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Vedoućı práce: Prof. RNDr. Jan Hamhalter, CSc., Katedra matematiky,

Fakulta elektrotechnická, České vysoké učeńı technické v Praze
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JBW algebru. Zobecńıme Bellovu nerovnost pro obecněǰśı ko-
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Chapter 1

Introduction

The Copenhagen interpretation of quantum mechanics is one formulated by
Niels Bohr and Werner Heisenberg around 1927. Viewing the nature as
inherently random it makes only (in contrast to Newtonian physics) statis-
tical predictions about experiments. Quantum mechanics only assigns prob-
abilities to each of a range of possible outcomes while in compliance with
Heisenberg’s uncertainty principle it is impossible to make predictions with
arbitrarily better accuracy. That is, we can only say, for example, where
particle is at the cost of being able to say how fast it is moving. At a funda-
mental level, randomness is thus indiscerptibly embedded in the reality.

The question is whether properties of individual systems possess values
prior to the measurement that reveals them; not whether there are laws en-
abling us to predict at an earlier time what those values will be. Uncertainty
principle simply tells us that we cannot know definite position and velocity
of an electron at any instant of time. It does not tell us that electron, at
any instant of time, does not possess definite position and velocity. It is no
surprise that the idea of nature being fundamentally random was met with
some resistance, giving rise to unceasing debates about possibility of build-
ing a deeper formalism which would make it possible to attain definite value
to both particle’s position and velocity. Such theory would be to quantum
mechanics as classical mechanics to classical statistical mechanics.

General feature of hidden-variables is as follows: given an ansemble of
identical physical systems all prepared in the state ϕ described by observables
A,B,C, . . . such a theory should assign to each individual member of that
ensemble a set of numerical values for each observable, v(A), v(B), v(C), . . ..
The theory should provide a rule for every state ϕ telling us how to distribute
those values over the members of the ensemble described by ϕ in such a way
that the statistical distribution of outcomes, for any measurement quantum
mechanics permits, agrees with the predictions of quantum mechanics.
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First attempt to show that hidden variables theory of quantum physics
was impossible was made in 1932 by John von Neumann which later turned
out to be deeply flawed. Von Neumann employed one of the constraints of
quantum mechanics which requires that if A,B,C, . . . is a mutually commut-
ing subset of observables then any functional identity

f(A,B,C, . . .) = 0

holds for their simultaneous eigenvalues also, i.e.

f(v(A), v(B), v(C), . . .) = 0 .

A particular consequence of the above equations is that if A and B commute
then f(A,B,C) = A+B−C = 0 must satisfy f(v(A), v(B), v(C)) = v(A) +
v(B) − v(C) = 0. However, von Neumann imposed this condition on a
hidden variables theory even if A and B do not commute which (according
to John Bell) was silly. When A and B do not commute they do not have
simultaneous eigenvalues nor they can be simultaneously measured. Von
Neumann was led to it because it holds in the mean: for any state ϕ, quantum
mechanics requires, whether or not A and B commute, that

< ϕ|A+B|ϕ >=< ϕ|A|ϕ > + < ϕ|B|ϕ > .

It is easy to see that the results of quantum mechanics are incompatible
with values satisfying this condition: consider two-dimensional state space
describing a single spin 1

2
. Let A = σx, B = σy. The values v(A) and v(B)

are each restricted to ±1, thus the only values v(A)+v(B) can have are −2, 0,
and 2. This is in a contradiction with v(A+B) = ±

√
2. Therefore a hidden

variables theory of this simple system cannot satisfy v(A+B) = v(A)+v(B).
In 1935 Grete Hermann, a german mathematician, refuted von Neu-

mann’s proof in her paper Die Naturphilosophischen Grundlagen der Quan-
tenmechanik which unfortunately went unnoticed. Later that year, on May
15, Albert Einstein together with his two students Boris Podolsky and Nathan
Rosen presented what is often called the Einstein-Podolsky-Rosen (EPR)
Paradox in their paper Can Quantum-Mechanical Description of Reality be
Considered Complete? Aiming towards the effort to show the existence of
hidden variables the authors attacked various concepts of quantum mechanics
concluding that quantum theory was not complete yet. They believed that
the shadow of doubt cast upon quantum mechanics could be cleared up by
incorporating hidden variables. On October 15 that year Niels Bohr retorted
with his paper explaining that a viewpoint termed complementarity would
seem to fulfill, within its scope, all rational demands of completeness. In this
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manner Bohr whisked away ambiguous formulation of Einstein, Podolsky and
Rosen. Another paper defying all impossibility proofs was published in 1952
by David Bohm.

In 1957 Andrew Gleason published theorem which states that the only
possible probability measures µ on Hilbert spaces of dimension at least three
are of the form µ(X) = Tr(ρPX), where ρ is a positive semi-definite self-
adjoint operator of unit trace, and where PX is a projection operator for
projection onto the subspace X. The original proof of the theorem however
acquired reputation of being hard to grasp. Attempts to make the proof
more transparent lead to geometrical lemmas that possess also easy proofs
of some consequences of Gleason theorem.

John Stewart Bell gave arguments that the prevailing view that these re-
sults disprove hidden variables is actually a false one. According to Bell what
these theorems show is that hidden variables must allow for two important
and fundamental quantum features: contextuality and nonlocality. To take
contextuality into account, one must consider the results of a measurement
to depend on the attributes of both the system and the measuring apparatus.
The concept of contextuality lies at the heart of both Gleason’s theorem and
the theorem od Kochen and Specker. However, its full meaning and impor-
tance is not exposed in the proofs nor discussed. The exception to this is two
works by Bell in which term contextuality is made quite clear. The concept
of nonlocality is well known through Bell’s famous mathematical theorem
in which he addresses the problem of EPR paradox. In a system exhibiting
nonlocality the consequences of events at one place propagate to other places
instantaneously. Although Einstein, Podolsky and Rosen were attempting
to demonstrate a different conclusion (the incompleteness of the quantum
theory), their analysis serves to point out the conditions under which (as
would become evident after Bell’s work) nonlocality arises. Bell states that
nonlocality is deeply rooted in quantum mechanics itself and will persist in
any completion concluding that quantum theory is nonlocal.

The aim of this work is to investigate dispersions of states on Jordan
algebras and generalization of Bell’s inequalities for more general correlation
duality.

In the chapter 2 we briefly summarize important results in the structure
theory of operator algebras, namely C∗, von Neumann and Jordan algebras.
Chapter 3 deals with quantum history approach.

Chapter 4 deals with Hidden variables theory. In section 4.3 we show
that Hidden variables theory is excluded in Jordan algebras (see Theorem
(43)).
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In chapter 5 we summarize basic results about so-called Bell inequalities.
In the section 5.3 we show that in certain type of JBW algebra we can find a
state maximally violating Bell’s inequality (see Theorem (51)). Next we gen-
eralize Bell’s inequalities for more general correlation duality (see Theorem
(53)) and give an example of saturation.
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Chapter 2

Operator algebras

The principal mathematical tools are the algebras of bounded operators B(H)
on a separable Hilbert space H. There are three main mathematical struc-
tures used to build the framework of quantum and algebraic quantum field
theory - namely C∗, W ∗ and Jordan algebras.

2.1 C∗-algebras

An associative algebra (A,+, ·, ∗) is called a ∗-algebra if the operation ∗ obeys
the following rules for all a, b ∈ A and λ ∈ C: (i) a∗∗ = a (ii) (a+b)∗ = a∗+b∗

(iii) (λa)∗ = λa∗ (iv) (ab)∗ = b∗a∗.
Such algebra endowed with the norm || · || is a Banach space. A is said

to be an involutive Banach algebra if the following conditions are satisfied
for all a, b ∈ A: (i) ||ab|| ≤ ||a|| · ||b|| (ii) ||a∗|| = ||a||. A C∗-algebra is an
involutive Banach algebra satisfying (iii) ||a∗a|| = ||a||2 for all a ∈ A. The
centre, Z(A), of a C∗-algebra A is the set of all elements commuting with
every element in A.

Let Mn(C) be the complex algebra of n × n complex matrices endowed
with the standard arithmetic operations and with the involution sending a
matrix a ∈ Mn(C) to its adjoint matrix a∗. Then Mn(C) with the matrix
norm is a finite-dimensional C∗-algebra.

Let X be a locally compact Hausdorff space. Let us denote by C0(X)
the ∗-algebra of all continuous functions on X such that for each ε > 0 the
set {x ∈ X | |f(x)| ≥ ε} is compact and the ∗-operation assigns to each such
function its complex conjugate. Let ||f || := supx∈X |f(x)| be the norm on
C0(X). Then C0(X) becomes an abelian (=commutative) C∗-algebra. If
X is a compact space then C0(X) coincides with the algebra C(X) of all
continuous complex functions on X.
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Let H be a Hilbert space and let B(H) be the ∗-algebra of all bounded
operators on H with usual arithmetic operations and the ∗ operation that
assigns to each operator its adjoint operator. Then B(H) endowed with
the norm ||a|| := sup[ξ∈H,||ξ||=1]||aξ|| is a C∗-algebra. Any norm-closed ∗-
subalgebra of B(H) is also a C∗-algebra.

Let F be a subset of B(H) that is closed under forming adjoint operators.
Let us denote by F ′ the commutant of F , i.e. the set F ′ := {a ∈ B(H) | ax =
xa for all x ∈ F}. Then F ′ is a subalgebra of B(H).

Let A be abelian C∗-algebra. A character ω on A is a nonzero linear
map ω : A 7→ C for which ω(ab) = ω(a)ω(b) and ω(a∗) = (ω(a)) for all
a, b ∈ A. The spectrum, Ω(A), of an algebra A is the set of all characters on
A endowed with the topology of pointwise convergence on elements of A. 1

The Gelfand transform is the map τ : A 7→ C0

(
Ω(A)

)
defined for all a ∈ A

by the formula τ(a)(ω) = ω(a) for all ω ∈ Ω(A).

Theorem 1 (Gelfand). For each abelian C∗-algebra A the Gelfand trans-
form is a ∗-preserving isometric isomorphism of A onto C0

(
Ω(A)

)
.

As a result of the Gelfand theorem we can identify abelian C∗-algebra
with algebra of continuous functions on locally compact spaces.

If a C∗-algebra, A, contains a unit with respect to multiplication, I, then
A is said to be unital. In the rest of this paragraph A will always denote a
C∗-algebra unless otherwise stated.

Let x ∈ A. The spectrum of x is the set Spec(x) := {λ ∈ C | (x − λI) is
not invertible in A}. We say that element x ∈ A is normal if x∗x = xx∗.
The smallest C∗-algebra containing an element x will be denoted by C∗(x).
It is the norm closure of the set of all finite sums of the form

∑
i,j aijx

ix∗j,
aij ∈ C.

If x is normal element then C∗(x) is abelian. We can apply the Gelfand
theorem and identify C∗(x) with the continuous functions on its spectrum
X = Ω

(
C∗(x)

)
. It turns out that X can be identified with Spec(x)\{0} as the

map ω ∈ X 7→ ω(x) ∈ Spec(X\{0}) establishes a homomorphism between X
and Spec(x) \{0}. In this manner the algebra C∗(x) can be identified with
the algebra C0(Spec(x) \{0}).

