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attentive help with creation of this work. I appreciate his time spent on reading through

my work and language and factual corrections.

I am also grateful to Mgr. Smejkal Jaroslav, CSc. for invaluable advises and Ing.

Daniel Gazda for mental support.

Lenka Hrazdilová
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Vedoućı práce: RNDr. Aleš Cieplý, CSc
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Chapter 1

Introduction

Baryon resonances play an important role in examining meson–baryon interactions at low

energies. In this energy range, the perturbative approach of QCD is inapplicable due to

a large value of the strong coupling constant and non-perturbative method is required.

The convenient tool to deal with this problem is provided by chiral symmetry that governs

interactions of the pseudoscalar mesons octet with the octet of baryons. In connection

with coupled channel technique we have an excellent framework for an investigation of

dynamically generated resonances appearing in kaon–nucleon interactions. The present

work is focused on s-wave resonances with the S = −1 strangeness and the I = 0, 1

isospins in a range of energies around 1300–1800 MeV.

The chiral symmetry is an approximate flavour symmetry of strong interactions which

holds exactly in the limit of vanishing quark masses. Thus it serves as a good approximation

in the SU(2) sector since current masses of the light u and d quarks are much lower then

the hadron energy scale mu, md ≪ 1 GeV. Due to the fact that a mass of the strange s

quark is much larger then masses of the light u and d quarks, the question whether the

chiral symmetry is an appropriate and correct approach for the SU(3) sector is still open.

A exploration of chirally motivated models aimed at strange S = −1 baryon resonances

could contribute to this issue.

Another important motivation for examining baryon resonances in context of chiral

models is an existence of the Λ(1405) resonance about 27 MeV below the K−p threshold.

The nature of this resonance has not been fully understood yet. Chiral SU(3) calculations

show this problem in a new perspective and describe this resonance as a typical example of

dynamically generated state. Other approaches interpret the Λ(1405) resonance as a K̄N

bound state, pentaquark or exited baryon state in the constituent quark model.
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In our work, we utilize an effective approach invented by Weinberg [13], based on sub-

stituting the QCD Lagrangian by an effective Lagrangian which is formulated in terms of

meson and baryon fields and includes all terms preserving the chiral symmetry. A con-

struction of a non-perturbative scattering amplitude is addressed by means of a coupled

channel technique. Our models are based on a solution of the Lippman-Schwinger equa-

tion with a potential in a separable form which reflects the SU(3) chiral symmetry and

governs interaction of the pseudoscalar mesons octet (π,K, K̄, η) with the baryons octet

(N,Λ,Σ,Ξ). In this scheme, dynamically generated resonances appear due to the interac-

tions of meson–baryon components in 10 coupled channels πΛ, πΣ, K̄N , ηΛ, ηΣ, and KΞ.

These resonances then manifest themselves as poles of the scattering matrix on specific

unphysical Riemann sheets of the complex energy manifold.

The chief aim of this study is to search these poles in our chirally motivated models

up to energies around 1800 MeV classify them according to their mass, width and isospin,

and assign them to experimentally measured resonances established in Particle Data Group

(PDG)[11]. It is necessary to emphasize that all our models are fitted to the low energy K̄N

data and thus we do not expect the models to work so well at higher energies. Particularly,

we are concerned in the isoscalar states since in the sector with I = 1 isospin there is a lack

of sufficient experimental data available and thus we can’t competently qualify our results.

Moreover we study the origin of the poles by following their movements on the complex

energy manifold to the zero coupling limit and to the SU(3) symmetry restoration limit.

In this way, we are able to relate the observed poles to the pertinent channels and explore

the octet and singlet states in the SU(3) symmetry restoration.

The study of S = −1 strange baryon resonances in context of chirally motivated models

and coupled channel approach was performed by several groups before [7], [9], [14], [15],

[16], [17], [18], [19], [20], [21]. Our approach follows the Heavy Baryon formulation of

chiral Lagrangian proposed in Ref. [22]. In this thesis, we employ few models developed

by Cieply and Smejkal [6], [23], [10], based on the leading order Weinberg-Tomozawa

interaction (WT) or including terms up to second order of chiral Lagrangian in external

momenta. We compare our predictions obtained with updated models fitted to recent data

from kaonic-hydrogen experiment SIDDHARTA with the results an older model based on

DEAR measurement and with other theoretical models that adopt different techniques of

coupled channel formalism.

The paper is organized as follows. The review of experimental observations and the-

oretical directions used in studies of s-wave baryon resonances with S = −1 strangeness

15



are summarized in Chapter 2. In the next chapter we briefly outline the framework of the

effective phenomenological Lagrangians and chiral perturbation theory. The description

of coupled channel approach and separable potentials used in our models follows in Chap-

ter 4. In the end of this chapter we also overview other chirally motivated models based on

similar approaches. Finally, in Chapter 5 we present results of our analysis and compare

them with the experimentally measured resonances listed in the PDG and with some other

theoretical models. The study of pole movements to the zero coupling limit and to the

limit of SU(3) symmetry restoration is covered there too.
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Chapter 2

S-wave resonances in S = −1 sector

In this chapter, we go through experimental findings of the s-wave resonances in sector with

strangeness S = −1. In order to compare our theoretical predictions with experimental

data we discuss properties of these resonances as well as details of accomplished experi-

ments. In this work, we are dealing with resonances with isospin I = 0 and I = 1 in the

energy range 1300-1800 MeV. As we can see in the PDG tables [11], the resonances with

isospin I = 0, Λ(1405), Λ(1670) and Λ(1800) are well established baryons which properties

are measured by various experiments. On the other hand, in sector with isospin I = 1

there is only one three star resonance Σ(1750). The other resonances as Σ(1480), Σ(1560)

and Σ(1620) are given only one or two stars on the four stars scale. The experimental

results related to these resonances are often inconsistent. Thus we will mostly concentrate

on resonances with I = 0 isospin, with special care to the Λ(1405) resonance.

In the last section of this chapter, we summarize the theoretical models that describe

the S = −1 s-wave resonances with an emphasis on the quark model approach.

2.1 Lambda resonances

2.1.1 Λ(1405)

Lambda(1405) is an s-wave resonance with strangeness S = −1, isospin I = 0, negative

parity and spin 1/2 that lies just below the K̄N threshold and decays via strong interaction

into πΣ channel, concretely into the π−Σ−, π+Σ− and π0Σ0 channels. Since we are not

able to observe the resonance directly, its properties have been extracted by analyzing the

invariant mass distribution of the final state in production experiments.
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First evidence of the resonance was found in the K−p → πππΣ reaction measured in

bubble chamber experiment in 1961 [24]. The observed distribution of the invariant πΣ

mass was interpreted as a peak of resonance at 1405 MeV. Since that time, many other

experiments have been accomplished. The overview of experimental results related to this

resonance can be found in the PDG [11],[25].

The highest statistics of data and the most detailed analysis were performed by Heming-

way [4] and Thomas et al. [3]. The first measurement was based on CERN bubble chamber

experiment. The Λ(1405) spectrum was reconstructed from invariant masses of 766 Σ+π−

events and 1106 Σ−π+ events which were observed inK−p→ Σ+(1660)π− → (Σππ)+π− re-

action at 4.2 GeV/c. In this analysis, a selection rule 1600 MeV ≦M(Σππ)+ ≦ 1720 MeV

for invariant mass of Σ+(1660) was used. The mass and width of Λ(1405) were determined

to be 1391±1 MeV and 32±1 MeV. The peak was fitted by the Breit-Wigner formula, but

the fit was very poor. Beside that a bump of Λ(1405) was found to be asymmetric with

a rapid fall in intensity as the K̄N threshold energy is approached and the peak for the

Σ+π−π+ final states has a different shape that the one for the Σ−π+π+. A similar shape

was found analysis [3] based on the π−p → K0(Σ±π∓) reaction at 1.69 GeV/c. However,

the fall-off at the K̄N threshold was slightly different. In this work, all 400 Σ±π∓ events

were used for analysis (no selection rules for background correction). Various fits of Hem-

ingway’s data (in Ref. [4]) based on M-matrix, K-matrix and separable potentials in the

(πΣ, K̄N) coupled channels were compared in [26]. In that work, the best fit for mass and

width gave 1406.5± 4.0 MeV and 50± 2 MeV, respectively.

The reason for continuing research of the Λ(1405) lineshape in modern experiments is

an examination of the Λ(1405) nature. Chiral models explain the Λ(1405) resonance as a

superposition of two states. In zero coupling limit, one state corresponds to resonance in

the the πΣ channel, the second state corresponds to quasi-bound state in the K̄N channel.

The states should be populated differently in various decay schemes. Since the π−Σ+

and π+Σ− spectra consists not only of the I = 0 component, but also I = 1 component

(neglecting the small I = 2 component), it is necessary to deal with a contamination of the

spectra by the Σ(1385) resonance. Nowadays, it is assumed that the difference of charged

π−Σ+ and π+Σ− spectra is caused by mixing of states with I = 0 and I = 1 amplitude,

see review [27]. Since isospin forbids decay of Σ(1385) into purely isoscalar π0Σ0 channel,

the ideal channels for studying Λ(1405) should be the π0Σ0 channel.

A photoproduction of Λ(1405) was measured at Spring-8/LEPS facility. The Λ(1405)

lineshape was investigated in the charged πΣ channels through γp → K+Λ(1405) →
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K+π±Σ∓ reaction at 1.5-2.4 GeV [2]. They used kinematical and geometrical cut-offs

requiring the K+ and the pion coming from the same vertex, and that the K+ should

not decay in flight. The resulting π+Σ− and π−Σ+ spectra were different. Such findings

indicate a strong mixing of the isospin 0 and 1 terms of the πΣ scattering amplitudes.

Next experiment performed at the LEPS facility utilized the same reaction. The results

again showed different mass distributions of π+Σ− and π−Σ+ [1]. Nevertheless the line-

shape was not consistent with the previous measurement, as one can see in the Fig. 2.1

taken from Ref. [1]. The contamination by Σ(1385) was handled in a the following way.

Since the production of Σ0(1385) was measured also in the K+Λπ0 final state, which is

prohibited by isospin conservation for Λ(1405) decay, the Σ(1385) contamination in the

K+π±Σ∓ invariant mass could be estimated from the K+Λπ0 final state. The produc-

tion ratio of Λ(1405) to Σ0(1385) and the differential cross sections for photoproduction of

these hyperon resonances were obtained for photon energies in the region near production

threshold, 1.5 < Eγ < 2.0 GeV, and above, 2.0 < Eγ < 2.4 GeV.

The K−p → π0π0Σ0 channel for studying the Λ(1405) spectrum is complicated to

analyze due to the two identical particles in final state. The resulting peak located at

1420 MeV obtained by the Crystal Ball Collaboration (Ref. [28], [29]) from this reaction

was not used for the PDG averages.

The pp → pK+Λ(1405) → pK+π0Σ0 reaction has been studied at COSY-Julich by

using a 3.65 GeV/c proton beam incident on a hydrogen target [5]. The resulting extracted

spectrum of π0Σ0 is in agreement with Thomas et al. [3] and Hemingway [4]. The three

experimental spectra are compared in Fig. 2.2 taken from [5].

To summarize, even though plenty of Λ(1405) measurements were already performed,

the available experimental data are not sufficient for comparing theoretical predictions

with the lineshape of this resonance. It is obvious that the π−Σ+, π+Σ− and π0Σ0 spectra

differ which is not indicated by a simple quark model picture. If Λ(1405) were pure single

quantum state (three quark state), its lineshape should be independent of the decay scheme.

Most recent experiments measure the Λ(1405) spectrum using photoproduction γp →
K+Λ(1405) → K+πΣ and the π− induced reaction π−p → K0Λ(1405) → K0πΣ [30].

These measurements are designed to test the two pole structure of the Λ(1405) resonance.

The first reaction is suited to isolate the second pole of the Λ(1405) which couples domi-

nantly to the K̄N channel whereas the second favors the first pole of the Λ(1405) [31]. The

the strength and shape of the Λ(1405) resonance was studied in context of chiral unitary

approach using the radiative production with a kaon beams K−p → γΛ(1405) → γMB
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Figure 2.1: Missing mass spectrum for the γp→ K+X reaction. (a) K+Σ+π− final state.
(b) K+Σ−π+final state. Solid lines in the (a) and (b) frames show fits of K+Λ(1520) plus
nonresonant (K+πΣ) production. Closed and open circles show spectra obtained by [1]
and by the previous measurement [2], respectively.

[32] for several final states MB = K−p, K̄0n, π−Σ+, π+Σ+, π0Σ0, π0Λ.

2.1.2 Λ(1670) and Λ(1800)

The Λ(1670) and Λ(1800) are conventionally well-established resonances that represent

state with I = 0 isospin, S = −1 strangeness and JP = 1/2−. All measurements found

the evidence for Λ(1670) in the energy region 1660-1670 MeV. The width was estimated

to be 25-50 MeV. The mass of Λ(1800) was found in a range 1820-1850 MeV (beside [24])

and the width is 200-400 MeV. These properties were mostly extracted from a partial-wave

analysis.

In 1977 Gopal et al. [33] introduced his single–channel analysis of K̄N → K̄N reactions

using data from 1480 to 2170 MeV gathered in several experiments. A narrow S01 resonance

at 1670 MeV and with a width 45 MeV and a broad resonance with a mass 1825 MeV and

a width 230 MeV were found. Further analysis utilizing additional experimental data was

given by Alston et al.[24]. The resonances were searched in the K̄N → K̄N reaction and

parametrized by Breit-Wigner formula. They were in agreement with the previous analysis

on Λ(1670) but the other S01 resonance in their report was established at 1725 MeV with

a width 175 MeV.

The partial wave analysis utilizing the reaction K−p→ Σ±π∓ was presented by Koiso

et al. [34]. Employed data come from the measurement in Columbia–Brookhaven hydro-

gen bubble chamber experiment. Although this analysis had concentrated mainly on the

20



Figure 2.2: Comparison of the Λ(1405) spectra obtained by several experiments. The
solid line stands for data from the π−p → K0(πΣ)0 [3], the dotted line denotes data from
K−p→ π+π−Σ+π− [4] and points denotes the spectrum for π0Σ0 final states [5]. On y-axis
there are ENTRIES / 10 MeV/c2.
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Figure 2.3: The πΣ mass distribution in various experiments. Experimental data taken
from Refs. [3], [4] and [5] from left to right, respectively.

