [10] where the QGP is created. The QGP
can be also established during the adiabatic compression of the nuclear matter at the
temperature T ≈ 0MeV . Since it is believed that the system can reach such a high
baryon chemical density µB, where the binding between the quarks will be broken up
and the QGP will be formed. In the (Fig.2.5) is shown a phase diagram of QCD and
in (Fig.2.6) two ways of production of the QGP are sketched.

Figure 2.4: The energy density divided by the 4th power of the temperature, computed
on the lattice with different number of sea flavours, shows a marked rise near the critical
temperature. The arrows on top show the limit for a perfect Bose gas. Taken from
[34].

It is believed that in the first moments of the Universe, a few microseconds after
the Big Bang, the temperature and pressure of the matter were sufficient high to create
a deconfined state of quarks and gluons. At the present time, such conditions are not
very usual in the nature. One of the places where the QGP could exist are the centers
of the neutron stars. However, more convenient is to observe the QGP in the early
moments of the ultra relativistic heavy-ion collisions. This deconfined medium exists
only for a fleeting moment of few femtoseconds so it is impossible to directly observe
QGP within this small lifetime. However the detection of various particles from QGP
might prove to be useful as signatures and plasma diagnostic tools. It is recognized that
there may be no unique signal which will alone lead to the identification of quark gluon
plasma. Instead, a number of different signals come out from the medium which may
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Figure 2.5: Schematic QCD phase diagram for nuclear matter. The solid lines show the
phase boundaries for the indicated phases. The solid circle depicts the critical point.
Taken from [8].

be treated as the QGP signatures. These signals include, for example enhancement of
direct photons and dileptons due to QGP thermal radiation, strangeness enhancement,
J/ψ suppression, jet quenching, elliptic flow or heavy quarks and more. Some of them
will be discussed in the next chapter.

Figure 2.6: Sketch of two principles to produce the dense hadronic matter: compression
(a) and heating (b).



Chapter 3

Heavy-ion collisions

In order to change the hadronic matter into the phase of deconfined quarks and gluons,
the temperature of the system must be above Tc and density above εc. To reach such
a temperature and density on the Earth, the ultra relativistic heavy-ion collisions are
used. In laboratories like CERN (Geneva, Switzerland), BNL (New York, USA), GSI
(Darmstadt, Germany), and GANIL (Caen, France), nuclei are accelerated at energies
that range from MeV to TeV beam energies.

3.1 Geometry of heavy-ion collision

Geometry of the collision in relativistic heavy-ion collisions is characterized by a degree
of the overlap of the two nuclei. The distance parameter |~b| is a parameter which
characterizes the overlapping region and is defined as the distance between the center
of nuclei, where~b is perpendicular to the beam direction. A pictorial view of relativistic
heavy-ion collisions is presented in (Fig.3.1).

In the region of overlapping, the participating nucleons interact with each other,
while in non-overlapping region, the spectator nucleons continue along their traject-
ories [87]. However, it is impossible to measure the impact parameter directly in the
experiment. Therefore the centrality (c) is defined and measured instead of the impact
parameter

c =

∫ b
0
dσ
da
da∫∞

0
dσ
da
da
. (3.1)

The most central collisions correspond to |~b| ∼ 0 fm, or in another words, head-on
collisions. On the other hand, no overlapping area is for the most peripheral collisions
correspond to |~b| ∼ 2Rfm, where R is radius of the nucleus. Nuclei are Lorenz
contracted in beam direction therefore the maximum time of overlapping is determined
as τ = 2R

γc
, where γ is Lorentz factor and c is speed of light.

12
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Figure 3.1: Nucleus-nucleus collision with impact parameter b.

3.2 Space-time evolution of the collision

Different phases of evolution of the collision are predicted according to theoretical
models and on the basis of data collected so far. Nuclei that are accelerated to ultra
relativistic energies become Lorentz-contracted. In heavy-ion collisions, a large number
of nucleons is involved in the processes while the collision takes place in a very tight
region.

As is mentioned in previous chapter, the formation of the QGP is possible only if
critical temperature and energy density are reached. If the system does not reach such
conditions after collision of the nuclei then the system will run into a hadron gas that
is not too interesting in study of the QGP, the left side of the (Fig.3.2).

In the right side of the (Fig.3.2), it is shown the evolution of the heavy-ion collision
in the case of the QGP formation. This evolution can be divided into the following
phases.[5]

• Pre-equilibrium - nuclei pass through each other and partons (quarks and gluons)
scatters among each other and give rise to an abundant production of deconfined
quarks and gluons. During the scattering, partons lose part of their initial energy
in the interaction region, creating fireball. At this stage a large quantity of
photons is also produced, direct photons that are real or virtual. Virtual photons
decay in lepton-antilepton pairs.

• Thermalization - elastic and inelastic interactions between partons in QGP lead
to the thermalization phase. Inelastic interactions can modify the flavour compos-
ition of particles. Due to its internal pressure, the system at thermal equilibrium
rapidly expands. While expanding, system cools down.
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• Hadronization - the expanding system of QGP cools down and reaches the trans-
ition temperature. At this point the hadronization begins and quarks and gluons
of the QGP condensate into new hadrons.

• Chemical freeze-out - the system expands further and get to the temperature of
chemical freeze-out Tch. The composition of the hadrons do not change anymore.
However, they collide elastically.

• Thermal freeze-out - if the temperature of the thermal freeze-out Tf is reached,
elastic scatterings between hadrons cease and kinematical spectra of the resulting
matter also become fixed, After this moment, hadrons fly out freely.

There are three characteristic times during the evolution. The first one is initial form-
ation time (τ0), at this time the pre-equilibrium stage of the collision ends. The second
time is chemical freeze-out time (τch), where inelastic collisions cease and chemical
composition of the matter is fixed. The last one is thermal freeze-out time (τf ), when
system is so diluted that even elastic collisions cease.

Figure 3.2: Evolution of a central heavy ion collision in a Minkowski-like plane. Taken
from [5]

As mentioned above, the only way how we can get any information about the QGP
is to inferred them from the properties of the particles remaining after the thermal
freeze-out. In next section, we described some signatures of the QGP.
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3.3 Signatures of the QGP

In this section we introduce some experimental observables that can provide informa-
tion about the possible QGP phase.

3.3.1 Direct photon

As every thermal source the QGP also emit thermal radiation, real and virtual photons
which are produced in quark-antiquark annihilation (qq̄ → gγ) and Compton scattering
(gq̄ → γq) processes, see in (Fig.3.3). These direct photons only interact through
electromagnetic interaction and have a large mean free path compared to the size of
the fireball so they escape the system without re-scattering carrying information on
the earliest deconfined stage. [61]

At high pT , direct photon production is dominated by hard scattering processes
and can thus be used to study the validity of binary or Ncoll scaling of high pT particle
production. At low pT , direct photons are produced in the QGP and the hadron gas
phase. However, measuring direct photons experimentally is difficult because there is
also large background of photons which are emitted during the hadronic gas phase.
Owing to this difficulty it is not easy to extract clear spectra of direct photons from
the QGP because there is a lot of other processes that create large photon background.

In (Fig.3.4) one can see nuclear modification factor RAA, for ALICE data that were
measured in Pb+Pb collisions at

√
sNN = 2.76TeV . RAA was used to quantify nuclear

effects in heavy-ion collisions. It was calculated for direct photons using the pQCD
calculation from [67] as pp reference. RAA shows strong enhancement of the direct
photon production at low pT over the expectation from Ncoll scaled pp collisions, as
well as the validity of binary scaling at high pT . These data were compared to various
models that incorporate a QGP and found to be consistent with the measurement [72].

Figure 3.3: Lowest order contributions to photon production from the QGP: Compton
scattering (left) and quark-antiquark annihilation (right). Taken from [75]

3.3.2 Strangeness enhancement

In elementary particle collisions, the strange quarks can be produced only as constitu-
ents of strange hadrons. In case that the QGP is formed, the pairs of strange and
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Figure 3.4: Nuclear modification factor RAA for the 0−20% (left) and 20−40% (right)
centrality classes. Taken from [72]

anti-strange quarks may be also produced by the gluon fusion without any additional
non-strange quarks. Since the threshold for such a reaction is about 200MeV , which
is on the order of the expected QGP temperature, an enhancement of strangeness
production should be observed [85].

In (Fig.3.5) the yields per wounded nucleon relative to p+Be of Λ, Ξ and Ω and
their anti-particles in Pb+Pb and p+Pb at 158AGeV/c are plotted as a function of
the number of wounded nucleons. Wounded nucleon is the nucleon which undergo
at least one primary inelastic collision with another nucleon. The enhancements are
shown separately for particles containing at least one valence quark in common with the
nucleon (left) and for those with no valence quark in common with the nucleon (right),
since it is known that the particles of two groups may exhibit different production
features. One can see, within the Pb+Pb sample, an increase of the particle yields per
wounded nucleon with the number of wounded nucleons for all the particles except for
the Λ̄. [40].

Similar effect can be seen in ratio of φ/π− as a function of the center-of-mass energy
per nucleon pair (

√
sNN). The ratio φ/π− increases with energy in A + A and also in

p+ p collisions. This indicates that the yield of the φ increases faster than yield of the
π−, see in (right Fig.3.6). Dependence of the ratio φ/π− as a function of Npart for five
different collisions can be seen in (left Fig.3.6). We see that the ratio first increases
with Npart and then seems to be saturated in the high Npart region. This enhancement
of the production of φ meson in heavy-ion environment has been predicted to be a
signal of QGP formation [20].

Another interesting ratio, which can give us information about the transition from
the hadron matter to deconfined matter of the quarks and gluons, is K+/π+. It was



3.3. SIGNATURES OF THE QGP 17

Figure 3.5: Hyperon yields per wounded nucleon per unit of rapidity at central rapidity
relative to p+Be as a function of the number of wounded nucleons. Taken from [40].

Figure 3.6: Right figure: Energy dependence of the ratio φ/π in A + A and p +

p collisions. Stars data were measured at STAR experiment at RHIC. Left figure:
Dependence of the ratio φ/π as a function of Npart for different collision systems. Both
figure were taken from [20].

suggested in [48] and [49] that the transition to a deconfined state of matter may cause
anomalies in the energy dependence of pion and strangeness production in nucleus-
nucleus collisions. The ratio K+/π+ reflects the strangeness content relative to entropy
in heavy-ion collisions compared to p+p collisions. Fig.3.7 shows the energy dependence
of K/π particle ratio. RHIC BES results are compared with those from AGS, SPS and
LHC. Data for BES Au+Au collisions are found to be consistent with the previous
experiments. The peak position in energy dependence of K+/π+ has been suggested
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as the signature of a phase transition from hadron gas to a QGP, for more details about
analysis and results see [24].

Figure 3.7: K/π ratio for central 0−5% Au+Au collisions at
√
sNN = 7.7, 11.5, 19.6, 27

and 39GeV that are compared to previous result from AGS, SPS, RHIC and LHC.
Taken from [24].

3.3.3 Quenching of the high pT particles

High pT particles traverse through the dense hot medium that was formed in collisions.
In this medium particles lose their energy via strong interactions. The energy loss
should be proportional to the initial gluon density and the lifetime of the system.
Therefore, one can expect a suppression of high pT hadrons in the final state. The
suppression of the high pT particles in A+A collisions compared to Ncoll scaled p+p
measurements is one of the best evidence for production of the QGP. Observing of this
suppression can be done by the nuclear modification factor RAA that is defined as [74]

RAA(pT ) =
(1/NAA)d2NAA/dpTdy

〈Ncoll〉(1/Npp)d2Npp/dpTdy
. (3.2)

However, if the particle yield from reference p+p collisions is not known one can use
particle yield from the peripheral collisions and compare it with particle yield from the
central collisions

RCP =
〈Ncoll〉peripheral(1/N central

AA )d2N central
AA /dpTdy

〈Ncoll〉central(1/Nperipheral
AA )d2Nperipheral

AA /dpTdy
, (3.3)

where Ncoll is the average number of binary collisions within a centrality bin and can
be estimated using a Glauber Monte Carlo.

Effects that increase the number of particles per binary collision in central heavy-ion
collisions ( or A+A collisions) relative to peripheral collisions ( or p+p collisions) are
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collectively called enhancement effects and lead to RCP > 1 (RAA > 1) and opposite
effects that decrease number of particles per binary collisions are collectively called
suppression effects and lead to RCP < 1 (RAA < 1).

However, there are some effects that can lead to enhancement of hadron production
in specific kinematic ranges, concealing the turn-off of the suppression. The effects that
may cause such an enhancement are Cronin effect [21], radial flow and particle coales-
cence [50]. These enhancement effects are expected to compete with the suppression,
which shifts high-pT particles toward lower momenta. This means that measuring a
nuclear modification factor to be greater than unity does not automatically lead us
to conclude that a QGP is not formed. Disentangling these competing effects may
be accomplished with complementary measurements, such as event plane dependent
nuclear modification factors [31], or through other methods.

In (Fig.3.8) we can see RCP dependence on the
√
sNN and pT for data from (0−5%)

and 60 − 80% event centralities. The RCP is found to be lowest at the highest beam
energy studied, and increases progressively from a suppression regime at 62.4 GeV to
a pronounced enhancement at the lowest beam energies. For more details see [26].

Figure 3.8: Charged hadron RCP for RHIC BES energies. Taken from [26].

3.3.4 Elliptic flow

Another QGP signature which will be discussed is the elliptic flow. In the non-central
collisions (b � 0) the overlapping region of two nuclei has a spatial anisotropy like an
almond shape as is illustrated in (Fig.3.9, left). Thanks to this spatial anisotropy the
pressure gradient is not azimuthally symmetric and establishes a correlation between
momentum and position points [87]. The pressure gradient is bigger in the direction of
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the short X-axis than in the direction of the long Y-axis. Therefore more particles are
emitted to the direction of the short axis. In other words, the initial spatial anisotropy
makes an anisotropy in final momentum space as shown in (Fig.3.9, right).

Figure 3.9: Left Overlapping region of two nuclei in non-central collisions in coordinate
space. Right Anisotropy in momentum space due to spatial anisotropy.