An element x ∈ A is called self-adjoint if x = x∗. A self-adjoint part
of A shall be denoted by Asa. A general element x ∈ A can be written as
x = y + iz, where y = x+x∗

2
∈ Asa and z = − i(x−x∗)

2
∈ Asa. The elements y

and z are called the real and the imaginary part of x, respectively. An element
of C∗-algebra is called positive (or nonnegative) if x = a∗a for some a ∈ A.
An approximate unit is an upwards directed system (aα)α∈I of nonnegative
elements of A such that limα∈I ||x− xuα|| = limα∈I ||x− uαx|| = 0, for each

1It can be proved that Ω(A) is a locally compact Hausdorf space.
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x ∈ A.
An element u ∈ A is said to be unitary if u∗u = uu∗ = I. The spectrum

of any unitary element is contained in the unit circle in the complex plane.
If A = C(X) then the unitary elements are just continuous mappings of X
onto the unit circle. If A = Mn(C), then the set of unitary elements is the
set of unitary (orthonormal) matrices. The set of all unitary elements in A
endowed with the multiplication forms the group, U(A), called the unitary
group of A. As for any self-adjoint element x with ||x|| ≤ 1 we find that
the elements u = x+ i(1− x2)1/2 and u∗ = x− i(1− x2)1/2 are unitary with
x = 1

2
(u + u∗), we see that U(A) linearly generates the whole of A. An

element s ∈ A is called symmetry if it is unitary and self-adjoint.
A projection p ∈ A is a self-adjoint idempotent, i.e. p = p∗ = p2. In

the algebra C0(X) the projections are exactly the characteristic functions of
clopen subsets of X.

Any projection in the algebra M2(C) is of the form(
a

√
a− a2eiϕ√

a− a2e−iϕ a

)
,

where a ∈ [0, 1] and ϕ ∈ R.
The set of all projections in A will be denoted by P (A). If A is unital

then the map p 7→ 2p − I is a one-to-one correspondence between the pro-
jection structure and the set of all symmetries in A. An element v ∈ A is
called a partial isometry if v∗v = p, where p ∈ P (A). In this case vv∗ = q,
where q is another projection in P (A). The projections p and q are said to
be the initial and the final projection of v, respectively.

A C∗-subalgebra B of a C∗-algebra A is defined as the norm closed ∗-
subalgebra of A. A C∗-subalgebra generated by elements a1, . . . , an ∈ A will
be denoted by C∗(a1, . . . , an). A closed subset I of A is called closed left
(right) ideal if ax ∈ I (xa ∈ I) for each a ∈ A and x ∈ I. A closed subset
in A is called closed (two-sided) ideal if it is simultaneously left and right
ideal. The matrix algebra has no nontrivial ideals. The C∗-algebra having
no nontrivial ideals is called simple.

A linear map π : A 7→ B between C∗-algebras A and B is called a ∗-
homomorphism if it preserves product and ∗-operation. Any ∗-homomorphism
is norm-decreasing, and thereby continuous. The image π(A) is a C∗-subalgebra
of B. The kernel Ker π = {a ∈ A |π(a) = 0} is a closed ideal in A,
and π(A) is isomorphic to A/Ker π. An injective ∗-homomorphism of A
onto B is called ∗-homomorphism. Any ∗-isomorphism is an isometry. A
∗-homomorphism of A into B(H) is also called ∗-representation of A on a
Hilbert space H. If Ker π = {0} then π is called faithful.
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A linear form f : A 7→ C on a C∗-algebra A is called a positive functional
if f(a) ≥ 0 whenever a ≥ 0. Any positive functional on some C∗-algebra is
bounded. A positive functional ρ on a C∗-algebra is called state if ||ρ|| = 1.

Very powerful tool is the so-called Gelfand-Naimark-Segal construction
(GNS):

Theorem 2 For any positive functional ρ on C∗-algebra A there is a Hilbert
space, Hρ, a ∗-morphism, πρ : A 7→ B(Hρ), and a cyclic vector, ξρ ∈ Hρ,
such that

ρ(x) = (πρ(x)ξρ, ξρ).

Moreover, the triple (πρ, Hρ, ξρ) is unique up to unitary transform between
the corresponding Hilbert spaces.

A state ρ on a C∗-algebra A is called pure if it cannot be written as
a nontrivial convex combination of states, i.e. if the following implication
holds: if ρ = 1

2
(ρ1 + ρ2) for states ρ1 and ρ2 on A, then ρ1 = ρ2 = ρ. If x

is a nonzero positive element in a C∗-algebra A, then there is a pure state ρ
such that ρ(x) = ||x||.

The structure of the set of states in the dual of C∗-algebra is convex. A
face F in a subset of vector space K is a convex subset of K such that the
following implication holds: if αx+ (1−α)y ∈ F for x, y ∈ K and α ∈ [0, 1],
then x, y ∈ F . An element x ∈ K is called an extreme point of the set K if
the set F = {x} is a face of K.

Let A be a C∗-algebra. By the symbol S(A) we shall denote the convex
set of all states on A. S(A) is called the state space of A. The extreme
points of this set are pure states. A subset S of the state space S(A) is
called order determining if, and only if, ρ(a) ≥ 0 for all ρ ∈ S implies that
a ≥ 0.

Very significant role in the operator algebra theory is played by tensor
products of C∗-algebras. Let X and Y be linear spaces. Let us denote by
X ⊗alg Y their algebraic tensor product. It is linearly spanned by the simple
tensors x⊗y, x ∈ X, y ∈ Y . For each bilinear form b : X×Y 7→ C there is a
unique linear form f on X ⊗alg Y such that b(x, y) = f(x⊗ y), for all x ∈ X
and y ∈ Y . If B1 and B2 is a linear basis of X and Y respectively, then the
set {b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2} is a linear basis of X ⊗alg Y .

Let H and K be Hilbert spaces. Then there is a unique inner product on
H ⊗alg K such that (x1 ⊗ y1, x2 ⊗ y2) = (x1, x2) · (y1, y2), where x1, x2 ∈ X
and y1, y2 ∈ Y . The tensor product, H ⊗K, of Hilbert spaces H and K is
defined as the Hilbert space resulting by completion of H⊗algK with respect
to its inner product. Given two operators a ∈ B(H) and b ∈ B(K) there is a
unique bounded operator on H⊗K, denoted by a⊗b, whose action on H⊗K
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is determined by (a⊗ b)(ξ ⊗ ν) = aξ ⊗ bν for all ξ ∈ H, ν ∈ K. It holds that
||a ⊗ b|| = ||a|| · ||b||. Suppose now that A and B are two C∗-algebras and
choose faithful representations π1 and π2 of A and B on the Hilbert spaces
H and K, respectively. The C∗-subalgebra of B(H ⊗ K) generated by the
set {a ⊗ b | a ∈ π1(A), b ∈ π2(B)} does not depend (as an abstract algebra)
on the choice of the faithful representations π1 and π2 and it is called the
spatial tensor product (or the minimal tensor product) of A and B.

Let ϕ1 and ϕ2 be states on the algebras A and B, respectively. There is
a state ϕ, called the product state of ϕ1 and ϕ2 (in symbols ϕ1 ⊗ ϕ2) that is
uniquely determined by the condition (ϕ1 ⊗ ϕ2)(a ⊗ b) = ϕ1(a)ϕ2(b) for all
a ∈ A and b ∈ B. The product state ϕ1 ⊗ ϕ2 is pure if, and only if, ϕ1 and
ϕ2 are pure states.

Given two ∗-representations π1 : A 7→ B(H) and π2 : B 7→ B(K), there
is a unique product representation π1 ⊗ π2 : A ⊗ B 7→ B(H) ⊗ B(K) such
that (π1 ⊗ π2)(a ⊗ b) = π1(a)⊗ π2(b) for all a ∈ A and b ∈ B. The product
π1 ⊗ π2 is irreducible if, and only if, π1 and π2 are irreducible.

Let P (A) denote the set of all projections in a C∗-algebra A. Projections
in e and f in a C∗-algebra A are called orthogonal if ef = 0. If e and f are
orthogonal projections then the C∗-subalgebra generated by hereditary sub-
algebras eAe and fAf is ∗-isomorphic to their direct sum. The set P (A) with
the order inherited from A becomes partially ordered set. It holds that e ≤ f
in P (A) if, and only if, ef = fe = e. If A is unital, then the structure P (A)
is an orthomodular poset with the complement p⊥ = I− p. Two projections
p, q ∈ P (A) are called (Murray-von Neumann) equivalent (in symbols p ∼ q)
if p = v∗v and q = vv∗ for some v ∈ A. The relation ∼ is an equivalence
on the set P (A). The projection p is said to be subequivalent to a projection
q (in symbols p . q) if p ∼ e, where e ≤ q. All distinct projections in an
abelian algebra are not equivalent, the projections in the algebra B(H) are
equivalent if, and only if, their ranges have the same (orthonormal) dimen-
sion. If ||p− q|| < 1 for p, q ∈ P (A), then p ∼ q. The projections p and q in
a unital C∗-algebra A are said to be unitarily equivalent (in symbols p ∼u q)
if there is a unitary map u ∈ A such that p = u∗qu. It holds that p ∼u q if,
and only if, p ∼ q and I − p ∼ I − q. Orthogonal equivalent projections are
always unitarily equivalent.

Suppose now that e1, . . . , en are orthogonal equivalent projections in a
unital C∗-algebra A with e1 + · · · + en = I. Let vij be a partial isometry
with the initial projection ej and the final projection ei. The system (v)ij)
is called the system of n × n matrix units. It holds that vijvkl = 0 if j 6= k
and vijvjk = vik.

A projection p in a C∗-algebra A is said to be infinite if there is a pro-
jection q ∈ A such that p ∼ q < p. If p is not finite, then p is said to be
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infinite. A unital C∗-algebra is said to be finite (resp. infitinie) if its unit
is a finite (resp. infinite) projection. A projection in B(H) is finite if, and
only if, it is finite-dimensional. Hence, B(H) is a finite algebra if, and only
if, dimH <∞.

A state τ on C∗-algebra is called tracial (or a trace) if τ(x∗x) = τ(xx∗) for
all x ∈ A. This is equivalent to the fact that τ(ab) = τ(ba) for all a, b ∈ A.
The trace is constant on equivalent projections. There is only one tracial
state on the matrix algebra Mn(C) which is the standard normalized matrix
trace.

A unital C∗-algebra is said to have real rank zero if every self-adjoint
element can be approximated by self-adjoint elements with finite spectrum.
Consequently, the real rank zero algebra is a closed linear span of its projec-
tions. A C∗-algebraA is called monotone complete if each bounded increasing
net in Asa has a least upper bound in Asa.

2.2 von Neumann algebras

Let us first mention some locally convex topologies on the algebra B(H).
The weak operator topology on B(H) is given by the system of seminorms
a ∈ B(H) 7→ |(ax, y)|, where x, y ∈ H. The convergence in this topology is
the pointwise weak convergence. The strong operator topology is given by the
system of seminorms a ∈ B(H) 7→ ‖ax‖, where x ∈ H. The strong operator
topology is the topology of pointwise norm convergence and it is finer then
the weak operator topology.