Σ(1660) resonance, the solution for the Λ(1670) resonance was also obtained. The results

are more or less in agreement with previous measurement [33] concerning the mass and

width of the resonance.

A study of reactions K−n → Σ−π0 and K−n → Σ0π− at K− momenta between 680

and 840 MeV/c was performed in the bubble chamber experiment at CERN. The partial

wave analysis of these reactions in the center mass range from 1520 MeV to 1745 MeV was

presented in [35]. They found the Λ(1670) mass to be 1676 MeV, which was in agreement

with other measurements, but the width 43 MeV turned out to be larger then the world

average.

Modern experiments measured Λ(1670) spectrum in the near-threshold reactionK−p→
Λ(1670) → ηΛ. The results of unitary multichannel analysis, that incorporates the new

Crystal Ball multiphoton spectrometer data, were reported in Ref. [36]. In this paper,
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the results of the Λ(1800) analysis were also shown. By including the [33] ([24]) elastic

amplitude in their fit, a broad Λ(1800) resonance with a mass 1845 MeV (1804 MeV) and

width 518 MeV (395 MeV) was found. In their preferred fit, they obtained mass and width

of Λ(1670) to be 1673 MeV and 23 MeV. The results of σtot(K
−p→ ηΛ) are also presented

in the paper. An independent analysis of K−p→ ηΛ reaction was performed in Ref. [37].

There, the reaction was compared with its SU(3) flavour related partner π−p → ηn and

the flavour symmetry breaking was discussed.

In addition, Λ(1670) was observed in radiative reactions K−p → γΣ0 and K−p → γΛ

in BNL Alternating Gradient Synchrotron at eight K− momenta between 514 and 750

MeV/c [38].

In the Table 2.1, we present an overview of the I = 0 resonances with their observed

decay channels.

Resonance Mass[MeV] Width[MeV] Decay Channels

Λ(1405) 1405.1± 1.3 50± 2 K̄N ,πΣ,πΛ

Λ(1670) 1660− 1680 25− 50 πΣ(25− 55%),K̄N(20− 30%),ηΛ(10− 25%)

Λ(1800) 1720− 1850 200− 400 πΣ(seen),K̄N(25− 40%)

Table 2.1: Overview of s-wave resonances with S = −1, I = 0 in the energy range
1300-1800 MeV from Particle data group PDG [11].

2.2 Sigma resonances

2.2.1 Σ(1750)

Sigma(1760) is a well established s-wave three stars resonance. The resonance represents

a state with S = −1 strangeness, I = 1 isospin, negative parity and spin 1/2. Its decay

channels are presented in Table 2.2. There is evidence for this state in many partial-wave

analyses, but the problem is that various analysis give wide variations in the mass 1730-

1800 MeV and in the width 60-160 MeV. The latest analyses indicate significant couplings

to K̄N and πΛ, as well as to ηΣ. According to PDG [11], the mass and width are estimated

to be 1750 MeV and 90 MeV, respectively.

Energy dependent partial wave solutions for the πΛ, πΣ and K̄N channels over the

energy range 1480-2170 MeV were presented in Ref. [33]. The S11 resonance at 1770 MeV

with a width 60 MeV was found in all of these channels.
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In the report [24], an energy-dependent partial-wave analysis of the K̄N channel alone

was shown. In this channel, the Σ(1750) resonance was observed with a mass 1770 MeV

and a width 161 MeV. The width obtained in this analysis is not in agreement with most

of the reports reffered in PDG [11].

The latest analysis was based on the K−p→ Σ0η reaction where the final Ση state is a

pure I = 1 isospin state [39]. The experiment was measured in hydrogen bubble chamber

in the Lawrence Berkley Laboratory. There was a bump observed in the Ση cross section

spectrum. In this work, the mass and the width were determined to be 1746 MeV and 92

MeV.

2.2.2 Other Sigma resonances

There are other I = 1 resonances in the energy range 1300-1800 MeV, namely Σ(1480),

Σ(1560) and Σ(1620) resonances. However, the status of these resonances is ∗ or ∗∗ star

resonance. In a case of ∗∗ star resonance, the evidence of existence is only fair. In a case

of one star ∗ resonance, it means that the evidence of existence is poor. Some properties

as a spin and parity are still not determined for Σ(1480), Σ(1560). The Σ(1620) is a

resonance with JP = 1
2

−
. On the top of this only Σ(1620) is established as an s-wave

resonance. These resonances are listed in PDG mostly only tentatively in order to search

for ”missing” quark–model states. Thus, we do not go through experimental findings

of these Sigma resonance in such detail. Despite the fact that our analysis gives also a

prediction for I = 1 resonances in the whole energy range 1300-1800 MeV, the only one

resonance with an overall status of ∗∗∗ star resonance will be compared with our theoretical

predictions.

In Table 2.2, we present a brief overview of that Sigma resonance together with the

Σ(1750) resonance.

Resonance Mass[MeV] Width[MeV] Out Channels

Σ(1480) ≈ 1480 30− 80 K̄N ,πΣ,πΛ

Σ(1560) ≈ 1560 15− 80 πΣ, πΛ

Σ(1620) ≈ 1620 10− 87 K̄N ,πΣ, πΛ

Σ(1750) 1730− 1800 60− 160 K̄N(10− 40%),πΣ(seen),πΛ(< 8%),ηΣ(15− 55%)

Table 2.2: Overview of S-wave resonances with S = −1, I = 1 in the energy range
1300-1800 MeV from Particle data group PDG [11].
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2.3 Theoretical studies overview

In the previous section we summarized available experimental results on the resonances

with isospins I = 0 and I = 1. Although the Λ(1405) resonance is well-established four-

stars state, interpretation of its nature is a long-standing problem. Theoretical models

are not able to come out with a satisfactory explanation of its peculiar features. In order

to put our work into a broader perspective, we present a summary of various theoretical

approaches that predict strange baryons spectra with a special accent on the Λ(1405)

resonance.

A comprehensive review article on the quark models was written by Capstick and

Roberts [40]. This review focused on baryon resonances generally, not only the Λ(1405)

resonance. A recollection of various theoretical approaches dealing with the Λ(1405) reso-

nance was given at the beginning of a work [27].

2.3.1 Quark models

Within a quark model a systematization of hadrons with spin is based on an approximate

flavor-spin symmetry SU(6) = SU(3)flavour ⊗ SU(2)spin for the six basic states is u ↑, u ↓,
d ↑, d ↓, s ↑, s ↓ (↑, ↓ = spin up, down) [12], [41], [42]. According to SU(6), the baryons

are described as three quark states and classified in (D,LP
N) multiplets, where D is the

dimensionality of the SU(6) representation, L is the total quark orbital angular momentum,

and P is the total parity. Concretely, the baryons are assigned to the multiplets on the

right hand side of

6⊗ 6⊗ 6 = 56S ⊗ 70M ⊗ 70M ⊗ 20A.

The ground states are described by the (56, 0+0 ) multiplet. The negative-parity baryons

with masses below about 1.9 GeV are contained in the (70, 1−1 ) multiplet which decompose

into SU(3)flavour multiplets in this way

70 =2 10⊕4 8⊕2 8⊕2 1.

In Tables 2.3 and 2.4, we find an assignment of observed baryons to the singlet and octet

of the 70-plet. Since Λ(1405) and Λ(1520) have no partners in nucleon sector, they are

expected to be dominantly flavor singlet states. Other resonances of our interest belong to

the octet of the 70-plet. However, due to the SU(3) symmetry breaking, the representations

mix with each other. As a consequence, the Λ(1405) resonance is dominantly in a singlet
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configuration but includes small octet admixtures whose intensity is model dependent.

JP (D,L,n) Singlet members

1/2− (1,1,1) Λ(1405)

3/2− (1,1,1) Λ(1520)

Table 2.3: A singlet of the 70-plet negative parity resonances [12].

JP (D,L,n) Octet members

1/2− (8,1,1) N(1535) Λ(1670) Σ(1620) Ξ(?)

1/2− (8,1,1) N(1650) Λ(1800) Σ(1750) Ξ(?)

3/2− (8,1,1) N(1526) Λ(1690) Σ(1670) Ξ(1820)

3/2− (8,1,1) N(1725) Λ(?) Σ(?) Ξ(?)

5/2− (8,1,1) N(1670) Λ(1830) Σ(1775) Ξ(?)

Table 2.4: An octet of the 70-plet negative parity resonances [12].

Let’s now concentrate on factual difficulties to explain the Λ(1405) resonance in a simple

constituent quark model. The model is based on an assumption that the baryons in ”soft”

probe limit can be described as being made up of three constituent quarks. Such model was

used by Isgur and Karl [43], [44] to calculate spectra of the negative-parity excited baryons.

According to the model predictions, there are two main problems related to the Λ(1405).

Firstly, the Λ(1405) mass is considerably lower than mass of the N(1535) resonance. The

problem is that the Λ(1405) contains one strange quark and thus it should be heavier than

the lowest negative parity nucleon baryon. Secondly, their model was not able to explain

a large mass splitting of the Λ(1405) and its spin–orbit partner, the Λ(1520) resonance.

In nucleon sector, the states N(1520) with JP = (3/2)− and N(1535) with JP = (1/2)−

are almost degenerate in the mass while Λ(1405) and Λ(1520) are split by over 100 MeV.

Possibly, the neglected spin-orbit interaction could split the Λ-states. These forces, which

arise from one-gluon exchange, cannot be incorporated consistently into the model since

they evocate unacceptably large spin-orbit splittings. A justification for ignoring the spin-

orbit forces lies in a cancellation of the vector and scalar spin-orbit forces for the two-body

interactions under certain conditions applied on the potentials. However there is no such

cancellation for the three-body spin orbit interactions. Concerning the Λ(1670), the mass

predicted by this model almost corresponds to that observed in experiment. In a wide range

of empirical resonant energies attributed to the Λ(1800) resonance, the model predicts one

state at 1800 MeV.
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Corrections to the nonrelativistic model described above should be provided by a rela-

tivized quark model [45]. The later model includes one-gluon exchange and the splitting

between Λ(1520) and Λ(1405) arises only from a spin-orbit interaction. The predicted

masses of the Λ(1405), Λ(1670) and Λ(1800) resonances are 1550 MeV, 1615 MeV and

1670 MeV, respectively. Here, the difference between the empirical Λ(1405) mass and the

theoretical value is caused by a presence of the nearby K̄N threshold.

In contrast with the Capstic and Isgur’s model [45], the spin-orbit splitting without

invoking the K̄N threshold presence was calculated by using the QCD sum rule approach

[46]. In this work, the mass of the Λ(1405) resonance was determined to be 1390 MeV

whereas the Λ(1520) mass was predicted at 1520 MeV. Simultaneously with this large

splitting in Lambda sector, a small spin orbit splitting between N(1520) and N(1535) was

obtained. The authors anticipate a possible additional shift of the Λ(1405) mass (about

30 MeV) due to an s-wave coupling to the K̄N channel.

Chiral quark models describe resonances as a system of three constituent quarks that

are confined by the two-body potential. Instead of assuming one-gluon exchange, the chiral

quark model presume that an interaction is mediated by the SU(3) octet of pseudoscalar

mesons. The Goldstone boson interaction implies a reversal of ordering of the even and odd

parity states between the nucleon and Lambda hyperon spectra. The analysis performed in

Ref. [47] offers explanation for a large part of the Λ(1405)-Λ(1520) splitting and predicts

energies for resonances Λ(1405), Λ(1670) and Λ(1800) to be 1462 MeV, 1680 MeV and

1815 MeV, respectively. The mass of the Σ(1750) resonance was determined to be 1750

MeV.

The quark structure of resonances can also be studied by means of the 1/Nc expansion,

where Nc is the number of colors. The analysis of the lowest negative parity 70-plet up

to first order in terms of the SU(3) symmetry breaking was performed in Ref. [48], [49].

Although the predictions of Ref. [48] reproduced the mass of Λ(1405) resonance pretty

well, the improved analysis of Ref. [49], that took into account the exact wave function

of the component contributing to the spin term, moved the mass of the Λ(1405) state

upwards.

2.4 K̄N bound state and other models

Since the Λ(1405) resonance lies only about 30 MeV under the K̄N threshold, alternative

approach to the three quark state is a concept of an unstable meson-baryon bound state.
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However, if we accepted this explanation one resonance would be missing in the multiplet

classification and another state at around 1520 MeV would be required instead. Unfortu-

nately, this sector was well explored by several K̄N scattering experiments with no sign of

such resonance.

Phenomenological analysis [50] interprets the Λ(1405) resonance as a virtual bound

state which arises in multichannel potential from the vector meson exchange between the

baryon and pseudoscalar octet. Although model predictions on the mass, width and res-

onant shape seem quite comparable with empirical parameters of the Λ(1405) resonance,

the authors admit that there are some inconsistencies in the way the resonance is generated

in the πΣ− K̄N system and the vector meson exchange model is not able to give a correct

dynamical explanation of the resonance and should serve only as an illustration for future

models. More details can be found in [50].

The SU(3) chiral extension of the cloudy bag model that describes the nucleon scat-

tering near the threshold was performed in Refs. [51], [52] and [53]. The work of Jennings

[53] extracted constraints on the model of Λ(1405) from a phase shifts analysis of Λ(1670)

and Λ(1800). In this approach, the Λ(1405) resonance could in principle be either a pure

quark state or a bound K̄N state. The low mass of the Λ(1405) is explained as a bound

state with some admixture of a three quark state (14%). Another Λ(1/2)− state close in

mass to the Λ(1520) is predicted in this model too.

The Skyrme model describes hyperons as bound states of kaons and skyrmeons. In

the work [54], which is based on Callan–Clebanov model [55] and its vector meson gener-

alization, the spectra of hyperon states with strangeness S = −1, S = −2 and S = −3

are presented. In a simplified form of the model, some exotic particles are predicted as

well. Ignoring the K−K interaction in this approximation results in a possibility that any

number of kaons could be bound to the same skyrmeon. As the K − K interactions are

considered, the number of kaons K bounded to skyrmeon is limited, and that consequently

determines a maximal possible value of strangeness. In this point, the skyrme model is in

agreement with the quark model. Regarding the negative parity particles with S = −1

strangeness, the predicted state with mass 1360 MeV was assigned to Λ(1405). Contrary to

the quark model where Λ(1405) resonance is a member of SU(3) representation, Λ(1405)

has no nonstrange analogue in the skyrme model.

