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podklady (literaturu, software atd.) uvedené v přiloženém seznamu.
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1 Introduction

Nuclear physics has witnessed in its long history many theoretical and phenomenological
successes. Nevertheless, one of its basic ingredients, the nucleon-nucleon (NN) potential, is
still not fully understood. While several successful models of the NN interaction exist,
they are burdened by inherent purely phenomenological input and their connection to other
hadronic processes and to the fundamental theory of the strong interaction is not sufficiently
clear.
In the last decade, the studies of the hadronic interactions, in particular of the NN

potential, gained a new momentum from developments of an effective field theory (EFT)
approach. Very recently the NN potentials derived in this framework reached the level
of agreement with the data, comparable to the best phenomenological ones. Still, some
problems both in formulation and in actual implementation of this technique in derivation
of nuclear forces persist. This thesis is our first step into this promising field.
This thesis can be divided in two parts: in the first part we – after short historical

introduction – summarize our understanding of the current status of modeling the NN po-
tentials (Chapter 2) and of the EFT approach (Chapter 3). Chapters 4 and 5 presents the
technique (quantum mechanical formulation of the effective approach) which we learned in
detail, including numerical implementation and tests.
Chapter 2 contains the historical introduction, after which more detailed description of

the high-precision NN potentials follows.
In Chapter 3 explanation of the EFT begins. First, the basic principles are introduced

and translated into the field-theoretical language. The description of the NN sector follows,
it is explained why the NN interaction can be described in the EFT framework. Important
part of this approach are regularization and counting rules, they are discussed in more detail.
This Chapter is closed by the renormalization group equation approach applied to the NN
sector.
Chapters 4 and 5 present the so-called effective theory of potential. This theory is a

direct application of the effective approach to quantum mechanical framework. Chapter 4
introduces theoretical formulation of such approach, Chapter 5 presents numerical results.
Our conclusions are formulated in Chapter 6, some details of numerics are relegated to

Appendices.
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2 Historical overview

The story of the nuclear forces is a long and rich one, here we just remind the most
important milestones and concepts, focusing on those related to the topic of this thesis.
Much more comprehensive review can be found in [1,2].
The history of nuclear physics starts in 1911 by Rutherford, who first claimed the ex-

istence of the atomic nucleus as an explanation of the measured scattering behavior of
alpha-particles on atoms. Further experiments followed, resulting in conclusion that nuclei
are composed of nucleons: protons and neutrons. A natural question has arisen: What is
the force holding them together?
In 1938 Yukawa put forward an idea that this force is mediated by an exchange of

massive scalar particle. The non-zero mass of this particle ensures the finite range of the
nuclear force, in agreement with experiment. It appeared that the natural candidate for
the mediator of the nuclear force is a pion, experimentally observed in 1947. Taking into
account that the pions are in fact pseudoscalars, one gets very promising contribution to
the NN force already on the quasiclassical level from the exchange of a single pion (so-called
one-pion-exchange (OPE) potential). However, it was known from the beginning that the
pion-nucleon interaction (then considered to be fundamental) is strong, hence it was not
clear how to systematically build up the full NN force from the corresponding Lagrangian.
In 1951 Taketani, Nakamura and Sasaki [3] introduced into this game an important

organizing principle, based on the realization that the range of the particular force corre-
sponding to an exchange of n pions is inversely proportional to the effective exchanged mass
(roughly nmπ). Since the NN potential was already known to be strongly repulsive on very
short distances, the multipion exchanges are suppressed and this justified the idea that only
a finite number of contributions has to be considered, despite the strong coupling constant
being much bigger than unity. Thus, they could divide the domain of the nuclear force into
three regions:

i. a long-range (r ≥ 2 fm), where the OPE potential dominates;
ii. an intermediate range, where exchanges of two and three pions prevail;
iii. the region of repulsive core (r ≤ 1 fm) for which no simple mechanism was assumed and
which was to be treated purely phenomenologically.

The next natural step was then to try to calculate the first important corrections to the
OPE potential stemming from the two-pion exchange and test how well do they describe
the intermediate range NN interaction. This attempt failed, since the authors required the
underlying pion-nucleon field theory to be renormalizable, i.e., the pseudoscalar form of the
pion-nucleon interaction had to be employed. These days we know that such interaction
does not conform with the chiral symmetry. Nevertheless, the universal scheme which orders
contributions to the total nuclear force according to their range survived and became an
important part of the effective framework, described below.
Discovery of pion and nucleon resonances and a gradual realization that hadrons are com-

posite particles opened a door for semi-phenomenological model building. The Yukawa’s
idea was extended to an exchange of other massive bosons. Various heavier vector and
(pseudo)scalar mesons (mostly two- and three-pion resonances) were included and their con-
tributions to different spin/isospin components of the NN potential were analyzed. The
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short-range behavior was regularized by phenomenological form factors, their somewhat ar-
bitrary functional form was usually constrained so that the potential could be easily treated
in a coordinate representation. In late 1960’s and in 1970’s this approach resulted in suc-
cessful description of the NN data by one-boson-exchange (OBE) potentials [4,5,6]. These
potentials typically include just one meson with a given set of quantum numbers (parity,
spin and isospin), with a mass between the pion mass and 1 GeV . This means that these
exchanges most likely simulate all possible interactions in a given channel, rather than a
single exchange of the observed meson/resonance. In some channels the corresponding con-
tributions are rather well approximated by the exchange of single experimentally observed
particle (e.g., ρ meson) with the appropriate mass and coupling constants, while for other
channels (e.g., in that with an scalar-isoscalar exchange, represented by a fictitious σ-meson)
an acceptably narrow resonance cannot be clearly identified.
The OBE picture was extended to two- and more-meson exchanges by the Paris and Bonn

groups. The Paris group [7] developed potential in which they incorporated the dispersion
relations to calculate the 2π-exchange. Results were complemented by the π and ω exchange.
The short-range part of the NN interaction was treated as an energy-dependent repulsive
square-shaped cut-off.
The Bonn group [6,8] analyzed multiple exchanges of pions and heavy mesons, together

with contributions from nucleon resonances in intermediate states. The particular attention
was payed to (partial) cancelations between certain (groups of) diagrams, the practical
conclusion was partial justification of the OBE philosophy and families of non-relativistic
and relativistic “Bonn” OBE potentials (in the coordinate and/or momentum representation)
were developed, which fitted the data almost as well as the full Bonn potential.
In the meantime the fundamental theory of the strong interaction, the quantum chromo-

dynamics (QCD), was established. In low and intermediate energy regions, i.e., in a realm of
the hadronic physics, QCD is realized non-perturbatively and the direct QCD calculations
of relevant hadronic observables are as yet not available. Several QCD-inspired approaches
were applied also to the problem of the NN interaction, e.g., the constituent quark mod-
els [9], bag [10] or soliton models [11]. Such models typically succeed in explanation and
semi-quantitative description of the short-range repulsive core, but longer-range features of
the interaction, in particular the intermediate range attraction, have to be introduced via
additional dynamical mechanism (e.g., meson-quark couplings), more or less by hands.

2.1 High-precision models of the NN interaction

Historically, the best models of 1980’s were able to fit the data with the accuracy
χ2/datum ∼ 2 or more. In 1993 the Nijmegen group [12] published the phase shift analysis
for NN scattering up to 350 MeV with χ2/datum ∼ 1.0. This precise analysis caused a birth
of a new generation of realistic NN models called high-precision potentials. In chronological
order they are

1. Nijmegen Nijm-I, Nijm-II and Reid93 potentials [13];
2. Argonne V18 potential [14];
3. CD-Bonn potential [15].

All these potentials are inspired by the meson-exchange picture, in particular, all of them
include the OPE part. They are also all charge-dependent, as required by the pp and np data.
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The main differences among them are in meson exchanges explicitly included by respective
groups and in parts of the force which are described completely phenomenologically. Also in
the OBE components various approximations are made, in particular, to enable the Fourier
transform of the corresponding Feynman amplitudes the non-relativistic reduction (resulting
in the local approximation) is often employed.
The models Nijm-I and Nijm-II are based on the Nijmegen78 OBE potential [5]. Nijm-II

uses the local approximation for all OBE amplitudes, while Nijm-I keeps some terms non-
local. The Reid93 and V18 do not use meson exchanges for the intermediate and short-range
parts of the potentials and describe them purely phenomenologically. The V18 potential
employs the functions of the Wood-Saxon type, while Reid93 uses local Yukawa functions of
multiples of the pion mass.
Unlike other models, the CD-Bonn employs the full nonlocal Feynman amplitudes for

the OBE potentials. Apart from the pion, the physical vector mesons ρ(769) and ω(783)
and less important δ and η exchanges, two fictitious scalar-isoscalar σ-mesons are used.
All these models need 40-50 parameters to fit the data with the same accuracy of

χ2/datum ∼ 1.0. However, to achieve such a good fit even the OBE models (CD-Bonn,
NijmI and NijmII) had to adjust some coupling constants and/or cut-off parameters indi-
vidually for various partial waves.
Since all these potentials are essentially phase-equivalent (and fitted to the deuteron

binding energy), any difference between them can show up only when the NN system is either
probed by external probes (typically photons or electrons) or embedded in larger nucleus.
Ideally, calculating the 3N scattering, spectra of the lightest nuclei and their e.m. form
factors and photo-/electro-disintegration would allow to distinguish between high-precision
potentials. To accomplish this in practise some additional ingredients are necessary, both
on the experimental and theoretical side. First of all, high precision data (in particular
on sensitive polarization observables) are required; unfortunately not enough of them is
available neither for the 3N scattering nor for the e.m. observables. As for the theory, the
3N forces and e.m. currents have to be constructed, fully consistent with particular model of
the NN interaction. Although considerable progress in this direction was made in last two
decades (see e.g. reviews [16]), this work is still in progress.
To sum it up, the current model description of the NN interaction, based on the meson-

exchange picture with semi-phenomenological adjustments at the short-range can fit very
successfully the NN data below pion production threshold. Extension of the underlying
ideas to the 3N force and e.m. and weak nuclear currents is, in principle, also phenomenolog-
ically successful, but not yet as conclusive: neither of the approaches described above could
be excluded and neither can claim a full success in describing all (somewhat scarce) available
data. More important, it is rather difficult to deduce from these models some unambigu-
ous information on related aspects of hadronic dynamics, e.g., on the importance of various
physical (heavy) mesons and/or nucleon resonances, on their coupling constants, on whether
it is adequate to include them as stable particles etc. It is also difficult to relate assump-
tions and the phenomenological input of these models to the underlying fundamental theory,
the QCD. Even the important symmetries of the QCD – the approximate isospin symme-
try and the approximate spontaneously-broken chiral symmetry – are reflected only purely
phenomenologically by adopting the experimental values of the meson masses and coupling
constants, considering the phenomenological mixing of heavier mesons and recognizing the
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leading role of the pion as the lightest meson.
At the same time, it is firmly established these days that the chiral symmetry of the QCD

is realized in the hadronic world in the Nambu-Goldstone mode, which explains the low mass
of the pions (identified with the pseudo-Goldstone bosons of this broken symmetry), while
the typical mass scale for all other (non-strange) hadrons is roughly 1 GeV . The important
dynamical role of the Nambu-Goldstone chiral symmetry was realized already in 1960’s before
the birth of the QCD and elaborated within the framework of the current algebra, leading
to a number of predictions on processes involving “soft” pions. The current theoretical
approach, which adopts and extends these dynamical ideas and allows to systematically
explore corrections to soft-pion predictions, is the Chiral perturbation theory (ChPT) [17,18].
It is a field-theoretical formulation of the low-energy pion and pion-nucleon dynamics in the
framework of an effective theory, which absorbs the short-range effects into contact counter-
terms and defines the systematic perturbative expansion in terms of pion momenta. This
approach is a basis of modern theoretical model-independent investigations [19] of the NN
interaction (among many other processes in this energy domain) and will be reviewed in
some detail in the next Chapter.
Before turning to the effective theory approach let us for completeness briefly mention a

current state of direct calculations of the NN interaction using the lattice simulations [20].
The lattice simulations of these days cannot yet include the full dynamics of light quarks on
the large enough lattice. Therefore, interactions of two heavy-light mesons are studied [21]
and it is believed that this system will exhibit a similar dynamical features as the NN system
(one can investigate, e.g., a role of the quark exchange). Clearly, significant improvement is
still needed to extract the NN potential from the lattice.
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3 Effective field theory

This Chapter introduces the effective field theory following reviews [22,23,24]. First,
we explain what is meant by the effective theory and exemplify it on a case of a current
source. The generalization into the field-theoretical language follows. Then we describe the
NN sector and show why it is possible to describe it in terms of the effective theory. This
concept is then defined more exactly, in terms of effective Lagrangians. Implementation of
various regularization schemes is described and, finally, renormalization group equation is
introduced as an universal tool to treat some problems that the effective field theory faces
in the NN sector.
The effective theory is a general method to deal with a physical system in which different

scales exist. What does it mean? Imagine a system with two separate scales, described by
an underlying theory, which in turn can be roughly divided into two parts according to the
scale it affects. Let us assume that we are interested in some process related to the first
scale. Then we build up a description that includes explicitly only those parts of the theory
which are connected to this scale, the remaining part connected with the second scale will
be included indirectly through some representative terms. These terms are constrained only
by predictions for the physical process at the first scale. There is no further restriction on
their form, they are not required to converge to the true second-scale theory. This approach
is helpful if the theory connected with the second scale is difficult to solve or not completely
understood. Very rough analogy from mathematics is approximation of a well-behaved
function by its Taylor expansion in a vicinity of some point: close to this point both the
original function and its Taylor polynomial give the same results, so the polynomial can be
used as a substitute for the full, more complicated, function.
Another, physical, example is from a classical electrodynamics. Let us consider some

complicated current source J(r, t) of the size d and try to describe only the part of the
radiation it emits with wavelengths λ � d. For this purpose it is sufficient and suitable to
mimic the source by a sum of point-like multipole currents (E1, M1, etc), usually just a
few leading terms suffice to get an accurate approximation. This is exactly in a spirit of
the effective theory. There are two scales in a problem, first one connected with size of the
current source (d), the second one corresponding to the radiated wavelength (λ).