Let x ∈ B(H) and ||x||1 =
∑

e∈E (|x|e, e), where E is an orthonormal

basis of H and |x| =
√
x∗x. The operator x ∈ B(H) is said to be the trace

class operator if ||x||1 < ∞. The set of all trace class operators on H shall
be denoted by L1(H).

The σ-weak topology (or ultraweak topology) is given by the system of
seminorms induced by the trace class operators: a ∈ B(H) 7→ |tr(ta)|, where
t ∈ L1(H). The σ-weak topology is finer than the weak operator topology
and both topologies coincide on the closed unit ball of B(H).

The von Neumann algebra (also W ∗-algebra) is defined as the C∗-algebra
that can be faithfully represented as a strongly operator closed ∗-subalgebra
of B(H). The following conditions on a ∗-subalgebra M of B(H) are equiva-
lent: (i) M is weakly operator closed (ii) M is strongly operator closed (iii)
M is ultraweakly closed. It can also be proved that the commutant of any
∗-subalgebra of B(H) is a von Neumann algebra. The so-called von Neumann
Bicommutant Theorem says: a ∗-subalgebra M of B(H) that contains the
unit of B(H) is a von Neumann algebra if, and only if, M

′′
= M . In other

14



words, if M is a ∗-subalgebra of B(H), then every element in the bicommu-
tant M

′′
can be approximated in the strong operator topology by element

in M . Another very important approximation theorem is the Kaplansky
Density Theorem:

Theorem 3 Let A be a C∗-subalgebra of operators that generate a von
Neumann algebra M . Then the unit ball of A is strongly operator dense in
the unit ball of M .

Let M be a von Neumann algebra acting on a Hilbert space H. The its
center, Z(M), is an abelian von Neumann subalgebra of M and Z(M) =
M ∩M ′

. A von Neumann algebra is called the factor if Z(M) consists of
scalar multiples of the unit of M only. For each projection p ∈ P (M) we de-
fine the central cover, c(p), of p as the smallest central projection majorizing
p. If z is a central projection and p ∈ P (M), then c(zp) = zc(p).

Any weakly operator closed left ideal I in a von Neumann algebra M is of
the form I = Mp, where p is a uniquely determined projection. Any weakly
operator closed ideal in M is of the form I = zM , where z is a uniquely
determined central projection in M . All weakly operator closed hereditary
subalgebras of M are of the form pMp = {pxp |x ∈ M}, where p is a
uniquely determined projection. If we consider the algebra pMp as acting on
the Hilbert space p(H), then the following equalities hold: (pMp)

′
= pM

′
p

and Z(pMp) = pZ(M)p. This implies that any hereditary subalgebra of a
factor is a factor, too.

Now consider M to be a von Neumann algebra acting on a Hilbert space
H. A bounded functional ϕ on M is called normal if ϕ(uα)→ ϕ(u) whenever
uα ↗ u in Msa. It turns out that the following conditions are equivalent:
(i) ϕ is a normal functional (ii) ϕ is weakly operator continuous on the
unit ball of M (iii) ϕ is strongly operator continuous on the unit ball of
M (iv) ϕ is a completely additive measure on the projection lattice P (M),
i.e. ϕ

(∑
α pα

)
=
∑

α ϕ(pα) for any system of pairwise orthogonal projections
(pα) in M (v) ϕ is continuous in the ultraweak topology.

Any normal functional on M is given by a trace class operator t ∈ L1(H)
such that ϕ(x) = tr(tx) for each x ∈M .

Let M1, . . . ,Mn be von Neumann algebras acting on the Hilbert spaces
H1, . . . ,Hn, correspondingly. The von Neumann tensor product of algebras
M1, . . . ,Mn, denoted by M1⊗ · · ·⊗Mn is the von Neumann subalgebra of
B(H1⊗· · ·⊗Hn) generated by the spatial C∗-tensor product M1⊗· · ·⊗Mn.

Suppose that ϕ1, . . . , ϕn are normal states on von Neumann algebras
M1, . . . ,Mn, correspondingly. Then there is a unique normal state ϕ on
M1⊗ · · ·⊗Mn such that ϕ(x1 ⊗ · · · ⊗ xn) = ϕ1(x1) · · ·ϕn(xn) for all x1 ∈
M1, . . . , xn ∈ Mn. Such state ϕ is called the normal product state and it is
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denoted by the symbol ϕ1⊗ · · ·⊗ϕn.
If M and N are von Neumann algebras acting on Hilbert spaces H

and K, respectively, then (M⊗N)
′

= M
′⊗N ′ . In particular, Z(M⊗N) =

Z(M)⊗Z(N). Hence, product of factors is a factor, too.
The projection lattice P (M) is a complete orthomodular lattice. By e∨f

and e ∧ f we shall denote the supremum and the infimum of the projections
e and f in P (M), respectively.

Let A be a C∗-algebra. A vector ψ ∈ H is called cyclic for the represen-
tation π of A on Hilbert space H if the set π(A)ψ = {π(a)ψ | a ∈ A} is dense
in H.

Besides the order inherited from the C∗-algebra, the structure of pro-
jections is endowed with an equivalence relation, ∼. The subequivalence
relation introduces another order on projections reflecting their dimensions.
It holds that e ∼ f if, and only if, e . f and f . e. If e, f ∈ M , then
e ∨ f − f ∼ e− e ∧ f .2.

Now let us classify various types of von Neumann algebras. A von Neu-
mann algebra is said to be Type I algebra if there is an abelian projection
e ∈ M such that c(e) = I. This is equivalent to saying that each nonzero
central projection in M majorizes a nonzero abelian projection. Let n be a
cardinal number. If the unit in a von Neumann algebra M can be written
as a sum of n equivalent abelian projections, then M is said to be of Type
In. Type I1 algebras are just abelian von Neumann algebras. Each algebra
of Type In is called homogenous Type I algebra. For every von Neumann
algebra M of Type I and each cardinal less then cardM there is a uunique
central projection zα such that zαM is either zero or Type Iα and such that∑

α zα = I. Type Iα algebras are exactly the ∗-isomorphic copies of the ten-
sor products A⊗B(Hα), where A is an abelian von Neumann algebra and
Hα is a Hilbert space of dimension α. Type I factors are the algebras of all
bounded operators on Hilbert spaces. Type I algebra is finite if, and only if,
it is a direct sum of (countably many) Type In, n <∞ algebras. The finite
Type I homogenous algebras can be identified with the algebras Mn(C(X)),
where X is a hyperstonean space. Another way of looking at this algebra
is to represent it as algebra C

(
X,Mn(C)

)
of all continuous functions on a

hyperstonean space X. The algebras of Type I contain many abelian hered-
itary subalgebras, thus are close to abelian von Neumann algebras. Now
we will summarize other types of von Neumann algebras - those without
nonzero abelian part. A von Neumann algebra is said to be of Type II if
it has no nonzero abelian projection but has a finite projection e such that
c(e) = I. Equivalently, the algebra M is said to be of Type II if it has no

2This relation is referred to as the Kaplansky formula or the parallelogram law
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nonzero abelian projection and if every nonzero central projection majorizes
a nonzero finite projection. The finite algebras of Type II are called Type
II1, the infinite ones are called Type II∞. A von Neumamm algebra is called
semifinite if it is a Type I or Type II or direct sum of algebras of these
types. If M is properly infinite and semifinite von Neumann algebra, then
there exists an orthogonal family (zα) of central projections in M indexed by
infinite cardinals less then cardM with

∑
α zα = I, and a family (Nα) of finite

von Neumann algebras such that zαM is ∗-isomorphic to Nα⊗B(Hα), where
dimHα = α and zα may be zero. The family (zα) is uniquely determined.

Let M be a von Neumann algebra with the center Z(M). The center-
valued trace T : M 7→ Z(M) is a linear mapping such that (i) T (xy) = T (yx)
for all x, y ∈ M (ii) T is identity on Z(M) (iii) T (x) > 0 whenever x ∈ M+

is positive. If such a mapping exists, then M has to be finite. Conversely,
any finite von Neumann algebra admits exactly one center-valued trace, T .
The mapping T has these additional properties: (iv) T (zx) = zT (x) for all
z ∈ Z(M) and x ∈ M (v) T (e) ≤ T (f) for projections e, f if, and only if,
e . f (vi) ||T || ≤ 1 (vii) T is ultraweakly continuous.

Let T : M 7→ Z(M) be a center-valued trace on M . Then the following
holds: (i) if M is of Type In, then T

(
P (M)

)
consists of all elements of the

form 1
n
z1 + 2

n
z2 + · · ·+ n−1

n
zn−1 + zn, where z1, z2, . . . , zn are pairwise orthog-

onal central projections. (ii) If M is of Type II1, then T
(
P (M)

)
consists of

all positive elements in the unit ball of Z(M).
Type In factors are just matrix algebras Mn(C). In this case the center-

valued trace is nothing but the normalized matrix trace attaining discrete
values k

n
, 0 ≤ k ≤ n, on projections. The faithful tracial state on Type II1

factor attains all values in the interval [0, 1] when restricted to projections.
We can view Type II1 factors as ”continuous matrix algebras”.

A von Neumann algebra is said to be of Type III (or purely infinite) if
it contains no nonzero finite projection.

Every von Neumann algebra is uniquely decomposable into the direct sum
of algebras of Type I, II1, II∞ and III. If von Neumann algebra has zero
Type I finite part, then for every projection e in M and any integer n there
are orthogonal equivalent projections e1, . . . , en such that e = e1+e2+· · ·+en.
In particular, for any projection e in arbitrary von Neumann algebra there
are projections e1, e2 and e3 such that e = e1 + e2 + e3, e1 ∼ e2 and e3 is
abelian.
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2.3 Jordan Algebras

A Jordan algebra is a real algebra (A, ◦) such that the product ◦ has the fol-
lowing properties: (i) a◦ b = b◦a (ii) a◦ (b◦a2) = (a◦ b)◦a2, for all a, b ∈ A.
A JB algebra is a Jordan algebra (A, ◦, || · ||) where the complete norm || · ||
satisfies the following conditions: (i) ||a◦b|| ≤ ||a|| · ||b|| (ii) ||a2|| = ||a||2 (iii)
||a2|| ≤ ||a2 +b2||, for all a, b ∈ A. The important example of JB algebras are
self-adjoint parts of C∗-algebras endowed with the anticommutant product
a ◦ b = 1

2
(ab+ ba).

Let R be any algebra. Then Mn(R), the space of n× n matrices with coeffi-
cients in R, is also an algebra with the usual matrix product. The Hermitian,
or self-adjoint, part of Mn(R) will be denoted by H(R) and called a Jordan
matrix algebra. Jordan matrix algebras of our main concern to us will be
Hn(R), Hn(C), Hn(H) and Hn(O), where H and O is the algebra of quater-
nions or octonions, respectively.

LetA be a JB algebra. A is said to be monotone complete if each bounded
increasing net (aα) in A has a least upper bound a ∈ A. A bounded lin-
ear functional ρ on A is called normal if ρ(aα) → ρ(a) for each net (aα) as
above. A is said to be a JBW algebra if A is monotone complete a has a
separating set of positive normal bounded linear functionals. We call a set
of functionals separating if for any nonzero a ∈ A there is a functional ρ in
the set satisfying ρ(a) 6= 0.