Another possibility is an interpretation of the Λ(1405) resonance as a candidate of

JP = (1/2)− pentaquark [56]. The diquark picture of pentaquark predicts an octet and

singlet with no orbital excitation between the diquark pair. The singlet particle with the
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same quantum numbers as Λ(1405) was predicted at 1447 MeV. In spectra of predicted

states, the next Lambda particle belongs to the octet and it was predicted at 1533 MeV.

Nevertheless, if the diquark picture for the pentaquark is correct, experimental observation

of additional negative-parity baryons in the mass range between 1400 MeV and 1540 MeV

is required.

Much effort was put into the lattice QCD investigation of the Λ(1405) resonance. To

predict the mass of the resonance, the QCD simulation with three quark operator (Ref.

[57]) and five quark operator (Ref.[58]) were performed.

28



Chapter 3

Chiral symmetry

Although we believe to have a fundamental theory of strong interactions, the Quantum

Chromodynamics (QCD), a running coupling constant causes that a different approach is

required for treatment of empirical phenomena at small and large distances. Whereas the

strong interaction at high energies can be handled by a perturbation theory, the low energy

sector of QCD faces a problem with a large value of the strong coupling constant. Even

though QCD is formulated in terms of quarks and gluons, they have never been directly

observed in experiment. It seems that baryons and mesons are appropriate degrees of

freedom rather than quarks and gluons at energy scale smaller than the hadron scale

Λ ≈ 1 GeV.

The guidance principle of the strong interactions in the low energy region is a chiral

symmetry, which is the exact symmetry of QCD in the limit of vanishing quark masses. In

real world, quark masses are nonzero, and thus the chiral symmetry is only approximate

symmetry of QCD. This approximation works especially well at energies where one needs

to consider only the lightest u and d quarks. Since the s quark mass is somewhere between

light and heavy quarks masses, the extension of chiral symmetry to SU(3) is still under

discussion.

Spontaneous chiral symmetry breaking is connected with an existence of massless par-

ticles, the so-called Goldstone bosons. Obviously no masless particles are observed in

spectra, since the chiral symmetry is not exact symmetry of QCD. The Goldstone bosons

are associated with the octet of pseudoscalar mesons, which are extremely light states

relatively to other particles in spectra. In addition, the spontaneous symmetry breaking

puts crucial constraints on their interactions with baryons. This concept gave birth to

phenomenological Lagrangians [13] and Chiral perturbation theory χPT [59]. The idea
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is that one constructs the most general Lagrangian including all terms consistent with

assumed symmetry. In contrast to QCD, the chiral perturbation theory expresses measur-

able quantities in terms of observable fields. Additionally, the chiral perturbation theory

is organized as series of terms with increasing power of the energy of the particles involved

in considered processes.

3.1 Phenomenological Lagrangians and

Chiral Perturbation theory

In effective theory, quarks and gluons are replaced by the Goldstone boson fields and the

QCD Lagrangian is replaced by an effective Lagrangian. The essential idea for construction

of the phenomenological Lagrangian lies in a following rule formulated by Weinberg [13]:

One writes down the most general possible Lagrangian, including all terms consis-

tent with assumed symmetry principles, and then calculates matrix elements with this

Lagrangian to any given order of perturbation theory, the result will simply be the most

general possible S-matrix consistent with analycity, perturbative unitarity, cluster decom-

position and the assumed symmetry principles.

Th next important step is a systematization of chiral perturbation series, the so-called

chiral power counting scheme. The series are organized in powers of derivatives on the

meson fields (or equivalently in powers of small momenta), where each next term is a

correction to the result. The chiral dimension D of an arbitrary Feynman diagram increases

with a number of loops L and d derivatives according to

D = 2 +
∑

d

Vd(d− 2) + 2L, (3.1)

where Vd denotes the number of vertices.

The chiral symmetry G = SU(3)R × SU(3)L is spontaneously broken down to a sub-

group H = SU(3)V . According to the Goldstone theorem, there exist eight massless

Goldstone bosons connected to broken generators of the group. In real world, these states

are associated with the octet of pseudoscalar mesons which are gathered in the matrix field

U(φ) = u2(φ)

u(φ) = exp

(

iφ√
2f

)

, U(φ) = exp

(

i
√
2φ

f

)

(3.2)
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with the matrix form

φ =









π0

√
2
+ η√

6
π+ K+

π− − π0

√
2
+ η√

6
K0

K− K0 −2η√
6









, (3.3)

where f denotes a pseudoscalar decay constant in the chiral limit. The u(φ) field transforms

nonlinearly under the global transformation

u(φ)
g∈G−−→ gu(φ) = u(φ′)h(g, u), (3.4)

where compensator field h(g, u) belongs to the subgroup H . The U(φ) representation

transforms linearly under the chiral transformation

U(φ)
g∈G−−→ RU(φ)L, (L,R) ∈ SU(3)L × SU(3)R. (3.5)

3.1.1 External sources

A systematic procedure for a calculation of amplitudes of the effective chiral Lagrangian

provides a method of external sources which are generated by the functional

exp[iZ(v, a, s, p)] = 〈0out|0in〉v,a,s,p. (3.6)

Here the term on the right hand side is a vacuum-to-vacuum transition amplitude in a

presence of vector (vµ), axial vector (aµ), scalar (s) and pseudoscalar (p) currents. The

matrix elements can then be obtained by a differentiation of the functional with respect to

external sources. An interaction of Goldstone bosons with external fields is described by

the modified QCD Lagrangian

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q, (3.7)

where L0
QCD is the QCD Lagrangian in the chiral limit mq → 0. Formally, the LQCD is

invariant under local SU(3)L × SU(3)R

q(x) → L(x)
1

2
(1− γ5)q(x) +R(x)

1

2
(1 + γ5)q(x), (3.8)
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which implies a following gauge transformation of external fields

(s+ ip)
g∈G−−→ R(s+ ip)L†

lµ = vµ − aµ
g∈G−−→ LlµL† + iL∂µL†

rµ = vµ + aµ
g∈G−−→ RrµR† + iR∂µR†.

(3.9)

For a specific choice vµ = aµ = p = 0 and s = M = diag(mu, md, ms) the ordinary three

flavor QCD Lagrangian is recovered. The chiral Lagrangian Leff with effective degrees of

freedom u is related to the QCD Lagrangian LQCD in a following way

exp

{

iZ[vµ, aµ, s, p]

}

=

∫

DqDq̄DAµ exp i

{

d4xLQCD

}

=

∫

Du exp
{

i

∫

d4xLeff[u, vµ, aµ, s, p]

}

.

(3.10)

Since it is invariant under the local SU(3)R×SU(3)L transformation, the covariant deriva-

tives of the meson fields U(φ) have a form

∇µU = ∂µU − irµU + iUlµ, ∇µU
g∈G−−→ R∇UL†. (3.11)

The scalar and pseudoscalar fields are summarized in a quantity

χ = 2B0(s+ ip), (3.12)

where B0 is a constant related to the vacuum expectation value of the scalar quark–

antiquark condensate. Consequently, we can construct the fields

χ± = u†χu† ± uχ†u, (3.13)

which obey the transformation rule

χ±
g∈G−−→ h(g, u)χ±h

†(g, u). (3.14)

3.1.2 Meson-baryon Lagrangian

In this section, we study a coupling of mesons to baryon fields in a heavy baryon formalism

and introduce resulting effective meson-baryon Lagrangian.
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The octet of baryon field is given by the matrix

B =









Σ0

√
2
+ Λ√

6
Σ+ p

Σ− −Σ0

√
2
+ Λ√

6
n

Ξ− Ξ0 −2Λ√
6
.









, (3.15)

which transforms under g ∈ SU(3)R × SU(3)L as

B
g∈G−−→ hBh†; B

g∈G−−→ hBh† (3.16)

with h(g, u) ∈ SU(3)V .

In contrast to mesons, masses of the baryons do not disappear in the chiral limit and

they go to a value M0, which adds a new scale in the theory. The baryon mass M0 has

a size of a the typical hadronic scale M0 ≈ 1 GeV, which causes problems with the chiral

power counting. These troubles can be eliminated by using an extremely nonrelativistic

limit of heavy static baryon withM0 → ∞, the so-called heavy baryon perturbation theory,

which was formulated by by Jenkins and Manohar [60]. To organize the perturbation series

in some better way, we use the fact that a typical external momenta transfered by pions

are small relatively to the baryon masses. The center of the rest mass frame is identified

with the center of baryon, and thus the baryon four–momentum pµ can be decomposed in

following way

pµ = mvµ + lµ, (3.17)

where vµ is the baryon four-velocity (in baryon rest frame: vµ = (1, 0, 0, 0)) and lµ denotes

small residual momentum v · l ≪ M0. The basic idea is to transfer the baryon mass from

the propagator. For that purpose, the usual Dirac–spinor ψ is decomposed in velocity

eigenstates by using the projection propagator Pv =
1
2
(1 + /v)

ψ(x) = exp(−iM0v · x)[H(x) + h(x)]

/vH = H /vh = −h
(3.18)

where the exponential function shifts the dependence on the baryon mass. Consequently,

the large component field H obeys a modified Dirac equation v ·∂H = 0 modulo 1/M0 cor-

rections which comes from omitting the small component field h. Now, the new propagator

of the H field

H(v · k) = i

v · k + iε
, ε > 0 (3.19)
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has the pole in zero.

Using this approach, the leading order of effective meson-baryon Lagrangian takes a

form [6]

L(1)
MB =Tr(ΨB(iγµD

µ −M0)ΨB)+

FTr(ΨBγµγ5[u
µ,ΨB]) +DTr(ΨBγµγ5{uµ,ΨB})

(3.20)

with the covariant derivative of the baryon field

DµΨB = ∂µΨB +

[

1

8f 2
[φ, ∂µ, φ],ΨB

]

+ ..., (3.21)

and the axial matrix operator

uµ = − 1

2f
∂µφ+O(φ3). (3.22)

The leading order L(1)
MB (linear in the external meson four-momentum q) includes respec-

tively the Weinberg-Tomozawa contact term, u-channel Born term and s-channel Born term

originating from the axial coupling part of L(1)
MB. Beside that, the s-wave meson–baryon

amplitudes at order O(q2) and higher are generated as result of relativistic corrections

to the covariant derivative term. Feynman diagrams for chiral perturbation theory up to

O(q2) are visualized in the Figure (3.1). The the next-to-leading order of meson–baryon

Lagrangian

L(2)
MB =bDTr(B̄{χ+, B}) + bFTr(B̄[χ+, B]) + b0Tr(B̄B)Tr(χ+)+

dDTr(B̄{(u2 + (v · u)2), B}) + dFTr(B̄[(u
2 + (v · u)2), B])+

d0Tr(B̄B)Tr(u2 + (v · u)2)+
d1(Tr(B̄uµ)Tr(u

µB)) + Tr(B̄(v · u))Tr((v · u)B)+

d2Tr(B̄(uµBu
µ + (v · u)B(v · u))) + ...

(3.23)

gives rise to a contact term in order O(q2) which is also pictured in the figure (3.1). The

constants in front of the various terms in (3.23) have to be determined by fitting on the

experimental data, for details see [6], [10] and the χ+ matrix has a form

χ+ = − 1

4f 2
= {φ, {φ, χ}}. (3.24)
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Figure 3.1: The Feynman diagrams relevant for the s-wave meson-baryon interaction.
The diagrams represents from left to right O(q1) contact term, O(q2) contact term, direct
s-term and crossed u-term respectively [6].

3.2 Chiral symmetry in QCD

Let’s open with a brief recapitulation of quantum chromodynamics which is a non–abelian

gauge theory of colored objects. The QCD Lagrangian can be written in form

LQCD =
∑

f

q̄f (iγ
µDµ −M)qf −

1

4
Gµν,aGµν

a (3.25)

with the gauge-covariant derivative

Dµ = ∂µ + ig
λa
2
Aµ,a (3.26)

and the gluon field strength tensor

Gµν,a = ∂µAν,a − ∂νAµ,a − gfabcAµ,bAν,c. (3.27)

Here q denotes the quark mass field, M stands for the diagonal mass matrix M =

diag(mu, md, ms, ...), g is the strong coupling constant, Aµ,a are the gluon fields which

carry the color indexes a = 1,...,8. The structure constants fabc of the SU(3)color Lie

algebra are defined by commutation relation

[λa, λb] = 2ifabcλc, (3.28)

where λa stands for Gell-Mann matrices that are linked to SU(3) generators via Ta = λa

2
.

The non-abelian nature of quantum chromodynamics results in a gauge-field self interaction

which is represented by three and four gluon vertices. On the top of this, the strong-

interaction Lagrangian could also involve a anomaly (see Ref. [61])

Lθ =
g2θ̄

64π2
ǫµνρσ

∑

a

Ga
µνGa

ρσ, (3.29)
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where the ǫµνρσ is the totally antisymmetric Levi-Civita tensor. We will turn back to this

term in further discussion of symmetry breaking.

Since the mass of the first three u, d and s flavour are much smaller then the typical

hadronic scale mu, ms, ms << 1 GeV, it is justifiable to examine the QCD Lagrangian in

the limit of vanishing quark masses, the so-called chiral limit

L0
QCD = q̄iγµDµq −

1

4
Gµν,aGµν

a . (3.30)

Let’s introduce right- and left-handed quark fields

qR = PRq, qL = PLq (3.31)

by defining the projection operators

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5) (3.32)

with following properties

P 2
R = PR P 2

R = PR PRPL = PLPR = 0 PR + PL = 1. (3.33)

It is apparent that holds qL + qR = q. Using right- and left-handed quark fields we can

rewrite the Lagrangian in the following way

L0
QCD = q̄Riγ

µDµqR + q̄Liγ
µDµqL − 1

4
Gµν,aGµν

a . (3.34)

In above, we see that quark fields decouples into the sum of two terms in which the left-

handed and right-handed fields are separated fields and do not interact with each other.

Therefore the Lagrangian is invariant under the chiral transformations

qR =







uR

dR

sR






7−→ UR







uR

dR

sR






= exp

(

− iΘR
a

λa
2

)







uR

dR

sR






(3.35)

qL =







uL

dL

sL






7−→ UL







uL

dL

sL






= exp

(

− iΘL
a

λa
2

)







uL

dL

sL






(3.36)
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where UL and UR are unitary 3 × 3 matrices . In following, we debate only the part of

Lagrangian L0
QCD which is invariant under the chiral rotations.