3.1 Field theoretical language
Explanation of the effective theory above is rough and heuristic. In the example of

multipole expansion the effective approach serves as the tool for simplifying one particular
problem. The language of the field theory enables us to use it in more universal way. Effective
description of one particular process (more exactly, particular values of coefficients of the
effective theory, analogous to values of multipole moments) can be used with the help of the
Lagrangian formalism in all related processes.
Consider a field theory described by the Lagrangian Lth written in terms of some el-

ementary fields Ψ. Suppose further that this theory describes well experiments in certain
region of energy, the S-matrix elements can be calculated from the path integral

Z =

∫

DΨei
∫

Lth(Ψ) . (3.1)
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Let us now consider processes below some scale Λ. The states with momenta larger than
Λ cannot be directly produced, so the elementary fields can be split into two parts according
to whether their momenta are higher or lower than the scale Λ: Ψ → Ψh +Ψl. Integrating
over the faster component one gets

Z =

∫

DΨl e
i
∫

Leff (Ψl) , (3.2)

in which Leff stands for the effective Lagrangian that is in D spacetime dimensions defined
as

∫

dDLeff(Ψl) = −i ln
∫

DΨhe
i
∫

Lth(Ψh,Ψl) =

∫

dDx
∑

i

gi(Λ)Oi(Ψl) , (3.3)

where the operators Oi consist of the slowly-varying fields Ψl, because Ψh were integrated
out.
Hence, the two main properties of Oi are: First, these operators are local, they contain

only those fields that are placed at the same spacetime point. Second, they contain the arbi-
trary number of field derivatives. If the splitting is done carefully, the effective Lagrangian
has the same symmetries as the original one (this is not true for the case of anomalous sym-
metries). If the original symmetry is spontaneously broken, the symmetry in the effective
Lagrangian will be realized in a non-linear way.
The only information about fast dynamics in the effective Lagrangian is through the

coefficients gi. Their values depend on the cut-off, in accordance with the renormalization
group equation, hence they are called “running coupling constants”. The observables have
to be independent on the cut-off.
The effective theory approach is particularly suitable for theories with at least one char-

acteristic mass scale M . In such cases, the effective degrees of freedom for Λ ≤M expressed
by Ψl are significantly different from the ones from the original theory represented by Ψ.
The simplest example of the existence of the mass scale is when it corresponds to a

mass of a physical particle. Production and decay of this particle do not concern the EFT
because they involve large momenta. Effects of a virtual propagation of this particle are of
short-range and are included only indirectly, i.e., into gi’s. If the underlying theory implies
that the particle is not stable, then it does not appear at all at low energies and there is no
need to include it. Another, a little bit more complicated common case is when the scale
corresponds to some scalar field acquiring a non-vanishing vacuum expectation value and
breaking a continuous global internal symmetry. Examples can be found in [25].
Let us now say a few words about the relation between the underlying and effective

theories. If we know and can solve the underlying theory, we are (in principle) able to
calculate effective theory up to any given precision. On the other hand, the Weinberg
“theorem” [26] defines the role of the basic consistency principles and of the symmetries to
be respected in the effective theory approach:
In conciliating quantum mechanics and Lorentz invariance in a way consistent with
unitarity, analyticity and cluster decomposition, we are led to quantum field theory; the
most general Lagrangian with some assumed symmetries will then produce the most
general S-matrix incorporating those general principles and symmetries, without any
other physical content. This theorem has not been proven in general, however, there is
not any known counter-example.
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The EFT is a modern realization of the S-matrix approach, the only thing it can do
is to relate observables. A field theory based on the Lagrangian formalism is the simplest
way to do it, since we have given only some degrees of freedom and some symmetries. The
theory can be regulated by implementing the cut-off’s, that exclude some unwanted degrees
of freedom. A renormalization proceeds as usual, however, we do not want to do away with
infinities, i.e., to take the limit Λ → ∞. The effective theory does not want to stay as
the theory for all (especially high) energies. Nevertheless, the regularization in EFT has to
remove details of the cut-off procedure from physical amplitudes. Only observables, which
are extracted from on-shell amplitudes, are unambiguous in the EFT.
As stated above, not all possible terms are allowed, since we are restricted by the sym-

metries of the underlying theory. What symmetries do we have to take into account at low
energies? We have to include the space-time symmetries, the system might also posses some
internal symmetries. Although the symmetries restrict the theory, there is still an infinite
number of terms. In order to keep the orderliness, the so-called power counting has to be
introduced. It orders the contributions in a theory independent way. It is not obvious to
have the situation in which the infinite number of coupling constants will be all small enough
to make the coupling-constant expansion to converge. But there exists one possible small
quantity which enable us to order the theory: a typical momentum Q.

3.2 NN sector

After this general discussion we move to the main topic of this review: effective theories
in the NN sector. To employ the general procedure described above we have to proceed in
steps as follows:

1. identify relevant degrees of freedom and symmetries,
2. formulate most general dynamics consistent with them,
3. define a systematic way of calculating the observables, usually as perturbative expansion
in terms of some small parameter, complemented by the “power counting” scheme.

In the hadronic and nuclear sector, at least two scales can be recognized. One of them
is connected with the characteristic QCD scale λQCD ∼ 1 GeV. We observe that the
masses of nucleon, of its excitations (e.g, ∆-isobar), and of most of the mesons are clustered
around this scale. The second scale is roughly λnucl ∼ 100 MeV. This scale is connected
with the reciprocal size of light nuclei, with the Fermi momentum of an equilibrium nuclear
matter and also with the pion mass. From these two scales, the third one can be built,
λ2nucl/λQCD ∼ 10 MeV, that is connected with nuclear binding energies.
These scales gives us a picture of nuclei of non-relativistic nucleons with typical momenta

Q ∼ λnucl and energies E ∼ Q2/λQCD. This implies, that a nucleon in a nucleus cannot see
below ≤ 1/Q. In general, particles that live for short times and distances can be treated
as pointlike. This is very significant: a large number of states, like massive hadrons, can
be treated through local interactions. Only those particles which propagate over distances
∼ 1/Q has to be explicitly included into the theory as additional degrees of freedom. Fur-
ther, the effective low-energy theory should posses the same symmetries as the principal
theory, QCD. Unfortunately, there is still an infinite number of local interaction terms. If
we want to keep our approach systematic, we have to find, how to order it. The parameters,
characterizing the interaction, need not be small, thus the most useful possibility is to make
an expansion in a small parameter Q.

9
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First, let us examine, what happens in the simplest, low-energy regime, where Q < λnucl.
In this case the nucleon momenta are so small, that all interactions can be described as local.
However, a non-trivial complication occurs in the s-wave channels of the NN system. At
low momenta, the scattering amplitude can be for both isospin channels (I=0 and I=1)
described via the effective range expansion. The dimensional analysis of these parameters
shows, that all but the first two of them (i.e., all except the scattering length and radius)
scale with powers of λ−1

nucl. However, the scattering lengths are large, hence there exists still
another smaller mass scale ℵ ∼ 1/a [27]. Values of these new scales are ℵ3S1 ∼ 40 MeV
and ℵ1S0 ∼ 8 MeV. For simplicity let us take an average ℵ ∼ 30 MeV [22]. The existence
of these scales is connected to appearance of shallow bound states with binding energies
∼ ℵ2/λQCD � λ2nucl/λQCD. In the singlet

1S0 channel this shallow bound state is virtual, in
the triplet 3S1 channel it is, of course, the deuteron.
It might seem that the EFT in the two-nucleon sector in this energy range is more or

less a simple extension of the work of Bethe and Peierls [28] from 1930’s. However, the EFT
treatment enables us to extend this approach to processes with more nucleons and to other
hadronic processes.
If momenta are increased so that Q ∼ λnuc, it is not advantageous anymore to treat

pions as heavy particles. They enter into the game as the explicit degrees of freedom. The
EFT in this energy region, the Chiral perturbation theory, has been successfully applied to
none- and one-nucleon systems.
The use of the effective field theory as a technique to solve nuclear problems starts

with Weinberg’s seminal papers [29]. Weinberg proposed to use the power counting rules
known from the chiral perturbation theory directly to n-nucleon potential rather than to the
S-matrix. Only n-nucleon irreducible graphs should be included into the effective poten-
tial. The resulting effective potential can be inserted into the Lippmann-Schwinger equation
or into the Schrödinger equation and unknown coupling constants has to be fitted to the
experimental data.
The EFT for the NN scattering built in this way differs in a fundamental way from

the EFT used for calculating processes like ππ scattering in the χPT. In both cases, terms
in the Lagrangian are ordered in the same way. However, for the ππ-like processes, the
operator expansion in the effective Lagrangian maps into a power series in terms of k/M
in the scattering amplitude. It can be proven, that the direct mapping from the effective
Lagrangian to the S-matrix is systematic. For the NN problem the mapping from the
effective Lagrangian to the effective potential applies, which is then iterated to all orders.
In such a case, a question arises about the existence of a systematic power counting for the
scattering amplitude (the T-matrix).
We will now write down the first terms of the most general effective Lagrangian relevant

for derivation of the NN interaction and satisfying the chiral symmetry [30]

L = N†(iD0 + ~D2/2M)N +
f 2

8
Tr∂µΣ

†∂µΣ+
f 2m2π
2
Tr(Σ + Σ†)

− 1
2
CS(N

†N)2 − 1
2
CT (N

†~σN)2 + · · ·
(3.4)

where Dµ is a chiral covariant derivative and Σ is the exponential of isotriplet of pions

10
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Σ = exp

(

2i

f
U

)

, U =

(

π0/
√
2 π+

π− −π0/
√
2

)

, (3.5)

and f = 132 MeV is the pion decay constant. The second line of the Lagrangian (3.4)
contains only the purely-nucleonic contact terms. When the pion field is “frozen” the NN
system is described with the help of only such terms. This is a situation we are considering
in most of the discussion below, in particular the effective theory of the potential of the
second part of the thesis is relevant just for this situation. For somewhat higher energies the
pion degrees of freedom have to be included explicitly and the NN potential is built in the
framework of the pion-nucleon chiral perturbation theory.

3.3 Power counting

The effective field theories rely on the existence of a separation scales, which distinguish
between the low-energy physics and the short-distance physics. This makes it possible to
systematically expand any observable in powers of Q/Λ0, where the Q represents a generic
low-energy scale and the Λ0 is a typical scale of the underlying physics. The effective
Hamiltonian or Lagrangian used for calculations of these observables can be arranged in
a similar way. This expansion is useful, if the separation of scales is wide enough to enable
the expansion to converge rapidly.
Power counting generally depends on a number of low-energy scales. Loop diagrams are

of the same or higher order compared to the terms they are constructed of. Briefly said, power
counting tells us, what to compute first. It enables us to perform calculations systematically:
if we want to compute observables up to some order in the expansion coefficients, we need
to involve into the effective theory only terms up to this considered order.
There are two different power counting schemes used in the NN sector, they are explained

in more detailed below in the context of the renormalization group equation (RGE). Here
we just briefly summarize their main features.

3.3.1 Weinberg power counting

Applying the Lagrangian described above to the NN scattering generates an infinite
number of Feynman diagrams. However, Weinberg showed [29] that there exists a systematic
expansion in terms of (Q/Λχ)

ν, where Q denotes a momentum or pion mass, Λχ ≈ 1GeV is
the chiral symmetry breaking scale and ν ≥ 0. This has become known as chiral perturbation
theory (χPT); it was applied before in the zero- and one-nucleon sectors [16, 17]. We will
see below, that the Weinberg power counting in the s-channel for NN system corresponds to
an expansion around the trivial fixed point.