Very important result in the theory of JBW algebras is that each JBW
algebra is unital. JBW algebra W (a) generated by an element a and I in a
JBW algebra M is associative.

Analogously, a projection in a JBW algebra is a self-adjoint idempotent.
Two projections p and q are said to be orthogonal if p ◦ q = 0.

A multiplication operator is defined by Tab = a ◦ b for all a, b ∈ A. Two
elements a and b in a Jordan algebra A are said to operator commute if the
operators Ta and Tb commute, i.e. if (a ◦ c) ◦ b = a ◦ (c ◦ b) for all c ∈ A. The
center of a Jordan algebra A is the set of all elements that operator-commute
with all elements in A. A symmetry in A is an operator s such that s2 = I.

Let A be a JBW algebra with the center Z. If p is a projection in A then
its central support c(p) is the smallest projection in Z majorizing p.

JBW algebras can be sorted out among different types just like in the
case of von Neumann algebras.

Define operator Ua,c by Ua,c(b) = {abc} and Us(a) = {sas} for some a, b, c
and s in a Jordan algebra.

Let M be a JBW algebra. If s ∈ M is a symmetry, then Us is an auto-
morphism of M . These automorphisms generate a group IntM , called the
group of inner automorphisms of M .
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Two projections p and q in M are called equivalent if there is a α ∈
IntM such that q = α(p). We then write p ∼ q. If α can be written as
α = Us1Us2 . . . Usn we write p ∼n q. If n = 1 we say p and q are exchanged by
a symmetry. In contrast to the equivalence of projections in a von Neumann
algebra, it holds that if p ∼ q then p⊥ ∼ q⊥.

A projection p ∈ M is called Abelian if Mp is associative; p is mod-
ular if the projection lattice [0, p] of Mp is modular. If I is modular, M
itself is called modular. The set of Abelian and modular projections are
IntM invariant, so we can define central projections eI and eiii in M by:
eI =

∨
{p ∈M : p is Abelian} and e⊥III =

∨
{p ∈ P : p ismodular}.

Now let eII = I − eI − eIII . M is said to be of Type I (resp. II, III) if
eI = I (resp. eII = I, eIII = I).

Theorem 4 Let M be a JBW algebra. Then M can be split uniquely into
a direct sum of parts of Type I, II and III, the different parts being char-
acterized as follows:

(i) M is of Type I if and only if there is an Abelian projection p ∈M with
c(p) = I.

(ii) M is of Type II if and only if there is a modular projection p ∈ M
with c(p) = I, and M contains no nonzero Abelian projection.

(iii) M is of Type III if and only if it contains no nonzero modular projec-
tion.

Proof can be found in [14].
Just like in the case of von Neumann algebras we can define a finer decom-
position. Any JBW algebra has a largest central modular projection. If this
is 0, M is called purely nonmodular ; if it is I, M is modular. We say M is
of type II1 if it is modular and is of type II; we say that M is of type II∞
if it is purely nonmodular and of type II. If M is of type III, it is purely
nonmodular.
indent We call two orthogonal projections p, q in Jordan algebra M strongly
connected if there exists v ∈ {pMq} such that v2 = p+ q.

Lemma 5 Let M be a JBW algebra with projection lattice P . Suppose M
has no direct summand of Type I. Then there is p ∈ P with p ∼1 p

⊥.

Proposition 6 Let M be a JBW algebra with projection lattice P . Suppose
M has no direct summand of Type I. Then there are pi ∈ P , i = 1, . . . , 4,
such that p1 + · · ·+ p4 = I, and pi ∼1 pj for all i, j.
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Let M be a JBW algebra and n a cardinal number. We say M is of Type
In if there is a family (pα)α∈J of Abelian projections such that c(pα) = I,∑

α∈J pα = I and cardJ = n. M is of Type I∞ if M is a direct sum of JBW
algebras of Type In with n infinite.

Theorem 7 Each JBW algebra of Type I has a unique decomposition

M = M1 ⊕M2 ⊕ · · · ⊕M∞,

where each Mn is either 0 or is a JBW algebra of Type In.

Proof can be found in [14].

Theorem 8 Let M be a JBW algebra with projection lattice P . Suppose
M has no direct summand of Type I. Then there is p ∈ P with p ∼1 p

⊥.

Proof can be found in [14].
Let M be a JBW factor of Type In, 3 ≤ n < ∞. Then M is isomorphic to
one of Hn(R), Hn(C), Hn(H) or Hn(O) in the case n = 3.

Proposition 9 Let M be a JBW algebra with projection lattice P , and let
J be an index set. Let p, q, pα, qα ∈ P , α ∈ J , satisfy p ⊥ q, p =

∑
α∈J pα,

q =
∑

α∈J qα and pα ∼1 qα for all α ∈ J . Then p ∼1 q.

Very significant role is played by so-called spin factors. Let B be a real
unital Jordan algebra. A spin system in B is a collection P of at least two
symmetries different from ±I such that s ◦ t = 0 whenever s 6= t in P . A
unital JB algebra generated as a JB algebra by a spin system is called spin
factor. For each cardinal number n ≥ 2 there is, up to isomorphism, a unique
spin system generated by a spin system of cardinality n. JBW algebra is a
JBW factor of Type I2 if and only if it is a spin factor.

Symmetric matrix algebra H2(R) is a spin factor. Basis for H2(R) is

I =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
,

where σ2
i = I, i = 1, 2 and σ1 ◦ σ2 = 0. These matrices are so-called Pauli

spin matrices.

2.4 Basic axioms of C∗-algebraic quantum me-

chanics

After having reviewed the theory of operator algebras, we will now summarize
basic axioms of C∗-algebraic quantum mechanics:
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(i) The set of all observables of a quantum system S is the self-adjoint
part of a C∗-algebra A.

(ii) The set of all states of a quantum system is the state space, denoted
by S(A), of the C∗-algebra A.

(iii) The value ρ(a), where ρ ∈ S(A) and a ∈ Asa is the expectation value
of an observable a on the condition that a system S is prepared in the
state ρ.

(iv) Evolution of a system S is given by specified class of morphisms of the
C∗-algebra A (unitary maps, automorphisms).

(v) Given independent quantum systems S1 and S2 represented by C∗-
algebras A and B, respectively, the smallest composite system contain-
ing S1 and S2 is given by the minimal tensor product A⊗min B.
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Chapter 3

Quantum history approach

In physics we often want to describe ”degree of interference” between ob-
servables a and b or correlation between random variables a and b. This can
be achieved by virtue of a bilinear form F (a, b). Coming to higher dimen-
sions let us suppose that the quantum system is represented by the algebra
B(H) , where H is a Hilbert space, and by a normal state ρ ∈ B(H)∗ with
the associated tracial operator tρ. Let pt1 , pt2 , . . . , ptn be a finite sequence of
projections labeled by a discrete set of time parameters {t1, t2, . . . , tn} that
represents a series of possible measurement outcomes. Such a sequence is
called the homogenous history of order n. In the Heisenberg picture it can
be seen as a development of the initial two-valued observable pt1 and the
projections pti depend on the Hamiltonian of the system

pti = ei(ti−t1)Hp1e
−i(ti−t1)H ,

where H is the Hamiltonian operator. The probability dρ(pt1 , pt2 , . . . , ptn) to
obtain the history pt1 , pt2 , . . . , ptn is given by Wigner formula

dρ(pt1 , pt2 , . . . , ptn) = ρ(pt1pt2 · · · ptnptn−1ptn−2 · · · pt1),

or, in a physically more popular form,

dρ(pt1 , pt2 , . . . , ptn) = tr(ptnptn−1 · · · pt1tρpt1pt2 · · · ptn),

which can be naturally associated with a multimeasure, dρ, with 2n argu-
ments

dρ(ht1 , ht2 , . . . , htn , kt1 , kt2 , . . . , ktn) = tr(ht1ht2 · · ·htntρkt1kt2 · · · ktn),

which represents the ”influence” between histories h = {h1, h2, . . . , hn} and
k = {k1, k2, . . . , kn}. Taking h = k we get the probability of obtaining the
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history h. The map dρ called the standard decoherence functional is a moti-
vation in multimeasures studies. While generalized Gleason Theorem estab-
lishes the one-to-one correspondence between bounded measures on projec-
tion lattices of von Neuman algebras and linear functional we may question
ourselves whether there exists a similar correspondence between functions
on products of projection lattices that are separately finitely additive and
multilinear maps on the products of the corresponding algebras.

In the following section we shall establish necessary mathematical appa-
ratus before proceeding further to decoherence functionals.

Definition 10 Let A1, A2, . . . , An be C∗-algebras with the projection struc-
tures P (A1), . . . , P (An), respectively. Let X be a Banach space. The map
m : P (A1)× P (A2)× · · · × P (An) 7→ X is called an X-valued multimeasure
(in short multimeasure) if m is separately finitely additive, meaning that, for
each j,

m(p1, . . . , pj−1, q1 + q2, pj+1, . . . , pn) =

= m(p1, . . . , pj−1, q1, pj+1, . . . , pn) +m(p1, . . . , pj−1, q2, pj+1, . . . , pn), (3.1)

where pi ∈ P (Ai), q1 and q2 are orthogonal projections in P (Aj). If X = C,
we call m the complex multimeasure. Completely additive and σ-additive
multimeasures are defined in the standard way as measures separately com-
pletely additive and σ-additive, respectively. In case when n = 2 we call the
multimeasure the bimeasure. Moreover, if A = A1 = A2 we say that m is a
bimeasure on A. A bimeasure m on A is said to be hermitian if

m(p, q) = m(q, p)

for all projections p, q ∈ P (A).

Definition 11 Let X,X1, X2, . . . , Xn be Banach spaces. Let F : X1×X2×
· · · × Xn 7→ X be an n-linear map. F is said to be bounded if there is a
constant C such that, for each xi ∈ Xi,

||F (x1, x2, . . . , xn)|| ≤ C||x1|| · ||x2|| · · · ||xn||.

A smallest constant C for which this inequality holds is said to be the norm
of F (in symbols ||F ||).

The next theorem gives an answer to our motivating question whether
there exists generalization of Gleason Theorem [11] to multimeasures.

Theorem 12 Let M1,M2, . . . ,Mn be von Neumann algebras, each hav-
ing no direct summand of Type I2. Suppose that m : P (M1) × P (M2) ×
· · · × P (Mn) 7→ X is a bounded X-valued multimeasure. There is a unique
bounded n-linear map F : M1 ×M2 × · · · ×Mn 7→ X which extends m.
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Proof can be found in [11].

Theorem 13 Let M1 and M2 be von Neumann algebras without any Type I2
direct summand and any finite-dimensional direct summand. Suppose that
m : P (M1) × P (M2) 7→ C is a completely additive bimeasure. Then m is
bounded. Furthermore, there exists a bounded linear form, F : M1 ×M2 7→
C, which extends m and, moreover, both F (x, ·) and F (·, y) are normal
functionals for all x ∈M1 and y ∈M2.