The Noether’s Theorem then implies the existence of conserved currents associated

with the transformations of the left-handed quarks

Rµ
a = q̄Rγ

µλa
2
qR with ∂µR

µ
a = 0 (3.37)

and right-handed quarks

Lµ
a = q̄Lγ

µλa
2
qL with ∂µL

µ
a = 0. (3.38)

Frequently used linear combinations are quark vector currents

V µ
a = Rµ

a + Lµ
a = q̄γµ

λa
2
q ∂µVa = 0 (3.39)

and axial–vector currents

Aµ
a = Rµ

a − Lµ
a = q̄γµγ5

λa
2
q ∂µAa = 0. (3.40)

where V µ
a and Aµ

a belongs to octet, a = 1, .., 8. In the limit of vanishing quark masses the

Lagrangian preserves the full symmetry SU(3)V × SU(3)A × U(1)V × U(1)A. The U(1)V

symmmetry is connected to the baryon number conservation and will not be discussed in

more details. Noerther’s theorem implies that conserved charges can be written in form

QV
a =

∫

d3xV a
0 (x)

dQV
a

dt
= 0 (3.41)

and

QA
a =

∫

d3xAa
0(x)

dQV
a

dt
= 0 (3.42)

which are generators of SU(3)V × SU(3)A.

The singlet vector current (a = 0)

V µ = q̄Rγ
µqR + q̄Lγ

µqL = q̄γµq with ∂µV
µ = 0 (3.43)

comes from a transformations of all left-handed and right-handed quark fields by the same
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phase and the singlet axial-vector current

Aµ = q̄Rγ
µqR − q̄Lγ

µqL = q̄γµγ5q (3.44)

comes from transformations of all left-handed quark fields with one phase and all right-

handed with the opposite phase. The the point is that the singlet axial-vector current is not

conserved on the quantum level since U(1)A symmetry is broken due to the anomaly 3.29.

Furthermore, there are strong indications that even the axial vector current is not conserved

in nature and thus the symmetry SU(3)V ×SU(3)A×U(1)V breaks into the SU(3)V ×U(1)V .
It will be discussed in more details in section 3.3.2.

3.3 Spontaneous symmetry breaking

Symmetry itself can be manifested in two possible ways, the Wigner-Weyl mode and the

Nambu-Goldstone mode, which differ in the vacuum response to a symmetry transforma-

tion.

3.3.1 Symmetry realizations

The Wigner-Weyl mode is characterized by the symmetry realization of Lagrangian also

in the ground state of the system. In this case, the symmetry is an exact symmetry of the

system and generators of the symmetry acts on the vacuum state in following way

QA
a |0〉 = 0. (3.45)

If we take into account the commutation relation of the Hamiltonian of the system with

the symmetry generators

[H,QA
a ] = 0, (3.46)

we get a degeneracy of states in multiplets. Let’s consider for example two energy eigen-

states of the same multiplet denoted |a〉 and |b〉, such that |b〉 = QA
a |a〉. If we apply the

commutation relation on H|a〉 = Ea|a〉, we simply get H|b〉 = Ea|b〉 which symbolize that

the |a〉 and |b〉 states are degenerate in energies.

In the Goldstone mode, which is also called a spontaneous symmetry breaking, the

ground state of the system is no longer invariant under the full symmetry group of the
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Lagrangian

QA|0〉 6= 0 (3.47)

for number of generators. It is said that the symmetry is spontaneously broken.

According to Goldstone theorem, the spontaneous symmetry breaking is connected

with existence of massless mode - the Nambu–Goldstone (NG) bosons coupled to the axial

currents Aµ
a(x) with quantum numbers of the broken generators. The number of Goldstone

bosons is given by the number of broken generators.

3.3.2 Evidence of spontaneous symmetry breaking

In real world, there is a few indications that the symmetry is realized in the Nambu–

Goldstone mode. If the chiral symmetry was the exact symmetry of QCD, the symmetry

of Lagrangian would naturally lead to symmetry of states. As the degenerancy in charge

of particles in spectra SU(3)V (isospin symmetry) is observed, one would expect same de-

generancy between hadron multiplets of opposite parity SU(3)A (axial–vector symmetry).

To each a degenerate hadron state of positive parity should exist a negative parity hadron

and vice versa. In reality, these parity doublets are not observed since the meson mass

spectrum does not respect the axial–vector symmetry. The hadron spectra is visualized in

the figure 3.2. One can see the splitting of the positive (negative) parity ground states and

the first negative (positive) parity states. The situation described above causes sponta-

neous breaking of the SU(3)V × SU(3)A ×U(1)V symmetry down to the SU(3)V ×U(1)V

symmetry.

Now, as we know that symmetry is spontaneously broken, we naturally ask for some

massless Nambu-Goldstone boson candidate. The (NG) bosons are identified with the

lightest pseudoscalar mesons (π,K and η) and their small but nonzero mass arises due to

an explicit symmetry breaking which is consequence of the nonvanishing quark masses.

According to QCD foundations the spontaneous symmetry breaking is induced by a

non-vanishing value of a singlet scalar quark condensate

〈0|q̄q|0〉 = 〈0|q̄RqL + q̄LqR|0〉, (3.48)

which it is not invariant under the chiral transformations due to the mixing the left- and

right-handed quarks operators. On the contrary, the SU(3)V rotates the left- and right-

handed simultaneously. Since the finite expectation value of the scalar quark condensate

should be melt away in high temperatures and densities, the chiral symmetry restoration
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Figure 3.2: Masses of mesons and baryons of opposite parity [62].

is expected. The symmetry then would be realized in the Wigner-Weyl mode.

3.3.3 Low energy theorems

As was already said, the spontaneous symmetry breaking is connected to non-conservation

of the axial current. This can be demonstrated by weak pion decay which is a pure axial-

isovector transition. The matrix element of the axial-vector current operator between the

vacuum and the NG-boson state can be written as

〈0|Aµ
a(x)|πa(p)〉 = −ifπpµe−ip·xδab, (3.49)

where a and b are isospin indices and pµ denotes four momentum. Above equation defines

the pion decay constant fπ which can be deduced from the accurately measured lifetime

of the charged pions

fπ ∼= 93 MeV. (3.50)

The divergence ∂µA
µ of the axial current then gives

〈0|∂µAµ
a(x)|πa(p)〉 = −ifπp2e−ip·xδab. = −ifπm2

πe
−ip·xδab (3.51)
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If the axial current was exactly conserved, it would imply

fπm
2
π = 0. (3.52)

Since the pion mass is nonzero but small compared to hadronic scales, the axial current is

approximately conserved.

The above relations lead to identification of the axial-vector current divergence with

the pion field

Aa
µ,pion = fπ∂πΦ

a(x), (3.53)

where Φa(x) is the pion field. Sometimes the relation between pion field and axial current

is referred to as the partially conserved axial vector current (PCAC) relation. Apparently,

such a relation can serve as justification of the chiral symmetry concept for treating low

energy dynamics of the NG boson and simultaneously supports the usage of mesons and

baryons as a relevant degrees of freedom in chiral perturbation theory instead of quarks

and gluons which are the fundamental building blocks of QCD.

3.4 Explicit symmetry breaking

Even though the existence of the Goldstone bosons was attributed to spontaneous sym-

metry breaking, to explain its small nonzero mass is necessary to take into account the

explicit symmetry breaking. The chiral symmetry is not an exact symmetry of the strong

interactions any more. If we consider the finite current quark masses, the mass term −q̄Mq

in the QCD Lagrangian Eq. 3.25 breaks chiral symmetry explicitly

M =







mu 0 0

0 md 0

0 0 ms






. (3.54)

If we substitute the left-handed and right-handed quark field into into quark mass term,

we see that the left and right components are mixed in the Lagrangian

LM = −q̄Mq = −(q̄RMqL + q̄LMqR). (3.55)

Since the masses of u,d and s quarks are small compared to the typical hadronic scale, the

explicit chiral symmetry breaking due to the non-vanishing quark masses is very small.
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Inclusion of the mass term into the Lagrangian cause additional divergences of vector

and axial-vector currents. However, the flavour currents ūγµu, d̄γµd and s̄γµs are always

conserved for any quark mass value which indicates the flavour independency of strong

interaction and the diagonality of the quark mass matrix [61]. As consequence, the singlet

vector current V µ which is a sum of the three flavours, is conserved.
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Chapter 4

Coupled channel approach

The previous chapter was devoted to the effective chiral Lagrangians and the chiral per-

turbation theory. However, problems with chiral series arise as we go to higher orders in a

perturbative expansion. In SU(3) sector, the perturbation series fails due to the presence

of the Λ(1405) resonance just below the K̄N threshold. This problem can be addressed

by a nonperturbative technique witch is based on a solution of scattering equation in a

coupled channel formalism. For this purpose, we employ a Lippman-Schwinger equation

with entering meson–baryon potential in a separable form. This interaction potential is

derived from the chiral perturbation theory as an effective transition amplitude which gives

a same scattering length as that we get from the effective Lagrangian in a calculation up

to a given order in external meson momenta. Dynamically generated resonances arises as

a consequence of the multiple scattering in the interaction of the pseudoscalar meson octet

(π,K, K̄, η) with the baryon octet (N,Λ,Σ,Ξ).

4.1 Effective meson-baryon potentials

In our model, the potential matrix describing a coupling of the pseudoscalar meson octet

with the baryon octet is taken in a separable form

Vij(ki, kj) =

√

1

2Ei

Mi

ωi
gi(ki)

Cij

f 2
gj(kj)

√

1

2Ej

Mj

ωj
(4.1)
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with the off-shell Yamaguchi form factors

gi(ki) =
1

1 + ( ki
αi

)2
, (4.2)

where inverse range radii αi characterize the range of interaction in channel i and ki denotes

momentum in the meson–baryon c.m. frame. The symbols Ei, Mi and ωi denote meson

energy, baryon mass and baryon energy the in the c.m. frame, respectively, and f stands

for the pseudoscalar meson decay constant.

The chiral SU(3) symmetry is reflected in a structure of the Cij coupling coefficients

which are derived directly from the effective chiral Lagrangian.

The Lippman-Schwinger equation for transition amplitude T between coupled channels

in operating form reads

T = V + V GT, (4.3)

where G denotes the two body Green function. Substituting the whole right hand side into

the T operator in the right hand side successively we obtain an infinite sum of multiple

meson-baryon scattering. Corresponding integral equation is given in a form

Tij(ki, kj) = Vij(ki, kj) +

N
∑

n=1

µn

2π

∫

d3l
Vin(ki, l)Tnj(l, kj)

k2n − l2 + iε
, (4.4)

where the meson-baryon reduced mass is µi = Eiωi/(Ei + ωi), kn denotes the off-shell

meson-baryon relative momenta in intermediate channel n and N is the total number of

considered outgoing channels. In this work, we are interested in baryon resonances with

the strangeness S = −1 and charge Q = 0, that appears in elementary reaction of the K−p

interaction. The possible outgoing channels are: π0Λ, π0Σ0, π−Σ+, π+Σ−, K−p, K̄0n, ηΛ,

ηΣ0, K0Ξ0, K+Ξ−.

The solution of the integral equation (4.4) should incorporate a resummation of the

expanded scattering amplitude. Through the using potential in separable form

vij(k, k
′,
√
s) = (−µij/2π)Vij(k, k

′,
√
s) = gi(k

2)vij(
√
s)gj(k

′2) (4.5)

we get the elementary s-wave amplitudes in separable form

tij(k, k
′,
√
s) = (−µij/2π)Tij(k, k

′,
√
s) = gi(k

2)tij(
√
s)gj(k

′2) (4.6)
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we get the variables vij and tij independent of momenta, and thus they can be factored

out from momentum integration of equation (4.4). The symbol µij stands for
√
µiµj and

√
s = Ei + ωi is center mass energy.

This allows to reduce the integral equation to algebraic equation

tij = vij +
N
∑

n=1

vinGntnj (4.7)

whereas the momentum integration of Green function Gn can be performed separately

Gn = 2µn

∫

Ωi(pF )

d3l

(2π)3
gn(l)

2

k2n − l2 + iε
= −µn

2π

(αn + ikn)
2

2αn
g2(kn). (4.8)

Consequently, the solution of the algebraic Lippman-Schwinger equation (4.7) can be

given in matrix form

t = (v−1 −G)−1 (4.9)

and resonances are then searched as poles of T-matrix

det|t−1| = det|v−1 −G| (4.10)

in the complex energy plane, mainly on the second Riemann sheet. The z is equal to the

meson-baryon cms energy
√
s at the real axis.

4.2 K̄N data fits

Potential model described above includes few free parameters which have to be fitted to

available experimental data. Our calculations are done with three models called TW1 [10],

CS30 [6] and NLO30 [10], that differ mainly in fitted parameters and in the order of the

effective chiral Lagrangian.

The free parameters of the models are:

• Parameters of first and second order of the Lagrangian entering into the Cij coupling

matrix (D, F, d0, d1, d2, b0, bD, bF , dD, dF ).

• Five inverse range radii αKN , απΛ,απΣ, αηΛ/Σ, αKΞ.
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• The pseudoscalar meson-decay constant f .

• The ratio rKN/πΣ of a relative coupling of the Λ(1405) resonance to the KN and the

πΣ channels.

Some parameters of the Lagrangian were determined prior to performing the fits. The

D and F couplings were fixed in analysis of semileptonic decays, the bD and bF constants

were set to satisfy the approximate Gell–Mann formulas for the baryon mass splitting

MΞ −MN = −8bF (m
2
K −m2

π)

MΣ −MΛ =
16

3
bD(m

2
K −m2

π),
(4.11)

and finally the b0 coupling was fixed such that we get a value of the pion nucleon sigma

term σπN = 30 MeV.

σπN = −2m2
π(2b0 + bD + bF ). (4.12)

In the CS30 and NLO30 models, the leading (LO) plus next-to-leading (NLO) order

correction of the chiral Lagrangian are considered, thus the remaining free parameters of

these models are: the low energy constants d0, d1, d2, dD, dF from the second order chiral

Lagrangian, five inverse range radii αKN , απΛ,απΣ, αηΛ/Σ, αKΞ, the meson-baryon chiral

coupling f and the ratio rKN/πΣ. The numeral 30 in names of the CS30 and NLO30 models

signifies that it was used the pion nucleon sigma term σπN = 30 MeV.