Azimuthal distribution of emitted particles is represented in the form of Fourier
expansion

Ed3N

dp3
=

d3N

2πpTdpTdy
[1 + 2v1 cos(φ− ΦR) + 2v2 cos[2(φ− ΦR)] + ...] (3.4)

where pT is the transverse momentum, y is the rapidity, φ the azimuthal angle of the
outgoing particle, ΦR is the azimuthal angle of the reaction plane in the laboratory
frame. The Fourier coefficient v2 represents the strength of the elliptic flow. The
terms, sin[n(φ − ΦR)], are not included in the Fourier expansion because they vanish
due to the reflection symmetry with respect to the reaction plane, see (Fig.3.10). The
reaction plane angle ΦR, (Fig.3.10, right), is not known, and is estimated using the
transverse distribution of particles in the final state. The estimated reaction plane is
called the event plane [54].
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Figure 3.10: Left Geometry of the collision and φ, the azimuthal angle of one of the
outgoing particles. Right ΦR, the reaction plane angle. Taken from [54]

Fig.3.11 shows energy dependence of the v2 of the particles π+, K0
s , proton and

deuteron as a function of pT for minimum bias Au+Au collisions. Mass ordering of
v2(pT ) for pT < 2.0GeV/c is clear where heavier species have a lower v2 in this pT
range.

Figure 3.11: Mid-rapidity v2(pT ) for π+, K0
s , proton and deuteron for minimum bias

Au+Au collisions at
√
sNN = 200, 62.4, 39.27, 19.6, 11.5 and 7.7GeV . Taken from

[23].

In the (Fig.3.12) we can see a comparison for measured D0 v2 for 10−40% centrality
bin with v2 of K0

s , Λ and Ξ−. Panel (a) shows v2 as a function of pT where a clear mass
ordering for pT < 2GeV/c is observed. For pT > 2GeV/c, D0 meson v2 follows that of
other light mesons indicating significant charm quark flow at RHIC [19] [22]. Panel (b)
shows v2/nq as a function of scaled transverse kinetic energy, (mT −m0)/nq, where nq
is the number of constituent quarks in the hadron, m0 its mass and mT =

√
p2T +m2

0.
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We see that the D0 v2 falls onto the same universal trend as all other light hadrons,
in particular for (mT − m0)/nq < 1GeV/c2. This suggests that charm quarks have
qained significant flow through interactions with the QGP medium in 10−40% Au+Au
collision at

√
sNN = 200GeV , for more details see [25].

Figure 3.12: Figure (a): v2 as a function of pT . Figure (b): v2/nq as a function of
(mT −m0)/nq for D0 meson that is compared with K0

s , Λ and Ξ−. Taken from [25]



Chapter 4

STAR experiment

The Solenoid Tracker At the RHIC (STAR) is a detector designed to investigate the be-
havior of strongly interacting matter at high energy density and to search for signatures
of quark-gluon plasma (QGP) formation. This experiment is part of the Relativistic
Heavy Ion Collider (RHIC) in Brookhaven National Laboratory (BNL).

4.1 Relativistic heavy ion collider

BNL is a multipurpose research institution that is located on the center of Long Island
in state New York, (Fig.4.1), with an area of about 5000 acres. One of many goals of
BNL is a research in nuclear and particle physics to gain a deeper understanding of
matter, energy, space and time. This type of research is enabled by RHIC.

Figure 4.1: A satellite image of the position of BNL on the Long Island (USA). Taken
from [11].

In present, RHIC is the second highest energy heavy-ion collider and the only
machine capable of colliding beams of polarized protons. It consists of two, hexagonally
shaped and 3834m long circular independent rings in which can be accelerated various

23
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ions such as protons or gold nuclei in opposite direction. In this rings, stored particles
are guided and focused by superconducting magnets. There are six interaction points
where the two rings cross, allowing the particles to collide. Simple schematic drawing
of the RHIC is shown in (Fig.4.2).

The types of particle combinations explored at RHIC to this day are p+ p, p+Al,

p+Au, d+Au, h+Au, Cu+Cu, Cu+Au, Au+Au, and U+U . For Au+Au collisions,
the range of center of mass energy is 7.7 − 200GeV per nucleon-pair. The speed of
the projectiles is typically 99.995% of the speed of light. The designed luminosity is
2 × 1026 cm−2s−1 for gold ions and 1.4 × 1031 cm−2s−1 for protons, however current
luminosity for gold ions is 87× 1026 cm−2s−1 thanks to stochastic cooling upgrade.

Before particles reach the RHIC storage rings they have to pass through several
stages of boosters. For protons whole process start in linear accelerator (LINAC),
where protons obtain energy of 200MeV . Subsequently, they are sent through the
Booster into the Alternating Gradient Synchrotron (AGS) where they obtain more
energy. When they have sufficient amount of energy, they are injected into the RHIC
storage ring over the AGS-to-RHIC transfer line (AtR). For ions the scenario is a
little bit different. The heavy-nuclei are first of all partially stripped of their electrons
and then injected into Booster by the Electron Beam Ion Source (EBIS). In Booster,
particles are more accelerated and stripped of another electrons, then they are injected
into the AGS. Here in AGS, ions are stripped of all electrons and also accelerated to
sufficient energy in order to be injected into the RHIC storage rings through AtR.

In present, only the STAR detector is running but in the past, there were also
PHENIX, BRAMS, PHOBOS detectors but they completed their programmes in 2015,
2006 and 2005 respectively.

Figure 4.2: A schematic drawing of the RHIC accelerator complex. Taken from [13].
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4.2 STAR detector

The STAR detector is a flexible detection system that can simultaneously measure
many experimental observables. It was constructed to study the behavior of strongly
interacting matter at high energy density and to search for signatures of QGP form-
ation. Measurements of the momentum of particles are made at mid-rapidity over a
pseudo-rapidity range (−1 < η < 1) with full azimuthal coverage (0 < Φ < 2π) .

The most important detectors and systems of the STAR experiment are the Time
Projection Chamber (TPC), Barel Electromagnetic Calorimeter (BEMC), Time Of
Flight (TOF), Heavy Flavor Tracker (HFT), solenoid magnet, electronics, data ac-
quisition, and trigger system. The detection system consists of TPC and HFT inside
a solenoid magnet to enable tracking, momentum analysis, particle identification via
dE/dx and location of primary and secondary vertices. HFT detector was installed
in 2014. It is the innermost detector of the system which consists of three detectors.
The outermost part of HFT is a doubled-sided silicon strip detector (SSD), the inter-
mediate silicon tracker (IST) is a silicon pad detector and the innermost detector is
the pixel detector (PXL) which is composed of MAPS technology [3]. For extension of
the tracking to the forward region, a radial-drift TPC (FTPC) was installed covering
(2.5 <| η |< 4) also with complete azimuthal coverage and symmetry. STAR magnet
has an outer radius of 3.66 m and a length of 6.85 m and is capable to produce a
uniform magnetic field of 0.25− 0.5T along the beam axis [4].

There are also another forward detectors, such as the Beam-Beam Counter (BBC)
and the Endcap Electromagnetic Calorimeter (EEMC). Around the STAR magnet is
located the Moun Telescope Detector (MTD) which covers 45% of azimuthal angle in
range (−0.5 < η < 0.5). The MTD, Vertex Position Detector (VPD) and the Zero
Degree Calorimeter (ZDC) are located outside of the magnetic field. In the (Fig.4.3)
one can see the sketch of the position of some detectors in the STAR experiment.

For our analysis the most important detectors of the STAR experiment are TPC
and TOF. The trigger system used for event selection was based on the VPD, ZDC,
BBC. Following subsections will describe these facilities.

4.2.1 TPC detector

TPC is a part of the STAR detector which records the tracks of particles, measures
their momenta and identifies the particles by measuring their ionization energy loss. Its
pseudo-rapidity range covers (−1.8 < η < 1.8) with full azimuthal coverage (0 < Φ <

2π) and over the full range of multiplicities. Particles are identified over a momentum
range from 100MeV/c to greater than 1GeV/c and momenta are measured over a
range of 100MeV/c to 30GeV/c [62].
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Figure 4.3: The sketch of the STAR detector system. Taken from [12]

The TPC is situated in a large solenoid magnet that operates at 0.5T . It surrounds
the beam-beam interaction region and its drift volume is limited by 2 concentric field
cage cylinders, of radii 50 cm and 200 cm with the length 4.2m. The STAR TPC
is shown schematically in (Fig.4.4). The paths of primary ionizing particles, passing
through the gas volume, are reconstructed with high precision from the released sec-
ondary electrons which drift to the readout end-caps at the ends of the chamber. The
uniform electric field which is required to drift the electrons is defined by a thin conduct-
ive Central Membrane (CM) at the center of the TPC, concentric field-cage cylinders
and the readout end caps.

The TPC is filled with P10 gas (10% methane, 90% argon) regulated at 2mbar

above atmospheric pressure and the gas circulates with rate of 36, 000 l/h (full volume
of the TPC is 50, 000 l). The main property of this gas is a fast drift velocity which
peaks at a low electric field. There is a central membrane held at 28 kV that, together
with the equipotential rings along the inner and outer field cage, create a uniform drift
field of 135V/cm from the central membrane to the ground end-caps where the readout
chambers are located.

The readout system is based on Multi-Wire Proportional Chambers (MWPC) and
consists of 12 sectors. Each sector is divided into the inner and outer subsector with 13
and 32 pad rows, respectively. While the outer subsection has complete pad coverage
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Figure 4.4: STAR TPC overview. Taken from [62]

for better dE/dx resolution and contains in total of 3942 pads with dimensions 6.2 ×
19.5mm, the inner subsection is designed for precise tracking and consists of 1750 pads
with size of 2.85× 11.50mm. The inner subsection has small pads arranged in widely
spaced rows, since each pad in row 1 through 8 and in row 8 through 13, respectively
is separated by the 48mm and 52mm space. The detailed schema can be found in
(Fig.4.5).

The ionization electrons drift towards the end-caps at a constant velocity of ∼
5.45cm/µs and hence maximum drift time in the TPC is ∼ 40µs, that is limit of
read-out. The drifting electrons avalanche in the high fields at the 20µm anode wires
providing an amplification of 1000 to 3000. The induced charges from the avalanche
are then collected by the several read-out pads.

Performance of the TPC

The track of an infinite-momentum particle passing through the TPC at mid-rapidity
is sampled by 45 pad rows, but a finite momentum track may not cross all 45 rows.
It depends on the radius of curvature of the track, the track pseudo-rapidity, fiducial
cuts near sector boundaries, and other details about the particle’s trajectory. While
the wire chambers are sensitive to almost 100% of the secondary electrons arriving at
the end-cap, the overall tracking efficiency is lower (80− 90%) due to the fiducial cuts,
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Figure 4.5: The anode pad plane with one full sector shown. The inner sub-sector is on
the right and it has small pads arranged in widely spaced rows. The outer sub-sector
is on the left and it is densely packed with larger pads. Taken from [62]

track merging, and to lesser extent bad pads and dead channels. There are at most a
few percent dead channels in any one run cycle [62].

The track of a primary particle passing through the TPC is reconstructed by finding
ionization clusters along the track. The clusters are found separately in x, y and in z
space. The local x axis is along the direction of the pad-row, the local y axis extends
from beam-line outward through the middle of an perpendicular to the pad-rows, the
local z axis lies along the beam axis.

Particle identification by TPC

Energy loss in the TPC gas is a valuable tool for identifying particle species. It works
especially well for low momentum particles but as the particle energy rises, the energy
loss becomes less mass-dependent and it is hard to separate particles with velocities
v > 0.7c. STAR is able to separate pions, kaons and protons with a very good accuracy
up to 1.2GeV/c. This requires a relative dE/dx resolution of 7% [62].

Energy loss of charged particles by ionization, mentioned above, can be calculated
using the Bethe-Bloch formula [38]

−〈dE
dx
〉 = 2πNAr

2
emc

2ρ
Z

A

z2

β2
[ln(

2mc2β2WMax

I2
)− β2 − δ2

2
] (4.1)

where NA is Avogadro’s number, re is classical electron radius, m is mass of particle, c
is speed of light in vacuum, ρ is density of the material, Z and A are atomic number
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and weight of material, WMax is maximum energy transfer in a single collision, I is
mean excitation energy and δ is density correction.

(Fig.4.6) shows the energy loss for particles in the TPC as a function of the particle
momentum. As can be seen, the energy loss for particles is mass ordered which means
that heavier particles lose more energy in comparison to the lighter for the same mo-
mentum.

Figure 4.6: The energy loss distribution for particles in the STAR TPC as a function
of the momentum of the particle (p) and charge (q). The colored lines represents the
expected value for various particle species. Taken from [58]

4.2.2 TOF

In the STAR experiment, the particle identification is done by TPC thanks to its
wide and azimuthally complete acceptance about the collision zone. However, it has
a problem to identify the charged hadrons such as pions, kaons and protons if their
momentum is above ∼ 0.6GeV/c because energy bands start to mix with each other,
see (Fig.4.6). Therefore, the Time Of Flight (TOF) detector, with a total timing
resolution of 100 ps in the STAR geometry, was developed to improve the particle
identification ability of the STAR experiment for the particles with momenta in range
0.6−3GeV/c. The system was fully installed in 2010. It is based on Multi-gap Resistive
Plate Chamber (MRPC) technology. Each tray, with dimension 95× 8.5× 3.5 inches,
contains 32 MRPC modules and cover 6 degrees in the azimuthal angle and one unit in
pseudo-rapidity. In total, TOF detector consists of 120 trays and covers full azimuthal
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angle at −1 < η < 1. The TOF sits inside the STAR magnet behind the TPC.

Particle identification by TOF

Based on the information from the TOF relative particle speed β is calculated as

1

β
=
cτ

L
(4.2)

where c is speed of light, L is the track length from the primary vertex position to
the matched TOF channel and τ is the time of flight. From the relativistic particle
momentum we obtain (in natural units)

p = mβγ ⇒ p2 = β2(m2 + p2) (4.3)

where m is particle mass, one can derive the relation between β and p where the only
one unknown parameter is the mass of the particle

1

β
=

√
(
m2

p2
+ 1) (4.4)

(Fig.4.7) shows behavior of 1/β as a function of momentum. Solid black lines are
predictions from (Eq.4.4) for π, K and p.