3.3.2 KSW power counting

When the interaction is strong a new low-energy scale can appear, which is generated
by non-perturbative dynamics. An important example of this behavior is again the NN
scattering with the unnaturally large scattering length in the s-wave channel. In such a case
one has to sum up certain terms in the theory to all orders. This leads to a different counting
scheme, often called Kaplan, Savage and Wise power counting (KSW) [31]. The KSW scheme
corresponds to an expansion around the non-trivial fixed point of the renormalization group
equation.
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3.4 Regularization

We will restrict ourselves in the following only to the NN scattering in the 1S0 channel
for momenta p� mπ. Pions are above this scale and can be integrated out from the theory.
The only remaining degrees of freedom are nucleon fields. Hence, the effective Lagrangian
for the s-channel in the low-energy regime can be written as

Ls = N
†i∂tN −N† ∇2

2M
N − 1

2
CS(N

†N)2 − 1
2
C2(N

†∇2N)(N†N) +HC + · · · . (3.6)

The Lagrangian above leads to an expansion of the potential in the form

Veff = C0 + C2(k
2 + k′2) + C4(k

4 + k′4) + C ′
4k
2k′2 + · · · . (3.7)

The Georgi-Manohar naive dimensional analysis identifies the “naturalness” of the coeffi-
cients: C2n ∼ m−2n−2

π . The potential (3.7), iterated via the Lippmann-Schwinger equation
(LSE)

T (k′, k;E) = V (k′, k) +

∫

d3q

(2π)3
V (k′, q)

1

E − q2

M
+ iε

T (q, k;E) , (3.8)

has to be truncated at some finite order of k/mπ and k
′/mπ, where according to the condition

k, k′ � mπ the neglected terms are small. To get the two-nucleon quasi-bound state at the
experimentally observed “unnaturally low” energy, one has to tune up the coefficients keeping
them “natural”.
When the potential is truncated at some finite order, infinities arise. The question is,

whether all divergent terms can be regularized and renormalized in such a way, that momenta
inside the loops are well below mπ.
We will remind now, how various regularization schemes work for the system defined

above. The cut-off regularization [23, 24], the dimensional regularization with minimal
subtraction [24] and, finally, the dimensional regularization with power-law divergence sub-
traction [31] will be considered.

3.4.1 Cut-off regularization

The idea of this scheme is to introduce the sharp momentum cut-off β, above which the
new unknown physics occurs. All loops are then evaluated with momentum integrals up
to β. The excluded part of physics has to be compensated for. These excluded modes are
highly virtual, thus they can be replaced by a sequence of contact terms. For instance, if
the cut-off is placed well below the mass Θ of some exchange quantum, the corresponding
potential

VΘ(k,k
′) =

g2Θ
(k− k′)2 +Θ2 , (3.9)

can be for the momenta below the cut-off replaced by a contact interaction.
Let us place the cut-off below the pion mass β < mπ. The only possible degrees of

freedom are then the nucleons with momenta below β. All higher-momenta states are in-
tegrated out. Corresponding effective potential includes form factors, that sharply cut the
momentum

12
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Veff (p, p
′) =

[

C0 + C2(p
2 + p′2) + · · ·

]

θ(β − p)θ(β − p′) , (3.10)

where θ is the well-known step function. After the renormalization, resulting coefficients will
depend on β.
The equation (3.10) is the infinite series, for real calculations it has to be truncated at

some finite order. This causes the cut-off dependence of the scattering amplitude. This
unwanted behavior can be canceled order-by-order by including higher order terms.
In what follows, (3.10) is put up to the second order, thus only two coefficients C0 and

C2 survive. The LSE with such potential can be solved [23], one gets the inverse of the
on-shell scattering amplitude:

1

T (p)
=

(C2I3 − 1)2
C + C22I5 + p

2C2(2− C2I3)
− I , (3.11)

where

In = −M
∫

d3q

(2π)3
qn−3 , (3.12)

and

I = −M
∫

d3q

(2π)3
1

p2 − q2 + iε

= I1 −
iMp

4π
+Mp2P

∫

dq

2π2
1

p2 − q2
.

(3.13)

All integrals have upper bound equal to cut-off β, p =
√
ME stands for the on-shell mo-

mentum. P means the principal value of the integral.
After renormalization up to O(p4), one can identify the inverse of the scattering ampli-

tude with the effective range expansion

1

T (p)
= −M
4π

(

−1
a
+
1

2
rep
2 + · · ·

)

, (3.14)

which yields the following set of equations for the coefficients C0 and C2:

M

4πa
=
(C2I3 − 1)2
C0 + C22I5

− I1 ,

Mre

8π
=

(

M

4πa
+ I1

)2
C2(2− C2I3)

(C2I3 − 1)2
+

M

2π2β
.

(3.15)

For fixed β these equations can be solved, the coefficients C0 and C2 will, of course, depend
on β.
This dependence of the coefficients on the cut-off β can be determined [23] from the

on-shell K-matrix:

K(p) = K(p, p;E) =
N(p)

N(p)A0Mβ + (1 + C2A1Mβ3)2
, (3.16)

where the function in the numerator is

13
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N(p) = C0 + C
2
2A2Mβ5 + p2C2(2 + C2A1Mβ3) . (3.17)

Ai are dimensionless integrals [23] that are positive and finite for β → ∞.
In the limit β → ∞ this term has to be finite, thus the coefficients have an asymptotic

behavior:

C0 ∼
1

Mβ
, C2 ∼

1

Mβ3
. (3.18)

This scale dependence for C0 is the same as that proposed by Weinberg [29].
This behavior does not arise for natural a, i.e., if a ∼ 1/mπ, β � mπ. In such a case,

the leading behavior of the coefficients is different

C0 ∼
1

Mmπ
, C2 ∼

1

Mm2πβ
. (3.19)

In this natural case all loop effects from C2 are suppressed by at least (β/mπ)
2. Therefore,

for β < mπ the non-perturbative treatment is not necessary, the cut-off scheme with β < mπ

gives for natural coefficients a perturbative EFT, where loop diagrams are consistently sup-
pressed. When the perturbative calculation are performed, regularization scheme becomes
immaterial and renormalization can be done.
On the other hand, for unnatural case one gets from (3.18)

C2
C0

∼ 1

β2
. (3.20)

The leading terms in (3.16) cancel out, thus the finite contribution comes from the subleading
behavior. Keeping the analytical dependence of the coefficients on the cut-off, one gets

C0 =
α0
Mβ

+
γ0
β2
, C2 =

α2
Mβ3

+
γ2
β4
, (3.21)

where α0,2 and γ0,2 are appropriate constants, which have to be tuned to physical values. The
K-matrix gives for such parameterization the finite scattering length, however, it possesses
no explicit energy or momentum dependence, thus it leads to zero effective range. This
is related to the fact, that a Hermitean potential of the range R put into the Schrödinger
equation results in an effective range constrained by [32]:

re ≤ 2
(

R− R2

a
+
R3

a2

)

. (3.22)

The limit β → ∞ forces the effective range to go to zero. In the coordinate representation it
corresponds to replacing the short-range potential by the expansion in the delta functions.
To produce the positive effective range, one can introduce dibaryon fields [33] or make

the K-matrix energy-dependent. The energy dependence of the result can appear through
the linear energy dependence of the sub-leading coefficients γi (a non-zero effective range can
be obtained without explicit energy dependence of C’s, but it turns out to be negative [34]).
An energy dependent γ0 leads to the energy appearing in the potential with a coefficient
of the order ∼ 1/β2, while the leading momentum-dependence from the C2 has coefficient
∼ 1/β3. This results in the absence of a systematic power counting.
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It can be shown, that in the limit of infinite cut-off, the terms of different orders in
the potential expansion contribute to the same order in the expansion of the K-matrix.
Weinberg’s power counting breaks down for such regularization scheme.
A naive possibility to treat the problem of the breakdown of the power counting is to

keep the cut-off β finite. This leads to meaningful results only in natural systems, where
a ∼ re. Keeping the cut-off β � 1/re, one gets the proper scattering length without any
fine tuning of the coefficients.
In unnatural systems, like for the NN scattering, where a � re, this does not hold and

a systematic power counting cannot be obtained. However, this approach is still useful for
analyzing the low-energy NN scattering in terms of only few parameters [35]. The second
part of this work deals with numerical examples of such approach.

3.4.2 Dimensional regularization with minimal subtraction

Another traditional regularization scheme is the dimensional regularization with a min-
imal subtraction scheme (MS). This regularization scheme is commonly adopted in field
theories, since it respects chiral and gauge symmetries.
The equation for the scattering amplitude (3.11) holds for any regularization scheme,

only the integrals Ii are defined in a different way. In DR with MS all power-law divergences
vanish, hence I1 = I2 = I3 = 0. The on-shell amplitude has a form

1

TMS(p)
=

1

CMS
0 + 2CMS

2 p2
+
iMp

4π
. (3.23)

Renormalization leads to

CMS
0 =

4πa

M
, CMS

2 =
πa2re

M
. (3.24)

As a consequence, K-matrix is given by the first Born approximation

K(k′, k;E) = V (k′, k;E) . (3.25)

The problem for systems with shallow bound states is, that the on-shell K-matrix varies
rapidly with the energy. Then, the low-momentum expansion of K (and of the potential)
is valid only for p <

√

2/are, which for unnaturally large a means a very narrow region.
Although the DR with MS is systematic, it is not useful for the s-wave NN scattering because
of its narrow range of validity.

3.4.3 Dimensional regularization with power-law divergence sub-
traction

Alternative renormalization scheme to the DR with MS is the DR with a power-law
divergence subtraction (PDS), proposed by Kaplan, Savage and Wise [31]. In such a scheme,
the loop integrals similar to (3.12) are redefined in D spacetime dimension
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In(E) =
M

(2π)D−1

(µ

2

)4−D

P
∫

q2n

p2 − q2
dD−1q

= − M

(2
√
π)D−1

(µ/2)4−D

Γ
(

D−1
2

) P
∞
∫

0

dx
x(D+2n−3)/2

x− p2

= − Mp2n

(2
√
π)D−1

(µ/2)4−D

Γ
(

D−1
2

) <
[

(−p2)(D−3)/2
]

Γ

(

D + 2n− 3
2

)

Γ

(

3− 2n−D

2

)

,

(3.26)
where µ is an arbitrary scale.
The last Γ function has a pole for D = 3 and any n. This is a signal of the logarithmic

divergence in three dimensions or a linear one in four dimensions. Contrary to DR with MS,
for which all Ii = 0, the PDS scheme keeps the first term non-vanishing, while the remaining
ones are still zero. This additional terms has to be canceled by the extra counterterm with
the same pole [23, 31].
The approach above gives the on-shell K-matrix

K(p, p;E) =

(

1

C0 + 2p2C2
+ A0Mµ

)−1

, (3.27)

yielding the scattering length

1

a
=
4π

M

(

1

C0
+ A0Mµ

)

. (3.28)

From this it follows, that the PDS can yield an unnaturally large scattering length
without requiring C0 to be unnaturally small. As a result, the scale µ� 1/a can be chosen.
The scale dependence of C0,2 reads

C0 ∼
1

Mµ
, C2 ∼

re

Mµ2
. (3.29)

If one chooses the scale µ to be of the same order as the momenta of the processes considered
µ ∼ p and much less than the scale of the new physics µ� 1/re, then C0 has to be treated
to all orders, while C2 contribution is suppressed by pre. Higher terms in the potential are
suppressed in the same way, i.e., by powers of pre. Thus the PDS gives the systematic power
counting, which is different from the one proposed by Weinberg. The linearly divergent
terms have the same coefficient in all loop integrals up to the power of p2. Powers of energy,
that multiply integrals, and powers of momentum inside integrals, contribute in the same
way, thus there is no distinction between them in the potential, as is expected for a scheme
with systematic power counting.

3.5 A renormalization group equation approach

3.5.1 Introduction

The renormalization group equation (Wilson’s continuous or the “exact” renormalization
group) enables us to study the scaling behavior of systems in a wide range of areas of physics.
There is a number of papers [23,35] employing it for studies of the power counting in effective
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field theories. In this section we try to summarize their results for the case of the s-wave
NN scattering.
To formulate the RG equation, once first needs to renormalize and regularize the theory.

In what follows the momentum cut-off regularization is used, i.e., |k| < Λ. Its value has
to be chosen so that it is above all low-energy scales and below the scales of the unknown
high-energy physics. Else the exact value of Λ is arbitrary and the observables are required
to be Λ-independent. All the physics above Λ has been “integrated out” and all its effects
are included into the coupling constants of the effective field theory, which are Λ-dependent.
Finally, we have to rescale all dimensioned quantities in units of Λ. Variation of coupling
constants in the rescaled theory with Λ and their flow is then described by a first-order
differential equation, the renormalization group equation.
When the system has a clear separation of scales, the rescaled coupling constants become

independent of Λ in the limit of Λ→ 0. In such a limit, more and more physics is integrated
out of the theory. In a RG language, the theory flows towards infra-red fixed points. If we
are close to a fixed point, the deviations from it scale as a powers of cut-off. Since rescaling
means that each low-energy scale present in the potential adds one power of Λ, we can define
the power counting for our EFT.
The perturbations around a fixed point are classified according to sign of the powers ν

of the cut-off. The first possibility with ν > 0 is known as an “irrelevant” perturbation.
Appropriate flow is towards the fixed point in the limit Λ → 0. The second case is a
perturbation with ν = 0, called “marginal”. This type is well-known from the conventional
renormalizable field theories. It is responsible for logarithmic flow with Λ. The last third
case is a “relevant” perturbation with ν < 0. It causes a flow away from the fixed point in
the limit Λ → 0. We say, that the fixed point is stable, if all perturbations around a fixed
point are irrelevant. On the other hand, a fixed point is unstable, if there are one or more
relevant perturbations.
In what follows we describe two infra-red fixed points: the trivial one and the non-trivial

one. The expansion around each of them leads to its own power counting rules. After the
pure short-range potential, the presence of additional long-range part (assumed to be known)
will be also discussed.