In practice, one often considers only the leading order Weinberg-Tomozawa (WT) in-

teraction with energy dependence given by

Cij = −C(WT )
ij (2

√
s−Mi −Mj)/4, (4.13)

where CTW
ij denotes SU(3) Clebsh-Gordan coefficients. The details of the Cij energy de-

pendence as well as their exact content of matrix elements are listed in Refs. [6],[10]. The

simplest is the TW1 model because takes into account only the leading order WT inter-

action and consequently we do not need to consider free parameters d0, d1, d2, dD, dF in

this model.

Since the parameters αi characterize inverse ranges of meson-baryon interaction, their

values have to be constrained by a mass of the lightest exchanged particle, the pion.

Another restrictions prevent from unphysical resonances emerging as poles for α2
i + k2 = 0

in the off-shell form factors. In case of the TW1 model, only one inverse range parameter

common to all channels was used and one average meson decay constant was considered.
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On the other hand, the CS30 and NLO30 model used various inverse range parameters in

each channel αKN , απΛ,απΣ, αηΛ/Σ, αKΞ. Inspired by the idea of Ref.[63], physical values

of the meson decay constants fπ, fK and fη was adopted in the NLO30 model. For details

see [6],[10].

The value of rKN/πΣ parameter is adjusted in a way that the fits are performed using

selected experimental data first and then the position of Λ(1405) peak is fixed.

The available experimental data on low energy K̄N interaction includes:

• Kaonic hydrogen 1s level shift and width (performed by DEAR [64] or SIDDHARTA

[65] experiment).

• Threshold branching ratios γ, Rc, Rn [66]

• K−p cross sections (same as those compiled in Ref. [22]).

Important constraints on the theoretical models are provided by the measurement of

the K-series x rays of kaonic hydrogen. Despite the fact that some unreliable old ex-

periments generated the attractive energy shift, new improved experiments confirmed the

repulsive interaction which is in agreement with other low energy K̄N scattering data.

The first experiment that reported repulsive energy shift was the KEK measurement [67],

[68]. However, the statistics of the KEK experiment was insufficient and nowadays more

precise data on the kaonic hydrogen are available.

The DEAR experiment [64] obtained the energy of x rays emitted in the transitions to

the ground state of kaonic hydrogen with the uncertainty about 2 times smaller than that

of the KEK values. The resulting 1s-level shift ǫ1s and width Γ1s of kaonic hydrogen were

determined to be

ǫ1s = −193± 37(stat)± 6(syst) eV

Γ1s = 249± 111(stat)± 30(syst) eV.
(4.14)

Recently, the SIDDHARTA colaboration introduced the most precise values of the

strong-interaction energy-level shift and width of the 1s atomic state [65]. The signal-to-

background ratio was improved by a factor more than 10 compared to the DEAR exper-

iment. The resulting ground-state 1s-energy level shift and the strong interaction width
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are

ǫ1s = −283± 36(stat)± 6(syst) eV

Γ1s = 541± 89(stat)± 22(syst) eV.
(4.15)

The measurement of branching ratios (Ref. [66]) is old but very precise and gives good

constraints on model parameters

γ =
σ(K−p→ π+Σ−)

σ(K−p→ π−Σ+)
= 2.36± 0.04

Rc =
σ(K−p→ π+Σ−, π−Σ+)

σ(K−p→ all inelastic channel)
= 0.664± 0.011

Rn =
σ(K−p→ π0Λ)

σ(K−p→ all neutral states)
= 0.189± 0.015.

(4.16)

For fits of the K−p cross section were considered the data points at the kaon laboratory

momenta pLAB = 110 MeV (for the K−p, K̄0n, π+Σ−, π−Σ+ final states) and at pLAB =

200 MeV (for the same four channels plus π0Λ and π0Σ0) Obtained fits can be found in

[6].

4.2.1 Variants of chirally motivated models

Before we introduce our predictions for the dynamically generated S = −1 resonances, we

would like to give an overview of other chirally motivated models that are relevant for a

comparison with our predictions. Contrary to our approach, all models presented below are

based on manifestly Lorentz invariant formulation of chiral Lagrangian that differs from

heavy baryon formalism described in section 3.1.2. Our approach is based on solution of

Lippman–Schwinger equation with effective potential. The off-shell form factors added to

the separable potential are parametrized by means of the inverse range radii, which play

a role of natural cut-offs on the range of interactions. However, there is more variants of

treating the scattering amplitude by ensuring its unitarity.

Other approaches are based on quantum field techniques such as the N/D scheme,

unitarity relation for the inverse of the T-matrix and on the dimensional regularization

of the intermediate state wave function in which momenta are considered only on-shell.

The have advantage of using a completely relativistic dynamics. Nevertheless in those

approached, an employment of additional subtraction constants in a renormalization pro-

cedure is required. Moreover, the quantum field approach is not necessary at low and
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medium energies.

In Table 4.1 we compare our TW1, NLO30 and CS30 models with other selected theoret-

ical models BNW [21], JOORM [7] and IHW [8] in terms of their ability to reproduce K̄N .

For future reference, we also show the position of poles z1 and z2 assigned to the Λ(1405)

resonance The first two lines include models incorporating only Weinberg–Tomozawa inter-

action and the remaining two lines present models which implement LO plus NLO terms.

Comparison with experimental data can be obtained from the last two lines. It’s obvious

that satisfactory reproduction of the threshold data are provided already by the models

using only on the TW interaction.

All models BNW [21], JOORM [7] and IHW [8] we compare with, are based on the on-

shell methods mentioned above. The model use kaonic hydrogen data that were available

at the time of their publication. The KEK experimental data [67], [68] were used in the

JOORM [7] but the branching ratios Rc, Rn and γ are not reproduced well. The BNW

model incorporates the data from kaonic measurement at DEAR experiment [64] and the

IHW model uses most recent data from SIDDHARTA measurement [65].

model ∆E1s Γ1s γ Rc Rn z1 z2

TW1 323 659 2.36 0.636 0.183 1371− 54i 1433− 25i

JOORM [7] 275 586 2.30 0.618 0.257 1389− 64i 1427− 17i

NLO30 310 607 2.37 0.660 0.191 1355− 86i 1418− 44i

CS30 260 692 2.37 0.655 0.188 1398− 51i 1441− 76i

BNW [21] 236 580 2.35 0.653 0.194 1408− 37i 1449− 106i

IHW [8], [9] 306 591 2.37 0.66 0.19 1381− 81i 1424− 26i

exp. 283 541 2.36 0.664 0.189 – –

error(±) 42 111 0.04 0.011 0.015 – –

Table 4.1: K−p threshold data calculated in several LO and LO+NLO coupled-channel
chiral models. The columns show the kaonic hydrogen 1s level shift ∆E1s and width Γ1s

(in eV), and the K−p threshold branching ratios γ, Rc , Rn . The last two columns list
the I = 0 S-matrix pole positions z1 , z2 (in MeV) related to the Λ(1405) resonance. The
last two lines show the experimental data and their errors [10].
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Chapter 5

Pole analysis

The technique for a construction of the transition amplitude in coupled channel approach

was formulated in previous chapter. Here we show analysis of the scattering amplitude

as an analytic function of complex variables and how the singularities of the amplitude

on specific Riemann sheet are related with resonances and bound states. We present

the pole content of our chiral models TW1 [10], NLO30 [10] and CS30 [6] in a range of

energies 1300-1800 MeV. Afterwards, we match our results with experimentally measured

resonances reported in PDG [11] and with predictions of other chirally motivated models

which were discussed in section 4.2.1. Furthermore, we are trying to learn more about

the origin of the poles. This is achieved by following the pole movements on the complex

energy manifold into the zero coupling limit and to the SU(3) symmetry limit. We recall

that our work is focused on s-wave strange S = −1 resonance with the I = 0 and I = 1

isospins.

5.1 Poles on Riemann sheets

In following, we clarify how the location of poles in the complex energy plane on various

Riemann sheets gives an information about the related physics (for details see Ref. [69]).

We give a brief introduction into the classification of such singularities and Riemann sheets

on which they residue.

Since we deal with multichannel problem containing 10 meson-baryon decay channels

(π0Λ π+Σ−, π0Σ0, π−Σ+, K−p, K̄0n, ηΛ, ηΣ0, K0Ξ0 and K+Ξ−) arising from K−p inter-

action, we examine the transition matrix which is, by analytic continuation, a function of

momentum in these channels.
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To explain basic ideas of the collision theory, we restrict ourselves for the moment to a

one channel problem. In this case, we distinguish physical Riemann sheet which is defined

by the positive value of the imaginary part of the c.m. meson baryon momenta Im q > 0

and unphysical Riemann sheet for which imaginary part of the c.m. momenta is negative

Im q < 0. For our purposes, its more convenient to treat the the scattering amplitude in

terms of energy rather then momentum. Since the momentum is a double valued function

of energy, the mapping from the complex momentum plane to the energy momentum plane

is two-to-one, as it is visualized in Figure 5.2. The upper half momentum plane maps onto

the physical energy sheet (phase range 0 ≤ φE ≤ 2π) with a cut along the positive real

axis from the branching point at E = 0. The lower half momentum plane corresponds to

a continuation through the cut to phase range a 2π ≤ φE ≤ 4π.

Let’s have a look at the type of singularities that can be found on specific Riemann

sheets in a more detail. The physical sheet, sketched in the picture 5.1, accommodates the

poles confined to the imaginary axis on complex momentum plane, respectively to negative

real axis below the E = 0 on complex energy plane. These poles represent bound states.
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Figure 5.1: Singularity classification on the physical Riemann sheet in the one channel
case. Correspondence of the momentum complex plane a) to energy plane with b). The
line on the real axis denotes the branch cut from E = 0 to infinity. Full circles visualize
bound states.

A possible situation on the unphysical sheet is schematically visualized in the Figure 5.2.

On the complex energy plane we find poles below the real axis that are related with

resonances. To estimate the energy of the resonance ER in the c.m. meson-baryon system
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Figure 5.2: Singularity classification on the unphysical Riemann sheet in the one channel
case. Correspondence of the momentum complex plane c) to energy plane with d). The
line on the real axis denotes the cut from E = 0 to infinity. Open circles on imaginary
axis in momentum plane and on real axis in energy plane denote virtual states. Full circles
visualize resonant poles at energy and open circles denotes the conjugate poles.

and resonant width Γ we can use of an approximate relation for the pole position z in the

complex energy plane

z̄ ≈ ER − i
ΓR

2
, (5.1)

which is valid chiefly near by the real axis. The authors of Ref. [70] showed, that each

resonant pole is accompanied by its conjugate pole situated on the upper half energy plane

symmetrically to the real axis at complex conjugate energy E∗
R. The poles on real axis

referred to as virtual states (sometimes also called quasi–bound states) are not proper

bound states. They appear if scattering potential is slightly less attractive to create a

bound state, see the Ref. [69] for more details.

If we consider multichannel case, we get a sequence of thresholds where at each threshold

a new channel opens up. The Riemann surface is now more complicated and composed

of several Riemann sheets which are connected together through additional branch cuts

associated with the energy threshold. The notation of the Riemann sheets is following.

Each Riemann sheet is marked by a string of signs, where the signs are those of the

imaginary parts of the c.m. momenta in the meson–baryon channels ordered according

to their threshold energies. Among the Riemann sheets, there exist one unique Riemann

sheet, the physical sheet in which all channel momenta are positive. For our 10 channels
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sheet is marked [+ + + + + + + + ++]. Then there is N unphysical sheets that can be

reached directly from the physical sheet. Total number of sheets in ten channel problem

is 210.

To explain linking of Riemann sheets, let’s us take an example the unphysical [−−−−
++++++] sheet, which is is characterized by negative momenta in the first π0Λ, π0Σ0,

π−Σ+, π+Σ− channels and the imaginary part of momenta in remaining K−p, K̄0n, ηΛ,

ηΣ0, K0Ξ0, K+Ξ− channels are positive. This sheet is connected to the physical sheet by

crossing the real axis between the thresholds of the π+Σ− and K−p channels.

In multichannel case, a pole may occur on the real axis above some energy threshold.

However, the pole must always lie below the threshold of channel in which is observed.

If we observe such pole on the real axis on the Riemann sheet which is physical in the

appropriate channel, then the pole corresponds to a bound state and if the pole is observed

on the Riemann sheet which is unphysical in the appropriate channel, then the pole is is

referred to as a quasi-bound state.

On more distant Riemann sheets, there are shadow poles related to the resonant pole

[71]. Once the pole is on Riemann sheet that is not directly connected with the physical

region, the length of trajectory path of pole to the physical sheet is important. The physical

sheet represents the physical reality. It can be said that the nearer the poles are to the

physical Riemann sheet, the closer they are to a physical reality and have a larger effect

on physical observables. The definition of the shadow poles is not so straightforward. As

the parameters of the model are varied, the poles move on the complex energy manifold.

Eventually, the shadow and the resonant pole may get to the position where one cannot

distinguish between them or even the shadow pole may lie at the position closer to the

physical sheet than the resonant poles. In this case, the shadow pole takes over the role of

a resonant pole.

To determine the isospin of a resonance we incorporate an isoscalar or isovector base in

which we consider only πΣ, K̄N , ηΛ, KΞ channels or πΛ, πΣ, K̄N , ηΣ and KΞ channels,

respectively. In isoscalar base, one finds only isoskalar poles, isovector poles disappears

and vice versa. The principle lies in coupling the Clebsh–Gordan coefficients together so

that we obtain pure isoscalar (isovector) states. These isoskalar (isovector) coefficients

for Weinberg-Tomozawa model are listed in paper [23] together with the NLO coefficients

for the 10 channel base. The general transformation relations between the physical and

isoscalar (isosvector) Clebsh–Gorgan coefficients was determined by a decomposition of I =

0 (I = 1) transition amplitudes into pertinent physical channels. These relations, which
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are referred in Appendix, can be used for a calculation of the NLO isoscalar (isovector)

coefficients.

5.2 Identification of poles with resonances

In this section, we explore the pole content of our chiral models TW1, NLO30 and CS30 and

classify the poles according to the mass, width and isospin. The overview of all isoscalar

and isovector pole positions and the Riemann sheets on which they are situated, is given

in Tables 5.1 and 5.2, respectively. Their correspondence to the experimentally observed

resonances is suggested there too. Our results are commented in more detail in the text

below.