Figure 4.7: Particle Identification by STAR TOF. Taken from [76]

4.2.3 Trigger system

As was mentioned above, the main STAR detectors are relatively slow. However,
the trigger system must look at every RHIC crossing and decide whether or not to
accept that event and initiate recording the data. This system is a pipelined sys-
tem which is based on the input from the fast detectors to control the event selec-
tion for slower tracker detectors. Trigger detectors is a group of fast detectors that
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make decision whether or not to accept event. Into this groups of detectors belong
Zero-Degree Calorimeter (ZDC), Beam-Beam Counter (BBC), Barrel Electromagnetic
Calorimeter (BEMC), Vertex Position Detector (VPD), Endcap Electromagnetic Calor-
imeter (EEMC) or Forward Pion Detector (FPD). This trigger system is functionally
divided into four different layer levels. Interactions that pass selection criteria in these
successive trigger levels are sent to storage [39].

Level 0

Level 0 is the fastest and analyzes raw data to determine whether a requested type of
interaction occurred in crossing. Data that are used in this level are mostly from the
ZDC, BBC and VPD. These detectors are described in next section of this chapter.
When the data pass through Level 0 they reach another levels.

Level 1, Level 2

Level 1 and 2 operate in the time period of several milliseconds during which these
data are analyzed in more detail in order to determine whether the event meets more
finer grained criteria. If it does not, then the digitization process is aborted and the
detectors are free for a new trigger.

Level 3

Level 3 makes the final decision. If the data pass through this level so they will be sent
to storage. It also includes an on-line display so that individual events can be visually
inspected in real time.

ZDC

ZDC detectors are hadron calorimeters that are installed on both the east and west
side of STAR detector. Location of these calorimeters in STAR is 18m away from
the interaction point along the beam line, see (Fig.4.8). In front of the ZDC detectors
dipole magnets are located. The goal of these magnets is to bend charged particles and
leave the neutrons hit the ZDC modules and therefore from these devices one can obtain
the number of spectator neutrons, for use as a minimum bias trigger. Subsequently,
from these measurements one can calculate the multiplicity that is used to measure
the reaction centrality in mutual beam interactions [84]. Each calorimeter is split into
3 modules, and each module consists of tungsten plates, scintillator fibers going to a
PMT and ADCs, see (Fig.4.9).
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Figure 4.8: Plane view of intersection region, dipole magnets and ZDCs installed.
Taken from [84]

Figure 4.9: ZDC structure. Taken from [84]

VPD

The VPD [60] is situated at a distance of ±5.7 from the center of the STAR detector
and consists of two detector that are fully integrated into the STAR trigger system.
Each VPD detector uses 19 subdetectors composed of the Pb converter with the fast
plastic scintillator followed by the read out photomultiplier, see (Fig.4.10).

The main task of the VPD detectors is a detection of photons from the π0 decays,
which travel very close to the beam pipe, from the primary vertex position at the speed
of light. The difference in arrival times are used to determined the z−components of
the primary vertex position via the equation

Vz =
(teast − twest)c

2
, (4.5)

where c is the speed of light and twest and teast are the times of the detection of photons
in the East and West VPD detectors, respectively.
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Figure 4.10: On the left figure is a schematic side view of the VPD detector and on
the right figure is a schematic front view of the VPD assemble. Taken from [60]

In the particle identification the VPD detectors have a important position because
they provide a event start time, tstart, for the TOF or MTD detectors. This time can
be given via the relation

tstart =
(teast + twest)

2
− L

c
, (4.6)

where, L is the distance from either assembly to the center of the STAR detector.
Subsequently, the time of flight measured particle is given by

τ = tstop − tstart, (4.7)

where tstop is measured by TOF or MTD detector. In (Fig.4.11) a real photo of the
VPD that is situated around the beam pipe can be seen.

Figure 4.11: Real photo of the VPD detector.
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BBC

This detector is a set of scintillators that are installed around the beam pipe on the
east and west outer side of the STAR magnet. These BBC detectors are 3.75m from
the interaction point, see (Fig.4.12). Each detector consists of two rings of large and
small hexagonal scintillator tiles. An outer ring consists of large tiles and an inner ring
consists small tiles. However, each ring can be divided into two sub-rings where the
inner sub-ring has six tiles while the outer sub-ring has twelve tiles. These hexagonal
scintillator tiles are 1 cm thick, for a clear image, see (Fig.4.13). Signal from the
scintillators are transmitted by four optical fibers, that are embedded in each tile,
to an individual photomultiplier. The timing difference between the two counters will
locate the primary vertex position [80]. The trigger system also contains EEMC, BEMC
detectors however they are not too important for our analysis so we will not describe
them. For some information about them see [17].

Figure 4.12: Schematic side view of BBC positions.

Figure 4.13: STAR BBC schematic front view. Taken from [17].
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Femtoscopy

In this chapter we will describe the basic concept of two particle correlation femto-
scopy, also known as Hambury-Brown and Twiss (HBT) interferometry, that is based
on quantum interferometry of two identical particles. In the first section we will men-
tion the brief history, where we will write about the first use of this method in radio-
astronomy and subsequently about its application in the particle physics. Then, in the
second and third section a theoretical background of identical and non-identical femto-
scopy will be presented, respectively. In the last section of this chapter we will simply
describe non-femtoscopy correlation effects which are significant for low-multiplicity
systems and results from the other experiments.

5.1 Brief history of femtoscopy

In 1956 Robert Hambury-Brown and Richard Q. Twiss introduced a novel method
based on photon intensity interferometry, which was an alternative way to Michelson
interferometry how to measure sizes of the stellar objects from the surface of the Earth.

In their experiment two photo-detectors are placed in the far field zone of a chaotic
radiation source and a correlation between the signals from the two detectors is meas-
ured. Hambury and Twiss found that photons emitted by thermal source are not inde-
pendent and that they tended to arrive in pairs at the two detectors, as a consequence
of Bose-Einstein statistics. This effect is pure quantum-mechanical phenomenon and
can not be described by classical physics.

Photo-detectors in their experiment consist of two paraboloidal telescopes that are
used in radio-astronomy. Inner part of the telescopes was covered by mirrors with
diameter of 156 cm. These mirrors focused light from the star into the cathode of
the photomultipliers. The output signals from both photomultipliers were processed
and afterwards the correlation function between the intensity of the photons, which
were received by the mirrors, could be obtained. Photo-detectors and scheme of the
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Figure 5.1: Left figure: A scheme of the Hambury-Brown and Twiss experiment is
depicted. Right figure: Two paraboloidal telescopes which are covered by mirrors

experiment are shown in (Fig.5.1).
In particle physics, an observation of the correlation between two identical particles

was a serendipity 1, as for example a discovery of penicillin. This observation was
made by Gerson Goldhaber, Sulamith Goldhaber, Wonyong Lee and Abraham Pais in
the beginning of 1960s when they performed an experiment aiming at the discovery of
the ρ0 resonance. In their experiment they considered collisions between proton and
anti-proton and searched for the the resonance by means of the decay ρ0 → π−π+, by
measuring the unlike pair mass-distribution. However, due to poor statistics they could
not establish the existence of the ρ0. On the other hand, in these collisions they ob-
served an angular correlation between identical pions and using the symmetrized wave
function for identical pions they reproduced the angular distribution. They concluded
that this effect originated from the quantum statistical effect which is called Bose-
Einstein correlation [64]. In 1970s G. I. Kopylov and M.I.Podgoretsky developed the
theoretical background and mathematical formalism of two particle correlation. Be-
cause of typical space and time extents of order of tens fermi the term "femtoscopy"
has been used.

5.2 Intensity interferometry of two identical particles

On the following few pages we will derive theoretical shape of the correlation function
for two identical particles where we assume that there is no final state interaction
between particles and then we will describe its application in heavy ion collisions.

Let us have a certain source which emits two identical particles from different points,
xµ1 and xµ2 . This source is characterized by the emission function S(xµ, pµ) which can
be identified as a Wigner function which is viewed as the probability that particle with
four-momentum pµ is emitted from the space-time point xµ in the collision region, so if

1Serendipity means an unplanned, fortuitous discovery.
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we want to calculate probability that source emits one particle with momentum ~p we
have to integrate over the whole source

P (~p) =

∫
d4xµS(xµ, pµ)|p0=Ep , (5.1)

where emission function is evaluated on-shell i.e. p0 = Ep =
√
m2 + ~p2. These emitted

particles are observed by two detectors that are located at x′µ1 and x′µ2 . In (Fig.5.2)
we can see that there are two possible routes, shown as solid and dashed lines, how
particles can reach detectors. In a case of identical particles there is no way how to
distinguish between them in quantum mechanics, therefore we have to symmetrize the
wave function for the case of bosons or antisymmetrize for the case of fermions.

Ψ12(x1, x2) =
1√
2

[Ψ1(x1)Ψ2(x2)±Ψ1(x2)Ψ2(x1)],

Ψ12(x1, x2) =
1√
2

[A1A2e
−ipµ1 (x1

′−x1)µe−ip
ν
2(x2
′−x2)ν ± A1A2e

−ipµ1 (x1
′−x2)µe−ip

ν
2(x2
′−x1)ν ],

(5.2)
where Ψi(xi) is a wave function for a single particle emitted from point xµi with a
momentum pµi and Ai is an amplitude. The signs (±) correspond to symmetrized
Bose-Einstein or anti-symmetrized Fermi-Dirac statistics. The positive sign is for sym-
metrized function (bosons) while the negative sign is for anti-symmetrized function
(fermions).

Figure 5.2: Diagram of quantum interference between two identical particles.

Then the probability density is written as

|Ψ12(x1, x2)|2 =
1

2
|A1|2|A2|2[2± (ei(x1−x2)µ(p1−p2)µ + e−i(x1−x2)ν(p1−p2)ν )]. (5.3)

Using Euler’s formula for cosine we get

|Ψ12(x1, x2)|2 = |A1|2 |A2|2 [1± cos((p1 − p2)µ(x1 − x2)µ)] (5.4)
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where the second term in (Eg. 5.4) represents the strength of the correlation in HBT
effect. Therefore the correlation becomes strong when the relative difference (x1−x2)µ

or relative momentum (p1 − p2)
µ are small. On the other hand, there is almost no

correlation for large values of (p1 − p2)µ and (x1 − x2)µ.
Now, it is helpful to define the correlation function CF as

CF (~p1, ~p2) =
P (~p1, ~p2)

P (~p1)P (~p2)
, (5.5)

where P (~p1, ~p2) is the probability of measuring two particles with momenta ~p1 and ~p2

that are emitted from the same source and P (~pi) is the probability of measuring of a
single particle with momentum ~pi. The probability P (~p1, ~p2) is defined as

P (~p1, ~p2) =

∫
d4x1µd

4x2νS(xµ1 , p
µ
1)S(xν2, p

ν
2) |Ψ12(x1, x2)|2 . (5.6)

Using (Eq. 5.4) in (Eq. 5.6) we obtain

P (~p1, ~p2) = P (~p1)P (~p2)±
∫
d4x1µd

4x2νS(xµ1 , p
µ
1)S(xν2, p

ν
2)cos((p1 − p2)σ(x1 − x2)σ),

(5.7)
where we have neglected amplitudes A1 and A2 because in the final result they will not
contribute to the correlation function.

In this point, it is good to define relative and average four-momentum and space-
time coordinates as

qµ = (p1 − p2)µ kµ =
1

2
(p1 + p2)

µ, (5.8)

xµ = (x1 − x2)µ Xµ =
1

2
(x1 + x2)

µ. (5.9)

If we assume that the emission function has a smooth momentum dependence we can
write

S(xµ1 , p
µ
1)S(xν2, p

ν
2) = S(Xµ+

xµ

2
, kµ+

qµ

2
)S(Xν−x

ν

2
, kν−q

ν

2
) ≈ S(Xµ+

xµ

2
, kµ)S(Xν−x

ν

2
, kν)

(5.10)
Neglecting of the relative momentum is valid only for sufficiently small relative mo-
menta. This approximation in particle physics is denoted as smoothness approxim-
ation.

Using the mentioned smoothness approximation, relative and average variables we
can rewrite (Eq. 5.7) as

P (~p1, ~p2) = P (~p1)P (~p2)±
∫
d4xµ cos(x

σqσ)

∫
d4Xν S(Xµ +

xµ

2
, kµ)S(Xν − xν

2
, kν),

(5.11)
where the term

∫
d4Xν S(Xµ+ xµ

2
, kµ)S(Xν− xν

2
, kν) = D(xµ, kµ) is called the relative

distance distribution which gives us information about the source.



5.2. INTENSITY INTERFEROMETRY OF TWO IDENTICAL PARTICLES 39

Then, the two-particle correlation function (Eq. 5.5) can be written as

CF (~q,~k) = 1±
∫
cos(xσqσ)D(xµ, kµ)d4xµ∫

d4xµd4XνS(Xµ + xµ

2
, kµ)S(Xν − xν

2
, kν)

= 1±
∫
cos(xσqσ)D(xµ, kµ)d4xµ∫

D(xµ, kµ)d4xµ
(5.12)

where term D(xµ,kµ)∫
D(xµ,kµ)d4xµ

= d(xµ, kµ) is a normalized relative distance distribu-
tion. Using term d(xµ, kµ) in (Eq. 5.12) we obtain

CF (~q,~k) = 1±
∫
cos(xσqσ)d(xµ, kµ)d4xµ. (5.13)

The equation (Eq.5.13) suggest that there is a one to one relation between the emis-
sion and correlation function, in which the correlation function is 4-dimensional Fourier
transform of the emission function. However, to get information about emission func-
tion from correlation function is quite a difficult issue, because the measured particles
are on-shell, p01,2 = E1,2 =

√
(m2

1,2 + ~p21,2), while the four-momenta qµ and kµ are
off-shell and satisfy the relation

kµqµ =
1

2
(m2

1 −m2
2). (5.14)

Therefore, we introduce on-shell approximation which is used in many application
and has a form

k0 ≈ Ek =
√
m2 + k2. (5.15)

Using the On-shell approximation and asking for the (Eq. 5.14) to be equal to zero
we get that only three of the four relative momentum components are kinematically
independent. Hence, the qµ-dependence of C(~q,~k) allows to test only three of four
independent xµ-directions of the emission function [82].