3.5.2 RG treatment for short-range forces

Here we review, how to build up a RG equation for the two-body scattering caused by
short-range forces.
The starting point is the Lippmann-Schwinger equation (LSE) for the scattering of two

particles of the mass M by a potential V (k′, k; p)

T (k′, k; p) = V (k′, k; p) +
M

2π2

∫

dq q2
V (k′, q; p)T (q, k; p)

p2 − q2 + iε
, (3.30)

where T (k′, k; p) is the off-shell T-matrix, k and k′ are relative momenta and p is the on-
shell momentum corresponding to the center of mass energy: p ≡

√
ME. In this section, the

energy dependence of T or V is indicated as a dependence on the momentum p (unlike in
the previous section), since below the operators are decomposed into power series in terms
of momenta.
The on-shell amplitude T (p) is connected to the phase shift δ(p) by
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T (p) = T (p, p; p) = −4π
M

1

p cot δ(p)− ip
. (3.31)

For weak scattering at low energies, we can expand the on-shell amplitude above in powers
of p. Alternatively, it is more convenient to expand the inverse of the amplitude in the usual
form of the so-called effective range expansion

−4π
M

1

T (p)
+ ip = p cot δ(p) = −1

a
+
1

2
rep
2 + · · ·, (3.32)

where a is the scattering length and re is the effective range. The scattering length satisfies
the zero-energy limit condition

δ(p)→ nπ − ap, for p→ 0 . (3.33)

As explained above, when the wavelength is larger than the range of the forces, we
can replace these forces by the effective Lagrangian or Hamiltonian, that consists of the
contact interaction terms only. In general, they will contain time derivatives (in the case of
Lagrangian) or an energy-dependence in (the Hamiltonian framework). In the coordinate
space, the effective potential will be expressed by δ-function and its derivatives, in the
momentum space, it will be expressed by power series in squares of moments (i.e., in energy),
namely

V (k′, k; p) = c00 + c20(k
2 + k′

2
) + c02p

2 + · · · . (3.34)

where cij are appropriate coupling constants to each order. How to organize the terms in
the potential to enable the EFT to reveal its true power is answered by the RG.
Before we proceed further, we explain, why the potential (3.34) depends on energy. Let

us consider the “obvious” form of the potential expansion only in terms of momenta

V (k, k′) = C0 + C2(k
2 + k′2) + · · ·, (3.35)

These terms correspond to the contact interactions (Ψ̄Ψ)2 and (Ψ̄Ψ)(Ψ̄∇2Ψ) + HC. Evalu-
ating one-loops diagrams with these interactions, one gets following integrals:

Λ
∫

0

q2n+2dq

E − q2

M
+ iε

, n ≥ 2. (3.36)

Going with the cut-off to infinity, one gets the divergent pieces multiplied with powers of
energy, Em, m ≤ n.
These divergences can be canceled by allowing the coefficients in (3.35) to depend on

energy: C0 → C00+C01E.
† If such potential is used in the loops, where the internal nucleons

† Such terms are not usually taken into account in treatments of the NN scattering, where the energy
dependence is usually eliminated by use of the so-called “equation of motion”. This stands for the arrange-

ment, where we swap between energy and momenta by a unitary transformation on the wave function or,

in the field theoretical language, by a transformation of fields. These transformations carry the combination

p2 − k2, which vanishes on-shell, thus we call it equation of motion.
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are off-shell, the two terms C01E and C2(k
2+ k′2) are not equivalent. Consider the one-loop

diagram as an example with insertion of C00 and one of the two terms. Energy-dependent
piece generates only the n = 0 divergent integral multiplied by E, where the momentum-
dependent one gives the same term multiplied by k2 but additional term, the n = 1 divergent
integral. As the cut-off goes to infinity, both bare couplings will be renormalized differently.
For any finite number of loops, the renormalized result can be on-shell (k2 = k′2 = ME)
rearranged to have the same form. But it holds only for finite number of loops.
The energy dependent terms in the potential also arise, whenever degrees of freedom are

eliminated from a Schrödinger equation (e.g., in a coupled channel approach). The energy
dependent contact terms are also required to renormalize the contributions from the two-pion
exchange potential.
Instead of using T -matrix , we switch to the so-called reactance K-matrix. The off-

shell K-matrix satisfies also the LSE, but with the Green’s function obeying standing-wave
boundary condition, i.e., the usual prescription with iε in the integral over q is replaced
by the principal value. Calculating T from K ensures the unitarity of the T -matrix for
Hermitian V . The advantage of the reactance matrix is the fact, that it is real bellow all
thresholds for particle production. The on-shell T -matrix and K-matrix are related via

1

T (p)
=

1

K(p)
+
iMp

4π
, (3.37)

from which it follows from (3.32)

1

K(p)
= −M
4π
p cot δ = −M

4π

(

−1
a
+
1

2
rep
2 + · · ·

)

. (3.38)

The scattering through the contact potential leads to the divergent loop integrals in the
LSE, it is therefore necessary to introduce some renormalization scheme (e.g., some of those
described in the previous Chapter). We will adopt here the cut-off regularization scheme,
which introduces a sharp momentum cut-off q = Λ into the loop integrals.
The regularized LSE for the K-matrix reads

K(k′, k; p) = V (k′, k; p) +
M

2π2
P

Λ
∫

0

dqq2
V (k′, q; p)K(q, k; p)

p2 − q2
, (3.39)

where P again stands for the principal value of the integral.
Alternatively, the momentum cut-off can be introduced by the separable form factor,

i.e., for the potential (3.35) is replaced by (the same can be made for the potential (3.34)):

V (k, k′; p) = f(k/Λ) [C0(E) + C2(E)(k
2 + k′2)] f(k′/Λ) , (3.40)

where the factor f(k/Λ) satisfies f(0) = 1 and falls rapidly for k/Λ > 1. The coefficients
C0 and C2 are now energy-dependent, for the reasons explained above. The regularized
potential has a two-term separable form, the LSE can be solved analytically, which gives

K(k, k′; p) = f(k/Λ)
1 + C2

C0
(k2 + k′2) +

C2
2

C0
[I2(E)− (k2 + k′2)I1(E) + k2k′2I0(E)]

1
C0

− I0(E)− 2C2
C0
I1(E)− C2

2

C0
[I2(E)I0(E)− I1(E)2]

×

× f(k′/Λ) ,

(3.41)
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where In(E) are integrals analogous to (3.36) with iε → P
∫

. Using the original sharp cut-
off, one gets the same result (3.41) without the factor f(k/Λ)f(k′/Λ). From these results
and from (3.38) one can calculate a and re.
Let us go back to (3.39) and show, how the RGE is obtained. The potential V depends on

the cut-off Λ and at the same time we demand that K be Λ-independent, since all scattering
observables have to be independent on the cut-off. We can rewrite the LSE in a symbolic
manner

K = V (Λ) + V (Λ)G0(Λ)K . (3.42)

Differentiating this equation in respect to Λ and keeping in mind that K is cut-off indepen-
dent, one gets

∂V

∂Λ
[1 +G0(Λ)K] + V (Λ)

∂G0
∂Λ

K = 0 . (3.43)

operating on both sides of this equality with (1 +G0K)
−1 from the right results in

∂V

∂Λ
=

M

2π2
V (k′,Λ, p,Λ)

Λ2

Λ2 − p2
V (Λ, k, p,Λ). (3.44)

The solution of this equation is constrained by boundary conditions sequent on the fact, that
the effective potential should describe low-energy scattering data caused by the short-range
interaction. The resulting function has to be analytic function of k2 and k′2 for small values
of k and k′. In addition, if the energy lies below all particle production thresholds, we require
also the analyticity in energy, i.e., in E = p2/M . To sum it up, the resulting function has
to be analytic in k2, k′2 and p2.
To get the RG equation one more step has to be made: one has to rescale all variables in

terms of Λ to get dimensionless momentum variables, e.g., k̂ = k/Λ. Defining the rescaled
potential as

V̂ (k̂′, k̂, p̂,Λ) =
MΛ

2π2
V (Λk̂′,Λk̂,Λp̂,Λ) . (3.45)

Substituting it into (3.44), one gets the RG equation for the effective potential V̂ :

Λ
∂V̂

∂Λ
= k̂′

∂V̂

∂k̂′
+ k̂

∂V̂

∂k̂
+ p̂

∂V̂

∂p̂
+ V̂ + V̂ (k̂′, 1, p̂,Λ)

1

1− p̂2
V̂ (1, k̂, p̂,Λ). (3.46)

The systematic expansion of the effective potential can be found, if we take the cut-off to
zero. The potential goes to the infra-red fixed point of the RG. The solutions of (3.46), that
do not depend on Λ, are called fixed points. We will now consider two of them (one trivial
and one non-trivial), which are related to the power counting schemes described above.

Trivial fixed point

The trivial fixed point corresponds to the simplest solution of (3.46):

V̂ (k̂′, k̂, p̂,Λ) = 0. (3.47)

The rescaled potential tends to the trivial fixed point as cut-off goes to zero. The appropriate
K-matrix is zero, i.e., there is no scattering. The trivial fixed point as a solution of (3.46)
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appears for systems with weak scattering at low energies, it is suitable for description of
scale free processes.
Consider now perturbations around this trivial fixed point, that scales as definite power

of the cut-off parameter. First, we linearize the RG (3.46) about the trivial fixed point. We
are looking for the solution of the form

V̂ (k̂′, k̂, p̂,Λ) = CΛνφ(k̂′, k̂, p̂) , (3.48)

where the φ’s satisfy the eigenvalue equation

k̂′
∂φ

∂k̂′
+ k̂

∂φ

∂k̂
+ p̂

∂φ

∂p̂
+ φ = νφ . (3.49)

The solution of (3.49) has to be well-behaved close to origin of momenta and energy, thus
we have the resulting functions of the form

φ(k̂′, k̂, p̂) = k̂′2lk̂2mp̂2n , (3.50)

where ν are RG eigenvalues for which it holds ν = 2(l +m+ n) + 1, where l, m and n are
non-negative integers. We immediately see that all eigenvalues are positive, hence the fixed
point is stable. This means that if we start with any such potential, the flow takes it to this
fixed point in the limit of Λ→ 0.
The perturbation of the potential in the above discussed manner can be cast into the

form

V̂ (k̂′, k̂, p̂,Λ) =
∑

l,m,n

ClmnΛ
ν k̂′2lk̂2mp̂2n . (3.51)

The hermiticity of this potential can be assured by Clmn = Cmln. The terms like i(k
2 −

− k′2) vanish after the integration by parts in coordinate space, thus they need not be
included. The corresponding unscaled form of the potential reads:

V (k′, k, p,Λ) =
2π2

M

∑

l,m,n

Clmnk
′2lk2mp2n . (3.52)

In a “natural” theory, the coupling coefficients are usually expressed in units of some scale
connected with the underlying physics and it is also possible to choose the scale in the way
that the coefficients are all of order unity. This scale also tells us, where the expansion breaks
down.
It can be clearly recognized, that the contributions to the unscaled potential are orga-

nized in powers of energy and momenta. This is exactly what Weinberg proposed, with the
order of each term being d = ν − 1 [29].
The trivial fixed point and the behavior in its neighborhood can be applied for systems

with weak scattering, i.e., those with the small scattering length. It was shown in [31,36] that
this power counting gives a systematic results for dimensional regularization with minimal
subtraction as well as for cut-off schemes. The reactance K-matrix is in such a case given
by the first Born approximation for the unscaled form of the potential (3.52). In particular,
the on-shell K-matrix reads:
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K(p) =
2π2

M

[

C000 + (C100 + C010 + C001)p
2 + · · ·

]

. (3.53)

where we can immediately imagine, how are the coefficients Clmn connected to the observ-
ables.

Non-trivial fixed point

The next simplest fixed-point potential, we can take into account, is that depending only
on energy (but not on momenta):

V̂ = V̂0(p̂) , (3.54)

which satisfies the RG equation

p̂
dV̂0
dp̂
+ V̂0 +

V̂ 20
1− p̂2

= 0 . (3.55)

General way, how to solve the momentum independent RGE is to divide it by V̂ 20 . This
yields a linear equation for 1/V̂0

p̂
d

dp̂

(

1

V̂0

)

− 1
V̂0

− 1

1− p̂2
= 0 . (3.56)

The solution of this equation is the loop integral

Î(p̂) = P
1
∫

0

q̂2dq̂

p̂2 − q̂2
= −1 + p̂

2
ln
1 + p̂

1− p̂
, (3.57)

which is analytic in energy in the limit of p̂2 → 0. Finally, we get the fixed point potential

V̂0(p̂) = −
[

1− p̂

2
ln
1 + p̂

1− p̂

]−1

. (3.58)

The detailed form of the energy dependence of this potential depends on the particular choice
of the cut-off. The fact that it goes to a constant in the limit of p̂ → 0 is a generic feature.
Unscaled potential corresponding to (3.58) is

V0(p,Λ) = −2π
2

M

[

Λ− p

2
ln
Λ + p

Λ− p

]−1

. (3.59)

At the origin p = 0 the potential (3.59) is proportional to Λ−1, the general property
which is true for any form of cut-off.
For the momentum-independent potentials such as V0 the LSE has a simple form and

the obtained K-matrix is infinite, i.e.,

1

K(p)
= 0 . (3.60)

In other words, we have a system with an infinite scattering length and a bound state with
zero energy. Since the system has a bound energy equal exactly to zero, there is no scale
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associated with it and this is why it is described by a fixed point of the RGE. This fixed point
is especially interesting for the low-energy nuclear physics, where s-channel bound states or
resonances near the threshold exists.
As for the trivial fixed point above, we can expand a potential in a small perturbation

around the non-trivial fixed point V̂0, that will scale with definite powers of the scale Λ