5.2.1 Λ(1405)

We start our discussion with the two z1 and z2 isoscalar poles related to the Λ(1405)

resonance. In chirally motivated models, the Λ(1405) spectrum is assumed to be a super-

position of these two dynamically generated states, found in πΣ and K̄N amplitudes on

the unphysical [−+++] Riemann sheet which is achieved by crossing the real axis between

the πΣ and K̄N energy thresholds. Typically, the lower (in terms of Re z) pole z1 has quite

large imaginary part which indicates a large resonant width. This fact results in a rise of

the background rather than observation of significant experimental peak. The position of

the higher pole z2 is more likely associated with the observed πΣ mass spectrum in the

K̄N initiated reactions.

The situation for poles of the Λ(1405) resonance outlined above was observed for our

recent TW1 and NLO30 models. On the contrary, the CS30 model generates the z1 pole

closer to the real axis than the z2 pole, as can be seen in Figure 5.3. In this figure, we

present in comparison the positions of the isoscalar poles as provided by various models.

The position of the pole z2 at higher energies is more or less stable in all Weinberg-

Tomozawa (WT) models and does not depend much on a choice of the parameter set. Our

recent TW1 model generates the pole at the position z2 = 1433 − i25 MeV. This result

would correspond preferably to the narrow peak of the Λ(1405) resonance with the width

about 50 MeV referred in PDG [11]. We also note that all WT models [7], [8], [9] generate

the z2 pole at very similar positions.

On the other hand the z1 pole position is quite model dependent even in the LO order

of calculation. However, since it imaginary part is large it should not substantially affect
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Figure 5.3: The positions of the isoscalar poles assigned to the Λ(1405) and Λ(1670)
resonances in the TW1, NLO30 and CS30 models are shown in comparison with two other
theoretical models JOORM [7] and IHW [8], [9]. Each model generates two poles assigned
to the Λ(1405) resonance.

the physical observables. The TW1 model generates the z1 pole closest to the real axis of

all discussed models at the position approximately 1371− 54i MeV.

Surprisingly, the NLO corrections in the inter-channel couplings included in our NLO30

model shift both the z1 and z2 poles downwards to positions at energies z1 = 1355−86iMeV

and z2 = 1418−44iMeV. This brings the z2 pole in better agreement with the mass average

1405.1± 1.3 MeV reported in [11].

We do not show explicitly the results of the BNW model (Ref. [21]) in Figure 5.3

since there are results for more variants of the model depending on specific fit procedures.

Instead, we try to summarize briefly their results and confront them with our predictions.

Their Weinberg–Tomozawa model creates the poles at positions at z1 ≈ 1391 − 55i MeV

and z2 ≈ 1431− 17i MeV which agree with our TW1 model pretty well. It can be stated

that the position of their z1 pole is strongly model dependent and shifts far from the real

axis once the NLO corrections are implemented. By contrast, the z2 pole is more stable

and its position do vary in some reasonable range. To sum it up, we are in nice agreement

with the BNW model regarding the LO order of calculations. The changes of pole positions

when including the NLO corrections show similar manner as in our case, though the shift
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of the z2 pole away from the real axis is not so large in the BNW model.

The Λ(1405) spectrum produced by the NLO30 model is shown in the Figure 5.4 in

comparison with mass distributions measured by various experiments [3], [4] and [5]. Theo-

retical prediction of the NLO30 model is pictured by solid curve which is obtained by setting

the relative couplings rKN/πΣ of the K̄N and πΣ channels to get a peak at 1395 MeV. The

two dashed lines introduce borders on the position of the peak (the other low energy con-

stants stay fixed) since they represent the situation when the Λ(1405) couples exclusively

either to the πΣ channel or to the K̄N channel.

Figure 5.4: The πΣ mass distribution. Results of NLO30 model are compared with the
experimental data taken from Refs. [3], [4] and [5] with the experimental bars at each
energy shown in this order. See the text for explanation on the theoretical curves obtained
with the NLO30 model [10].

5.2.2 Λ(1670)

The isoscalar z3 pole was found on the [−−−+] Riemann sheet for the LO model TW1 and

on the [−−−−] Riemann sheet in NLO models CS30 and NLO30. As we see in Figure 5.3,

the z3 pole was is located at rather varied positions for all considered models. We identify

it with the Λ(1670) resonance. All our models (TW1, NLO30 and CS30) generate the

pole at energies about 50-100 MeV higher than the PDG value of the Λ(1670) mass. The

TW1 model gives the z3 pole at position 1797 − 43i MeV and NLO corrections shift the

pole slightly to lower energies at the position 1774− 35i MeV in case of the NLO30 model

and to the position at 1733 − 9i MeV for the CS30 model. Nevertheless, we would like
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to emphasize that our models are fitted to the K̄N threshold data, and thus we do not

expect the models to work so well at higher energies.

The resonant pole related to the Λ(1670) resonance was predicted by the JOORMmodel

too. Evidently, we observe the same pole as they do. Though their model produces the

pole at a position that agrees much better with the experimental mass of the the Λ(1670)

resonance.

5.2.3 Isovector states

In this part we briefly discuss the generated isovector poles and their relation to physical

observables. The assignment of the isovector poles to experimentally measured resonances

presented in Table 5.2 is mostly tentative due to poor experimental data in this sector and

we leave the interpretation of the I = 1 poles more or less open to further discussion.

Looking at the Table 5.2, we find three isovector poles z4, z5, z6 on the Riemann sheets

[−−+++], [++−++] and [++++−], respectively. For now, we leave out the z4 and

z5 poles from our discussion, since they are located too far from the physical sheet to have

any relevance for physical reality. Only the z6 pole lies in such position on the complex

energy manifold that it could be eventually a source of some resonance. Although the pole

is located on a distant unphysical sheet, its position close to the KΞ threshold makes the

trajectory path to the physical sheet not so long. According to the Re z6, the possible

candidate for dynamically generated resonance could be the Σ(1750) state. In addition,

the experimentally measured width is spanned from 60 MeV to 160 MeV which conforms

well to the distance of the z6 pole from the physical sheet. Coincidentally, the Σ(1750)

resonance is experimentally well established and because our predictions sufficiently agree

on mass and width of the Σ(1750) resonance, we dare to relate the z6 pole with this

resonance.

It is difficult to relate the z5 and z6 poles to any observed resonance. The pole z5 leads

to a ”cusp structure” in energy dependence of the K−n amplitude, see [23].

5.3 Movement of poles on Riemann sheets

As the parameters of the model are varied the pole moves in the complex energy plane.

While a resonant pole moves on the negative half of the energy plane, its conjugate pole

moves symmetrically above the real axis. Upon the movement, the poles can even get

from the Riemann sheet to another by crossing the real axis through some of the branch
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cuts associated with energy thresholds. In this case, the original resonant pole continues its

movement on upper half energy plane of the new Riemann sheet and the original conjugate

pole moves symmetrically on the lower half plane.

There is a rule that defines how Riemann sheets are linked together. A pole crossing

the real axis above the k-th threshold (k ≤ N) moves onto the Riemann sheet labeled by

the first k signs opposite to those previous Riemann sheet and the remaining signs (for

i > k). If pole crosses the cut twice it is the same as not crossing it. The simplified version

of pole movement considering three channel thresholds is visualized in the Figure 5.5.

-

[+ + +]

�
? R

q

[+ + +] [−++] [−−+] [−−−]

�

[+ +−]

6
Eth1

6
Eth2

6
Eth3

Figure 5.5: An example of pole movements from one Riemann sheet to another one for
a three channel case. The symbol Eth denotes threshold of a specific channel associated
with the pertinent branch cut.

A special situation occurs when a pole and its conjugate pole meet under all energy

thresholds. Then both poles remain on the original Riemann sheet one of them moving

along the real axis towards larger energies while the other pole moves towards lower en-

ergies. The poles move in this way until encounter any other singularity. Then there are

two possibilities, what can happen. If any of the poles meet some another pole on the real

axis, then they create a conjugate pair. One of the poles moves up to the upper half plane

and the other moves down to the lower half plane. The second possibility is that the pole

while moving along the real axis up meets the first energy threshold and than it is reflected

back to move on the real axis in the opposite direction (on the Riemann sheet with the

first sign opposite). At any case the only way to change the Riemann sheet is the crossing

of the real axis a channel threshold or by catching a threshold while moving up along the

real axis.
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5.3.1 Zero coupling limit

In this section we investigate what happens with poles if the nondiagonal terms of potential

matrix are switched off. In other words, the zero coupling limit means that we do not

consider any coupling to different decay channels and keep only diagonal couplings in

potential matrix intact. This approach was used for the first time in Ref. [71]. Afterwards

it was applied on K̄N interaction to identify the origin of the z1 and z2 poles related to

the Λ(1405) resonance in models with energy dependent potential matrix [72]. In order

to connect correctly the physical position of the poles with those in the zero coupling

limit, we gradually reduce the scaling factor x which multiplies the interchannel couplings

x · Cij for i 6= j where 0 ≤ x ≤ 1 and follow the pole trajectories in the complex energy

plane. The scaling parameter x has a value 1 for physical coupling and value 0 in the zero

coupling limit, in which only the diagonal Clebsh–Gordan coefficients (Cij for i = j) may

stay nonzero.

The positions of poles in the zero coupling limit is determined by a condition

∏

n

[1/vnn −Gn] = 0, (5.2)

where Gn stands for a Green function (4.8). Substituting the separable potential in the

previous equation we get
4πf 2

π

Cnn

z

Mn
+Gn(z) = 0. (5.3)

Since the isospin symmetry is broken for x < 1 in the physical base of channels and thus

it is not possible to define a proper isospin there, the further analysis of pole movements is

performed either in the isoskalar or in the isovector base. Moreover, the pole trajectories

on the complex energy manifold are much easier to follow if one considers only four or five

energy thresholds, respectively.

To manifest results of our analysis we chose the recent NLO30 model as a representative

example. In Figure 2 we visualize trajectories of the isoscalar and isovector poles as we

gradually reduce the parameter x from its physical value to the zero coupling limit. In the

left panel, the trajectories of isovector poles assigned to Λ(1405) and Λ(1670) resonances

are shown. As we already know, the Λ(1405) is represented by two poles, z1 and z2. For

physical couplings we found both poles on the [− + ++] Riemann sheet when searching

for them in the amplitudes of the πΣ and K̄N channels since the z1 and z2 poles have

considerable couplings to these channels. The results of the TW1 model and the CS30
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Figure 5.6: Pole movements upon scaling the nondiagonal interchannel couplings in the
NLO30 model. Left panel: isoscalar states (I = 0), right panel: isovector states (I = 1).
The large solid and empty circles show the pole positions in the physical and zero coupling
limits, respectively. The black triangles mark the K̄N and KΞ thresholds in the isoscalar
case and the K̄N and ηΣ thresholds in the isovector case. Energies of the thresholds are
EK̄N = 1434.6 MeV, EηΣ = 1740.6 MeV and EKΞ = 1814.0 MeV. The Riemann sheets
the poles move on are specified in the legend.

model are given in Appendix.

As we gradually reduce the scaling factor x, the z1 pole vanishes in the K̄N amplitude

and and conversely the z2 disappears in the πΣ amplitude. In this way, we are able to assign

the pole to pertinent channel. The z1 pole terminates its movement at a position with a

large imaginary part of the complex energy in the πΣ channel and thus it is interpreted

as resonance in the zero coupling limit. On the other hand, by reducing the nondiagonal

potential terms the z2 pole develops to the real axis and finishes its movement for x = 0

slightly under the K̄N threshold, at energy EK̄N ≈ 1434.59 MeV. Thus the z2 pole is

referred to be K̄N bound state in the zero coupling limit. Since the pole stays on the

[−+++] Riemann sheet, which is unphysical in the πΣ channel, but physical in the K̄N
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channel, its final position in the zero coupling limit can be identified with a K̄N bound

state. This conclusion is in agreement with other theoretical studies.

A similar picture of the trajectory path was observed in all our models, although the

final position in the zero coupling limit is sometimes very tightly below the K̄N threshold.

See the Table 5.3 for more details.

The situation for the z3 pole assigned to the Λ(1670) resonance varies with the used

models. In the TW1 model, the z3 pole lies on the [−−−+] Riemann sheet and for x = 0

it terminates on the real axis at energy E ≈ 1792.6 MeV below the KΞ threshold. The

pole is determined to be KΞ bound state since the Riemann sheet [−−−+] is physical in

the KΞ channel. A different situation is observed in the NLO models NLO30 and CS30.

There, the z3 pole ends its movement under the KΞ threshold too, but on the [− − −−]

Riemann sheet, which is unphysical in the KΞ channel. Thus the pole terminates as KΞ

quasi-bound state in the NLO30 and CS30 model.

The trajectory path of our three I = 1 poles is shown in the right panel of the Figure 2.

In the zero coupling limit, the poles z4, z5 and z6 couple to channels πΣ, K̄N and KΞ,

respectively. The situation for the z4 pole, which is observed in the [−−+++] Riemann

sheet, is very similar to the one observed for the isoscalar z1 pole. When the parameter

x is reduced, the z4 pole moves away from the real axis to the point 1301.9− 172.8i MeV

and thus it is a resonance in the zero coupling limit. In the zero coupling limit, the z5 pole

gets on the real axis under the K̄N threshold on the Riemann sheet [+ + − + +]. The

third pole z6 develops under the ηΣ threshold on the unphysical Riemann sheet.

Figure 5.7 demonstrates the sensitivity of our results to the considered models. The

poles related to the Λ(1405) resonance were chosen for the comparison. We see that the

final position of the z2 pole is not model dependent and the pole terminates always slightly

under the K̄N threshold although its trajectory does vary to some extend for x > 0. On

the other hand, the position of the z1 pole in the zero coupling limit varies significantly on

the model.