Using so-called mass-shell constraint (qµkµ = 0), we obtain a condition for the
fourth variable of the four-momentum qµ in the form

q0 =
~k

k0
· ~q = ~β · ~q. (5.16)

With the mass-shell constraint, equation 5.13 can be written as

C(~q,~k) = 1±
∫
cos(~q · ~r)

∫
d(~r + ~βt, t, k)dtd~r = 1±

∫
cos(~q · ~r)S~k(~r)d~r, (5.17)

where function S~k(~r) is defined as the relative source function and ~r = ~x + ~βt.
Appendix A describes how to pass from equation 5.13 to equation 5.17. From the
definition of relative source function one can see that this function does not describe
whole source but it describes just smaller region of the source from where particles
fly out. This region is called homogeneity region and we will discuss it later in this
chapter.
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In a case when the system is in the rest frame of the particle pair where β = 0,
the relative source function is a simple integral over the time argument of the relative
distance distribution d(~x, t, k0, ~k) [82]. Here the correlation function is Fourier trans-
formation of the relative source function into which the time dependence is convoluted.
The deconvolution of the time (t) and space (~x) variables must be done through models
that describes four-dimensional particle emission.

So, if we know this relative source function we are able to calculate the correlation
function. However, it is the correlation function that is measured and we would like to
extract information about the source that is coded in the emission function S(xµ, pµ).
There could be suggestion to invert the equation 5.12 to obtain the emission function
but due to the relative distance distribution, that is product of two identical functions,
we do not have an access to the phase of the Fourier transform. However, it turns
out that many reasonable source distribution, when folded with itself as in D(xµ, kµ),
result in a distribution that is close to Gaussian [78]. Therefore, correlation function
can be parametrized by a Gaussian

C(~q,~k) = 1± e−qµqνBµν , (5.18)

where Bµν carries widths parameters of this Gaussian parametrization. In Appendix
B we show that this Bµν = 〈x̃µx̃ν〉, where

x̃µ = xµ − 〈xµ〉

〈f(x)〉 =

∫
d4xµf(xµ)S(xµ, kµ)∫
d4xµS(xµ, kµ)

.
(5.19)

So, using Bµν = 〈x̃µx̃ν〉 we can write

C(~q,~k) = 1± e−qµqν〈x̃µx̃ν〉. (5.20)

Later in this chapter we will show what 〈x̃µx̃ν〉 corresponds to the second moments of
the source distribution.

As the most simple and very good example of emission function is the Gaussian
normal distribution because its Fourier transformation can be analytically calculated

S(x, p) =
1√

2πR2
exp(− x2

2R2
) (5.21)

where R is the standard deviation (radius of emission region, not source size). Since the
Fourier transform of Gaussian distribution is also Gaussian distribution, the correlation
function can be expressed analytically as

C(~q,~k) = 1± e−q2R2(~k). (5.22)

In (Fig.5.3) one can see a typical plot of the correlation function for the case of bosons or
fermions and for two different sizes of the source as a function of the relative momentum
q and the standard deviation R. The standard deviation R is referred as HBT radius.
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Figure 5.3: Correlation functions that are constructed according to (Eq. 5.22) for two
different values of the size of the source and two different type of particles.

For one-dimensional analysis we use correlation function which is written as s func-
tion of a Lorentz-invariant relative momentum qinv

C(~q,~k) = 1± e−q2
invR

2
inv(

~k), (5.23)

where Rinv is a one-dimensional source size and qinv is defined as

q2inv = q2x + q2y + q2z − q20
q0 = E1 − E2,

(5.24)

where qi is the relative momentum in each direction of the coordinate space and q0

is the energy difference between two particles, for which the energy is defined as
E =

√
m2 + p2. This one-dimensional analysis is usually performed in case of lim-

ited statistics and all spacial and temporal information are convoluted into Rinv(~k).

5.2.1 Bertsch-Pratt parametrization

For extraction of spatial information about the particle emitting source, the standard
Cartesian coordinate system is not the best choice. The most common coordinate
system for femtoscopic measurements is the so-called Bertsch-Pratt coordinate system
often known as the out-side-long system that is connected to the pair momentum kµ.
In this system, the relative momentum is decomposed into sideward (qside), outward
(qout) and longitudinal (qlong) direction.
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The longitudinal direction is parallel to the beam direction which is typically
in z-direction, outward direction is parallel to the pair transverse momentum ~kT =

(~pT1 + ~pT2)/2 and sideward direction is perpendicular to both longitudinal and out-
ward directions. Such a decomposition can be seen in (Fig.5.4). The Bertsch-Pratt
coordinate system is hence unique for each pair of particles.

Each vector ~V can be decomposed into the Bertsch-Pratt coordinate system as
follow

Vlong = Vz

Vout =
(PxVx + PyVy)

PT

Vside =
(PxVx − PyVy)

PT

(5.25)

where P = (P0, Px, Py, Pz) is pair momentum and P 2
T = (P 2

x + P 2
y ).

The correlation femtoscopy of identical particles is usually constructed in the Lon-
gitudinal Center of Mass System (LCMS) of the emitted pair where pz1 + pz2 = 0, the
component of pair momentum in long direction vanishes, therefore q0 can be rewritten
as

q0 = E1 − E2 =
~p1 + ~p2
E1 + E2

· (~p1 − ~p2) = ~β · ~q
LCMS
≈ βT qout, (5.26)

where ~β = (βT , 0, βl) and ~q = (qout, qside, qlong). In LCMS the term βl = 0. Thus
the LCMS frame can be obtained by the boost from the laboratory frame along the
longitudinal axis. Additional boost of the LCMS frame in the out direction provides
the Pair Rest Frame (PRF). The correlation of non-identical particles are studied in
the PRF. In the PRF, both particles have the same momentum ~k∗ = ~k1 = −~k2 and
hence the relative pair momentum is q = 2~k∗.

In the Bertsch-Pratt parametrization, the most general form of correlation function
of two identical particles for a Gaussian source is expressed as

C(~q,~k) = 1± e−qµqνR2
µν , (5.27)

where µ and ν takes out, side and long. R2
µν denotes the six HBT radii parameters

that can be derive from the equation 5.20. In Appendix C is shown derivation of these
radii. After derivation we obtain a general form of the HBT radii

R2
o = 〈(x̃o − βot̃)2〉 (5.28)

R2
s = 〈x̃2s〉 (5.29)

R2
l = 〈(x̃l − βlt̃)2〉 (5.30)

R2
os = 2〈(x̃o − βot̃)x̃s〉 (5.31)

R2
ol = 2〈(x̃o − βot̃)(x̃l − βlt̃)〉 (5.32)

R2
sl = 2〈(x̃l − βlt̃)x̃s〉. (5.33)
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Figure 5.4: The decomposition of ~q in Bertsch-Pratt coordinates.

where x̃µ = ∆xµ = (xµ− 〈xµ〉), βl, βo are the components of the pair velocity and 〈...〉
denotes an average with the emission function

〈f〉(k) =

∫
d4xµ f(xµ)S(xµ, kµ)∫
d4xµ S(xµ, kµ)

(5.34)

For an azimuthally integrated analysis, the emission function has a reflection sym-
metry ỹ → −ỹ. This symmetry translates to a qs → −qs symmetry of the two-particle
correlation function. This means that the cross-terms R2

out,side = R2
side,long = 0. If

we choose as the reference frame the LCMS frame of the pair, where z̃ → −z̃, then
R2
out,long = 0. Afterwards, the correlation function is in the form

C(~q,~k) = 1± λ(~k)exp(−q2outR2
out(

~k)− q2sideR2
side(

~k)− q2longR2
long(

~k)), (5.35)

where HBT radii measure the spatial and temporal extend of the collision system at
the freeze-out.

Here, we also define phenomenologically parameter λ(~k) which is related to the
degree of source coherence. The value of this parameter is between 0− 1. The name of
this parameter from historically reason is chaoticity parameter. For a fully chaotic
source value of this parameter is unity and becomes smaller than unity for a source
with partially coherent particles emission. However it does not describe only degree of
source coherence, it also accounts for particles misidentification, long-lived resonance
decays or long-range tails in the separation distribution.

5.2.2 Final state interaction

During the derivation of the correlation function in the previous subsection we assumed
that there is only Bose-Einstein or Fermi-Dirac interference effect and no other final
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state interaction between the emitted particles. However, most of the HBT measure-
ments in heavy ion collisions are performed with charged particles (π±, K±, proton..,)
therefore these particles feel long range Coulomb interaction effects on the way from
the source to the detector. Moreover, particles can also feel the total electric charge of
the source from which they are emitted. Another kind of interaction which plays an
important role between outgoing particles is the strong interaction. This interaction
is very important in proton-proton correlation. Therefore, if we want to have more
correct description of the size of source, from witch the particles are emitted, the in-
teractions must be taken into account. In this analysis only the Coulomb interaction
between outgoing particles plays an important role. Another interaction such as Strong
interaction or interaction between the source and emitted particles can be neglected
for π± − π± correlations.

Coulomb interaction

AS mentioned above, in the case of charged particles the Coulomb interaction between
particles can not be neglected. This interaction causes a suppression for like-sign
particles while for unlike-sign it causes an enhancement of the measured correlation
function at low ~q.

To calculate the strength of the Coulomb interaction, we consider Schrödinger equa-
tion [61] which contains the Coulomb potential[ h̄2∇2

2µ
+
Z1Z2e

2

r

]
Ψc(~q, ~r) = EΨc(~q, ~r), (5.36)

where µ is the reduced mass and r is the relative distance between the two particles,
Z1 and Z2 are protons numbers of particles, e is the elementary charge and E is the
energy in the center of mass frame.

The solutions of the (Eq. 5.36) are written in terms of the confluent hyper-geometric
function F as follow

Ψc(~q, ~r) = Γ(1 + iη±)e−
1
2
~q·~rF (−iη; 1, z±),

z± =
1

2
qr(1± cos(θ)).

(5.37)

where θ is the angle between ~q and ~r, η± is the Sommerfield parameter which depends
on the particle mass and charge as

η± = ±me
2

4πq
, (5.38)

where minus (plus) sign is for unlike-sign (like-sign) particles. Then the symmetrized
Coulomb wave function is

Ψr(~q, ~r)
1√
2

(Ψc(~q, ~r) + Ψc(~q,−~r)). (5.39)
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When we put this wave function to the (Eq. 5.6), then the contribution from the
Coulomb interaction to the correlation function can be calculated as

Pc(~q, ~r) =
1

2

∫
d~rd(~r) | Ψr(~q, ~r) |2, (5.40)

where d(~r) is the distribution of the average distance between the particles in each pair
as they are emitted [61] and

|Ψr(~q, ~r)|2= Ac(η)|F (−iη, 1, z±)|2, (5.41)

where Ac(η) is the Gamov factor and

|F (−iη, 1, z±)|2= 1 + 2r∗
1 + cosθ∗

ac
+ ..., (5.42)

where variables with asterix (*) are in the pair rest frame and ac is Bohr radius. In the
(Fig.5.5) we can see how Bose-Einstein, Coulomb and Strong interactions contribute
into the proton-proton correlation function.

Figure 5.5: Proton-proton correlation functions for the source size of 3 fm with inter-
actions. Taken from [87].

5.3 Femtoscopy and dynamical system

Up until now in our analysis, we have considered a case in which source was static.
In this case the size of static source measured by femtoscopy is the same as the whole
source size because particles are emitted towards random direction with their thermal
momenta from the source thus there is no correlation between the spatial and mo-
mentum distributions. However, in case of the heavy-ion collisions, femtoscopy does
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not measure the whole source size but it measures the so-called homogeneity re-
gion, which is defined as an area that emits particles with small ~q, for illustration see
(Fiq.5.6).

The reason that these homogeneity regions do not correspond to the whole size of
the source is that in heavy ion-collisions one can watch that lengths of these regions
(HBT radii) depend on the quantities such as pair momentum, size of the whole source
and reaction plane.

Figure 5.6: Whole source (yellow) with homogeneity region (blue) for pair momentum.

Pair momentum

Here we assume that system is in LCMS frame and that the particles are emitted to
radial direction from the center of the source with velocity ~βT (~r). It is also assumed
that the transverse velocity of particles is proportional to the distance from the center
of the source to their particle positions. Therefore the particles around the surface of
the source get larger momentum and thus the emission region measured as the HBT
radius would correspond to a smaller region around the surface for higher kT , and a
larger region for lower kT , see (Fig. 5.7). In the limit of kT → 0 the HBT radii become
closer to the whole size of the source [64]. Within a simple model with a Gaussian
source approximation based on the hydrodynamics, the HBT radii can be explicitly
extracted as a function of kT (mT ) as [83]

R2
s(mT ) =

R2
geom

1 +mTη2f/T
, (5.43)

R2
o(mT ) = R2

s(mT ) +
1

2
(
T

mT

)2β2
T τ

2
0 , (5.44)

R2
l (mT ) = τ 20

T

mT

K2(mT/T )

K1(mT/T )
, (5.45)
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where Rgeom is the actual source size, ηf is the flow rapidity, T is the temperature, βT
is the transverse pair velocity, τ0 is the freeze-out time and Kn is the n-th modified
Bessel function. The presence of the kT (mT ) dependence of the HBT radii indicates
the dynamical expansion of the source.

Figure 5.7: Expanding source with two different homogeneity regions. Taken from [64].

Size of the system

In the case of hadron-hadron correlation, one can show that the extracted HBT radii
should depend on the quantity which represents the system size, such as centrality or
multiplicity.

In the (Fig.5.8) the centrality dependence of pion source parameters are shown as
a function of mT =

√
m2
π + k2T for six different centralities. We can see that for more

central collisions the HBT radii are bigger which is consistent with initial source size
because for more central collisions the overlap of two nuclei is greater. Here we can
also see that with increasing of mT the HBT radii are decreasing that is consistent with
pair momentum dependence which was mentioned before.

In the (Fig. 5.9) we can see that HBT radii are scale linearly well with the 1/3

power of the number of participants Npart calculated by Glauber model. Here the
value Npart corresponds to the volume of the source and hence N1/3

part corresponds to the
radius of the system [64].