V̂ (k̂′, k̂, p̂,Λ) = V̂0(p̂) + CΛ
ν φ(k̂′, k̂, p̂) . (3.61)

Functions φ satisfy the linearized RGE:

k̂′
∂φ

∂k̂′
+ k̂

∂φ

∂k̂
+ p̂

∂φ

∂p̂
+ φ+

V̂ 20 (p̂)

1− p̂2

[

φ(k̂′, 1, p̂) + φ(1, k̂, p̂)
]

= νφ . (3.62)

The eigenfunctions of this equation depend only on the energy and have a form

φ(p̂) = p̂ν+1V̂0(p̂)
2 , (3.63)

where we restrict ourselves on analytic functions in p2 for the limit of p2 → 0. This
together with the fact that V̂ 20 is analytic gives the restriction on the power of p̂ in (3.63).
This leads to the condition for the RG eigenvalues ν = −1, 1, 3, . . .. We can immediately
recognize the presence of one negative eigenvalue, that makes this fixed point unstable. This
one negative eigenvalue implies, that only those potentials, which has the coefficient of the
unstable eigenvector equal to zero, flow to the non-trivial fixed point. In other cases, when
the “unstable” coefficient is non-zero, the potentials flow either to the trivial fixed point
or to infinity. Potentials, which are near the surface of zero “unstable” coefficient, will
initially flow to the neighborhood of the non-trivial fixed point, where they can be treated
perturbatively, and then, when the Λ is small enough, are kicked away.
If we write down the expansion of the rescaled potential in powers of the rescaled energy

V̂ = a0(Λ) + a2(Λ)p̂
2 + · · · , (3.64)

we can imagine the flow for Λ→ 0 in the following Fig. 3.1. There are two fixed points, first
(the trivial one) at the origin, and second (the non-trivial one) at the point (−1,−1). The
bold lines represent the flow lines, that lie along the RG eigenvectors close to the fixed points.
The dashed lines show general flows. It is apparent from this figure, that only potentials
“lying” on the stable perturbation defined by vertical line a0 = −1 flow to the non-trivial
fixed point. The movement of the general case can be deduced from the figure.
The unscaled potential, that is close to the non-trivial fixed point, can be written down

in terms of the perturbations defined above as

V (p,Λ) = V0(p,Λ) +
M

2π2

∞
∑

i=0

C2i−1p
2iV0(p,Λ)

2 . (3.65)

When the LSE with this potential is solved, one gets the on-shell K-matrix

1

K(p)
= − M

2π2

∞
∑

i=0

C2i−1p
2i . (3.66)

Putting the first two coefficients equal to
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C−1 = − π

2a
, C1 =

πre

4
, (3.67)

we can immediately recognize the relation to the effective-range expansion (3.32). Therefore,
this fixed point is often called the effective-range fixed point.

Fig. 3.1: The flow lines of the rescaled potential defined by (3.64)
in the limit of Λ→ 0

Finally, let us mention the power-counting scheme for this fixed point. It was shown [31,
37] that one can assign orders to energy-dependent perturbations by d = ν − 1 = −2, 0, 2,
. . ..
Lets say few more words about the particular case of s-wave NN scattering with un-

naturally large scattering length a. From (3.67) it follows, that the coefficient C−1 is small
and can be treated perturbatively. From the discussion above we know, that the effective
potential will flow towards the non-trivial fixed point, when the cut-off Λ will be larger than
1/a. To sum it up, the power counting defined by non-trivial fixed point is well suited for
treating and organizing the terms in the NN potential, for momenta between 1/a and mπ.

3.5.3 Long-range forces

It is often possible to split the interaction of some particular problem into the known
long-range part and the completely unknown short-range one. How does one includes such
long-range interaction into RG formalism? One has to apply the cut-off to the basis of
distorted waves of the known long-range potential. After applying the RG procedure, we
can identify the possible fixed points of the short-range interaction and define the power
counting rules for perturbation around it. If the non-trivial fixed points exist, we can directly
relate the terms of the resulting EFT with the terms of the distorted wave effective-range
expansion.
In general, if a long-range potential can be rescaled in a way, that leads to a scale

independent form, we can apply the approach described above. Such a potential can be
generated to all orders, then the basis of distorted waves can be obtained. This forms
a starting point for further RG treatment. The fixed points correspond to the short-range
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interaction. In combination with the long-range one, it leads in the limit where all low-energy
scales tends to zero to a scale-independent behavior.
In order to implement the RG treatment for systems with long-range interaction, it is

essential to identify all important low-energy scales of the system.
In the case of the Coulomb potential, the additional low energy scale is the Bohr radius

(besides the momenta of the particles). Separation of scales between this and short-range
effects is valid as long as this potential is relatively weak. If we express the Bohr radius in
units of the cut-off, we ensure that Coulomb potential becomes scale independent when we
rescale the theory. This implies, that it should be included as a part of any fixed point of
the RGE. Thus, its effects should be implemented to all orders.
Next potential, which is of particular interest, is the OPE potential. It brings up another

scale, the pion mass. It could be treated as a low-energy scales, if one is interested in momenta
comparable to the pion mass. There are two ways how to do this. One was proposed on the
KSW approach and treats these forces perturbatively, the second one relies on the principle
introduced by Weinberg, in which these forces are iterated to all orders.
Now we will briefly formulate, what happens when we add the long-range part of the

potential VL, i.e., the full potential is given by

V = VL + VS , (3.68)

where VS represents the short-range physics which we want to parameterize.
In previous sections, we considered the RG equation, to get an information on the be-

havior of our system. Here we just write down the so-called distorted wave formalism, which
is used to “project out” the short-range part from the long-range potential. Projected po-
tential is treated in a similar way as that for pure short-range. The exact solution can be
found in [23].

Distorted waves

First we write down the scattering amplitude for the long-range potential VL alone

TL = VL + VLG
+
LTL , (3.69)

and the corresponding Green’s function is

G+L = G
+
0 +G

+
0 TLG

+
0 . (3.70)

Resuming VL to all orders, the full T -matrix can be written as

T = TL + (1 + TLG
+
0 )T̃S(1 +G

+
0 TL) , (3.71)

where the distorted short-range scattering amplitude T̃S satisfies the LSE

T̃S = VS + VSG
+
L T̃S . (3.72)

The equation (3.71) is the starting point for the distorted-wave Born approximation, because
the Ω = 1+G+0 TL is the Møller operator that transform plane waves into a distorted waves of
VL. The T̃S describes the scattering between the distorted waves of the short-range potential.
In terms of phase shifts the effect of the short-range potential is reflected by
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δ̃S = δ − δL , (3.73)

which is a difference between the full phase shift δ and δL that is due to the long-range
potential alone.
The matrix elements of the on-shell T̃S between distorted waves can be written as

< ψ−
L (p)|T̃S(p)|ψ+L (p) >= −4π

M
e2iδL(p)

e2iδ̃S(p) − 1
2ip

, (3.74)

where ψ+L (p, r) is the outgoing distorted wave with the energy E = p2/M and ψ−
L is the

incoming wave (again, only s-wave scattering is considered). From (3.74) so-called distorted-
wave effective-range expansion is defined:

e2iδL(p)|ψ+L (p, 0)|2
(

1

< ψ−
L |T̃S(p)|ψ+L >

− ip

)

+ML(p)

= |ψ+L (p, 0)|2p[cot δ̃S(p)− i] +ML(p) = −1
ã
+
1

2
r̃ep
2 + · · ·

(3.75)

where ML(p) is the logarithmic derivative at the origin of the Jost function to the Schrö-
dinger equation with the long-range potential alone. An effective field theory for the strong
interaction in pp scattering can be constructed [38] by taking the Coulomb potential as the
long-range distorting potential. This expansion has been also used to remove the one-pion
exchange effects from NN scattering [39].
This generalized effective range formalism is useful because all rapid dependence on the

energy is removed in ML(p) and e
2iδL(p)|ψ+L (p, 0)|2. This leaves the scattering amplitude

which can be expanded in powers of energy, where coefficients are scaled by the underlying
short-distance physics.
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4 The effective theory of potential I

Formalism

4.1 Introduction

In the first part of this thesis we were dealing mostly with effective approach within the
framework of the filed theory. The field-theoretical treatment has a great advantage in its
universality: once the coefficients of the Lagrangian are determined from some particular
process(es), this knowledge is automatically available for any other process which contains
the same dynamics.
However, the similar approach can be used in an entirely quantum-mechanical frame-

work. This is described in detail in a pedagogical way in lectures by Lepage [40]. In this part
of the thesis we will summarize this quantum-mechanical variation of the effective approach
and test it numerically on several potentials.
We will deal with a system, whose dynamics can be described via the non-relativistic

Schrödinger equation: one non-relativistic particle in a field of some potential. The consid-
ered method allows to systematically approximate the dynamics of such a system, we will
dub it “the effective theory of potentials”.
The effective theory of potentials is based on the paradigm of the renormalization theory:

the low-energy (infrared) behavior of a theory is independent of the details of the short-
distance (ultraviolet) dynamics. In other words, there are infinitely many theories that
have the same low-energy behavior, i.e., they are identical at long distances, but they can
essentially differ at short distances. We will employ this in a following way: we replace the
true ultraviolet behavior of the potential with something simpler, keeping the same infrared
observables. This simpler part will consist of the polynomial expansion in energy (or the
square of momentum). Alternatively, in the coordinate representation, it will be described
by the polynomial in derivatives of the contact interaction: the δ-function.
Our “simpler” approximation will also have an important characteristic of approaches

from previous parts of the thesis: it will be made in a systematic way. That is, we are
able (in principle) to increase the accuracy of our approximation up to any given order in a
universal way.

4.2 Construction

In this part, we will remind [40], how to construct the systematic approximation de-
scribed above. Let us consider a dynamical system described by the Hamiltonian

H = p
2

2m
+ V (r) , (4.1)

where m is the (reduced) mass and the potential V can be divided into two parts

V = VL + VS , (4.2)
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where VS is an unknown short-range potential, we want to simulate, and VL is long-range
potential, assumed to be known.
To test the algorithm of the effective theory of the potential, as it was done in [40],

we will produce the “pseudo-experimental” data from the Schrödinger equation. Data are
represented by bound state energies and by phase shifts. In the next step the effective theory
is used. We will implement it through the cut-off a in the coordinate space. This cut-off
has to be large enough to separate off the region of the unknown physics, represented by the
potential VS. The real physics behind the cut-off will be replaced by the contact interaction
terms. It means, that the unknown physics is not omitted, but rather it is integrated out
and replaced by the simplified dynamics.
In what follows we are using the familiar Coulomb-like potential for the long-range

interaction, i.e., VL(r) = −α/r, and a series of various potentials for the unknown short-
range part. We will restrict ourselves only to the scattering and bound states in the s-wave.

4.3 Naive approximation

The crudest approximation is to replace the short-range part by a δ-function. The
approximate Hamiltonian is then of the form

Happ =
p2

2m
− α

r
+ cδ3(r), (4.3)

where c is a parameter representing the ultraviolet behavior. Using the perturbation theory
in its first-order, we get for the energy levels

Eapp
n = ECoul

n + c
∣

∣ψCoul
n (0)

∣

∣ = − 1

2n2
+ c

δl,0√
πn3

. (4.4)

Parameter c has to be determined from the available data. As argued in detail in [40] it is
advisable to match it on the binding energy of the state with large radial quantum number.
This yields a relatively good approximation also for other binding energies and for phase
shifts at low energies. However, opposite to the strategy outlined in the introduction, it
is not possible to systematically improve this approximation. Indeed, by straightforward
application of the second-order of the perturbation theory for the energy levels, one gets the
corrections

∑

m6=n

< n|cδ3(r)|m >< m|cδ3(r)|n >
En − Em

. (4.5)

This expression gives an infinite correction to the binding energy, also the sum over scattering
eigenstates diverges in the limit of the scattering momentum p→ ∞. The delta function is
too singular for usage beyond the first-order perturbation theory.
Approximation of VS by the singular δ-function can be understood by considering the

Fourier transformation of the short-range potential. Since VS has short-range, its Fourier
transform vF

S (q
2) depends weakly on the momentum transfer q. Thus we can make its Taylor

expansion and approximate the transform only with a few first terms:

vF
S (q

2) = vS(0) + q
2v′S(0) + · · · . (4.6)
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This replaces the Fourier transform of the potential by a few coefficients vS(0), v
′
S(0),. . . .

The first term corresponds to the δ-function in the coordinate representation. Next term
contains q2, which corresponds to ∇2 in coordinate space acting on the δ-function, and so
on. Thus, up to the second order the potential is approximated by

VS(r) ∼ cδ3(r) + d∇2δ3(r). (4.7)

This potential yields an infinite first-order correction toECoul
n , the derivative of the δ-function

is too singular.

4.4 Effective theory

The infinities arising in the previous section are of the same kind as infinities in the
relativistic QFT. They indicate, that the low-energy physics “feels” the short-range physics,
however, not its details.
Modifying the results above, one can construct the effective theory, that is able to model

the data to any precision. It is done in three steps

1. The long-range part of the underlying potential has to be known and is thus built into
the effective theory explicitly;

2. The ultraviolet cut-off has to be introduced. It has two effects. First, it excludes the
high-momentum states sensitive to the short-range physics. We can retain only states,
we know well. Second, it regularizes all interaction at the origin, therefore it avoids all
infinities arising in the naive approximation.