Proof can be found in [11].
The general quantum histories theory can be characterized by the space of

histories and space of decoherence functionals. The histories generalize the
time ordered strings of projections, while decoherence functionals describe
the probabilistic correlations between various histories.

Definition 14 Let M1,M2, . . . ,Mn be von Neumann algebras. A decoher-
ence functional (of order n) is a complex multimeasure

d : P (M1)× P (M2)× · · · × P (Mn)× P (M1)× P (M2)× · · · × P (Mn) 7→ C

such that

(i) d(p1, p2, . . . , pn, q1, q2, . . . , qn) = d(q1, q2, . . . , qn, p1, p2, . . . , pn, q1) for all
pi and qi in P (Mi) (hermiteanetness).

(ii) d(p1, p2, . . . , pn, p1, p2, . . . , pn) ≥ 0 for all pi ∈ P (Mi) (positivity).

(iii) d(I, I, . . . , I, I, . . . , I) = 1 (normalization).

The decoherence functional is called completely additive if it is a completely
additive multimeasure. If all algebras M1,M2, . . . ,Mn equal to the algebra
M , we say that d is the decoherence functional (of order n) on M .

Corollary 15 Let d : P (M1)× P (M2)× · · · × P (Mn)× P (M1)× P (M2)×
· · · × P (Mn) 7→ C be a bounded decoherence functional such that all von
Neumann algebras M1,M2, . . . ,Mn have no Type I2 direct summand. Then
there is a unique bounded multilinear form

F : M1 ×M2 × · · · ×Mn ×M1 ×M2 × · · · ×Mn 7→ C

which extends d.

The set of all homogenous histories of order n has a priori no structure
of propositional logic. However, we can identify each homogenous history
h = (h1, h2, . . . , hn) with the simple tensor h1 ⊗ h2 ⊗ · · · ⊗ hn in the n-fold
tensor product B(H)⊗ · · ·⊗B(H) which endows homogenous histories with
the structure of propositions. Therefore we can consider general history as
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the (general) projection in the lattice P
(
B(H)⊗ · · ·⊗B(H)

)
. Previously we

dealt with extending functionals from projection lattice of an algebra to the
whole algebra. In this connection a natural question arises whether also the
decoherence functional could be expressed in terms of the tensor product and
viewed as extended from homogenous histories to all general histories. The
following theorem states this is possible in finite dimensions.

Theorem 16 (Isham-Linden-Schreckenberg) LetH be a finite-dimensional
Hilbert space of dimension at least three. Let d be a bounded decoherence
functional of order n on B(H). Then there is a unique operator Xd on the
tensor product K ⊗ K, where K = H ⊗ H ⊗ · · · ⊗ H is the n-fold tensor
product such that

d(p1, p2, . . . , pn, q1, q2, . . . , qn) = tr
(
(p⊗ q)Xd

)
, (3.2)

where p = p1 ⊗ p2 ⊗ · · · ⊗ pn and q = q1 ⊗ q2 ⊗ · · · ⊗ qn.

Proof. By our assumption and the previous Theorem such bounded de-
coherence functional uniquely extends to a bounded multilinear form F :⊗2n

j=1H 7→ C. There exists unique linear form f on K ⊗alg K such that

d(p1, p2, . . . , pn, q1, q2, . . . , qn) = f(p1 ⊗ p2 ⊗ · · · ⊗ pn ⊗ q1 ⊗ q2 ⊗ · · · ⊗ qn)

for all pi, qi ∈ P (H). The fact that any linear form on finite-dimensional
Hilbert space is normal completes the proof.

The formula (3.2) is reffered to as the Isham-Linden-Schreckenberg rep-
resentation and can be viewed as an analog of Gleason Theorem (for more
details see [11]) to quantum histories in finite dimensions. Any bounded
decoherence functional in uniquely represented by a linear form on the cor-
responding algebraic tensor product. However, this form does not have to
be continuous, even if the decoherence functional is completely additive and
bounded. Example exhibiting this is in [11].

If µ is a completely additive probability measure on the projection lat-
tice of an infinite-dimensional Hilbert space H, then µ extends to a normal
functional which is described by the trace class operator on H. This repre-
sentation corresponds to a decomposition of µ into convex mixture of pure
states. The relation between completely additive measures and trace class
operators breaks down for completely additive bimeasures. It indicates the
different geometric structure of decoherence functionals. For details and ex-
amples, see [11].

It turns out that the boudedness of the corresponding linear form on
compact operators is necessary and sufficient for the existence of the Isham-
Linden-Schreckenberg representation.
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Now we shall use the following conventions. Let K(H) be the ideal of
compact operators on the Hilbert space H. The algebraic tensor product
K(H)⊗algK(H) will be viewed as subalgebra of B(H⊗H). By [11], pg. 220,
it can be proved that K(H)⊗K(H) = K(H⊗H).

Definition 17 We say that the decoherence functional d of order one on
B(H) is tensor bounded if the corresponding linear form fd on B(H)

⊗
alg B(H)

is bounded when restricted to K(H)
⊗

algK(H).

Theorem 18 Let H be a Hilbert space of dimension dim H ≥ 3. Let d be
a bounded decoherence functional of order one on B(H). Then d is tensor
bounded if, and only if, there exists a trace class operator Xd on H

⊗
H such

that
d(p, q) = tr

(
(p⊗ q)Xd

)
(3.3)

for all finite-dimensional projections p, q ∈ B(H).

Corollary 19 Let H be a Hilbert space with dim H ≥ 3. Let d be a
completely additive decoherence functional on B(H) of order one. There
exists a trace class operator Xd on H⊗H such that

d(p, q) = tr
(
(p⊗ q)Xd

)
for all projections p, q ∈ B(H) if, and only if, d is tensor bounded.

Proof of Theorem (18) and Corollary (19) can be found in [11].
Although completely additive decoherence functionals cannot in general

be described by the trace class operators, it can be in many important cases
computed from the formula (3.2). To formulate this fact we shall need the
following concept:

Definition 20 Let d be a decoherence functional on B(H) of order one with
the corresponding linear form fd on B(H) ⊗alg B(H). Let us say that d is
tracially bounded if

sup{|fd(pξ)| | ξ ∈ H ⊗alg H, ||ξ|| = 1} <∞ ,

where pξ denotes the projection of H ⊗ H onto the one-dimensional space
sp{ξ}.
Theorem 21 Let the decoherence functional d be of order one on the algebra
B(H), dim H ≥ 3. Let d be tracially bounded. Then there is a bounded
operator T on H⊗H such that

d(p, q) = tr
(
(p⊗ q)T

)
,

whenever p and q are finite-dimensional projections on H.
Furthermore, let d be completely additive. Then for all projections p, q ∈
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B(H) we have

d(p, q) =
∑
i

∑
j

tr
(
(pi ⊗ qj)T

)
, (3.4)

whenever p =
∑

i pi and q =
∑

j qj, where pi, qj are one-dimensional projec-
tions in H.

Proof can be found in [11].

3.1 Local operations and measurements

In this paragraph we shall show application of the multi-form Gleason The-
orem in quantum information theory. Let H1 ⊗ H2 ⊗ · · · ⊗ Hn be the ten-
sor product of Hilbert spaces with the set of all unit vectors denoted by∑

(H1,H2, . . . ,Hn) of the form x1 ⊗ x2 ⊗ · · · ⊗ xn, where xi ∈ Hi are unit
vectors.

A natural question in quantum measurement theory is whether the knowl-
edge of structure of probabilities associated to local measurements allows one
to determine uniquely the state of the whole system.

Let us represent probabilities on local measurements by the function

f :
∑

(H1,H2, . . . ,Hn) 7→ R+

with the property ∑
i∈I

f(ei) = w,

whenever (ei)i∈I is an orthonormal basis of H1 ⊗ H2 ⊗ · · · ⊗ Hn contained
in
∑

(H1,H2, . . . ,Hn). The function f is called unentangled frame function
with the weight w. Mathematical part of the local measurements is whether
unentangled frame function can be extended to the frame function on the
whole of H1 ⊗ H2 ⊗ · · · ⊗ Hn. The following proposition says that we can
always find a multimeasure representing an unentangled frame function.

Proposition 22 Let f :
∑

(H1,H2, . . . ,Hn) 7→ R+ be an unentangled frame
function. Then there is a completely additive bounded multimeasure m on
P (H1)× P (H2)× · · · × P (Hn) such that

f(x1 ⊗ · · · ⊗ xn) = m(p1, p2, . . . , pn),

whenever x1 ⊗ · · · ⊗ xn ∈
∑

(H1,H2, . . . ,Hn) and pi (i = 1, . . . , n) is the
projection with the range sp{xi} .

Proof. Can be found in [11].
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Theorem 23 Let H1, . . .Hn be Hilbert spaces of dimension at least three.
Let f :

∑
(H1, . . . ,Hn) 7→ R+ be an unentangled frame function such that

the corresponding multimeasure is tensor bounded. Then there is a trace
class operator X on B(H1, . . . ,Hn) such that

f(x1 ⊗ · · · ⊗ xn) = tr
(
(p1 ⊗ · · · ⊗ pn)X

)
,

for all unit vectors xi ∈ Hi and corresponding one-dimensional projections
pi, i = 1, . . . , n.

Proof can be found in [11].

Corollary 24 (Wallach Theorem) Let H1, . . .Hn be finite-dimensional
Hilbert spaces, each of dimension at least three. Let f :

∑
(H1, . . .Hn) 7→ R+

be an unentangled frame function. Then there exists a self-adjoint operator
T ∈ B(H1 ⊗ · · · ⊗Hn) such that whenever x1 ⊗ · · · ⊗ xn is in

∑
(H1, . . .Hn)

and pj is the projection of Hj onto the one-dimensional subspace generated
by xj, the following equality is in force:

f(x1 ⊗ x2 ⊗ · · · ⊗ xn) = tr
(
(p1 ⊗ p2 ⊗ · · · ⊗ pn)T

)
.
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Chapter 4

Hidden variables

4.1 Hidden Variables in von Neumann Alge-

bras

Definition 25 Let L be an orthomodular lattice. By a dispersion-free state
on L we mean a finitely additive probability measure on L with values in the
set {0, 1}.
Theorem 26 (Hamhalter, (1993)) The projection lattice P (M) of a von
Neumann algebra M which has neither a non-zero abelian nor a type I2 direct
summand admits no dispersion-free state.

The following proposition reduces the investigation of dispersion-free states
to simple matrix algebras instead of applying the Gleason Theorem for von
Neumann algebras of infinite dimension.

Theorem 27 Let M be a von Neumann algebra with no non-zero abelian
direct summand and no type I2 direct summand. The following statements
hold:

(i) Any subalgebra of M which is ∗-isomorphic to M2(C) is contained in a
subalgebra C ⊕D of M satisfying the following properties: C is either
zero or it is ∗-isomorphic to M4(C); D is either zero or it is a copy of
M2(C) contained in another subalgebra of M which is ∗-isomorphic to
M3(C).

(ii) M contains a unital subalgebra ∗-isomorphic to one of the following
matrix algebras: M2(C), M3(C), M2(C)⊕M3(C).