Reaction plane

In the subsection Flow (2.3.3), we wrote down that for non-central collisions the source
shape is expected to be of an elliptical shape, see in (Fig. 2.6). The initial spatial
anisotropy creates the momentum anisotropy in the final state which is called elliptic
flow and the expansion of the source is preferred into the in-plane direction. In that
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Figure 5.8: HBT parameters vs mT for different 6 centralities. Data from Au+Au
collisions at

√
sNN = 200Gev. Taken from [61].

case one can measure the shape of the source at freeze-out by studying oscillation of
the HBT radii with respect to the reaction plane. In the (Fig. 5.10) we can see that
lengths of the HBT radii Rs and Ro are different with respect to the reaction plane.

In general, the Φ dependence of the HBT radii is described by

R2
µ(kT ,Φ) = R2

µ,0(kT ) + 2
∑

n=2,4,6...

R2
µ,n(kT )cos(nΦ) µ = o, s, l, ol (5.46)

R2
µ(kT ,Φ) = R2

µ,0(kT ) + 2
∑

n=2,4,6...

R2
µ,n(kT )sin(nΦ) µ = os (5.47)

where R2
µ,n are the nth order Fourier coefficients for radius term µ. These coefficient

can be computed as

R2
µ,n(kT ) = 〈R2

µ(kT ,Φ)cos(nΦ)〉 µ = o, s, l, ol (5.48)

R2
µ,n(kT ) = 〈R2

µ(kT ,Φ)sin(nΦ)〉 µ = os (5.49)

The 0th order Fourier coefficients are expected to be nearly identical to radii extracted
in an azimuthally integrated analysis. For more detail you can see [36]. In the (Fig.
5.11) we can see measurements of dependence of squared HBT radii on the reaction
plane angle with respect to 2th order for three centrality classes from STAR experiment.

HBT puzzle

For describing the transverse momentum distribution and elliptic flow at low pT <

2GeV/c a relativistic hydrodynamics could be used. Therefore it is natural to expect
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Figure 5.9: The HBT radii for positive (blue square) and negative (red triangle) pairs
of identical pions as a function of N1/3

part in Au+Au collisions at
√
sNN = 200GeV

measured by PHENIX experiment. Taken from [45].

that this hydrodynamical calculation could reproduce the observables of HBT interfero-
metry dominated by two particles with low momentum. In spite of the fact that variety
of hydrodynamic models have been calculated, none of them was able to describe the
HBT radii from experiments. In the (Fig. 5.12) we can see some models which are
inconsistent with the data from Au+Au collisions at

√
sNN = 200GeV measured at

RHIC. One of the problems is that according to calculations the ratio Ro/Rs, which
is sensitive to the emission duration, should be much larger value than unity but the
experimental data shows almost unity. It is clear that models significantly overpredict
this ratio. Models also either underestimate or overestimate values of Ro, Rl and Rs.
This failure of hydrodynamic models in describing the HBT results from heavy ion col-
lisions has been called the HBT Puzzle. This problem was not solved for a decades.
However, it was eventually realized [68], [69] that it is an interplay of multiple effects.
The hydrodynamic models in order to explain this puzzle need to include such things as
the buildup of collective flow in the first instants of the collision before thermalization,
use a stiffer equation of state and also include viscosity.

Blast-wave model

As we mentioned above hydrodynamic calculations were not able to describe mo-
mentum distribution, elliptic flow and observables of the HBT interferometry at the
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Figure 5.10: A view on the HBT radii from different angle respect to the reaction
plane.

same time. One of the many ways how make hydrodynamical effect accessible without
time consuming computing is Blast-wave model which is based on the hydrodynamic
calculations aiming to describe the system at the freeze-out with a minimal set of
parameters.

Here we will use parametrization which was developed in [71]. This parameteriza-
tion contains eight parameters T , ρ0, ρ2, Ry, Rx, as, τ0 and ∆τ . The physical meaning
of these parameters is given below.

The source is parametrized in the Cartesian coordinated system. The reaction plane
is the (x-z) plane. In the beam (z) direction the freeze-out distribution is infinite and
elliptical in the transverse (x-y) plane where the shape is controlled by the radii Rx

and Ry. The spatial weighting of source elements is given by

Ω(r, φs) = Ω(r̃) =
1

1 + e(r̃−1)/as
, (5.50)

where φs is the azimuthal angle of the source element and a fixed value of the normalized
elliptical radius

r̃(r, φs) =

√
(r cos(φs))2

R2
x

+
(r sin(φs))2

R2
y

, (5.51)

corresponds to a given elliptical sub-shell within the solid volume of the freeze-out
distribution. The parameter as corresponds to a surface diffuseness of the emission
source. When as = 0, there is a hard edge, while as ≈ 0.3 the profile is a Gaussian
shape. This parameter is usually set to 0 for simplicity, see (Fig. 5.13).
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Figure 5.11: Squared HBT radii relative to the reaction plane angle for three different
centrality classes from Au+Au collisions at

√
sNN = 200GeV . Taken from [28].

A global temperature T is used to describe the spectrum of particles emitted from
source element at rest at each point (x, y, z). This element is also boosted by a
transverse rapidity ρ(x, y). This boost is perpendicular to the elliptical sub-shell of the
source element profile, see (Fig. 5.14). Thus one can show that

tan(φs) = (
Ry

Rx

)2 tan(φb) (5.52)

where φb is the azimuthal angle of the source velocity.
For central collisions the flow rapidity boost strength depends linearly on the nor-

malized elliptical radius r̃. Thus, in absence of an azimuthal dependence of the flow all
source elements on the outer edge of the source are boosted with the same transverse
rapidity ρ0 in an outward direction. For non-central collisions, the flow rapidity is given
by an additional parameter ρ2 which characterizes the strength to the second order.
Hence the flow rapidity is given as

ρ(r̃, φs) = r̃(ρ0 + ρ2cos(2φb)). (5.53)

The source anisotropy enters into our parametrization in two independent ways and
each affects elliptic flow. The first, setting ρ2 > 0 means the boost is stronger in-plane
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Figure 5.12: Hydrodynamic and hybrid hydrodynamic/cascade models calculations in
comparison to RHIC data from Au+Au collisions at

√
sNN = 200GeV . Open symbols

represent data from π− π− correlations and closed symbols for π+ π+ correlations.
Taken from [59].

than out-plane. The second way is to set Ry > Rx for ρ0 6= 0 but ρ2 = 0. This case
also generates positive elliptic flow because there are more sources emitting in-plane
than out-plane.

There is an assumption that this model is longitudinally boost-invariant. The as-
sumption means that the freeze-out occurs with a distribution in a longitudinal proper
time τ =

√
t2 − z2. The model assumes a Gaussian distribution peaked at τ0 with the

width ∆τ
dN

dτ
∼ exp(−(τ − τ0)2

2∆τ 2
). (5.54)

We assume that, although the source emits particles over a finite duration in proper
time τ , none of the source parameters changes with τ . The calculation of the time
dependence of these parameters requires a true dynamical model which is too complic-
ated.

The emission function of this model has a follow form

S(x,K) = mT cosh(η − Y )Ω(r, φs)e
−(τ−τ0)2

2∆τ2

∑∞
n=1(±)n+1e−nK·u/T , (5.55)

where upper (lower) sign is for bosons (fermions). The reduction of the sum to the first
term will transform the model to Boltzmann thermal distribution. After some steps
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Figure 5.13: The source weighting function Ω versus normalized elliptical radius r̃. The
surface diffuseness parameter is changed for several values. Taken from [71].

Figure 5.14: Schematic illustration of an elliptical sub-shell of the source. Here the
source is extended out of the reaction plane Rx < Ry. Taken from [71].

which can be wieved in [71] the emission function can be rewritten as

S(x,K) = mT cosh(η − Y )Ω(r, φs)e
−(τ−τ0)2

2∆τ2

∑∞
n=1(±)n+1enαcos(φb−φp)e−nβcosh(η−Y )

, (5.56)

where we define
α =

pT
T
sinh[ρ(r, φs)]

β =
mT

T
cosh[ρ(r, φs)].

(5.57)

One can simplify the equation by setting Y = 0. Also, we introduce a function

{
B
′
}

(K) =
∞∑
n=1

{
(±)n+1

∫ 2π

0

dφs

∫ ∞
0

rdr[2K1(nβ)B
′
(x,K)enαcos(φb−φp)Ω(r, φs)]

}
.

(5.58)



54 CHAPTER 5. FEMTOSCOPY

Then, pT spectrum can be calculated as

dN

pTdpT
=

∫
dφp

∫
d4x S(x,K) ∝ mT

∫
dφp{1}(K) (5.59)

and v2 is calculated as

v2(pT ,m) =

∫ 2π

0
dφp{cos(2φp)}(K)∫ 2π

0
dφp{1}(K)

. (5.60)

For us the most important conclusion from the work [71] are the HBT radii and
their dependence on the parameterization of the source. Using this parameterization
one can obtain that R2

l carries information about the lifetime of the source and can be
parametrized as

R2
l (mT ) = τ 20

T

mT

K2(mT/T )

K1(mT/T )
. (5.61)

and that this equation coincides with equation 5.45 from work [83]. It is possible
to show that the R2

s contains only spacial information and the R2
o is sensitive to the

temporal extents of the source. The dynamical properties of the measured system than
can be described by the ratio of R2

o and R2
s as well as the difference of R2

o and R2
s. For

more detailed analysis we recommend to read [71].

5.4 Particle correlation of non-identical particles

Up to now we have considered only emission of identical particles for which the average
value of the projection of the separation vector in the PRF on any direction is equal
to zero due to symmetry. However, there are also cases when the emitted particles
are non-identical. For these situations one can study space-time asymmetries in the
emission. These asymmetries will lead to the non-zero average value of the projection
of the separation vector. Before we start, we emphasize that each vector and variable
with sign (∗) is considered in the PRF where the low relative momentum in the pair
rest frame corresponds to close velocities, but not momenta, in the laboratory frame.

As in the case of identical particles, we assume that Coulomb interaction dominates.
Under these circumstances the correlation function takes the form [57]

C(~p1, ~p2) = Ac(η)[1 + 2
〈r∗(1 + cos(θ∗))〉

ac
], (5.62)

where θ∗ is an angle between relative momentum ~k∗ and relative position ~r∗ vectors
and 〈...〉 denotes averaging which is defined by the equation 5.34. One can notice very
important feature of the equation (5.62), namely that it is asymmetric with respect to
the sign of cos(θ∗). So for negative cos(θ∗), ~k∗ and ~r∗ are anti-aligned, which means that
particles will fly towards each other and then they fly away. In that case they spend
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more time close to each other and thus one expects a larger correlation. If vectors ~k∗

and ~r∗ are aligned, (cos(θ∗) > 0), then particles fly away from each other immediately
and time of the correlation will be smaller than in previous case so correlation will be
weaker. For imaging see (Fig.5.15)

Figure 5.15: Sketch of relationship between vector k∗ and r∗ for positive and negative
value of cosine.

In order to measure that correlation one problem must be solved, namely the angle
θ∗ is not experimentally measurable. Therefore we have to find another way. However,
we have one more angle which we can select. It is the angle Ψ between total pair
momentum ~P (or velocity) and pair relative momentum k∗. If one considers restriction
to the transverse plane then the pairs of correlated particles can be divided into two
groups:

1. ~k∗ and ~P are aligned → cos(Ψ) > 0 ≡ k∗out > 0

2. ~k∗ and ~P are anti-aligned → cos(Ψ) < 0 ≡ k∗out < 0

where k∗out is the component of the relative momentum of the first particle projected
into the out-direction. In general, there are also possible projections, into the side or
long direction but for our case out-direction is sufficient. The main idea is sketched in
(Fig.5.16).

Here we define two functions. The first one is with pairs having cos(Ψ) > 0 and we
will denote it as C+. The second function is for pairs with cos(Ψ) < 0 which is denoted
with C−. One can show that these functions are identical if the average emission points
of the two particle species are the same. However, for non-zero difference between
average emission points of particles species in the given out-direction, the function will
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Figure 5.16: Asymmetry in space-time emission seen by non-identical particle correla-
tions.

be different. What one can observed in the "double ratio" C+/C−. One can show that
thanks to symmetry 〈rside〉 = 0 and in the system with a symmetric rapidity coverage
〈rlong〉 = 0. Then for 〈rout〉 we can write down

〈∆rout〉 = 〈γ(〈∆r∗out〉 − β〈∆t〉)〉. (5.63)

From this equation we can conclude that observed asymmetry comes from space and
time components [56].

To imaging our conclusion, let us suppose that we have any source that can emit
particles, for this case let us have one pion and kaon. In the first asymmetry case, we
will have particles that are emitted from different points (spatial asymmetry) of the
source at the same time. We assume that the pion will be emitted from the point that
is closer to the center. Two cases are possible. The first one is that the pion is faster
than kaon, then the pion catches up the kaon, k∗out > 0. The second case is that the
pion is slower than the kaon, afterwards the kaon moves away from the pion, k∗out < 0.
In the second asymmetry (time asymmetry), we suppose that particles are emitted
from the same space-point but in different time. The kaon is considered as emitted
before pion. Thus pion catches up kaon. In both cases when the pion catches up the
kaon the duration of interaction is longer than correlation effect is stronger. In case
when the kaon moves away from the pion time of the interaction is shorter and thus
the correlation effect will be small.

By convention, k∗out is calculated for lighter particles. Thus k∗out > 0 means that
the lighter particle transverse velocity is larger and vice-versa what corresponds with
(Fig.5.16). From experiment, see (Fig.5.17), we can conclude for π−K and π−p systems
that C+ is larger than C−. This indicates that pions are emitted at a different average
space-time point than kaons and protons. Theoretically this effect can be described
by model with collective expansion that suggests that pions are emitted closer to the
center of the source than kaons or protons.