3. Local correction terms has to be added into the potential to mimic the effects of the
short-range physics excluded by the cut-off. Each correction term consists of a theory-
specific constant multiplied by a theory-independent local operator. The correction terms
systematically remove the dependence on the cut-off, hence the physical observables will
become (approximately) cut-off independent. Locality assures the finite number of terms
needed to reach the given precision.

To avoid the infinities one has to regularize the δ-function (second part of the point two
of the above itemization). This can be achieved by smearing the δ-function over the volume
of the radius, which is approximately of the same size as the cut-off a. A possible smearing,
used in most of the applications below, reads

δ3a(r) ≡
1

(2π)3/2a3
e−r2/2a2 , (4.8)

where we have to repeat, that the particular form of the smearing is not relevant.
Just one note has to be added now. The smearing of the δ-function corresponds to

the cut-off regularization scheme used in the QFT, thus we are in fact renormalizing the
Schrödinger equation or using the renormalization technique in the quantum mechanical
problem.
Using the smearing defined by (4.8), we get an explicit form of the effective potential

Veff(r) =− α

r
+ ca2δ3a(r) + d1a

4∇2δ3a(r) + d2~∇ · δ3a(r)~∇+ · · ·

+ gan+2∇nδ3a(r) + · · ·
, (4.9)
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where the coefficients c, d1, d2. . . represent dimensionless coupling constants, to be fitted from
the low-energy data. As was mentioned above, the low-energy particle cannot distinguish
between the contact terms and the real short-distance potential.
The effective potential also has to posses the symmetry as the original theory. Thus,

if the data are not rotationally invariant, one has to include terms like a3g · ~∇δ3a(r). The
couplings would contain vectors, tensors, etc., that will reflect the asymmetry of the original
theory.
The original scattering amplitude can be written as

< f |T (E)|i >=< f |V |i > +
∑

n

< f |V |n >< n|V |i >
E − En

+ · · ·. (4.10)

The sum over intermediate states in second and higher orders contains states with arbitrarily
high momentum. Thus, the Taylor expansion of the potential in momentum space would
not converge in matrix elements involving such states. Now, we will replace real potential
V by the effective potential Veff , where we have introduced ultraviolet cut-off that actually
restricts the sums to states with momenta that are not higher than 1/a. Higher momenta
contributions are completely absent in the effective theory.
If we assume that the final and initial states have low energy, the high-momentum

intermediate states are highly virtual. The uncertainty principle tells us that these states
cannot propagate for long time over a large space. Such states contribute to the amplitude
through the same δ-terms, as we already have in the effective potential. Thus, the high-
energy states are explicitly excluded from the theory by the cut-off, they are implicitly
included through the contact terms. This means, that the coupling constants in our theory
depend non-linearly on the true potential.
In the construction of the effective potential the cut-off a was introduced. The real theory

does not depend on this parameter, but the effective theory is only approximately cut-off
independent. This residual dependence enters in powers of (qa), where q is a characteristic
momentum of the process considered, e.g., the momentum transfer in the scattering. That
the effective theory is systematic also means, that the contact terms remove the a-dependence
order-by-order in a. The leading term of Veff ∼ O(a2) removes errors of order (qa)2.
The coupling constants also depend on a, they have to be adjusted to compensate quan-

tum fluctuations excluded by the cut-off. As in a field theory, they are called “running
coupling constants”. If the short-range potential is weak, the coupling to high-energy mo-
mentum states is weak and coupling constants vary slowly with cut-off. However, the cou-
plings are considerably a-dependent, if the short-range potential is strong. This dependence
can be non-linear and there could occur an exchange of the significance among the contact
terms, i.e., a4-term can play more significant role than a2-operator.
What happens if we take too large cut-off? If its value is larger than the range of the

long-range potential (or if there is no such potential), the coupling constants of the contact
operators become a-independent. On the other hand, for too small cut-off, one gets the non-
linear behavior described in the previous paragraph. From the motivation of the effective
theory it is clear, that it makes no sense to take a < rS. For such cut-off the high-energy
states are explicitly included and the theory is through these states sensitive to short-distance
dynamics. But it feels almost certainly wrong short-distance structure. In general, one can
say, that to take a < rS does not improve the theory, rather it can cause essential problems
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like non-stability or untuneability.
To close a brief description of the effective theory: The effective theory gives us a rel-

atively simple, universal parametrization modeling the short-structure effects. The form of
the contact terms does not depend on theory, only the numerical values of coupling constants
are specified by the problem considered.
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5 The effective theory of potential II

Numerical calculation

The effective theory of potential was defined and discussed in the previous Chapter.
Now numerical results follow. The idea was to test numerically this quantum mechanical
technique, following the example considered by Lepage [40]. Comparing to [40] we consider
not just one example, but the whole set of “unknown” short-range potentials, differing by
their behavior near the origin, by their smoothness, strength and by number of bound states.
We also tried to apply the technique to the Schrödinger equation with only the short-range
potential. Our hope is that at least some experience, e.g. with a multi-parameter fit of
coupling constants, will be useful in the future. The effective theory of potential is just
a kind of quantum mechanical motivation for further step to our future studies of similar
problem in the quantum field theory framework, where the numerical tools and the gained
experience could also be utilized.
The effective theory of the potential is used here up to the second order, i.e., up to

the coefficient d1 in (4.9), higher order terms are omitted (coupling coefficients are equal to
zero). All employed potentials are spherically symmetric (and we restrict ourselves to the
s−wave), thus (4.9) up to second order gets the form

Veff (r; c, d1) =
−α
r
+ ca2

e−r2/2a2

(2π)3/2a3
+ d1a

4

(

r2

a4
− 3
a2

)

e−r2/2a2

(2π)3/2a3
, (5.1)

where the smearing of the δ-function is chosen as given by (4.8). We also check an alternative
form of smearing. The convention of h̄ = c = 1 is used. The mass is set to m = 1 and the
strength of the Coulomb-like interaction is α = 1. The value of the cut-off parameter a is set
to a = 1 fm to start with, we discuss a sensitivity of the results in respect to its variation.
To simplify the notation we include the constant numerical factors at each order into

the coefficients to get (for a = 1 fm) a simple form of (5.1):

Veff (r; c, d1) =
−α
r
+ ce−r2/2a2 + d1(r

2 − 3)e−r2/2a2 . (5.2)

Numerical tests of validity of the effective theory of potential are divided into three
parts. In the first one, the effective theory is constructed for the chosen set of potential. In
the second one we briefly illustrate effects of different smearing and of the cut-off variation.
Finally, we apply the effective approach to purely short-range potential.

5.1 Construction of effective potential

We will built up the effective theory of the potential in the first and second order. We
have to tune up the coefficients of the effective potential to some experimental data. We will
produce our own pseudodata (binding energies and phase shifts) employing a set of model
potentials.
Phase shift can be determined in two ways: 1) one can either solve non-linear first-order

differential equation of the Variable phase method (Appendix A), 2) or the direct numerical
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solution of the second order differential Schrödinger equation is matched to the asymptotical
behavior of wave functions.
We tried both methods and then gave preference to the first one. One additional com-

plication is the Coulomb-like behavior of our long-range potential. We could define “the
strong phase shifts” in a usual way by subtracting the Coulomb “phase shift”, but for our
purposes it is more convenient to follow [40] and define the “pseudo phase shift” by cutting
off the long-range potential at some very distant point (taken at 50 fm), way outside the
region of the short-range interaction. Phase shifts defined in this way do, of course, contain
all necessary information from the short-range potential [41].
Binding energies are computed by matching the numerical outward solution of the

Schrödinger equation starting from the origin with the inward one, which is initialized by
the asymptotical behavior of the wave function.
Numerical aspects of employing both methods are discussed in the Appendices. Let us

now summarize the whole procedure of construction the effective theory in a series of steps:

1. Generation of pseudoexperimental data.
a. Choose model potential
b. Compute phase shifts and binding energies

2. Tuning the effective theory
a. First order: tune c
b. Compute phase shifts and binding energies
c. Second order: tune c and d1
d. Compute phase shifts and binding energies

3. Comparing results
a. Plot graphs, compile tables

1a. Model potentials
The short-range potential we used are listed below, each potential is labeled by capital

letters. A short motivations for using this or that particular form are given.

First is the set of repulsive square-well potentials, for which the phase shifts and binding
energies are known analytical results. They also represent non-continuous potentials, which
is a good check of our numerics (although the phase shifts and energies are known, we also
recalculated them numerically).

VS(r) =

{

−0.2 MeV, r ≤ 1 fm
0 MeV, r > 1 fm

(A)

VS(r) =

{

−0.4 MeV, r ≤ 1 fm
0 MeV, r > 1 fm

(B)

VS(r) =

{

−2 MeV, r ≤ 1 fm
0 MeV, r > 1 fm

(C)

VS(r) =

{

−4 MeV, r ≤ 1 fm
0 MeV, r > 1 fm

(D)

The following two potentials are “motivated” by the Yukawa one.

VS(r) =
e−20 r

r
− e−0.4 r

r
, (E)
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VS(r) =
e−15 r

r
− e−r

r
. (F )

Next two potentials are chosen because their are smooth, fall off rapidly and their shape
is similar the smeared delta function:

VS(r) = −7e−5 r4 , (G)

VS(r) = −4e−5 r4 . (H)

This potential is singular at the origin and falls off relatively slowly for large distances:

VS(r) = −0.1
r2

. (I)

Last two potentials represents repulsive short-range potentials:

VS(r) = +e
−15 x4 , (J)

VS(r) = +2e
−15 x4 . (K)

1b. Phase shifts and binding energies
Next step is calculation of phase shifts and binding energies for each of these potentials.

High precision of the pseudodata is required for tuning of the effective potential, all com-
putations have to be performed with double precision numerics. More detailed description
of numerical computations is given in Appendix C. We have produced the binding energies
with the accuracy of 10−9 and phase shift of 10−7.

2a. Tuning the effective potential at the first order
As explained in the theoretical introduction (previous Chapter), the constants of the

effective potential are fitted to the experimental data. At the first order there is just one
constant c, all remaining ones are put to zero. We have tuned the c by matching the phase
shift for the energy 10−9, as described in the third part of Appendix C.

2b. Phase shifts and binding energies for 1st order Veff

Calculated as for the full “unknown” potential, as described in point 1b. above. This
applies also for the point 2d., i.e., for calculation with the second order Veff .

2c. Tuning the effective potential at the second order
Tuning the coefficients of the second order effective potential represents finding a solu-

tion of a two-dimensional minimalization problem. The coefficients c and d1 were matched
on the phase shift for two energies, 10−9 and 10−5. Since we do not know an analytical
dependence of the minimalized function on these parameters, this has to be done numeri-
cally and the numerical implementation is non-trivial. All employed procedures are yielding
results dependent on the initial guess. Detailed discussion follows is given in Appendix C.
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5.2 Results

In the this section we present our numerical results. First, we will summarize the coeffi-
cients of the first- and second-order effective theory for all potentials employed. The binding
energies and phase shifts for one of them are listed. This is followed by a picture with the
shapes of the model potential together with the first- and second-order effective ones. Then
we illustrate the problem of the minimalization procedure. The variation of the cut-off and
of the form of the smeared δ-function is discussed. Finally, the results of the effective theory
for purely short-range potential are given.

Potential c (1oET) c (2oET) d1

A -0.19553534 -0.11703258 0.03895575

B -0.38848651 -0.28305963 0.05584791

C -1.3319855 -1.21876579 0.08458999

D -1.8430867 -1.72016913 0.08270194

E -2.4826996 -2.35926803 0.09264444

F -1.4384087 -1.25577909 0.14187477

G -2.1048997 -2.00463607 0.07831975

H -1.626638 -1.59442330 0.02475360

I -1.2531224 -1.12278586 0.09599282

J 0.21441655 0.19329079 -0.00984438

K 0.36534588 0.31938749 -0.02161320

Tab. 5.1: The coefficients for the first- and second-order effective
theory for the set of potentials A – K.

We can see that the coefficient c vary only slightly from the first to the second order
each order, the coefficient d1 is much smaller.
Since results of the effective theory appear qualitative similar for each of the potentials

A – K used, i.e., the effective theory of potential works equally well for all considered cases,
we will focus in more detailed discussion below on one particular case: the potential H.
We will consequently show in two graphs and tables below, how the effective theory

approximates the binding energies and phase shifts at each order. Recall that we have used
for matching of the first-order effective potential the phase shift at the energy 10−9 with the
accuracy 10−7 and for the second-order effective potential the phase shifts at the energies
10−9 and 10−5 with the same accuracy. The results below are dependent on the choice of
the initial guess for fitted parameters. We have taken into account only those solutions for
which the second order theory improvements improves the results of the first order one. In
the Table 5.2, we can see the improvement in the second order, it is, however, very subtle,
as will become clear from the Fig. 5.1.
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nr Unknown Coul 1oET 2oET

0 -1.78957010 -0.49999998 -1.40491850 -1.42048050

1 -0.18565448 -0.12500000 -0.18645510 -0.18625204

2 -0.07126672 -0.05555555 -0.07133907 -0.07132258

3 -0.03750993 -0.03125000 -0.03752442 -0.03752118

4 -0.02310461 -0.02000000 -0.02310893 -0.02310796

5 -0.01564935 -0.01388888 -0.01565098 -0.01565061

6 -0.01129715 -0.01020408 -0.01129787 -0.01129771

7 -0.00853719 -0.00781250 -0.00853756 -0.00853747

8 -0.00667777 -0.00617283 -0.00667797 -0.00667792

9 -0.00536578 -0.00500000 -0.00536590 -0.00536587

Tab. 5.2: Effective theory approximation for the binding states
of the potential H. nr is the radial number of the bound state. Un-
known stands for the original potential (pseudodata), 1oET and
2oET for the results of the 1st and 2nd order effective potential,
respectively.