Statement (i) is summarized and statement (ii) proved in [11].
As a result of the previous theorem it is enough to prove the non-existence

of dispersion-free states on algebras M3(C) and M4(C).
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Definition 28 A Hidden space of a given quantum system is a set, Ω, with
a σ-field, A of subsets of Ω with the following properties: for each quantum
observable A and for each quantum state ρ there is an A-measurable function
fA : Ω 7→ R and a probability measure µρ on A, such that the following
conditions are fulfilled:

(i) For each Borel set B ⊂ R the probability that the value of an observable
A is in B equals µρ(f

−1
A (B)), provided that the system is in the state ρ.

(ii) (Function Principle) If A and B are observables such that B =
g(A), where g is a real Borel function, then fB = g ◦ fA.

Condition (ii) means preserving transformation rules for observables.

Theorem 29 ( Kochen-Specker ) Let B(H) be an algebra of bounded
operators on a separable Hilbert space H of dimension at least 3. There is
no σ-field (Ω,A) and a map a 7→ fa assigning to each self-adjoint element
a ∈ M an A-measurable real function fa on Ω such that fg(a) = g ◦ fa for
any real continuous function g on R.

In 2004, Döring proved that hidden space does not exist for any von
Neumann algebra without a type I2 and a non-zero abelian direct summand
that acts on a separable Hilbert space. This result can be extended to all
von Neumann algebras without abelian and a type I2 direct summand. The
following theorem cited from [12] tells us that only the validity of the Function
Principle is enough for excluding a hidden space without being necessary to
specify the set of states.

Theorem 30 Let M be a von Neumann algebra without a Type I2 direct
summand and with no non-zero abelian direct summand. There is no σ-field
(Ω,A) and a map a 7→ fa assigning to each self-adjoint element a ∈ M an
A-measurable real function fa on Ω such that fg(a) = g ◦ fa for any real
continuous function g on R.

Proof. We shall prove that existence of such σ-field (Ω,A) implies existence of
a dispersion-free state on P (M) which shall be in contradiction with Theorem
164.

Let (Ω,A) be the σ-field with the properties stated above. Fix ω ∈ Ω.
Let us consider the map s : Msa 7→ R, s(a) = fa(ω). If p ∈ P (M), then
p2 = p. Put m(x) = x2, we have that

fp(ω) = fp2(ω) = fm(p)(ω) = m
(
fp(ω)

)
= fp(ω)2 ,

hence s(p) ∈ {0, 1}.
Let us now take orthogonal non-zero projections p, q ∈M and put x = p+ 1

2
q.
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Let g, h be continuous real functions on R such that g(1) = h(1
2
) = 1 and

g(1
2
) = h(1) = 0. Since

g(x) = g
(
p+

1

2
q
)

= g(1)p+ g
(1

2

)
q ,

(the same holds analogously for h) we have that g(x) = p and h(x) = q.
Setting u = g + h and using the Function Principle we obtain

s(p+q) = s
(
g(x)+h(x)

)
= s
(
(g+h)(x)

)
= s
(
u(x)

)
= fu(x)(a) = u

(
fx(ω)

)
=

= g
(
fx(ω)

)
+h
(
fx(ω)

)
= fg(x)(ω)+fh(x)(ω) = s

(
g(x)

)
+s
(
h(x)

)
= s(p)+s(q).

Hence s is a finitely-additive dispersion-free measure on P (M). It remains
to show that s(I) = 1. It is a consequence of the fact that s(I) = fI(ω) = 1
for all ω ∈ Ω, where I = b(I) and b is a constant unit function on R. We
have showed that s induces a dispersion-free state on P (M), which is in
contradiction with Theorem (26).

The problem of hidden variables is solved for von Neumann algebras
without Type I2 or non-zero abelian direct summand. It turns out that
hidden variables do not exist in these type of algebras. In the case of C∗-
algebras we have the following theorem.

Theorem 31 (Hamhalter, (2004)) Let A be a simple infinite unital
C∗-algebra. Then A does not admit any dispersion-free quasi-state.

How does this theory apply to direct measurement of quantum ob-
servables? Measurement of quantum systems is always accompanied by an
error. Hence it is very strict to demand a dispersion-free state. It is more
natural to ask whether there is a hidden space on which the quantum states
would have smaller, or even better, arbitrarily small dispersion. The latter
is called the problem of approximate hidden variables and was introduced by
G. W. Mackey in 1968.

Definition 32 Let ρ be a state on the projection structure P (A) of a C∗-
algebra A. The overall dispersion, σ(ρ) of ρ is defined by

σ(ρ) = sup{ρ(p)− [ρ(p)]2 | p ∈ P (A)} . (4.1)

Note 33 By the previous definition σ(p) ∈ [0, 1
4
] for all p ∈ P (A) and

σ(p) = 0 iff ρ(p) ∈ {0, 1}, i.e. iff ρ is dispersion-free state.

Theorem 34 (Hamhalter, (2004)) Let A be a unital real rank-zero al-
gebra having no representation onto an abelian C∗-algebra. Then

σ(ρ) ≥ 2

9
, (4.2)

for any state ρ on A.
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Theorem (34) provides a global explanation of the nonexistence of hidden
variables in quantum theory. The hidden variable is defined as a state on an
operator algebra with zero dispersion. First, it was proved by von Neumann
that there is no normal dispersion free state on the algebra of all operators on
a Hilbert space of dimension at least two. The well known no-go theorem was
proved by Plymen to the effect that there is no dispersion free normal state
on a von Neumann algebra without central one-dimensional direct summand.
Then is was shown that there is no dispersion free state on a von Neumann
algebra without abelian part [9].

4.2 Hidden variables in JBW algebras

In this section we seek generalization of the results of hidden variables theory
to JBW algebras.

Theorem 35 Let M be a JBW algebra without associative and Type I2
direct summand. Then there is no finitely-additive dispersion-free state on
P (M).

Proof. Let M be a JBW algebra with the properties stated above. Suppose
that there exists finitely additive dispersion-free measure on P (M). Let us
decompose M as follows

M = z1M ⊕ z2M ,

where z1M is of type I modular part and z2M has no type I modular part.
Let ρ be a non-zero 0− 1 state on M .

1) Suppose ρ(z2) = 1. By Proposition (6) there are pairwise orthogonal
projections p1, . . . , p4 ∈ P (M) such that z2 = p1 + · · · + p4 and pi ∼1 pj
for all i, j ∈ {1, . . . , 4}. Hence these projections are contained in a subalge-
bra of isomorphic copy of algebra of matrices M4(R), which we denote by
{p1, . . . , p4} ⊆M4(R). Since the existence of non-zero 0− 1 state on algebra
of real symmetric matrices 4 × 4 is excluded, we have that ρ(a) = 0 for all
a ∈ M4(R). This property is hereditary to {p1, . . . , p4} ⊆ M4(R), thus ρ
must be identically equal zero, i.e. ρ(z2) = 0 which is a contradiction.

2) Now assume that M is of type I. By Theorem (7) M can be uniquely
decomposed in the way

M =
∞⊕
n=3

Mn ,

where Mn is either zero or type In, 3 ≤ n < ∞. Now let Mn be a direct
summand in the sum above. Mn is either zero or type In. If the latter
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is true then there are n orthogonal abelian projections qj,n ∼1 qk,n for all
j, k ∈ {1, . . . , n} such that for the unit In ∈Mn we have that

n∑
j=1

qj,n = In , 3 ≤ n <∞ .

Put k := [n
3
] being the whole part of n

3
; n = 3k + r, where r ∈ {0, 1, 2}

satisfies n ≡ r(mod 3). Now put

fn :=
k∑
j=1

qj,n , gn :=
2k∑

j=k+1

qj,n ,

hn :=
3k∑

j=2k+1

qj,n , un :=
n∑

j=3k+1

qj,n .

On employing Proposition (9) we obtain fn ∼1 gn ∼1 hn and un .1 hn. We
can write

In = fn + gn + hn + un .

Now put

f :=
∞∑
n=3

fn , g :=
∞∑
n=3

gn ,

h :=
∞∑
n=3

hn , u :=
∞∑
n=3

un .

By Proposition (9) h ∼1 g ∼1 f and u .1 h, such that h + g + f + u = I.
Now consider the following two possibilities:

(i) ρ(u) = 0, {h, g, f} ⊆ M3(R). If ρ(h + g + f) 6= 0, then ρ is non-zero
on M3(R), which is a contradiction.

(ii) ρ(u) = 1 and {h, g, f, u} ⊆M4(R), then u is contained in M4(R) thus
ρ(u) = 0 which is a contradiction again.

We have showed that if ρ is a 0−1 state on M , then it is identically zero,
proving the statement of the Theorem.

Theorem 36 Type I2 JBW algebras always admit 0− 1 state.

Proof. Let us denote by Uk a spin factor Uk = Hk ⊕ RI, where Hk is the
Hilbert space of dimension k ∈ N∪{∞} and I the identity operator. We shall
start the proof by investigating the explicit form of orthogonal projections
in Uk.

Let p ∈ Uk be a projection. Since Uk = Hk ⊕ RI, there exists a unique
pair (ξ, λI) ∈ Hk × RI such that p = ξ + λI. Projection is idempotent, i.e.
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ξ + λI = p = p2 = p ◦ p = (ξ + λI) ◦ (ξ + λI) =
= 2λξ + (< ξ, ξ > +λ2)I .

Solving the equation above we get

ξ(2λ− I) + (< ξ, ξ > +λ2 − λ)I = 0⇒ λ =
1

2
, ||ξ|| = 1

2
.

The vector ξ ∈ Hk such that ||ξ|| = 1
2

can be written in the form ξ =
1
2
x, where x ∈ Hk such that ||x|| = 1. Hence if p and q are two minimal

orthogonal projections in Uk with sum I then

p =
1

2
x+

1

2
I ,

q = −1

2
x+

1

2
I .

Define ρ : Uk 7→ R by

ρ(αx+ βI) = α + β ,

where x is the unit vector in Hk and α, β ∈ R. We will show that ρ is a
finitely-additive probability measure on Uk with values in the set {0, 1}:

(i) ρ(I) = ρ(0 + 1 · I) = 0 + 1 = 1,

(ii) ρ(0) = ρ(0 + 0 · I) = 0 + 0 = 0,

(iii) Let n ∈ N and {aj}j∈{1,...,n} ⊂ Uk be set of pairwise orthogonal pro-
jections. It is evident that only two of them are non-zero, for instance
a1 := p, a2 := q and ak = 0 for k ∈ {3, . . . , n}. If p, q are non-zero
orthogonal projections in Uk then p + q = I. Hence ρ

(∑n
j=1 aj

)
=

ρ(p+ q) = ρ(I) = 1 = 1 + 0 + · · ·+ 0 = ρ(p) + ρ(q) + ρ(0) + · · ·+ ρ(0) =∑n
j=1 ρ(aj).

(iv) Positivity of ρ follows from the fact that ρ takes values only in the set
{0, 1}.