Another possible way how to obtain information about shift in average emission
points between two non-identical particles is decomposition of correlation function into
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Figure 5.17: Correlation function for π −K and π − p. Taken from [70].

spherical harmonics[41] [73]

Alm(k∗) =
∆cosθ∆ϕ√

4π

bins∑
i

Ylm(θi, ϕi])C(k∗, cos θi, ϕi), (5.64)

where θ, ϕ and k∗ are spherical coordinates and ∆cos θ = 2
Ncos θ

, ∆ϕ = 2π
Nϕ

are bin
sizes in cos θ and ϕ, respectively. Coefficients (Alm) appearing in the decomposition
above represent different symmetries of the source. For azimuthally symmetric identical
particle source at mid-rapidity, only Alm with even values of l and m do not vanish.
For non-identical particle correlations the coefficients with odd values of l and m are
allowed.

The A00(k
∗) coefficient represents angle-average correlation functions while A11(k

∗)

measures a shift of the average emission point in the Rout direction. In the (Fig.5.18)
we can observed decomposition coefficients A00 and A11 for π and Ξ particles. As can
be seen, A11 is non-zero that indicates that the average space-time emission points of
these particles are not the same [73].

5.5 Non-femtoscopic correlation

So far, we have not considered the size of the collision system. We have worked with
the correlations that describes system such as Au+Au or Pb+Pb. Here, Bose-Einstein
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Figure 5.18: Comparison of A00(k
∗) and A11(k

∗) coefficients of spherical decomposition
for combined sample of like-sign π± Ξ± and unlike-sign π± Ξ∓ pairs from 10% most
central Au+Au collisions with the FSI model predictions. Taken from [73].

correlation and FSI, which are referred to as femtoscopic correlations, play import-
ant role. However, for smaller systems such as p+p, p+Au, d+Au the situation is
more complicated and the method, which is described above, has to be modified for
elementary particle collisions. For these small systems we have to include additional
two-particle correlation effects that are referred to as non-femtoscopic correlations [32].
The well-known example of such additional correlations is the correlation induced by
total energy and momentum conservation laws or jet/string fragmentation. These cor-
relations are not directly related the spatio-temporal scales of the emitter but they have
an influence on the interpretation of the momentum dependence of the interferometry
radii in small system collisions [33].

Therefore, the general correlation function for small system collision has a form

C(~q,~k) = CF (~q,~k)CNF (~q,~k), (5.65)

where CF is normal correlation function for femtoscopic correlations that was derived
in previous subsections and CNF denotes non-femtoscopic correlations. The examples
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of analysis where non-correlation effects are not negligible are [86], [42]. An example
of the correlation function where non-femtoscopic correlations can not be negligible
is depicted in (Fig. 5.19). Here, we can see an approximate ranges where individual
correlations take a part in.

Figure 5.19: The correlation function from p+Au collisions and approximate ranges
for individual correlations.

5.6 Femtoscopy of d(p)+Au collisions at RHIC

Before we start to present our femtoscopic measurement we introduce our motivation.
In our analysis we would like to study typical features from collective behaviour such
as multiplicity or kT dependences of the correlation functions and HBT parameters.
In this section we will describe some femtoscopic results for charged pions from other
experiments that were measured at RHIC. We start with the results from large system
created in Au+Au collisions. Than we compared results from Au+Au collisions with
results from d+Au collisions and at the end of this section more precise analysis of
d+Au collisions will be described.

Femtoscopy measurements in Au+Au collisions

Presented results for Au+Au collisions at
√
sNN = 200GeV were published in [27]. In

the (Fig.5.20) we can see HBT parameters as a function of mT and centrality.
On the right figure the HBT parameters Rout, Rside, Rlong and λ are depicted for

the 0 − 5 % most central events as a function of mT for π+π+ and π−π− correlation
functions. We can observe an agreement between the parameters extracted from the
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positively and negatively charged pion analysis. The λ parameter increases with mT

while the HBT radii decrese with mT .

Figure 5.20: On the left figure the dependence of the HBT parameters for 0−5 % most
central events for π+π+ and π−π− correlation functions are shown. On the right figure
the HBT parameters for 6 different centralities as a function of mT are shown. Taken
from [27]

On the right figure the bahaviour of HBT parameters is depicted as a function
of mT for 6 different centralities. The λ parameter slightly increases with decreasing
centrality while the three radii increase with increasing centrality. ThismT dependence
is typical for transversal expanding system.

Comparison of the femtoscopy results for Au+Au and d+Au collisions at
RHIC

This part includes two charged pion interferometry results for d+Au and Au+Au colli-
sions at

√
sNN = 200GeV [30]. The comparisons, which are performed as a function of

collision centrality and the mean transverse momentum for pion pairs, indicate strik-
ingly similar patterns for the d+Au and Au+Au systems. Additionally, results for
d+Au collisions indicate a smaller freeze-out size of the system.

In the (Fig.5.21) we can see a comparison for these two collision systems. The left
figure shows a comparison of a mT dependence of Rout, Rside and Rlong for 0 − 10 %

central d+Au and 60−88 % central Au+Au collisions. The radii for d+Au and Au+Au
show a decreasing trend with increasing values of mT .

Subfigure (a) on the right side, shows mT dependence of the ratio Rout/Rside. This
ratio is flat or gently decreasing that means that the Rout radius is comparable to Rside
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Figure 5.21: Left figure shows mT dependence of the HBT radii for 0 − 10 % central
d+Au and 60 − 88 % central Au+Au collisions. Right figure shows ratios of the radii
and system volumes and magnitudes of the volumes for d+Au and Au+Au collisions.
Taken from [30]

for both systems. Subfigure (b) illustrates the difference via the mT dependence of the
freeze-out volume that is evaluated as (Rout × Rside × Rlong). The magnitudes of the
freeze-out volumes for Au+Au are larger. In the last subfigure (c) shows that within
uncertainties, the fall-out with increasing mT is comparable for d+Au and Au+Au.

This excellent agreement between the patterns for the d+Au and Au+Au collisions
suggests trends commonly associated with hydrodynamic-like expansion in d+Au col-
lisions.

Previously p+Au collisions were not available at RHIC however, in [86] a signal for
p+Au was extracted from peripheral d+Au collisions. In the (Fig.5.22), the centrality
and mT dependence of the HBT radii for d+Au collisions is shown. On the left figure
we can see results for four kT bins and three centralities in which a parameterization
of the femtoscopic correlations was made by the same model however, for a description
of non-femtoscopic correlations three different models were used. From this figure one
can see that non-femtoscopic correlation can not be neglected as they influence the
HBT radii significantly.

On the right figure we can see comparisons of the HBT radii obtained from p+Au
collisions, which were separated from the most peripheral d+Au collisions, with results
from d+Au and p+p collisions. For description of femtoscopic correlations the same
model was used for all type of collisions and the non-femtoscopic correlations were
neglected. It is interesting to see that the obtained Rout and Rside from p+Au collisions
are smaller then the one from d+Au collisions while there is not much difference in
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Figure 5.22: Left figure shows the mT dependence of HBT radii for three centralities
for d+Au collisions in which various parametrization of non-femtoscopic correlation
were used. Right figure shows the mT dependence of HBT radii for three centralities
from d+Au, p+Au and p+p collisions.

Rlong. Additionally, the values of Rout and Rside are comparable to results from p+p
collisions. This fact suggests that the geometrical size of the homogeneity region is
sensitive to the smaller nuclei participating in the collisions.



Chapter 6

Data analysis and results

In this thesis we present femtoscopic measurements for p+Au collisions at
√
sNN =

200GeV from the STAR experiment. The following chapter is divided into two parts.
In the first part, we describe the analysis procedure where the dataset, event selection,
track selection and pion identification are explained. In the second part we present pre-
liminary measurements of the femtoscopic correlation for positive and negative pions.
Result fitting parameters will be extracted and discussed for 1-dimensional correla-
tion functions while in 3-dimensional analysis we show multiplicity and average pair
transverse momentum dependence (kT ) of the correlation functions.

6.1 Datasets

Our presented datasets originate from p+Au collisions at
√
sNN = 200GeV that were

measured at the STAR experiment in 2015, (Run 15) with a minimum bias trigger
using the BBC and VPD detectors. The used datasets:

• Production: P16id

• Trigger: BBCMB, VPDMB-novtx, VPDMB-30

• Off-line Trigger ID: 500008, 500018, 500004, 500904

• Number of events with selected triggers: ∼ 130M (before event cuts)

At the end of the trigger selection we obtain ∼ 130M events. Subsequently, different
kind of cuts are applied to these events to assure the good data quality. After these
cuts, we have datasets that can be used for analysis. In the next three sections, we
describe cuts that we have used here.

63
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6.2 Event selection

For our analysis the selection of events in the center of the TPC is required therefore
a cut on the position of the primary vertex along the beam direction (z-axis) was
applied. Our requirement for this cut is |Vz| < 30 cm, where Vz is the z-coordinate of
the primary vertex position which is measured by the TPC. In (Fig.6.1) one can see the
distribution of the z-coordinate of the primary vertex position. Tails of the histogram
for primary vertex in z-direction do not contain enough counts and therefore they are
not included in analysis. In the triggering, events are protected against badly detected
events and pile-up (situation where a detector is affected by several events at the same
time). One can use an additional cut to further suppress the effects of pile-up and bad
event reconstruction. It is known that Vz can also be calculated by the VPD detectors.
Therefore we require a difference between the vertex position measured by the TPC
and VPD detectors in an absolute value to be less than 5 cm,

|V TPC
z − V ZDC

z | < 5 cm. (6.1)

Figure 6.1: The distribution of the z-coordinate of the primary vertex position. Events
between |Vz| < 30 cm were analyzed.

For comparison, in Au+Au collisions we can use just 3 cm for this difference because
in these collisions we have better resolution of the primary vertex position.

Event Multiplicity

In our analysis the reference multiplicity was used. Usually, using Glauber model we
are able to calculate centrality bins for the corresponding multiplicity however, in the
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case of p+Au collisions the calculations have not been available at the time of writing
this thesis. Therefore we have divided reference multiplicity into the four equal intervals
as can be seen in (Fig.6.2). For these multiplicity bins we will construct correlation
functions that will be shown later in this chapter.

Figure 6.2: Distribution of the reference multiplicity for p+Au collisions divided into
the four equal bins.

6.3 Particle selection

In the next step, the tracks from events which passed through event cuts, will be treated
by particle cuts, where one would like to choose cuts for obtaining pions. Particle
identification was done by the TPC and TOF detectors.

In analysis presented here, there is specific pT cut which was applied to single tracks
because the TPC enables to detect particles with the transverse momentum larger than
0.15GeV/c. Moreover, we also applied another cut for momentum of single particles
due to limitations in the identification of pions at high momentum using dE/dx, see
(Fig.6.3). Therefore, only tracks with

0.15 < pT < 1.5GeV/c

were included into our analysis. In addition to make sure that emitted particles fall into
the detector acceptance there is a requirement for primary tracks to be in a pseudo-
rapidity range

−1 < η < 1.
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In the TPC the particle identification is based on the energy losses of the particles,
which travel through a gas inside the detector. These losses depend on the velocities
at which particles travel in the TPC. It means that for a given momentum, three
particles with different masses have different velocities and thus they have different
dE/dx, as can be seen in (Fig.6.3). As was mentioned in Chapter 4 (4.2.1), energy
losses of charged particles by ionization are calculated using the Bethe-Bloch formula,
see (Eq.4.1). For us, the positive and negative charged pions are the most important.

Due to finite resolution of the TPC, one can expect deviation in the measured energy
loss from the theoretically expected value. In a case that the measured distribution of
the specific energy loss has a Gaussian distribution with the mean value determined by
the theoretical value of dE/dxtheory and with the standard deviation σπ, the normalized
energy loss for pion can be defined as

nσπ = ln
((dE/dx)measured

(dE/dx)theory

)
/σdE/dx, (6.2)

where (dE/dx)measured is the measured value of the energy loss. The normalized energy
loss is scaled by the resolution σdE/dx. In our analysis we required to tracks to have

−2 ≤ nσπ ≤ 2. (6.3)

By applying this cut the hadron contamination can be significantly suppressed up
to momentum p <∼ 0.55GeV/c. However, for higher values of the momentum (p >∼
0.55GeV/c), there is some contamination from other particles such as protons or kaons.
In order to solve this problem with the contamination we had to apply a cut on mass
squared of the particles by means of the TOF detector.

We have mentioned in section (4.2.2) that the TOF detector measures the time of
flight τ . When this time information is combined with the measured momentum in the
TPC detector, the particle mass squared, m2, can be calculated by

m2 = p2
( 1

β2
− 1
)
, (6.4)

this formula is from (Eq.4.3). Thanks to this capability of the TOF detector we are
able to separate charged pions from kaons and protons up to p ∼ 1.5GeV/c. Since the
mass of the charged pion is mπ± = 0.1395GeV/c2 therefore the last identification cut
requires the tracks to have the mass squared in the range

0.005 < m2
π < 0.035.

In the (Fig.6.4) we can see mass squared distribution after applying the mass squared
cut.
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Figure 6.3: dE/dx vs. momentum of the particles for pions (red line), kaons (blue
line), protons (green line) and elentrons (pink line).

Figure 6.4: The distribution of the mass squared of positively charged pions which was
determined by the TOF detector.

6.4 Pair cut

For the particle pairs only one cut was applied. It was cut on the average pair transverse
momentum (kT ) that is defined as

~kT =
(~p1T + ~p2T

2

)
(6.5)
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where ~p1T and ~p2T are the transverse momenta of the first and second particle of the
pair, respectively. It has been already discussed that homogeneity regions are expected
to depend on the pair transverse momentum. Therefore such kT bins enable us to
change the size of the measured volume at the constant multiplicity and temperature
of the system. Our requirement for the transverse momenta is to have an average value
between

0 < kT < 1.5GeV/c.

This kT range was divided into five bins:

0.0−0.3GeV/c, 0.3−0.6GeV/c, 0.6−0.9GeV/c, 0.9−1.2GeV/c, 1.2−1.5GeV/c.

In our analysis cuts that are intended to remove the effects of two track reconstruc-
tion defects that can have impact on the HBT measurements at low relative momentum
were not considered. The mentioned effects are

• Splitted tracks: one single particle reconstructed as two tracks

• Marged tracks: two particles with similar momenta reconstructed as one track

These effects are expected to significantly suppressed since we require separate TOF
matching for each particle.