The following Tab. 5.3 summarizes the phase shifts for various energies.

En [MeV ] Uknown Coul 1oET 2oET

10−4 18.72665960 18.17201407 18.72663414 18.72664168

10−3 18.38120341 16.74450201 18.38094568 18.38100262

10−2 14.85567425 13.92872582 14.85533460 14.85540659

10−1 9.33682364 8.33889168 9.33156062 9.33260559

100 4.69859834 3.80369495 4.66430571 4.66941660

101 1.92693564 1.48989800 1.90219690 1.90609018

Tab. 5.3: The phase shifts for the original potential H, for the
1st and 2nd order effective potential and for the Coulomb-like
potential alone versus the energy.

Three figures follows. Figure 5.1 graphically represents the results of Tab. 5.2. Figure
5.2 shows the same results but for the accuracy of the pseudodata of 10−5. Figure 5.3 plots
the phase shifts from Tab. 5.3 as the function of energy.
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Fig. 5.1: The approximation of the binding energies by the
1st and 2nd order Veff , respectively. The deviation | log(∆E/E)|
is plotted, as in [40], where E is the exact energy and ∆E is the
difference of the energy given by the respective Veff and the exact
one. For comparison, the purely Coulomb-like interaction is also
included, which corresponds to Veff = 0.

radial number
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∆
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Fig. 5.2: The same as Fig. 5.1, but for accuracy of 10−5.
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log|Energy [MeV]|
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Fig. 5.3: The phase shifts for the original potential, for the 1st
and 2nd order effective theory and for the purely Coulomb-like
potential versus the energy.

Since to build the effective theory of potential does not mean to fit the shape of the
potential, but to approximate the observables, we plot the shape of potentials comparing
the effective and original ones. It is clear that they indeed differ. We can see that Veff at
the 1st and 2nd order are not significantly different, the second order term serves as a subtle
correction to the first order one.

Fig. 5.4: The original and the 1st and 2nd-order effective poten-
tials plotted as the function of the distance.
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In the previous section, we have mentioned the dependence of the tuning of the 2nd-
order effective theory on the initial guess. We have encounter this problem with each of the
potentials, i.e., for each of them we found more than one pair of coefficients that satisfy the
minimalizing condition. Each solution has to be checked to give meaningful results. We will
illustrate this on the case of the potential A. Table 5.5 lists phase shifts for three pairs of
coefficients, each for the different choice of initial guess (listed in Table 5.4). Phase shifts
differ significantly for higher energies, i.e., each pair of coefficients approximate the original
phase shifts differently. Thus we pick up the solution, for which there is the best agreement
in the whole range of energies (not just for the two energies use din the fit). For the case
given in tables below, the first pair is taken.

Guess: c & d1 Result: c & d1

G1: -0.12 & 0.10 -0.117032 & 0.038955

G2: 3.00 & 2.00 1.661150 & 1.779298

G3: -3.00 & 2.00 407.941836 & -148.661457

Tab. 5.4: Dependence of the result of the minimalization pro-
cedure (tuning the 2nd order effective theory with the low-energy
phase shift) on the initial guess.

En [MeV ] Uknown 1oET 2oET(G1) 2oET(G2) 2oET(G3)

10−10 18.84889056 18.84889056 18.84889056 18.84889056 18.84889057

10−9 18.84745189 18.84745189 18.84745188 18.84745188 18.84745189

10−8 18.84290239 18.84290239 18.84290239 18.84290239 18.84290242

10−7 18.82851565 18.82851567 18.82851565 18.82851565 18.82851574

10−6 18.78302203 18.78302209 18.78302202 18.78302202 18.78302229

10−5 18.63919798 18.63919818 18.63919798 18.63919798 18.63919798

10−4 18.18564008 18.18564069 18.18563990 18.18564009 18.18561249

10−3 16.79366831 16.79366953 16.79366190 16.79366980 16.79255034

10−2 14.12800493 14.12797881 14.12779570 14.12818491 14.08965031

10−1 8.48491822 8.48496338 8.48365276 8.49681133 8.18738004

100 3.90681384 3.91740165 3.91367196 4.41669431 1.76765775

101 1.53388047 1.54051308 1.53992097 1.93145875 -7.57815087

Tab. 5.5: Dependence of the phase shifts on the energy for three
different solutions for the coefficients of the 2nd order effective
theory.

Regularization-related topics

In the general discussion of the effective theory we emphasized two features: the results
of the effective theory of potential should not depend on the choice of smearing of δ-function;
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the results should be approximately cut-off independent (when it is varied within physically
reasonable bounds) .

Variation of the cut-off

We have chosen several values of the cut-off a (Table 5.6) and constructed for them the
1st order Veff .

a 0.1 1.0 3.0 10.0

c/a -46.157277 -1.626638 -0.306008 -0.049208

Tab. 5.6: Values of the cut-off a used in this subsection.

The following Fig. 5.5 presents the phase shifts as the function of the energy for each
choice of the cut-off. As expected, we observe that the value a = 1 is the most suitable one.
When the value of a is too large or too small, the accuracy of the effective approach worsens
significantly, though the general trends are still visible.

log(Energy [MeV])
-3.5 -3 -2.5 -2 -1.5 -1

(a
)|

δ
H-δ

lo
g|

-410

-310

-210

-110
a=0.1

a=1

a=3

a=10

Vary cut-off a

Fig. 5.5: Phase shifts as the function of the energy for various
values of the cut-off a.

Smearing of delta function

The effective theory of potential states that the functional form of the smearing of δ-
function is irrelevant. We will demonstrate this in the following way: we take a new shape
of the smearing

δ(x) ≡ 0.5

x2 + 0.52
, (5.3)

and the corresponding effective potential up to the second order

Veff(r; c, d1) = −α
r
+ c · 0.5

r2 + 0.52
+ d1 ·

−2 · 0.5 · (−r4 + 2r2 · 0.52 + 3 · 0.54)
(r2 + 0.52)4

, (5.4)
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and fit again the new coefficients in the usual way on the data from the potential H. In the
1st order we get

c = −1.0108473 , d1 = 0 , (5.5)

and for the 2nd order:

c = −0.4854275 , d1 = 0.1341437 . (5.6)

The following Fig. 5.6 and Tab. 5.7, to be compared with Fig. 5.3 and Tb. 5.3 for the
old form of smearing, summarize the results.
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Fig. 5.6: Phase shifts as the function of the energy in the 1st
and 2nd-order effective theory for δ-function smeared by (5.3)

En [MeV ] Uknown Coul 1oET 2oET

10−4 18.72665960 18.17201407 18.72616093 18.72645554

10−3 18.38120341 16.74450201 18.37620734 18.37894549

10−2 14.85567425 13.92872582 14.84629847 14.85131564

10−1 9.33682364 8.33889168 9.25002229 9.29776588

100 4.69859834 3.80369495 4.49883756 4.63351624

101 1.92693564 1.48989800 1.80901435 1.94417485

Tab. 5.7: Phase shifts for the new form of the smeared δ-function
(5.3).

It is clear from this simple check that the effective theory exhibits the same trends as in
the case of previous form of smearing was used. It certainly does not prove the statement
about the independence on the smearing, but it provides an illustrative example. One sees
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in particular, that the form of smearing affects more the 1st order results, than the 2nd order
ones, in accordance with the expectation that the cut-off and smearing dependence become
weaker when higher orders of effective theory are included.
Finally, we show in Fig. 5.7 the shapes of the 2nd order potentials for new and old form

of δ-function smearing.

Fig. 5.7: Shapes of the 2nd order Veff for two different forms
of the δ-function smearing given by (4.8) and (5.3). The original
potential H with the Coulomb-like interaction is also shown.

Purely short-range potential

We have applied the effective theory to a case of the purely short-range potential, i.e.,
we have switched off the long-range Coulomb-like interaction. As an example, we show the
results for the potential:

VS = −25 exp(−2x4) , (5.7)

where the depth of this potential has been chosen to give two bound energy levels. The
purely short-range potential allows us to test the estimate of the number of bound states
from the value of the phase shift obtained through the variable phase method (Appendix
A).
Fitting the coefficients of Veff to the data in the usual way, we get for the first order

c = −9.463889 , d1 = 0 (5.8)

and for the second order

c = −8.994282 , d1 = 0.458574 . (5.9)
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We summarize results for phase shifts in the Table below, the due to the 2nd-order is
apparent.

En [MeV ] Uknown 1oET 2oET

10−5 6.27853517 6.27853514 6.27853507

10−4 6.26848035 6.26847964 6.26847959

10−3 6.23668660 6.23666400 6.23667293

10−2 6.13621992 6.13551257 6.13582242

10−1 5.82082467 5.80060431 5.80888922

100 4.88816443 4.59260910 4.66771809

101 3.06274353 2.32295234 2.40771624

Tab. 5.8: 1st and 2nd order phase shifts for several energies for
the purely short-range potential.

Finally, we present the results for the bound state energies, which are not fitted at all,
but calculated from the effective potential fitted to low energy phase shifts. As follows [40]
from the effective theory of potential, the higher energy level is described much better than
the lower one.

nr Unknown 1oET 2oET

0 -16.806971 -5.335944 -5.857121

1 -3.060035 -1.329970 -1.463283

Tab. 5.9: Bound state energies of the purely short-range poten-
tial and the corresponding 1st and 2nd order Veff .
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Fig. 5.8: The shape of the purely short-range potential and the
corresponding 1st and 2nd order Veff for the case without the
long-range interaction.
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For completeness, we present again the shape of the model potential H together with the
1st and 2nd order Veff for the switched off long-range interaction. In this case, the difference
between 1st and 2nd order Veff is clearly visible.

5.3 Discussion

The goal of our numerical calculations was to learn the effective technique in quantum
mechanical framework and verify results presented in [40]. We succeeded in building up
the effective theory for a broad range of potentials up to second order. As follows from the
theory, accuracy of the approximation of binding energies and phase shifts is increasing when
the second order effective potential is included. However, this trend is not so pronounced
as presented in [40]. This can partially be due to still insufficient accuracy of numerical
algorithms we adopted, in particular of the minimalization procedures. Unfortunately, details
of the numerics (and even the model short-range potential used to produce the pseudodata)
are not published in [40]. Hence we could not consider exactly the same problem and compare
the results just by putting them side-by-side.
Our next result, which has to be mentioned, is the existence of multiple solutions for

given accuracy. This has not been mentioned in [40]. It brings up quite difficult problems
with matching the coefficients of the effective theory. In particular, it is rather interesting
that using very high precision solves at least partially these problems, at least partially. On
the other hand, it implies that if applied to real data, typically measured with much lower
precision, the effective theory of potential might face severe problems in finding an optimal,
or even some reasonable, set of low energy constants. Let us point out that in a field theory
the situation is different. There the global fits of the low energy parameters are usually not
done, since it is possible (at least at lowest orders) to pick up different processes which are
selectively sensitive to particular constants.
We have also verified the dependence of our approach on the variation of the cut-off and

on the form of the smeared delta function. Our results are in good agreement with [40].
Finally, we applied the effective theory approach to the purely short-range potential.
As our numerical calculations were gradually building up, it was necessary to develop

several numerical codes and implement various algorithms. Each tool was tested on some
artificial exactly solvable problem. We succeeded in tuning up the code to reach a desired
level of accuracy.
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6 Conclusions

The effective approach is an universal way to treat theories with multiple scales. For the
nucleon-nucleon sector two main scales exist, first one is connected to the mass of the nucleon,
the second one to the mass of lightest meson, the pion. We have reviewed how the Lagrangian
formalism for such a system is built up and how to deal with the infinities that arise.
Three regularization schemes were considered: cut-off scheme, dimensional regularization
with minimal subtraction scheme and, finally, dimensional regularization with power-law
divergence subtraction. The last one was invented specifically to solve problems for the NN
interaction in s-channels, where additional scales exist. The whole problem can be solved in
more general approach, using the language of the renormalization group equation. We found
this approach very interesting, however, it will need more effort and study to understand it
completely.
The effective theory of potential is an interesting application of the effective theories

to quantum mechanical framework. It should be stressed, that it is not an attempt to fit
some particular unknown potential to the highest precision, but an universal method how
to simulate the unknown short-range interaction. In our study of this approach we have
encountered some numerical difficulties that have not been yet completely understood, it
will need more time and effort to explain them in a satisfactory way. The first of this
problems is multiple solutions of our minimalization procedure. There is also a question on
whether the effective theory of potential does not require knowledge of experimental data to
too high precision, this would jeopardize its application to real physical problems.
We would like to point out once more that we consider this study to be our first step into

rather broad and involved field of EFT formalism and its application to hadronic processes.
The acquired knowledge and experience with numerics should lead us in further learning of
this technique and in future applications to more realistic problems.