To complete the proof we shall need to extend the results to whole Type
I2 algebra with the help of the fact that Type I2 algebra is isomorphic to
direct sum of C(X,Uk) [see section 6.3 in [14]]. Fix x ∈ X and define f, g ∈
C(X,Uk) to be minimal orthogonal projections with sum I, i.e. f(x)◦g(x) =
(f ◦ g)(x) = 0 and (f + g)(x) = f(x) + g(x) = I. We have that

1 = ρ(I) = ρ((f + g)(x)) = ρ(f(x) + g(x)) = ρ(f(x)) + ρ(g(x)) ,

ρ(0) = ρ((f ◦ g)(x)) = ρ(f(x) ◦ g(x)) = 0 .

Thus ρ is a dispersion-free state on C(X,Uk). The proof is complete.
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Corollary 37 Let A ⊂ B(H) be JBW algebra without associative and Type
I2 direct summand. There is no σ-field (Ω,D) and a map a 7→ fa assigning
to each self-adjoint element a ∈ A a D-measurable real function fa on Ω such
that fg(a) = g ◦ fa for real quadratic polynomial g on R.

Proof. The proof is analogous to the proof in Theorem (30), i.e. assuming
such field exists we find dispersion-free state on A which is a contradiction.

Theorem 38 M2(C) admits the Function principle.

Proof. We have already proved that algebra M2(C) admits 0−1 state (recall
that it is a finitely-additive probability measure with values in the set {0, 1},
hence it is bounded). Such state extends uniquely to a 0−1 quasi-functional
on M2(C). Denote by Ms.a. a self-adjoint part of M2(C) and by S the sepa-
rating set of 0 − 1 quasi-functionals on M2(C) defined on orthogonal pairs.
For each A ∈ Ms.a. define map FA(µ) : S 7→ R by FA(µ) = µ(A). Since
A ∈Ms.a., by virtue of spectral decomposition we have that A = λ1p1 +λ2p2,
where p1, p2 are orthogonal idempotents with sum I. Let f ∈ C(R). Matrix
function then has the form f(A) = f(λ1)p1 + f(λ2)p2. Hence

Ff(A)(µ) = µ(f(A)) = µ(f(λ1)p1 + f(λ2)p2) = 1f(λ1)µ(p1) + f(λ2)µ(p2) ,

f ◦ FA(µ) = f(µ(A)) = f(µ(λ1p1 + λ2p2)) = f(λ1µ(p1) + λ2µ(p2)) .

Since µ ∈ S and p1, p2 have the properties stated above, it is either

µ(p1) = 1 and µ(p2) = 0

or vice versa. Without loss of generality we shall assume that the first is
true. Then evidently

Ff(A)(µ) = f(λ1) = f ◦ FA(µ) ,

completing the proof.

Note 39 Theorem (36) can be viewed as a result of Theorem (38). Indeed,
the Function principle implies the existence of non-zero 0− 1 state.

1Recall that quasi-functional is additive with respect to commuting elements. Indeed,
p1, p2 being orthogonal projections with sum I commute with each other,

p ◦ q = q ◦ p = pq = qp = 0 .
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4.3 Dispersions of states on Jordan algebras

In this section we shall generalize results on overall dispersion of states to Jor-
dan structure. Let A be a Jordan algebra with projective structure P(A).
Overall dispersion of state φ is defined by σ(φ) := sup{φ(p) − φ(p)2; p ∈
P (A)}. In our previous work we have shown that JBW algebra with no
associative and type I2 direct summand admits no dispersion-free state. Re-
cently problem of ε-hidden variables has been investigated on von Neumann
algebras. The results indicate that lower bound of overall dispersion cannot
be improved in general, i.e. σ(φ) ≥ 2/9. It excludes hypothesis of states pos-
sessing an arbitrarily small dispersion. In course of proving similar lemmas
and theorems on Jordan structure we have to keep in mind that some type
In JBW algebras (namely spin factors and H3(O) ) are very different from
those of von Neumann algebras. The proof of Theorem (43) has been broken
into several lemmas bigger transparency.

Lemma 40 Let A be a type In JBW algebra with n ≥ 2. Then there are
no multiplicative states on A .

Proof. A is of type In then there are n pairwise orthogonal projections such
that pi ∼1 pj for all i, j ∈ {1, . . . , n} summing to I, i.e. I =

∑n
j=1 pj. Now

suppose that φ is a multiplicative state on A . Recall that p1 ∼1 p2 if there
is a symmetry s ∈ A such that Us(p1) = {sp1s} = p2. φ is multiplicative, i.e.
φ(ab) = φ(a)φ(b) for all a, b ∈ A. From φ(ab) = φ(a)φ(b) = φ(b)φ(a) = φ(ba)
we see that φ is tracial so φ(p2) = φ({sp1s}) = φ(sp1s) = φ(p1s

2) = φ(p1).
By induction we get that φ(p1) = φ(p2) = · · · = φ(pn). If φ(p1) = 0 then
φ(I) = φ

(∑n
j=1 pj

)
=
∑n

j=1 φ(pj) = 0. If φ(p1) = 1 then φ(I) = n ≥ 2 which
is a contradiction with φ(I) = 1 completing the proof.

Lemma 41 Let A be a JBW algebra admitting a projection p with

p ∼1 p
⊥. (4.3)

Then, for any state ϕ on A there is a projection q in A such that ϕ(q) = 1/2.
Hence, σ(ϕ) = 1/4 for any state ϕ on A .

Proof. If p ∼1 p
⊥ then the projections p and p⊥ induce a matrix units system

and so a unital subalgebra isomorphic to H2(R) . Since by Lemma (40)
there is no multiplicative state on H2(R) , we can find for a fixed state φ
a one-dimensional projection e such that 0 < φ(e) < 1. Let us assume
that φ(e) ≤ 1/2 ≤ φ(I − e). We will show that there is a continuous path
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{f(t); t ∈ [0, 1]} connecting e and I − e. Without loss of generality we may
assume that

e =

(
0 0
0 1

)
, I− e =

(
1 0
0 0

)
.

Then

f(t) =

(
t

√
t− t2√

t− t2 1− t

)
is a path in P

(
H2(R)

)
with f(0) = e and f(1) = I− e. Therefore φ

(
f(t0)

)
=

1/2 for some t0 ∈ [0, 1]. The proof is complete.

Lemma 42 Let A be a JBW algebra without non-zero associative direct
summand. Then there is a unital subalgebra A of A such that

A = zA⊕ (I− z)A, (4.4)

where z ∈ Z(A), zA is either zero or a copy of H2(R) and (I− z)A is either
zero or a copy of H3(R).

Proof. It suffices to find a JBW subalgebra of A such that A is of the form⊕
α∈I

Mα, (4.5)

where each Mα is isomorphic either to H2(R) or to H3(R) . Let p be a central
projection such that pA is of finite type I and (I− p)A has no nonzero type
I finite direct summand. If I− p 6= 0, then by (8) I− p can be halved and we
can find a subalgebra of (I− p)A isomorphic to H2(R) . pA is either zero or
a direct sum of type In algebras, where 2 ≤ n <∞ for each n. Each type In
JBW algebra is isomorphic to Hn(R) for some algebra R. Since every integer
n ≥ 2 can be written in the form

n = 2k + 3l,

where k, l are non-negative integers, we can find in each Mn a subalgebra of
the form

Mn,1 ⊕Mn,2,

where Mn,1 is either zero or isomorphic to H2(C) and Mn,2 is by [14], 6.4.1 a
direct sum

M1 ⊕M2 ⊕M3 ⊕M4,

such that factor representation of each Mj is onto either zero JBW factor
or JBW factor isomorphic to H(Rj), where R1 = R, R2 = C, R3 = H and
R4 = O. Since algebras C,H and O all live in R, the algebras H3(O),H3(H)
and H3(C) contain H3(R). Thus, we have found a unital subalgebra of the
form (4.5) completing the proof.
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Theorem 43 Let A be a JBW algebra with no associative direct summand,
then

σ(φ) ≥ 2/9 (4.6)

for any state ϕ on A .

Proof. By Lemma (42) there is a subalgebra A of A of the form A = zA⊕(I−
z)A with the properties stated above. Let φ be a state on A . By Proposition
2.2 in [9] there is a projection p ∈ (I − z)A such that φ(p) ∈ [(1/3)φ(I −
z), (2/3)φ(I−z)]. By taking projection q ∈ zA with φ(q) = 1/2φ(z) (Lemma
(41)) we obtain

1

3
≤ φ(p+ q) ≤ 2

3
, (4.7)

which implies
σ(φ) ≥ 2/9.

Theorem (43) says that states with zero dispersion do not exist in JBW
algebras, excluding the hidden variables.
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Chapter 5

Bell’s Inequalities

5.1 General Setting

We shall assume that the possible measurements at site A are described by
an order-unit space (A,≥, I), abbreviated by A, which is a vector space A
ordered by a convex cone A+ ≡ {a ∈ A | a ≤ 0} with a distinguished ele-
ment I ∈ A+ whose multiplies eventually dominate every other element of
A+. Preparations correspond to positive, normalized linear functionals on
A, called (statistical) states on A. In general setting a measurement with
finitely many possible outcomes i ∈ I is formalized by a finite family {ai}i∈I
with ai ∈ A+ and

∑
i∈I ai = I. A preparation is represented by a statisti-

cal state ω on A, and ω(ai) is the probability for obtaining the result i in
an experiment with preparing and measuring devices represented by ω and
{ai}i∈I , respectively.

A set of correlation experiments is described by a structure called corre-
lation duality : a correlation duality consists of two order-unit spaces A and
B together with a bilinear functional p̂ : A× B 7→ R such that a ∈ A, b ∈ B
and a, b ≥ 0 imply p̂(a, b) ≥ 0 and p̂(I, I) = 1.

The value p̂(ai, bj) represents the probability for obtaining both the re-
sult i at site A and result j at site B for measuring devices described by
{ai}i∈I ⊂ A+ and {bj}j∈J ⊂ B+. In C∗-algebraic setting A and B are typ-
ically self-adjoint parts of elementwise commuting subalgebras of a larger
algebra C and p̂ is given by a state ω on C by p̂(a, b) ≡ ω(ab).

The probability for a certain outcome at B does not depend on measur-
ing devices chosen at A. Indeed, consider two measuring devices {ai}i∈I and
{a′j}j∈J at A. Then by definition I =

∑
i ai =

∑
j a
′
j, so that for any b ∈ B,∑

i p̂(ai, b) =
∑

j p̂(a
′
j, b) = p̂(I, b). This assumption in derivation of Bell’s

inequalities is called locality (which is not to be confused with locality in the
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sense of relativistic causality).
We shall say that (a1, a2, b1, b2) is admissible quadruple if a1, a2 ∈ A,

b2, b2 ∈ B and −IA ≤ ai ≤ IA, i = 1, 2 and −IB ≤ bj ≤ IB, j = 1, 2.

Theorem 44 Let (p̂,A,B) be a correlation duality, let ω ∈ A∗ be the state
ω(a) ≡ p̂(a, I), and let (a1, a2, b1, b2) be an admissible quadruple. Setting

χ =
1

2
|p̂(a1, b1 + b2) + p̂(a2, b1 − b2)|,

one has the following:

(1) χ ≤ 2.

(2) (a) If A is the Hermitian part of a C∗-algebra, then χ ≤
√

2.

(b) If χ =
√

2 in this case, the following identities hold for all a ∈ A
and i = 1, 2: ω([ai, a]) = 0, ω(a2

i a) = ω(a), ω
(
(a1a2 +a2a1)a

)
= 0.