5.3.2 SU(3) symmetry breaking

Inspired by the Ref. [7], we investigate pole origins in the limit of the SU(3) symmetry

restoration. This limit is simulated by setting all the masses of the mesons and of the

baryons to their respective values assumed for the SU(3) symmetry limit. We adopted the

same values as those established in Ref. [7],m0 = 370 MeV for mesons andM0 = 1115 MeV

for baryons. Since the effective chiral Lagrangian represents an interaction of meson octet
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Figure 5.7: The trajectories of the I = 0 poles related to the Λ(1405) resonance upon
scaling the nondiagonal interchannel couplings for the TW1, NLO30 and CS30 models.
The large solid and empty circles show the pole positions in the physical and zero coupling
limits, respectively. The black triangles mark the K̄N threshold. The poles move on the
[−+++] Riemann sheet.

with baryon octet, the SU(3) decomposition into irreducible representations reads

8⊗ 8 = 1⊕ 8s ⊕ 8a ⊕ 10⊕ 1̄0⊕ 27, (5.4)

where only interactions in the singlet and two octets are attractive, so we do not expect

any bound states in the 10, 1̄0 and 27 representations. On top of that the symetric

and antisymetric octets are assumed to be degenerate. Therefore in the limit of SU(3)

symmetry restoration, only two poles related to the to singlet and octet state should be

found.

The pole movements are followed as the SU(3) symmetry is gradually restored by

scaling the physical masses using the following relations

Mi(x) =M0 + xSU3(Mi −M0)

m2
i (x) = m2

0 + xSU3(m
2
i −m2

0),
(5.5)
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Figure 5.8: Trajectories of the poles in the scattering amplitudes obtained by varying
gradually the SU(3) breaking parameter xSU3. At the SU(3) symmetric limit (xSU3 = 0),
only two poles appear, one is for the singlet and another one for the octet. The symbols
correspond to the step size δx = 0.1.[7]

whereMi and mi denote the physical baryon and meson masses. We vary the scaling factor

xSU3 from value xSU3 = 1, which represents the physical limit of a broken SU(3) symmetry

to xSU3 = 0 standing for SU(3) limit. It is important to stress that not only poles but

also the energy thresholds of considered channels move as we scale the masses from their

physical values into the SU(3) limit and finally there is only one threshold at 1520 MeV.

Let’s firstly have a look at results of JOORM model visualized in Figure 5.8, where

trajectories of the I = 0 and I = 1 poles evolve from the SU(3) limit to their physical

positions. We should remark that, in picture 5.8, poles from various Riemann sheets are

visualized together and moreover the trajectories of conjugate poles are depicted instead

of resonant poles. However, this makes no difference since the movement of resonant an

its conjugate poles is symmetric. They evidently observed that the pole of the Λ(1405)

resonance in lower energies comes from the point on the real axis around 1450 MeV(xSU3 <

0.6) which is assigned to the singlet state. The common origin of poles around 1510 MeV is

assigned to the octet state and by going to the physical masses this pole splits apart in four
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Figure 5.9: Trajectories of isoscalar (continuous lines) and isovector (dashed lines) poles
obtained by varying the SU(3) scaling parameter from xSU3 = 1 to xSU3 = 0. Full circles
(I = 0) and triangles (I = 1) correspond to physical values of meson and baryon masses,
the full squares represent the positions of the SU(3) singlet and octet states in the SU(3)
restoration limit.

branches. In physical limit, the two isoscalar states are related with the Λ(1670) resonance

and the higher pole of the Λ(1405). Then two isoscalar poles are observed but one of these

poles were not followed up to its physical limit since it disappeared for xSU3 ≈ 0.6.

Looking at the Figure 5.9, we find that compared to the work [7], we observe one

additional I = 1 pole and none of our isovector poles get lost on its way to the physical

limit. On the contrary, the scenario of trajectory path of isoscalar poles is similar to the

one in reported in Ref. [7].

At this point, we try to explain the disappearance of the I = 1 pole in Figure 5.9

by making our own analysis with our TW1 model and comparing our results with those

of authors of Ref. [7]. The TW1 model provides the most appropriate comparison since

it is also based on the leading Weinberg-Tomozawa term of the chiral Lagrangian. The

pole trajectories to the SU(3) symmetric limit in our model are showed in Figure 5.9. We

successfully reproduce the singlet and octet states in the SU(3) symmetry restoration with
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Figure 5.10: Drawing a of situation related to the disappearence of the pole for xSU3 ≈ 0.6
in Figure 5.9. The pole trajectory from the SU(3) symmetric limit (full circle on real axis)
to the physical state (full circle). The dashed line denotes the K̄N threshold. The open
circles denote positions of poles for the value of xSU3 slightly smaller than 0.6 (xSU3 < 0.6)
and for xSU3 slightly larger than 0.6 (xSU3 > 0.6). and simultaneously the border of
Riemann sheets, how it was defined by authors [7]. The symbol [− − + + +] denotes the
Riemann sheet on which the pole moves in reality.

our TW1 model. The singlet pole is observed at 1455 MeV and and the octet pole at

a position approximately 1505 MeV. The fact that the poles do not finish exactly at the

same point may come from the phase transition which emerges in the moment of the SU(3)

symmetry restoration. To be more precise, the phase transition occurs when we change the

value of xSU3 from a very small number to zero, and thus the number of channels suddenly

changes from N channels to 1 channel.

The trajectories of isoscalar poles are quite analogous to those in Ref. [7], although the

exact pole positions are different to some extend. Let’s have a look at the I = 1 poles.

We believe that the disappearance of one isovector pole in Figure 5.9, can be attributed to

the method they treated the Riemann sheets. We offer possible explanation of this issue

in Figure 5.10 where the pole trajectory with the labeled Riemann sheets is pictured in a

detail.

Looking at the Figure 5.10, we see that the pole develops from its origin in the octet

state and moves away from the real axis on the Riemann sheet [−−++ +]. Considering

the fact that the pole disappeared for xSU3 ≈ 0.6 where the real part of the complex energy
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is equal to shifted threshold energy in the KN channel we dare to say that the authors of

Ref. [7] lost the pole due to switching on a wrong Riemann sheet at the threshold energy.

They probably switch on the Riemann sheet [−++++] at the energy of the K̄N threshold

(the border is marked by the dashed line in the Figure 5.10). The problem is that the only

way to change the Riemann sheet is by crossing over the appropriate branch cut associated

with threshold energies on the real axis. It is evident that the trajectory path do not cross

any branch cuts on its way to physical state, and thus there is no reason to change the

Riemann sheet at the moment. The whole trajectory of the pole should be observed on

same Riemann sheet [−−+++].
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PDG Model

Resonance Γ[MeV] Decay channels
TW1 NLO30 CS30

Position RS Position RS Position RS

Λ(1405) **** 50 πΣ 1371 − 54i
1433− 25i

[−+++]
[−+++]

1355 − 86i
1418− 44i

[−+++]
[−+++]

1398 − 51i
1441− 76i

[−+++]
[−+++]

Λ(1670) **** 35 πΣ,K̄N ,ηλ 1797− 43i [−−−+] 1774− 35i [−−−−] 1733− 9i [−−−−]
Λ(1800) *** 300 πΣ,K̄N

Table 5.1: Comparison of s-wave resonances with the S = −1 strangeness and the I = 0 isospin measured by experiment
[11] and predictions on pole positions of our TW1, NLO30 and CS30 models. The real part of complex energy corresponds
to the energy of the resonance, the imaginary part of the energy is approximately a half of resonant width. RS denotes
the Riemann sheet - specified by the signs in the squared brackets.

PDG Model

Resonance Γ[MeV] Decay channels
TW1 NLO30 CS30

Position RS Position RS Position RS

Λ(1480) * 55 K̄N ,πΣ,πΛ 1408−200i [−−+++] 1318−148i [−−+++] 1336−220i [−−+++]
Λ(1560) ** 79 πΣ, πΛ 1384− 53i [+ +−++] 1410− 38i [+ +−++] 1416− 24i [+ +−++]
Σ(1620) ** 60 K̄N ,πΣ, πΛ
Σ(1750) *** 90 K̄N ,πΣ,πΛ 1803− 31i [+ + ++−] 1751− 12i [+ + ++−] 1799− 2i [+ + ++−]

Table 5.2: Comparison of s-wave resonances with the S = −1 strangeness and the I = 1 isospin measured by experiment
[11] and predictions on pole positions of our TW1, NLO30 and CS30 models. The real part of complex energy corresponds
to the energy of the resonance, the imaginary part of the energy is approximately a half of the resonant width. RS denotes
the Riemann sheet - specified by the signs in the squared brackets.
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TW1 NLO30 CS30

Pole Position RS Channel Position RS Channel Position RS Channel

z1 1366.1−90.7i [−+++] πΣ 1316.1− 80.9 [−+++] πΣ 1347.6−99.0i [−+++] πΣ
z2 1433.8− 0.0i [−+++] K̄N 1434.3− 0.0i [−+++] K̄N 1434.58−0.0i [−+++] K̄N
z3 1809.0− 0.0i [−−−+] KΞ 1792.6− 0.0i [−−−−] KΞ 1734.4− 0.0i [−−−−] KΞ

Table 5.3: Final positions of the I = 0 poles and their assignment to pertinent channels in the zero coupling limit are
compared for the TW1, NLO30 and CS30 models, RS denotes the Riemann sheet - specified by the signs in the squared
brackets. The energies of the thresholds are EK̄N = 1434.59 MeV and EKΞ = 1814.0 MeV.

TW1 NLO30 CS30

Pole Position RS Channel Position RS Channel Position RS Channel

z4 1386.8−219.9i [−−+++] πΣ 1301.9−172.8i [−−+++] πΣ 1311.2−224.8i [−−+++] πΣ
z5 1157.7− 17.9i [+ +−++] K̄N 1342.8− 0.0i [+ +−++] K̄N 1376.0− 0.0i [+ +−++] K̄N
z6 1657.7− 0.0i [+ + + +−] ηΛ 1711.0− 0.0i [+ + + +−] KΞ 1760.5− 0.0i [+ + + +−] KΞ

Table 5.4: Final positions of the I = 1 poles and their assignment to pertinent channels in the zero coupling limit are
compared for the TW1, NLO30 and CS30 models, RS denotes the Riemann sheet - specified by the signs in the squared
brackets. The energies of the thresholds are EK̄N = 1434.59 MeV, EηΣ = 1740.6 MeV.
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Chapter 6

Conclusion

In this thesis, we studied dynamically generated meson–baryon resonances in framework of

chirally motivated a coupled channel approach. Our technique for analysis of the scatter-

ing amplitude is based on modern collision theory which describes the resonant states as

poles on specific unphysical Riemann sheets of the complex energy manifold. We presented

predictions for s-wave resonances with the S = −1 strangeness and the I = 0, 1 isospins in

range of energies 1300-1800 MeV. We also discussed the current status of the experimental

and theoretical understanding of relevant resonances including not only other chiral ap-

proaches but also alternative baryon models. Hereby, we presented a detailed view on this

topic.

Results of chiral model based on the leading order Weinberg–Tomozawa interaction

and on two models that include terms up to second order of effective chiral Lagrangian

in external meson momenta were discussed in comparison with experimentally measured

resonances listed in Particle Data Group (PDG) as well as predicted by other chirally mo-

tivated models. We achieved a satisfactory results already with the LO chiral model and

incorporated NLO corrections were in agreement with previous results.

Summing our results up were achieved the following:

• Excellent predictions were obtained for the Λ(1405) resonance observed in the πΣ

mass spectrum by all used models. We confirmed that there are two poles in the

complex energy plane whose positions can be related to the properties of the Λ(1405)

resonance established by the PDG. As an example for all models, the poles were

generated by the NLO30 model at positions z1 ≈ 1355 − 86i MeV and z2 ≈ 1418 −
44i MeV. A good reproduction of the πΣ mass spectrum was achieved.
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• Less convincing results were achieved for the Λ(1670) resonance which was found

about 50-100 MeV higher (depending on used model) than the experimentally es-

tablished mass of the resonance. For instance, the NLO30 model creates the pole

at position z3 ≈ 1774 − 35i MeV. This can be attributed to the fact that models

are fitted to the low energy K̄N threshold data, and consequently the models do not

have such predictive power at higher energies.

• Similarly, we found three isovector poles in the examined range of energies 1300 -

1800 MeV, but two of them are very far from the physical region that they can

hardly affect any physical observables. Only one isovector pole with its position at

z6 ≈ 1751−12iMeV on the further Riemann sheet can be assigned, by all appearance,

to the I = 1 resonance Σ(1750).

By examining the pole movements on the complex energy manifold into the zero cou-

pling limit and into SU(3) symmetry restoration limit, we obtained an additional valuable

information about origin of the poles.

• In the zero coupling limit, we found that the Λ(1405) pole lying at lower energies

originates from the resonance in the πΣ channel and the pole at higher energies

develops from the K̄N bound state. The pole related to the resonances Λ(1670)

can trace its origin either to the KΞ bound state or to the KΞ quasi-bound state

depending on a model.

• In the limit of SU(3) symmetry restoration, a common origin of poles related to the

singlet and octet states were confirmed. The singlet pole develops to the lower pole

of the Λ(1405) resonance and octet state is origin of all other observed poles.

To conclude, we would like to underline that chiral models provide a new perspective on

the problematic of strange S = −1 baryon resonances in the low energy spectra and they

considerably contribute to understanding of their nature. This approach was especially

successful by examining the Λ(1405) resonance, whose two pole structure is now widely

supported by several chirally motivated models.

70



Bibliography

[1] M. Niiyama et al. Photoproduction of Lambda(1405) and Sigma(1385) on the proton

at E = 1.5-2.4 GeV. Phys. Rev., 2008.

[2] J. K. Ahn. Lambda(1405) photoproduction at SPring-8/LEPS. Nucl. Phys., A721:

715–718, 2003.

[3] D. W. Thomas, A. Engler, H. E. Fisk, and R. W. Kraemer. Strange particle production

from π−p interactions at 1.69 gev/c. Nucl. Phys., B56:15–45, 1973.

[4] R. J. Hemingway. Production of Lambda(1405) in K−p reactions at 4.2- GeV/c. Nucl.

Phys., B253:742, 1985.

[5] I. Zychor et al. Shape of the Lambda(1405) hyperon measured through its Σ0π0 decay.

Phys. Lett., B660:167–171, 2008.

[6] A. Cieply and J. Smejkal. Separable potential model for K−N interactions at low

energies. Eur. Phys. J., A43:191–208, 2010.

[7] D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner. Chiral dynamics of the

two Lambda(1405) states. Nucl. Phys., A725:181–200, 2003.