Preliminary results of this thesis were presented on 29th of March, 2005, at the regular
seminar of the Institute of Experimental and Applied Physics of Czech Technical University
in Prague.
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Appendix A

The Variable Phase Method

The Variable Phase Method is an important alternative to the straightforward integration
of the radial Schrödinger equation for computing phase shifts. This method will be briefly
described now, more can be found in [41, 42]. For the sake of simplicity only the s-wave will
be discussed.
For a given potential V (r), a new potential Vρ(r) can be defined by truncating the

original potential at r = ρ, i. e.:

Vρ(r) =

{

V (r) r ≤ ρ
0 r > ρ

(A.1)

Let us denote the regular solution for the actual potential V by φ(r) and appropriate phase
shift by δ, for the truncated potential Vρ they are φρ(r) and δ(ρ), respectively. For ρ = 0
truncation leaves no potential at all and phase shift becomes an integer multiple of π. Such
ambiguity can be removed by requiring δ(0) = 0. On the other hand, it can be proved, that
the following limit holds:

lim
ρ→∞

δ(ρ) = δ . (A.2)

For any value of ρ the two functions φ(r) and φρ(r) are constrained by the same boundary
conditions at r = 0. They satisfy the same differential equation for 0 ≤ r ≤ ρ, i.e.,

φ(r) ≡ φρ(r), r ∈ 〈0, ρ〉 . (A.3)

Beyond this interval, the two solutions differ. In particular, φρ(r) satisfies the free radial
equation and therefore can be written as

φρ(r) = C(ρ) sin[pr + δ(ρ)] , (A.4)

where p = (2mE)1/2 is the momentum of the particle and C(ρ) is some ρ-dependent nor-
malization coefficient.
Both solutions are continuous and identical for r ∈ 〈0, ρ〉, thus φ(r) can be equated to

φρ(r) at r = ρ:

φ(ρ) = C(ρ) sin[pρ+ δ(ρ)] . (A.5)

Derivative can be equated in a similar way. This holds for any choice of ρ, hence ρ can be
replaced by r. Now, equations (A.5) and the analogous one for the derivative are inserted
into the Schrödinger equation. This leads to the following differential equation for δ(r):

δ′(r) = −2mV (r)
p

sin2[pr + δ(r)] . (A.6)

Solution of this equation yields a finite phase shift only for potentials
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V (r) ≈ O(r−1−ε), r → ∞ . (A.7)

Now recall the Levinson’s theorem:
Levinson’s theorem. For any spherical potential the phase shift δl(p) satisfies

δl(0)− δl(∞) = nlπ , (A.8)

where nl denotes the number of bound states of an angular momentum l. This might have
to be modified for the s-wave. If the s-wave Jost function vanishes at threshold f0(0) = 0,
the equation (A.8) becomes

δ0(0)− δ0(∞) = (n0 + 1/2)π . (A.9)

The particular values of δl(x) still posses the modulo-π ambiguity, which can be eliminated
by requirement

δl(∞) = 0 . (A.10)

It is proven in [42], that using the variable phase method in the limit of zero energy leads
to (recall (A.10)):

δV PhM
l (0) = nlπ , (A.11)

and, analogously, for the exceptional s-wave case:

δV PhM
0 (0) = (n0 + 1/2)π . (A.12)

Hence the phase shifts obtained from the variable phase method carry an information about
the number of bound states.
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Appendix B

Numerov method

The Numerov algorithm is a numerical method for solving the ordinary second-order
differential equation of the form

d2y

dx2
= U(x) + V (x)y , (B.1)

The well-known example of this class of equations is the Schrödinger equation

d2ψ

dx2
=
2m

h̄
(V (x)− E)ψ . (B.2)

The centralized differential scheme yields

yn+1 − 2yn + yn+1 ≈ 2
(

h2

2

d2y

dx2
+
h4

4!

d4y

dx4
+O(h6)

)

, (B.3)

where yn = y(xn) and xn are equidistant points separated by the step h. Putting F =
= U(x) + V (x)y and using (B.1) one gets

yn+1 = 2yn − yn−1 + h
2Fn +

h4

12

d2F

dx2

∣

∣

∣

∣

n

+O(h6) . (B.4)

Expressing the second derivative of F with the help of (B.3) gives

yn+1 =
2yn − yn−1 +

h2

12
(Un+1 + 10Fn + Fn−1)

(

1− Vn+1h2

12

) +O(h6) . (B.5)

The error of this method is O(h6) with one evaluation of U and V per step, while the
Runge-Kutta algorithm needs at least six evaluations per step to achieve the same error
level.
The recurrence (B.5) is initialized by the values of y0 and y1. For the Schrödinger

equation the value of y0 is known from the boundary condition of wave function at the
origin. An inefficient method to get y1 is to take the Taylor approximation, however, this
causes a loss of precision. The better method is to determine y1 from the values of F0, F1
and F2

y1 = y0 + hy
′
0 + h

2 (aF0 + bF1 + cF2) , (B.6)

where coefficients a, b and c are from the Taylor expansion of F1 and F2 at the origin. This
lead to

y1 = y0 + hy
′
0 +

h2

24
(7F0 + 6F1 − F2) +O(h5) . (B.7)

The standard Numerov procedure above for gives y2
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y2 =
2y1 − y0 +

h2

12
(U2 + 10F1 + F0)

(

1− V2h2

12

) +O(h6) , (B.8)

This is the system of equations for y1 and y2, from which y1 can be determined

y1 =
y0

(

1− V2h2

24

)

+ hy′0

(

1− V2h2

12

)

+ h2

24
(7F0 + 6U1 − U2)− h4V2

36
(F0 + 2U1)

1− V1h2

4
+ V1V2h4

18

. (B.9)

The accuracy of this estimate of y1 is O(h5).
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Appendix C

Numerical techniques

This appendix describes some aspects of our numerical calculations. First two parts
describe calculations of binding energies and phase shifts, respectively. The last part focuses
on the tuning of the effective theory (i.e., fitting of the low energy constants). It is in this
part, where we had to face most numerical difficulties.

C.1 Binding energies

Binding energies were computed by matching the inward and outward solutions of the
Schrödinger equation at the classical turning point. We have used and adapted the numer-
ical code (Fortran 77) developed by M. Sotona. This complex code is suited not only for
computing binding energies, it also computes wave functions, can treat confining potentials,
e.m. interactions with smeared charges etc. We had to adapt this code for our purposes.
Since some of the potentials we considered have many closely clustered energy levels, we had
to improve the part of the algorithm which directs the code from some guess of the energy
to an improved one. A special care was necessary to ensure that no energy level is missed
and that the code does not loose its way when energy levels are rather close (i.e., that it
does not jump, trying to improve the guess, from one level to another).
To numerically integrate the Schrödinger equation for a given energy the code employs

the Numerov algorithm (Appendix B). The asymptotic wave function is computed from the
Whittaker functions. The binding energies were computed with the precision of 10−9.
Such a high precision could not be achieved for the purely short-range potential with

a shallow-bound state due to the numerical limitation of the code: the employed Numerov
algorithm is not adaptive, it uses the fixed integration step. Since in this case the classical
turning point is rather far from the origin, too many integration steps are needed to reach
it and numerical errors accumulate.

C.2 Phase shift

Phase shifts were computed either (see (i), (ii) and (iv) below) with the variable phase
method (appendix A) or (iii)matching the logarithmic derivatives of the outward and inward
solutions of the Schrödinger equation. Several numerical algorithms were employed:

(i) the standard Runge-Kutta method of fourth order with a constant step
(ii) the standard Runge-Kutta method of fourth order with a variable step
(iii) the Numerov method
(iv) the predictor-corrector method – Gear’s formula

Our experience with these algorithms is briefly summarized below:

Ad (i): We used our own implementation (in C), no external library was used. It was usually
necessary to take more than 106 steps to reach the accuracy 10−5. This large number of
steps was due to the singular behavior of the Coulomb-like term in the potential. The
singularity itself was treated by shifting the origin 0 → 10−30. It would be possible to
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make more sophisticated correction, but the adopted approach was sufficiently accurate.
This method is rather time consuming.

Ad (ii): The routine DIVPRK from the IMSL library [44] was used. This method is fast and
accurate, but its use is in general not recommended [43] when very high accuracy is
required. We used it just for comparing with other methods.

Ad (iii): The phase shift obtained by this method has the modulo-π ambiguity, thus it has been
used only to check other methods. Nevertheless, it appeared to be more accurate than
the method above.

Ad (iv): The IMSL [44] routine DIVPAG was used. This method is fast and rather accurate.
The results presented in this thesis were obtained in this way. The phase shifts were
computed with relative accuracy of 10−9.

C.3 Tuning the effective theory

C.3.1 First order

As suggested by the effective theory, the coefficient c was fitted to the phase shift at
rather small energy E = 10−9. Phase shifts are matched with the accuracy of 10−7. To
determine c we used a very simple algorithm of splitting intervals. On average, ten to
twenty iterations were necessary.

C.3.2 Second order

One parameter fit of a single parameter c, described above, was rather trivial. Unfor-
tunately, to fit two-parameters of the second order effective potential (5.1) was numerically
rather difficult and some unforeseen problems have been faced. Similar to [40], we used two
phase shifts for energies 10−9 and 10−5, respectively, to fit the two parameters c and d1.
Thus, we had to solve a minimalization problem for two variables, minimalizing the positive
quantity

f(c, d1) = [δPD(10
−9)− δ(c, d1; 10

−9)]2 + [δPD(10
−5)− δ(c, d1; 10

−5)]2 , (C.1)

where the subscript PD stands for pseudoexperimental data.
We have implemented three different methods to solve the problem:

(a) the simplex algorithm
(b) the Metropolis algorithm
(c) the Levenberg-Marquardt algorithm with finite-difference Jacobian
Again, our experiences are briefly summarized:

Ad (a): The subroutine AMOEBA from [43], implementing the downhill simplex method, was
used. This method is suited only for searching for a local minimum of multidimensional
function. It was not easy to achieve the precision we required. This method was used
along with the Runge-Kutta method with constant step (to get the phase shifts). It
resulted in very slow and often not terminating code.

Ad (b): The subroutine AMEBSA from [43], combining the Metropolis algorithm with the mod-
ified amoeba-like one. This code depends on too many input parameters and it was not
easy to understand the effect they have on the run of the code.

Ad (c): The IMSL subroutine DUNLSF was used. Compared to previous two, it was easy to
handle and efficient.
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At first, we used the method (a). It was possible to use only the precision of 10−5

for comparing the phase shifts. The necessary input of all implemented algorithms is an
initial guess for the fitted parameters. We have assumed that the first coefficient c has in
the second order of the effective theory roughly, but not exactly, the same value as in the
first-order. Thus, the guess value was roughly, up to ten percent, equal to the first-order
value of c. The guess of the second parameter was d1 ∼ −0.1 c. This was supported by
the fact, that coefficients of the effective potential should roughly correspond to those from
the Fourier transform of the potential (4.6). This was confirmed by other authors making a
similar analysis [40, 45]. Unfortunately, results of the fit were initial guess dependent. That
is, we were getting different pairs of coefficients, approximating phase shift values with given
accuracy, by changing the initial guess for the minimalizing code.
This was very unexpected result, authors of a similar analysis [40] do not mention such

ambiguity. At the same time, all found values of the coefficients were defining the effective
potential, which approximated the pseudodata better than the first-order one. Our mini-
malization problem obviously has many local minima and the adopted techniques could not
find an absolute one.
We made two attempts to cure this. First, we employed matching algorithm with higher

accuracy 10−7 and better algorithms (b) and (c). We were not able to implement the method
(b) for our purposes, so we dropped it and used the method (c) instead. This method was
efficient, fast and matched the phase shifts with the required accuracy.
Higher accuracy partially solves the ambiguity. The number of devious coefficients sig-

nificantly decreased, however, the solution was still not unique. This experience nevertheless
explains, why other authors (e.g., Lepage) calculated their energies and phase shifts to very
high precision (10 and more digits), which is an accuracy that would be impossible to achieve
experimentally for any realistic physical system.
Next, we tried to increase the interval between the two energies used for the fit, taking

E1 = 10
−9 and E2 = 10

−2. This, however, does not give any significant improvement of the
uniqueness of the fit. We were still finding many devious pairs of coefficients.
We also tried to fix the coefficient c to the value found in the first order of the effective

theory. Then only one coefficient d1 has to be determined in the second order of tuning.
This idea is motivated by the fact that d1 is connected with a power of energy, while c is
not. Thus, the observable at the energy E1 will be much less influenced by d1, than the one
at higher energy E2. Nevertheless, this approach is less accurate that the two parameter fit
at the 2nd order.
At the end, we decided to choose energies E1 = 10

−9 and E2 = 10
−5 ([40] used very

similar values), the precision 10−7 and minimalization method (c).

53



Jan Novotný - Nucleon-nucleon interaction in the framework of effective theory

References

[1] R. Machleidt, Advances in Nuclear Physics 19 (1988) 1.

[2] E. Epelbaum, The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory, PhD
thesis, Ruhr-Universität Bochum, 2000, unpublished

[3] M. Taketani, S. Nakamura and M. Sasaki, Prog. Theor. Phys. 6 (1951) 581.

[4] R. A. Bryan and B. L. Scott, Phys. Rev. 135 (1964) B434.

[5] M. M. Nagels, T. A. Rijken and J. J. de Swart, Phys. Rev. D17 (1978) 768.

[6] R. Machleidt, K. Holinde, C. Elster, Phys. Rept. 149 (1987) 1.

[7] M. Lacombe et al., Phys. Rev. C21 (1980) 861.

[8] K. Holinde and R. Machleidt, Nucl. Phys A256 (1976) 479.
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