6.5 Experimental approach of the correlation func-

tion

As it was mentioned above, correlation function is what we measure in experiment
and in order to obtain the HBT radii from this function, we have to fit the measured
correlation function. The experimental correlation function is defined as

C(~q,~k) =
A(~q)

B(~q)
, (6.6)

where A(q) is formed with particles from the same events and represents the distri-
bution of the two particle probabilities for the relative pair momentum, (real pairs).
B(q) is formed by mixing particles in separate events and represents the single particle
probabilities, (mixed pairs). Mixed pairs are made by event mixing technique. Here
we select several different events with similar global variables and then particle pairs
are made by choosing one particle from a event and choosing one particle from other
event. Therefore the mixed pairs does not include the HBT effect, while the real pairs,
from the same events, includes the HBT effect and interactions.
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6.6 Results

Datasets for p+Au collisions that were analyzed above will be now used for a construc-
tion of the correlation functions that will be analyzed in the following part of this work
in detail. Our study of the experimental correlation functions will be performed for
the positive and negative charged pions in 1-dimensional case. In 3-dimensional
analysis we show kT and multiplicity dependencies of the 3-dimensional correlation
functions.

6.6.1 1D-correlation function

In (Fiq.6.5 and Fiq.6.6) is shown typical behaviour of the 1-dimensional correlation
functions as the functions of multiplicity and kT , respectively.

In the (Fig.6.5) the multiplicity dependence of these functions is plotted for positive
and negative pions and for tree different kT bins. As can be seen with increasing
multiplicity the correlation function get weaker. This behaviour can be interpreted as
follow: for higher multiplicity (more central collision) the created system is larger that
indicates that homogeneity region will be also larger and as we know from (Eq. 5.23)
with larger radius the correlation function is smaller.

In the (Fig.6.6) the kT dependence for positive pions is shown for three different
multiplicity bins. We can see that with increasing kT the correlation functions also
increase and that means that radii of homogeneity regions decrease. This is in a an
agreement with prediction from section (5.3). For the negative pions we can observed
the same behaviour, see in Appendix D.

The 1-dimensional fits of our experimental correlation functions were performed
by two simple models that incorporate only Bose-Einstein correlation. These simple
models are

CGauss(~q,~k) = 1 + λ(~k)e−(qinvRinv(
~k))2 (6.7)

CLevy(~q,~k) = 1 + λ(~k)e−|qinvRL(
~k)|α . (6.8)

The first equation is well known correlation function that is based on Gaussian dis-
tribution, here qinv is the Lorentz invariant momentum defined in (Eq. 5.24), Rinv is
the Lorentz invariant radius and λ is the chaoticity parameter. The second correlation
function is based on the Levy distribution [44] [65], where RL is the Levy scale para-
meter and α is the Levy index, also known as index of stability, which can be equal to
the values 0 < α ≤ 2. There are two specific case for α parameter:

• α = 2 → - in this case the source function is normal Gaussian distribution
function

S~k(~x) =
1√

2πR2
G

e
− (x−x0)2

2R2
G , (6.9)
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Figure 6.5: 1-dimensional correlation functions for the charged pions that are plotted
for 3 multiplicity bins and 3 kT bins.
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Figure 6.6: 1-dimensional correlation functions for the positive charge pions for 4 kT
bins and 3 multiplicity in bins.
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where the Gaussian scale parameter, R2
G = 〈x2〉 − x20, is the standard deviation.

• α = 1→ - in this case the source function corresponds to the Cauchy distribution
function

S~k(~x) =
Rc

π(R2
c + (x− x0)2)

, (6.10)

with scale parameter Rc.

The reason why we use this Levy function is based on the observations of results from
d+Au collisions. In these collisions the distribution of the source had the non-Gaussian
shape. Therefore one can expect that in p+Au collisions the non-Gaussian source will
be also present and since Levy distribution has more free parameters it is able to better
describe non-Gaussian source [44][65].

In the (Fig.6.7) one can see the 1-dimensional correlation functions for the positive
pions for multiplicity bin 0 − 15. The fits were performed up to qinv = 1.5GeV/c for
each multiplicity bin. Due to poor statistic was not possible to extract correlation
functions for multiplicity bin 45 − 60 and for 1.2 < kT < 1.5. Therefore kT is divided
only into the 4 bins for each multiplicity bin. The Coulomb interaction is not included
here, it means that fits do not start from the qinv = 0GeV/c but start points are shifted
to the values between ∼ 0.05− 0.15GeV/c. The correlation functions for multiplicity
bins 15− 30, 30− 45 and for the negative pions have the same behaviour. Therefore,
we show only parameter fit results of these functions and we will not depicted them
here. However, they can be found in Appendix D.

As can be seen from the comparison of the fits, in all cases the fits are better
described by the Levy fitting function than the Gaussian fitting function. This obser-
vation indicates that the source function is of non-Gaussian shape. In the (Fig.6.8)
and (Fig.6.9) we can see Rinv and RL scale parameters for positive and negative pi-
ons, respectively, as a function of the multiplicity and kT . For these results the radii
behaviour qualitatively agrees with the effect expected from a system undergoing a
transverse expansion where pairs with the larger kT are emitted from a smaller homo-
geneity region than the pairs with the smaller kT . However, we do not observe strong
multiplicity dependence in the extracted radii which is actually seen in the (Fig.6.5).
One would expect that with higher multiplicity the radii of the homogeneity region
increase however, it is hard to confirm this fact from these results. This may be caused
by non-femtoscopic effects.

In the (Fig.6.10) and (Fig.6.11) can be observed the dependence of the λ and α

parameter for positive and negative function, respectively, as a fucntion of kT . The
magnitude of α parameter lies in range ∼ 0.9−1.6, this fact indicates the non-Gaussian
source. The behaviour of the λ parameter is not monotonic. It slightly decreases up to
kT ≈ 0.5GeV/c but then it increases for both, positive and negative case of correlation
functions.
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Figure 6.7: Correlation functions for the positive pion in multiplicity range 0− 15 for
4 different kT bins.

Figure 6.8: kT dependence of Rinv and RL scale parameters for positive pions for Gauss
fit function (Eq.6.7) (left) and Levy fit function (Eq.6.8) (right).

Figure 6.9: kT dependence of Rinv and RL scale parameters for negative pions for Gauss
fit function (Eq.6.7) (left) and Levy fit function (Eq.6.8) (right).
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Figure 6.10: On the left figure is shown the dependence of Levy α parameter on kT .
On the right figure is shown the dependence of λ parameter on kT . Both parameters
are for positive pions.

Figure 6.11: On the left figure is shown the dependence of Levy α parameter on kT .
On the right figure is shown the dependence of λ parameter on kT . Both parameters
are for negative pions.

In the next step of our analysis, the fits do not end in qinv = 1.5GeV/c but they
are performed for the different fitting ranges for each multiplicity and kT bin. Here
we use the same fitting models as in previous case where the Coulomb interaction is
not included. It is clear that this is not a systematic fitting technique but the reason
why we do that is that the non-femtoscopic effects significantly influence our result
parameters. By fitting of our functions on the certain ranges we could exclude some
portion of this effects and study how parameter results are influenced by these effects.

In the (Fig.6.12) we can see an example of the correlation functions, in multiplicity
range 0− 15, for different fitting ranges. Dashed lines represent fitting models on the
whole kT range while full lines represent used fitting range. Fitting funtions for the
next multiplicity ranges can be found in Appendix D.

In the (6.13) and (Fig.6.14) are shown results for Rinv and RL for positive and neg-
ative pions, respectively. These scale parameters still behave as in the previous section
where the problem with the multiplicity dependence still persists. In the (Fig.6.15)
and (Fig.6.16) the behaviour of the λ and α parameters for positive and negative pions
is shown. λ has the same non-monotonic behaviour as in the previous case. However,
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Figure 6.12: Correlation functions for the positive pion in multiplicity range 0− 15 for
4 different kT bins.

an observed improvement can be seen in the behaviour of the α parameter because
values of this parameter are almost constant in the range of ∼ 1.2− 1.4. Additionally,
the multiplicity dependence can be observed for both, positive and negative pions.

Figure 6.13: kT dependence of Rinv and RL scale parameters for positive pions for
Gauss fit function (Eq.6.7) (left) and Levy fit function (Eq.6.8) (right).

So far, we have not included a part where the Coulomb interaction takes a part.
However, we change it now because our fits will be performed in the ranges from qinv =

0GeV/c to qinv = 1.5GeV/c. The fit function which includes Coulomb correction is in
the form

C(qinv) = (1− λ) + λK(qinv)(1 + e−q
2
inv2R

2
inv), (6.11)

where K(qinv) is the Coulomb correction and the meaning of the other parameters stay
the same as in the previous cases. In the (Fig.6.17) fitting functions for the pair of
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Figure 6.14: kT dependence of Rinv and RL scale parameters for negative pions for
Gauss fit function (Eq.6.7) (left) and Levy fit function (Eq.6.8) (right).

Figure 6.15: On the left figure is shown the dependence of Levy α parameter on kT .
On the right figure is shown the dependence of λ parameter on kT . Both parameters
are for positive pions.

Figure 6.16: On the left figure is shown the dependence of Levy α parameter on kT .
On the right figure is shown the dependence of λ parameter on kT . Both parameters
are for negative pions.

positive pions for multiplicity range 0−15 are shown. Here we can see that fit functions
fail to describe the data, especially for the smaller sources at higher kT . There are two
possible effects that can modify out results. The first one is that the source of the
our correlation functions is non-Gaussian. However, fitting function (Eq.6.11) is based
on the Gaussian distribution. The second possible reason for that is that the non-
correlation effects have enormous impact on the shape of the correlation functions and
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since the fit function, (Eq.6.11), does not contain any part that includes these effects it
is not able to describe these non-correlation effects. Other plots of the fitting functions
for positive and negative pions can be found in Appendix D.

In the (Fig.6.18) and (Fig6.19) one can see fitting result parameters for the pair of
positive and negative pions, respectively. The λ parameter has the same non-monotonic
behaviour as in the previous cases however, the Rinv dependence on the kT is not
clear for the last two kT bins for both, positive and negative pions. The multiplicity
dependence is still not observed.

Figure 6.17: Correlation functions for the positive pion in multiplicity range 0− 15 for
4 different kT bins. Here the Coulomb interaction is also included.

Figure 6.18: Dependence of the Rinv parameter as the function of the kT is shown on
the right figure. Dependence of λ parameter on kT is shown on the right figure. Both
parameters are for pair of positive pions.
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Figure 6.19: Dependence of the Rinv parameter as the function of the kT is shown on
the right figure. Dependence of λ parameter on kT is shown on the right figure. Both
parameters are for pair of negative pions.

6.6.2 3D-correlation function

In this section we present results on 3-dimensional correlation functions for the pair of
positive pions in LCMS. Here, we want to study the multiplicity and kT dependence
of the correlation functions and mainly to have a better access to the non-femtoscopic
correlations. Projection of the correlation functions to the out, side and long axis were
done by using an integration range of 60MeV on the other two axis.

All 3-dimensional functions are normalized in range 0.4 − 0.6GeV/c. From the
figures (Fig.6.20), (Fig.6.21), (Fig.6.22) and (Fig.6.23) one can see that this is the best
possible choice for normalization region because non-femtoscopic effects modify the
shape of the correlation function in all three directions significantly.

In the (Fig.6.20) and (Fig.6.21) one can see kT dependence of the correlation func-
tions for multiplicity bins 0− 15 and 15− 30 respectively in all three axis, where with
increasing kT the correlation functions increase.

In the (Fig.6.22) and (Fig.6.23) one can see multiplicity dependence of the correl-
ation functions for kT ranges 0.0 − 0.3GeV/c and 0.3 − 0.6GeV/c respectively in all
three axis, where with increasing multiplicity the correlation functions decrease.

The extraction of the HBT radii from these correlation functions is in progress
however, due to strong non-femtoscopic effects the fitting of these 3-dimensional cor-
relation functions will be complicated. The method that will be used for fitting is
called spherical harmonics.
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Figure 6.20: The kT dependence of 3-dimensional correlation functions for the positive
charged pions in multiplicity bin 0− 15.
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Figure 6.21: The kT dependence of 3-dimensional correlation functions for the positive
charged pions in multiplicity bin 15− 30.
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Figure 6.22: The multiplicity dependence of 3-dimensional correlation functions for the
positive charged pions 0.0 < kT < 0.3.



82 CHAPTER 6. DATA ANALYSIS AND RESULTS

Figure 6.23: The multiplicity dependence of 3-dimensional correlation functions for the
positive charged pions for 0.3 < kT < 0.6.
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Conclusion

The main goal of this work was to perform an analysis of the femtoscopic study of two-
particle correlations for identical positive and negative charged pions from minimum
bias p+Au collisions at

√
sNN = 200GeV collected by the STAR experiment.

Applying the selected criteria, the 1-dimensional correlation functions for pairs of
identical pions were extracted. Functions were constructed for three multiplicity and
four average pair transverse momenta (kT ) bins. In these correlation functions clear
kT and multiplicity dependencies has been observed.

For the extraction of the HBT parameters in 1-dimensional case three approaches
were used. In the first one we used two simple models of the correlation functions,
namely Gauss and Levy correlation functions that did not include the Coulomb in-
teraction. Extracted HBT radii were measured as a function of kT and multiplicity.
From the results one can see clear dependence of scale parameters RL and Rinv on kT .
Interestingly, the dependence of these parameters on the multiplicity is not very strong.
Levy α parameter does not show any dependence on the kT and multiplicity. Its values
for different kT and multiplicity bins lay in range ∼ 0.9−1.6. In the second case we used
the same fitting models as in the previous case. However, fitting ranges for different kT
and multiplicity bins were chosen trying to minimize the non-femtoscopic effects. From
the extracted scale parameters RL and Rinv we can observed the same behavior as in
the previous case. However, the behavior of the α parameter changed a significantly.
We can observed that the this parameter became almost constant (∼ 1.2 − 1.4). The
fact that the α parameter is not equal to 2 indicates that the source is of non-Gaussian
shape. In the third case a model based on the Gaussian distribution and including
include the Coulomb interaction was applied. However, this model fails to describe
the data especially for the smaller sources at higher kT . This failure of this model can
be caused by non-femtoscopic effects and non-Gaussian shape of the source. In all the
three ways mentioned above the λ parameter shows the same non-monotonic behavior.