(3) If any one of the following condition holds, then χ ≤ 1:

(a) A is classical.

(b) ω is pure on A.

(c) There are states ξα ∈ A∗, ηα ∈ B∗ and positive reals λα such that
for all a ∈ A, b ∈ B, p̂(a, b) =

∑
λαξα(a)ηα(a).

Proof can be found in [21].
By (3c) Bell’s inequalities are satisfied even for quantum systems

whenever the correlations are produced by mechanism which can be sim-
ulated by random generator (producing the outcome α with probability λ).

Now let ω be a faithful state on A defined as in the preceeding theorem.
If ω(a2

i a) = ω(a) for all a ∈ A, then ω
(
(a2
i − I)a

)
= 0 for all a ∈ A together

with faithfulness of ω imply a2
i = I. Analogously if ω

(
(a1a2 + a2a1)a

)
= 0

for all a ∈ A with faithfulness of ω imply a1a2 + a2a1 = 0. Hence if χ =
√

2
when A is the Hermitian part of a C∗-algebra, the corresponding elements
a1, a2 and a3 = −[a1, a2] form a realization of the Pauli spin matrices in A.
Equation ω(a2

i a) = ω(a) then implies that the state ω restricted to the 2× 2
matrix algebra M2(C) spanned by I, a1, a2, a3 is the normalized trace.

Since classical, quantum mechanical and quantum field theoretical mod-
els are all subsumed in the C∗-algebraic framework, part (2a) informs us that
χ =
√

2 is really the maximal possible correlation. The bound χ ≤
√

2 con-
strains ”local” quantum theoretical descriptions in the same way that Bell’s
inequality ξ ≤ 1 constrains local classical descriptions.
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Definition 45 The maximal Bell correlation β(p̂,A,B) in a correlation du-
ality (p̂,A,B) is

β(p̂,A,B) ≡ 1

2
sup|p̂(a1, b1) + p̂(a1, b2)+

+p̂(a2, b1)− p̂(a2, b2)|,
where the supremum is taken over all ai ∈ A and bj ∈ B with −IA ≤ ai ≤ IA
and −IB ≤ bi ≤ IB.

If β(p̂,A,B) > 1 we shall say that Bell’s inequalities are violated in
(p̂,A,B). In C∗-algebraic setting we shall say that the inequalities are max-
imally violated if β(p̂,A,B) =

√
2.

5.2 Quantum entanglement in von Neumann

algebras

Now let us consider a composite system consisting of two subsystems whose
observables are given by self-adjoint elements of the von Neumann algebras
M,N ⊆ B(H), respectively. If these two subsystems are in a certain case
independent, then the algebras M and N mutually commute, i.e. M ⊂ N

′
.

The algebra of the composite system would be M ∨N = (M ∪N)”. A state
φ on M ∨N is a product state if

φ(ab) = φ(a)φ(b) ,

for all a ∈ M and b ∈ N . In many applications of quantum theory the
algebra of observables of the composite system may be considered to be of
the form M ⊗ N ⊂ B(H) ⊗ B(H) ' B(H ⊗H), where M is identified with
M ⊗ I and N with I⊗M . A normal state φ on M ⊗N is called separable1

if it is a if it is in the norm closure of the mixture of normal product states.
Otherwise φ is said to be entangled.

We say that von Neumann algebras M,N satisfy Schlieder property if for
all a ∈M and b ∈ N ab = 0 implies that a = 0 or b = 0.

Definition 46 Let M,N ⊂ B(H) be von Neumann algebras such that M ⊂
N
′
. The maximal Bell correlation of the pair (M,N) in the state φ ∈ B(H)∗

is

β(φ,M,N) ≡ sup
1

2
φ
(
a1(b1 + b2) + a2(b1 − b2)

)
,

where the supremum is taken over all self-adjoint ai ∈ M and bj ∈ N ,
i, j = 1, 2, with norm less than or equal to 1.

1also termed decomposable, classically correlated or unentangled by many authors
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Proposition 47 Every state on M ⊗N is separable if and only if either M
or N is abelian.

Proof can be found in [19].
This implies that if both systems are quantum, i.e. both algebras are non-
commutative, then there exist entangled states of the composite system.

Proposition 48 Let M,N ⊂ B(H) be mutually commuting von Neumann
algebras. If either M or N is abelian, then β(φ,M,N) = 1 for all states
φ ∈ B(H)∗.

Proof can be found in [21].

Proposition 49 If M,N ⊂ B(H) are nonabelian, mutually commuting von
Neumann algebras satisfying the Schlieder property, then there exists a nor-
mal state φ ∈ B(H)∗ such that β(φ,M,N) =

√
2.

Proof can be found in [15].

5.3 Maximal Violation

In JBW algebraic setting we have the following modification: we say that
JBW algebras A and B satisfy the Schlieder property if 0 = a ◦ b for a ∈ A
and b ∈ B implies either a = 0 or b = 0.

Theorem 50 Let A1, . . . ,An be operator-commuting JB subalgebras of a
JB algebra A. The following conditions are equivalent:

(i) If ai ∈ Ai, i = 1, . . . , n are nonzero elements, then the product a1 ◦ · · ·◦
an is a nonzero element in A.

(ii) Any n-tuple of states ϕ1 ∈ A∗1, ϕ2 ∈ A∗2, . . . , ϕn ∈ A∗n has a common
extention to A.

Proof can be found in [13].

Theorem 51 Let A and B be mutually operator-commuting non-associative
JBW algebras in a JBW algebra C satisfying the Schlieder property. Then
there is a state ϕ on C and self-adjoint contractions a1, a2 ∈ A, b1, b2 ∈ B,
such that ∣∣ϕ(1

2

(
a1 ◦ (b1 + b2) + a2 ◦ (b1 − b2)

))∣∣ =
√

2.

Proof. Since A and B are non-associative, by structural theory (see 5.2 in
[14]) they both contain a copy of H2(R). Let us consider an algebra H2(R)
generated by unit and σ1 and σ2, the Pauli spin matrices (non-trivial sym-
metries).
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By Theorem (50) states ϕ1,2 on A, B respectively, have a common exten-
sion ϕ to C. In other words, A and B generate subalgebra isomorphic to
H2(R)⊗H2(R) = H4(R).

Let us take projections

p = 1/2(I + σ1) ,

q = 1/2(I + σ2) .

Then ||pq − qp|| = 1/2. In a similar way we can choose projections r, s ∈ B
with ||rs− sr|| = 1/2. Now set a1 = 2p−I, a2 = 2q−I, b1 = 2r−I, b2 = 2s−I
and z = a1 ⊗ (b1 + b2) + a2 ⊗ (b1 − b2). Then

z2 = 4I⊗ I + 16[p, q]⊗ [s, r].

By the tensor product property, ||[p, q]⊗ [s, r]|| = 1/4 and ‖z2‖ = 4 + 4 = 8.
Therefore, we can find a norm-one functional ψ on C such that ψ([p, q] ⊗
[s, r]) = 1/4. Consequently,

ψ(z2) = 4 + 16
1

4
= 8 ,

hence 8 = |ψ(z2)| ≤ ||z||2, yielding ||z|| ≥ 2
√

2. Again, we can find a normal
state ϕ such that |ϕ(z)| = ||z|| ≥ 2

√
2. Moreover, |ϕ(z)|2 ≤ |ϕ(z2)| = 8.

Then 2
√

2 ≤ |ϕ(z)| ≤ 2
√

2, hence |ϕ(z)| = 2
√

2 and |ϕ(1
2
z)| =

√
2. The

proof is complete.

In this section we shall generalize the Bell’s inequalities for more gen-
eral correlation duality. Let X denote normed space, Q(·, ·) a sesquilinear
positive form on X with ||Q|| = 1. Let ||x||Q ≡ Q(x, x)1/2 be a seminorm on
X and

BQ ≡ supx,y,a,b∈X1

1

2
|Q(x, a+ b) +Q(y, a− b)| ,

where X1 is a unit ball in X.

Lemma 52 In any indefinite inner product space

||u+ v||+ ||u− v|| ≤ 2
√

2 ,

whenever ||u||, ||v|| ≤ 1.

Proof.
||u+ v||+ ||u− v|| =

=
√
||u||2 + ||v||2 + 2Re < u, v >+

√
||u||2 + ||v||2 − 2Re < u, v > ≤
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≤
√

2 + 2Re < u, v >+
√

2− 2Re < u, v > .

Set t = Re < u, v >. It is clear that t ∈ [−1, 1]. Consider function ω(t) =√
2 + 2t+

√
2− 2t on [−1, 1]. ω is even and decreasing on [0, 1]. The following

estimation holds 2 ≤ ω(t) ≤ 2
√

2 on [0, 1]. Hence ‖u + v‖ + ‖u − v‖ ≤
2
√

2 .

Theorem 53 With all the notation and conditions above, BQ ≤
√

2.

Proof. On employing the Schwarz inequality we obtain

|Q(x, a+ b)| ≤ Q(x, x)1/2Q(a+ b, a+ b)1/2 ≤ ||x||Q · ||a+ b||Q ≤ ||a+ b||Q .

Similarly
|Q(y, a− b)| ≤ ||a− b||Q .

As ||a||Q, ||b||Q ≤ 1 by the previous Lemma we have that

BQ ≤
1

2

(
||a+ b||Q + ||a− b||Q

)
≤ 1

2
2
√

2 =
√

2 .

Let us now consider the following example of saturation. Let X = B(H),
ξ ∈ H with ||ξ|| = 1 and Q(x, y) =< xξ, yξ >. Fix symmetries a, b ∈ X such
that ||aξ|| = ||bξ|| = 1 and < aξ, bξ >= 0.

Take symmetries x, y ∈ B(H) with

xξ =
(a+ b)ξ

||(a+ b)ξ||

yξ =
(a− b)ξ
||(a− b)ξ||

·

Then

1

2
|Q(x, a+ b) +Q(y, a− b)| = 1

2

∣∣〈xξ, (a+ b)ξ > + < yξ, (a− b)ξ
〉∣∣ =

=
1

2

∣∣∣〈 (a+ b)ξ

‖(a+ b)ξ‖
, (a+ b)ξ

〉
+
〈 (a− b)ξ
‖(a− b)ξ‖

, (a− b)ξ
〉∣∣∣ =

=
1

2

(
‖aξ + bξ‖+ ‖aξ − bξ‖

)
=

1

2
2
√

2 =
√

2 ,

hence
√

2 is the best estimation.
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Chapter 6

Conclusion

In the section 4.3 we succeeded to prove that in JBW algebras with no
nonzero associative direct summand there is no dispersion-free state, ex-
cluding the Hidden variables theory. Moreover, the lower bound for overall
dispersion cannot be improved, excluding hypothesis of states carrying an
arbitrarily small dispersion.

In the final section 5.3 we proved that in mutually operator-commuting
non-associative JBW algebras satisfying Schlieder property, there exist state
and self-adjoint contractions such that Bell’s inequality is maximally vio-
lated. Next we generalized Bell’s inequality for more general correlation
duality concluding that the bound

√
2 is the best estimation.
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