[8] Yoichi Ikeda, Tetsuo Hyodo, and WolframWeise. Improved constraints on chiral SU(3)

dynamics from kaonic hydrogen. Phys.Lett., B706:63–67, 2011.

[9] Yoichi Ikeda, Tetsuo Hyodo, and Wolfram Weise. Chiral su(3) theory of antikaon-

nucleon interactions with improved threshold constraints. Prerint submitted to

Nucl.Phys., A, 2011.

[10] A. Cieply and J. Smejkal. Chirally motivated K̄N amplitudes for in-medium applica-

tions. Nucl. Phys., A 188:115–126, 2012.

71



[11] K. Nakamura et al. Review of particle physics. J. Phys., G37:075021, 2010. URL

http://pdg.lbl.gov/.

[12] A. V. Anisovich, V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri, and A. V.

Sarantsev. MESONS and BARYONS Systematization nad Methods of Analysis. World

Scientific Publishing, 2008.

[13] Steven Weinberg. Phenomenological Lagrangians. Physica, A96:327, 1979.

[14] Jose A. Oller. On the strangeness -1 S-wave meson baryon scattering. Eur. Phys. J.,

A28:63–82, 2006.

[15] Waas T., Kaiser N., and Weise W. Low energy K̄n interaction in nuclear matter.

Phys. Let. B, 365, 1995.

[16] N. Suzuki, T. Sato, and T. S. H. Lee. Extraction of Resonances from Meson-Nucleon

Reactions. Phys. Rev., C79:025205, 2009.

[17] E. Oset et al. Dynamically generated resonances in the chiral unitary approach to

meson baryon interaction. Int. J. Mod. Phys., A20:1619–1626, 2005.

[18] E. Oset, V. K. Magas, and A. Ramos. On the nature of the Lambda(1405) as a

superposition of two states. AIP Conf. Proc., 842:455–457, 2006.

[19] R. Nißler. Topics in three flavor chiral dynamics. PhD thesis, Rheinischen

Friedrich-Wilhelms-Universit¨at Bonn, 2008. URL http://hss.ulb.uni-bonn.de/

2008/1316/1316.htm.

[20] C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, and M. J. Vicente Vacas. S = −1

Meson-Baryon Unitarized Coupled Channel Chiral Perturbation Theory and the S01−
Λ(1405) and −Λ(1670) Resonances. Phys. Rev., D67:076009, 2003.

[21] B. Borasoy, R. Nissler, and W. Weise. Chiral dynamics of kaon nucleon interactions,

revisited. Eur. Phys. J., A25:79–96, 2005.

[22] Norbert Kaiser, P. B. Siegel, and W. Weise. Chiral dynamics and the low-energy kaon

- nucleon interaction. Nucl. Phys., A 594:325–345, 1995.

[23] A. Cieply and J. Smejkal. Chiral model for K̄N interactions and its pole content. AIP

Conf. Proc., 1322:364–368, 2010.

72



[24] Margaret H. Alston et al. Study of Resonances of the Σ−π System. Phys. Rev. Lett.,

6:698–702, 1961.

[25] C. Caso et al. Review of particle physics. Eur. Phys. J., C3:1–794, 1998. URL

http://pdg.lbl.gov/.

[26] R. H. Dalitz and A. Deloff. The Shape and parameters of the Lambda(1405) resonance.

J. Phys., G17:289–302, 1991.

[27] Tetsuo Hyodo and Daisuke Jido. The nature of the Lambda(1405) resonance in chiral

dynamics. Prog. Part. Nucl. Phys., 67:55–98, 2012.

[28] V. K. Magas, E. Oset, and A. Ramos. Evidence for the two pole structure of the

Lambda(1405) resonance. Phys. Rev. Lett., 95:052301, 2005.

[29] S. Prakhov et al. K−p→ π0π0Σ0 at p(K−) = 514-MeV/c to 750-MeV/c and compar-

ison with other π0 π0 production. Phys. Rev., C70:034605, 2004.

[30] T. Hyodo, A. Hosaka, E. Oset, A. Ramos, and M. J. Vicente Vacas. Lambda(1405)

production in the pi−p→ k0πσ reaction. Phys. Rev., C68:065203, 2003.

[31] T. Hyodo, A. Hosaka, M. J. Vicente Vacas, and E. Oset. Photoproduction of k* for

the study of lambda(1405). Phys. Lett., B593:75–81, 2004.

[32] J. C. Nacher, E. Oset, H. Toki, and A. Ramos. Photoproduction of the lambda(1405)

on the proton and nuclei. Phys. Lett., B455:55–61, 1999.

[33] G. P. Gopal et al. Partial Wave Analyses of K̄N Two-Body Reactions Between 1480-

MeV and 2170-MeV. Nucl. Phys., B119:362, 1977.

[34] H. Koiso, F. Sai, S. S. Yamamoto, and R. R. Kofler. Search for the P11 Sigma(1660)

resonance in the reactions K−p → Σ±π∓ in the momentum range 597-MeV/c to

888-MeV/c. Nucl. Phys., A433:619, 1985.

[35] V. Hepp et al. New Data on the Reaction K−n→ (Σπ)− and a Partial Wave Analysis

of K̄N → Σπ in the Energy Range 1520-MeV-1745-MeV. Phys. Lett., B65:487, 1976.

[36] D. M. Manley et al. Properties of the Lambda(1670)(1/2)- resonance. Phys. Rev.

Lett., 88:012002, 2002.

73



[37] A. Starostin et al. Measurement of K−p → ηΛ near threshold. Phys. Rev., C64:

055205, 2001.

[38] S. Prakhov et al. Measurement of K−p radiative capture to γΛ and γΣ0 for pK−

between 514 and 750 MeV/c. Phys. Rev., C82:015201, 2010.

[39] M. D. Jones. A study of the reaction K−p → Σ0η near threshold. Nucl. Phys., B73:

141–165, 1974.

[40] Simon Capstick and W. Roberts. Quark models of baryon masses and decays. Prog.

Part. Nucl. Phys., 45:S241–S331, 2000.

[41] Claude Amsler et al. Review of particle physics. Phys. Lett., B667:1–1340, 2008. URL

http://pdg.lbl.gov.

[42] Hael Collins and Howard Georgi. S3 and the L = 1 baryons in the quark model and

the chiral quark model. Phys. Rev., D59:094010, 1999.

[43] Nathan Isgur and Gabriel Karl. Hyperfine Interactions in Negative Parity Baryons.

Phys. Lett., B72:109, 1977.

[44] Nathan Isgur and Gabriel Karl. P Wave Baryons in the Quark Model. Phys. Rev.,

D18:4187, 1978.

[45] Simon Capstick and Nathan Isgur. Baryons in a Relativized Quark Model with Chro-

modynamics. Phys. Rev., D34:2809, 1986.

[46] Derek B. Leinweber. QCD Sum Rule Analysis Of Spin-Orbit Splitting in Baryons.

Ann. Phys., 198:203, 1990.

[47] L. Ya. Glozman and D. O. Riska. The Spectrum of the nucleons and the strange

hyperons and chiral dynamics. Phys. Rept., 268:263–303, 1996.

[48] C. L. Schat, J. L. Goity, and N. N. Scoccola. Masses of the 70- baryons in large N(c)

QCD. Phys. Rev. Lett., 88:102002, 2002.

[49] N. Matagne and Fl. Stancu. SU(6) [70, 1−] baryon multiplet in the 1/Nc expansion.

Phys. Rev., D83:056007, 2011.

[50] R. H. Dalitz, T. C. Wong, and G. Rajasekaran. Model calculation for Y*(0)(1405)

resonance state. Phys. Rev., 153:1617–1623, 1967.

74



[51] E. A. Veit, Byron K. Jennings, R. C. Barrett, and Anthony William Thomas. Kaon -

Nucleon Scattering In An Extended Cloudy Bag Model. Phys. Lett., B137:415, 1984.

[52] E. A. Veit, Byron K. Jennings, Anthony William Thomas, and R. C. Barrett. S Wave

Meson - Nucleon Scattering In An SU(3) Cloudy Bag Model. Phys. Rev., D31:1033,

1985.

[53] B. K. Jennings. Further Evidence On The Nature Of The Lambda(1405). Phys. Lett.,

B176:229, 1986.

[54] K. Dannbom, E. M. Nyman, and D. O. Riska. Excited Hyperons In The Skyrme

Model. Phys. Lett., B227:291, 1989.

[55] Jr. Callan, Curtis G. and Igor R. Klebanov. Bound State Approach to Strangeness in

the Skyrme Model. Nucl. Phys., B262:365, 1985.

[56] A. Zhang et al. J (P ) = (1/2)− pentaquarks in Jaffe and Wilczek’s diquark model.

High Energy Phys. Nucl. Phys., 29:250, 2005.

[57] Toru T. Takahashi and Makoto Oka. Low-lying Lambda Baryons with spin 1/2 in

Two-flavor Lattice QCD. Phys. Rev., D81:034505, 2010.

[58] Noriyoshi Ishii, Takumi Doi, Makoto Oka, and Hideo Suganuma. Five-quark picture

of Lambda(1405) in anisotropic lattice QCD. Prog. Theor. Phys. Suppl., 168:598–601,

2007.

[59] J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. Ann. Phys.,

158:142, 1984.

[60] Elizabeth Ellen Jenkins and Aneesh V. Manohar. Baryon chiral perturbation theory

using a heavy fermion Lagrangian. Phys. Lett., B255:558–562, 1991.

[61] Stefan Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 27:277,

2003.

[62] A. Hosaka and H. Toki. QUARKS, BARYONS AND CHIRAL SMMETRY. World

Scientific Publishing, 2001.

[63] Yoichi Ikeda, Tetsuo Hyodo, and WolframWeise. Improved constraints on chiral SU(3)

dynamics from kaonic hydrogen. Phys. Lett., B706:63–67, 2011.

75



[64] G. Beer et al. Measurement of the kaonic hydrogen X-ray spectrum. Phys. Rev. Lett.,

94:212302, 2005.

[65] M. Bazzi et al. A New Measurement of Kaonic Hydrogen X rays. Phys. Lett., B704:

113–117, 2011.

[66] Alan D. Martin. Kaon - Nucleon Parameters. Nucl. Phys., B179:33, 1981.

[67] M. Iwasaki, R.S. Hayano, T.M. Ito, S.N. Nakamura, T.P. Terada, et al. Observation

of the kaonic hydrogen K(alpha) x-ray. Phys.Rev.Lett., 78:3067–3069, 1997.

[68] T.M. Ito, R.S. Hayano, S.N. Nakamura, T.P. Terada, M. Iwasaki, et al. Observation

of kaonic hydrogen atom x rays. Phys.Rev., C58:2366–2382, 1998.

[69] J.R. Taylor. Scattering Theory: The Quantum Theory of Nonrelativistic Collisions.

American Institute of Physics, 1973.

[70] R.J. Eden and J.R. Taylor. Poles and Shadow Poles in the Many-Channel S Matrix.

Phys.Rev., 133:B1575–B1580, 1964.

[71] B.C. Pearce and B.F. Gibson. Observable Effects of Poles and Shadow Poles in Cou-

pled Channel Systems. Phys.Rev., C40:902–911, 1989.

[72] Yoichi Ikeda, Hiroyuki Kamano, and Toru Sato. Energy dependence of barkn inter-

actions and resonance pole of strange dibaryons. Prog. Theor. Phys., 124:533–539,

2010.

76



Appendix A

The transformation relation from 10 channel base to isoscalar base:

C iskal
1,1 =

1

3
(C2,2 + 2 · C2,3 + 2 · C2,4 + C3,3 + 2 · C3,4 + C4,4)

C iskal
1,2 = − 1√

6
(C2,5 + C3,5 + C4,5 + C2,6 + C3,6 + C4,6)

C iskal
1,3 = − 1√

3
(C2,7 + C3,7 + C4,7)

C iskal
1,4 =

1√
6
(C2,9 + C3,9 + C4,9 + C2,10 + C3,10 + C4,10)

C iskal
2,2 =

1

2
(C5,5 + 2 · C5,6 + C6,6)

C iskal
2,3 =

1√
2
(C5,7 + C6,7)

C iskal
2,4 = −1

2
(C5,9 + C5,10 + C6,9 + C6,10)

C iskal
3,3 = C7,7

C iskal
3,4 = − 1√

2
(C7,9 + C7,10)

C iskal
4,4 =

1

2
(C9,9 + 2 · C9,10 + C10,10).
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The transformation relation from 10 channel base to isovector base:

C ivec
1,1 = C1,1

C ivec
1,2 =

1√
2
(C1,3 − C1,2)

C ivec
1,3 = −C1,4

C ivec
1,4 = C1,5

C ivec
1,5 = −C1,6

C ivec
2,2 =

1

2
(C2,2 + C3,3 − 2 · C2,3)

C ivec
2,3 =

1√
2
(C2,4 − C3,4)

C ivec
2,4 = − 1√

2
(C3,5 − C2,5)

C ivec
2,5 =

1√
2
(C2,6 − C3,6)

C ivec
3,3 = C4,4

C ivec
3,4 = −C4,5

C ivec
3,5 = −C4,6

C ivec
4,4 = C5,5

C ivec
4,5 = −C5,6

C ivec
5,5 = C6,6

Since the coupling coefficients are symmetric C .
ij = C .

ji, we show only above diagonal terms.
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Appendix B
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Figure 1: Pole movements upon scaling the nondiagonal interchannel couplings in the
TW1 model. Left panel: isoscalar states (I = 0), right panel: isovector states (I = 1).
The large solid and empty circles show the pole positions in the physical and zero coupling
limits, respectively. The black triangles mark the K̄N and KΞ thresholds in the isoscalar
case and the K̄N and ηΣ thresholds in the isovector case. Energies of the thresholds are
EK̄N = 1434.6 MeV, EηΣ = 1740.6 MeV and EKΞ = 1814.0 MeV. The Riemann sheets
the poles move on are specified in the legend.
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Figure 2: Pole movements upon scaling the nondiagonal interchannel couplings in the
CS30 model. Left panel: isoscalar states (I = 0), right panel: isovector states (I = 1).
The large solid and empty circles show the pole positions in the physical and zero coupling
limits, respectively. The black triangles mark the K̄N and KΞ thresholds. Energies of
the thresholds are EK̄N = 1434.6 MeV, EηΣ = 1740.6 MeV and EKΞ = 1814.0 MeV. The
Riemann sheets the poles move on are specified in the legend.
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