In 3-dimensional analysis we extracted correlation functions in the longitudinally
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co-moving frame. Here we showed that multiplicity and kT dependence of these func-
tions can be observed. However, the extraction of the HBT parameters is complicated
because the non-femtoscopic effects influence our functions significantly. In near fu-
ture it is planned to study the 3-dimensional correlations function with the use of
decomposition into spherical harmonics.
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Appendices

8.1 Appendix A

We have the shape of the correlation function in the form

CF (~q,~k) = 1±
∫
cos(xσqσ)d(xµ, kµ)d4xµ. (8.1)

Dot product of the four-momenta qµ and xµ is defined as

q · x = qµxµ = q0x0 − ~q · ~x (8.2)

Using this for product and Mass-shell constraint, q0 = ~β · ~q in 8.1 we can write

CF (~q,~k) = 1±
∫
cos(x0q0 − ~x · ~q)d(xµ, kµ)d4xµ

= 1±
∫
cos(~β · ~qt− ~x · ~q)

∫
d(~x, t, kµ)dtd~x

= 1±
∫
cos[(~βt− ~x) · ~q]

∫
d(~x, t, kµ)dtd~x.

(8.3)

Utilizing of the fact that cosine is even function cos(x) = cos(−x), we can write

CF (~q,~k) = 1±
∫
cos[(~x− ~βt) · ~q]

∫
d(~x, t, kµ)dtd~x (8.4)

Now we use simple substitution

~r = ~x− ~βt→ ~x = ~r + ~βt → d~x = d~r (8.5)

Using this substitution we can rewrite out correlation function

CF (~q,~k) = 1±
∫
cos(~r · ~q)

∫
d(~r + ~βt, t, kµ)dtd~r. (8.6)

From the On-shell approximation we know that k0 =
√
m2 + ~k2, therefore we can write

S~k(~x) =

∫
d(~r + ~βt, t, k0, ~k)dt, (8.7)
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and finally we can write down the right hand side of the equation 5.17

CF (~q,~k) = 1±
∫
cos(~r · ~q)S~k(~r)d~r, (8.8)

where function S~k(~r) is Relative source function.

8.2 Appendix B

We will start with the general shape of the correlation function

CF (~q,~k) =
P (~p1)P (~p2)±

∫
d4x1µd

4x2νS(xµ1 , p
µ
1)S(xν2, p

ν
2)cos((p1 − p2)σ(x1 − x2)σ)

P (~p1)P (~p2)

= 1±
∫
d4x1µd

4x2νS(xµ1 , p
µ
1)S(xν2, p

ν
2)cos((p1 − p2)σ(x1 − x2)σ)∫

d4x1µd4x2νS(xµ1 , p
µ
1)S(xν2, p

ν
2)

.

(8.9)
In the following step we utilize Smoothness approximation (pµ1 ≈ pµ2 ≈ kµ), definition
of the relative momentum qµ = (p1 − p2)µ and a fact that the cosine function can be
rewrited through the exponential function (eix = cos(x) + isin(x)), where we will keep
in mind that we use only real part of the exponential function.

CF (~q,~k) = 1±
∫
d4x1µd

4x2νS(xµ1 , k
µ)S(xν2, k

ν)e(q
σ(x1−x2)σ)∫

S(xµ1 , k
µ
1 )d4x1µ

∫
S(xν2, k

ν
2)d4x2ν

= 1±
(
∫
d4x1µS(xµ1 , k

µ)eiq
σxσ1)(

∫
d4x1νS(xν1, k

ν)e−iq
σxσ2)∣∣∫ S(xµ1 , k

µ
1 )d4x1µ

∣∣2
(8.10)

Since the interesting region of the correlation function is situated at very small qµ, we
will decompose the correlation function around point qµ = 0 to the second degree of
Taylor series.

The first derivation

d(CF (~q,~k)− 1)

dqα

∣∣∣
qα=0

=
d

dqα

[(
∫
d4x1µS(xµ1 , k

µ)eiq
σxσ1)(

∫
d4x1νS(xν1, k

ν)e−iq
σxσ2)∣∣∫ S(xµ1 , p

µ
1)d4x1µ

∣∣2 ]
qα=0

=
{

[
(i
∫
d4x1µx

α
1S(xµ1 , k

µ)eiq
σxσ1)(

∫
d4x2νS(xν2, k

ν)e−iq
σxσ2)∣∣∫ S(xµ1 , p

µ
1)d4x1µ

∣∣2 ]
−
[(
∫
d4x1µS(xµ1 , k

µ)eiq
σxσ1)(i

∫
d4x2νx

α
2S(xν2, k

ν)e−iq
σxσ2)∣∣∫ S(xµ1 , k

µ
1 )d4x1µ

∣∣2 ]}
qα=0

= 0

(8.11)

The second derivation

d(CF (~q,~k)− 1)

dqβdqα

∣∣∣
qβ=qα=0

= −2
{(
∫
d4x1µS(xµ1 , k

µ)xα1x
β
1 )(
∫
d4x2νS(xν2, k

ν))∣∣∫ S(xµ1 , k
µ
1 )d4x1µ

∣∣2 +

(
∫
d4x1µS(xµ1 , k

µ)xα1 )(
∫
d4x2νS(xν2, k

ν)xβ2 )∣∣∫ S(xµ1 , k
µ
1 )d4x1µ

∣∣2 }
.

(8.12)
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Using relation which represents average with the emission function

〈f〉 =

∫
d4xµf(xµ)S(xµ, kµ)∫
d4xµS(xµ, kµ)

, (8.13)

with using this average formula we can rewrite the second derivation as follow

d(CF (~q,~k)− 1)

dqβdqα

∣∣∣
qβ=qα=0

= −2[〈xαxβ〉 − 〈xα〉〈xβ〉] = −2〈x̃αx̃β〉, (8.14)

where we utilized notation x̃µ = xµ − 〈xµ〉. In equation 5.18 we parametrized our
correlation function with Gaussian

C(~q,~k) = 1± e−qµqνBµν . (8.15)

Now, when we do Taylor series of (CF (~q,~k)− 1 to the second degree

C(~q,~k)− 1 =
(
∫
d4x1µS(xµ1 , k

µ)eiq
σxσ1)(

∫
d4x1νS(xν1, k

ν)e−iq
σxσ2)∣∣∫ S(xµ1 , k

µ
1 )d4x1µ

∣∣2 ≈ 1− 1

2!
qµqν2〈x̃µx̃ν〉,

(8.16)
and when we compare the second degree of Taylor series of equation 8.15 and equation
8.16, we can see that

Bµν = 〈x̃µx̃ν〉. (8.17)

8.3 Appendix C

To reach a general form of HBT radii we will utilize exponent of the equation 5.20,
where µ, ν = 0, 1, 2, 3

qµqν〈x̃µx̃ν〉 =

q0q0〈x̃0x̃0〉 − q0q1〈x̃0x̃1〉 − q0q2〈x̃0x̃2〉 − q0q3〈x̃0x̃3〉−

q1q0〈x̃1x̃0〉+ q1q1〈x̃1x̃1〉+ q1q2〈x̃1x̃2〉+ q1q3〈x̃1x̃3〉−

q2q0〈x̃2x̃0〉+ q2q1〈x̃2x̃1〉+ q2q2〈x̃2x̃2〉+ q2q3〈x̃2x̃3〉−

q3q0〈x̃3x̃0〉+ q3q1〈x̃3x̃1〉+ q3q2〈x̃3x̃2〉+ q3q3〈x̃3x̃3〉 =

q0q0〈x̃0x̃0〉+ q1q1〈x̃1x̃1〉+ q2q2〈x̃2x̃2〉+ q4q4〈x̃4x̃4〉−

2q0q1〈x̃0x̃1〉 − 2q0q2〈x̃0x̃2〉 − 2q0q3〈x̃0x̃3〉+

2q1q2〈x̃1x̃2〉+ 2q1q3〈x̃1x̃3〉+ 2q2q3〈x̃2x̃3〉

(8.18)

Next we utilize
qµ = (q0, ~q) ~q = (qo, qs, ql)

~k = (kT , 0, kl) = (βo, βsβl)

q0 = ~β~q

(8.19)
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so now we can edit four-momenta with vectors 8.19 above

q1q2 = qoql, q1q3 = qoql, q2q3 = qsql,

q1q1 = q20, q2q2 = q2s , q3q3 = q2l ,

q0q0 = (βoqo + βlql)
2,

q0q1 = (βoqo + βlql)qo,

q0q2 = (βoqo + βlql)qs,

q0q3 = (βoqo + βlql)ql.

(8.20)

Substituting relation 8.20 to the equation 8.18 we get

qµqν〈x̃µx̃ν〉 = (βoqo + βlql)
2〈x̃0x̃0〉 − 2(βoqo + βlql)qo〈x̃0x̃1〉

−2(βoqo + βlql)qs〈x̃0x̃2〉 − 2(βoqo + βlql)ql〈x̃0x̃3〉

+2qoqs〈x̃1x̃2〉+ 2qoql〈x̃1x̃3〉+ 2qsql〈x̃2x̃3〉+

q2o〈x̃1x̃1〉+ q2s〈x̃2x̃2〉+ q2l 〈x̃3x̃3〉

(8.21)

In the final step we sum all terms corresponding to the certain momentum

q2o : β2
o〈x̃0x̃0〉 − 2βo〈x̃0x̃1〉+ 〈x̃1x̃1〉 = 〈(x̃1 − βox̃0)2〉

q2l : β2
l 〈x̃0x̃0〉 − 2βl〈x̃0x̃3〉+ 〈x̃3x̃3〉 = 〈(x̃3 − βlx̃0)2〉

q2s : 〈x̃2x̃2〉

qoqs : 2〈x̃1x̃2〉 − 2βo〈x̃0x̃2〉 = 2〈(x̃1 − βox̃0)x̃2〉

qsql : 2〈x̃2x̃3〉 − 2βl〈x̃0x̃2〉 = 2〈(x̃3 − βlx̃0)x̃2〉

qlqo : 2βoβl〈x̃0x̃0〉 − 2βl〈x̃0x̃1〉+ 2〈x̃1x̃3〉 − 2βo〈x̃0x̃3〉 =

2〈(x̃1 − βox̃0)(x̃3 − βlx̃0)〉

(8.22)

One then finds that the HBT radius parameters measure different combinations of the
spatial and temporal extent of the collision system

R2
o = 〈(x̃o − βot̃)2〉 (8.23)

R2
s = 〈x̃2s〉 (8.24)

R2
l = 〈(x̃l − βlt̃)2〉 (8.25)

R2
os = 2〈(x̃o − βot̃)x̃s〉 (8.26)

R2
ol = 2〈(x̃o − βot̃)(x̃l − βlt̃)〉 (8.27)

R2
sl = 2〈(x̃l − βlt̃)x̃s〉. (8.28)

For expression 8.23-8.28 we can also use quite different notation where x̃ = x̃o, ỹ = x̃s

and z̃ = x̃l.

8.4 Appendix D
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Figure 8.1: 1-dimensional correlation functions for the negative charge pions for 4 kT
bins and 3 multiplicity bins.
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The fits of the correlation functions for the multiplicity range 15− 30 (Fig.8.2) and
30− 45 (Fig.8.3) for positive pions where fits were performed up to 1.5GeV/c.

Figure 8.2: Correlation functions for the positive pion in multiplicity range 15− 30 for
4 different kT bins.

Figure 8.3: Correlation functions for the positive pion in multiplicity range 30− 45 for
4 different kT bins.
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The fits of the correlation functions for the multiplicity range 0 − 15 (Fig.8.4),
15− 30 (Fig.8.5) and 30− 45 (Fig.8.6) for negative pions where fits were performed up
to 1.5GeV/c.

Figure 8.4: Correlation functions for the negative pion in multiplicity range 0− 15 for
4 different kT bins.

Figure 8.5: Correlation functions for the negative pion in multiplicity range 15−30 for
4 different kT bins.
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Figure 8.6: Correlation functions for the negative pion in multiplicity range 30−45 for
4 different kT bins.

The fits of the correlation functions for the multiplicity range 15 − 30 (Fig.8.7)
and 30− 45 (Fig.8.8) for positive pions. These fits were performed for different fitting
ranges for each multiplicity and kT bin.

Figure 8.7: Correlation functions for the positive pion in multiplicity range 15− 30 for
4 different kT bins.
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=

Figure 8.8: Correlation functions for the positive pion in multiplicity range 30− 45 for
4 different kT bins.

The fits of the correlation functions for the multiplicity range 0 − 15 (Fig.8.9),
15− 30 (Fig.8.10) and 30− 45 (Fig.8.11) for negative pions where fits were performed
for different fitting ranges for each multiplicity and kT bin.

Figure 8.9: Correlation functions for the negative pion in multiplicity range 0− 15 for
4 different kT bins.
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Figure 8.10: Correlation functions for the negative pion in multiplicity range 15 − 30

for 4 different kT bins.

Figure 8.11: Correlation functions for the negative pion in multiplicity range 30 − 45

for 4 different kT bins.
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The fits of the correlation functions for the multiplicity range 15−30 (Fig.8.12) and
30 − 45 (Fig.8.13) for the pair of positive pions. These fits were performed for whole
kT including Coulomb interaction.

Figure 8.12: Correlation functions for the positive pion in multiplicity range 15 − 30

for 4 different kT bins.

Figure 8.13: Correlation functions for the positive pion in multiplicity range 30 − 45

for 4 different kT bins.
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The fits of the correlation functions for the multiplicity range 0 − 15 (Fig.8.14),
15− 30 (Fig.8.15) and 30− 45 (Fig.8.16) for negative pions where fits were performed
for whole kT including Coulomb interaction.

Figure 8.14: Correlation functions for the negative pion in multiplicity range 0−15 for
4 different kT bins.

Figure 8.15: Correlation functions for the negative pion in multiplicity range 15 − 30

for 4 different kT bins.
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Figure 8.16: Correlation functions for the negative pion in multiplicity range 30 − 45

for 4 different kT bins.
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