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Abstract: The currently most widespread theory for the description of hadron
- hadron and hadron - nucleus collisions is a parton model. However, some
apparent failings of this model (mainly in hadron - nucleus collisions) lead to
the formulation of other approaches to the description of a collision and to the
calculation of cross sections. The color dipole approach can be successively used
in the region of deep inelastic scattering for the formulation of a theory which
describes appropriate collisions better than existing parton model. The same
approach can be used to the description of the direct photon production and
the Drell-Yan lepton pair production also, for what this work is dedicated to.
A summary of theoretical calculations is presented here for the understanding
of the whole model. The main feature this thesis is devoted to is a nuclear
modification factor for proton - nucleus and deuteron - nucleus collisions and a
prediction for RHIC energies with further outlook to LHC energies. This factor
can be used to the estimate of the size of nuclear effects in contrast to hadron
- hadron collisions - mainly nuclear shadowing and Cronin effect.
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Abstrakt: Partonový model je v současnosti nejrozš́ı̌reněǰśı teoríı použ́ıvanou
pro popis hadron - hadronových a hadron - jaderných srážek. Některé zjevné
nedostatky tohoto modelu (předevš́ım v hadron - jaderných srážkách) ovšem ve-
dou k formulaci jiných př́ıstup̊u k popisu srážky a výpočtu účinných pr̊uřez̊u. V
oblasti hluboce nepružného rozptylu lze s úspěchem použ́ıt přibĺıžeńı barevného
dipólu pro formulaci teorie, která popisuje zmı́něné srážky lépe než stávaj́ıćı
partonový model. Zmı́něný postup se ovšem dá použ́ıt i na analýzu mech-
anismu produkce př́ımých foton̊u a Drell-Yanových leptonových pár̊u, čemuž
je věnována tato práce. Je zde prezentován souhrn teoretických výpočt̊u pro
pochopeńı celého modelu. Konkrétńı vlastnost, které je věnována tato práce
je jaderný modifikačńı faktor pro proton - jaderné a deuteron - jaderné srážky
a jeho předpověď pro energie odpov́ıdaj́ıćı urychlovači RHIC s výhledem na
pokračováńı k energíım na urychlovači LHC. Pomoćı něho lze usoudit na mı́ru
jaderných efekt̊u oproti hadron - hadronovým srážkám - předevš́ım jaderného
st́ıněńı a Croninova efektu.
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Chapter 1

Introduction

This project is devoted to the study of nuclear effects in proton - nucleus and
deuteron - nucleus collisions mainly on RHIC energies and further to the LHC.
The use of nuclei in high-energy collisions have certain advantages in contrast
to proton collisions. In principle, we can study scattering products from pro-
ton collisions with a detector located within a macroscopic distance from the
collision point in contrast to a nuclear medium, which can serve as detector
itself. Therefore we can study coherence effects in QCD not accessible in proton
collisions. The transition from the description of a proton - proton collision
to the description of a proton - nucleus (nucleus - nucleus) collision is not as
straightforward as it seems. Naively, it could be expected that the cross section
for proton - nucleus collisions is equal to A times the cross section for proton -
proton collisions. But as experiments suggest, there are some collective effects
that disrupt this idea. When one tries to calculate the cross section in proton
- nucleus collisions with the factorization theorem and PDF´s from the deep
inelastic scattering, it is almost impossible to reconstruct some well known ex-
perimental features as nuclear broadening of pT spectra. Also the calculated
nuclear shadowing appears to be independent of centrality, which is in contrast
with experimental facts.
There exists a model for the deep inelastic scattering(DIS) based on color dipole
approach[9]. In the DIS, a lepton is scattered off a proton. This lepton radiates
a virtual photon, which probes a structure of the proton and therefore it can
give a clue to the constitution of a proton. The process suggests the existence of
three so called valence quarks. These quarks carry together quantum numbers
of a proton. Other than valence quarks, there seems to be particles from ”quan-
tum sea”. Mainly it consists of gluons, that mediate the color force between
quarks. Since gluons do not have an electric charge, they cannot be visible with
the DIS. But quarks seem to carry only a half of momentum of proton and
therefore there have to be some sort of neutral particles - sea particles. The
energy of collisions has to be raised in order to resolve the structure in more
details. As a consequence, instead of seeing a quark with a longitudinal mo-
mentum fraction Bjorken x we see a quark with a gluon carrying together the

13



CHAPTER 1. INTRODUCTION 14

same Bjorken x and so each carrying lesser part. For sufficiently high energies,
most of momentum can be carried by gluons. Furthermore, gluons can split to
quark - antiquark pairs and increase quark density. For extremely high energies
- xBj << 0.1 - the partonic content of proton is dominated by gluons and a
scattered photon sees only sea quarks. This process, however, do not distinguish
between quark and antiquark density so we have to study the Drell-Yan process
as a complementary one.
The explanation of the DIS off nuclei depends on the reference frame. In the
infinite momentum frame, nucleus is Lorentz contracted and the localization of
gluons is given by uncertainty relations. Therefore, the gluon cloud is spread
over the whole nucleus and nucleons can ”communicate” with each other. In
the rest frame of a nucleus distances between nucleons are much bigger and so
they can be considered as independent particles. As the cross section is Lorentz
invariant, the partonic interpretation of the process has to be frame dependent.
The result is that both parton distribution in nucleus and interpretation what
partons are has to be frame dependent.
The DIS in the rest frame of a nucleus can be described as a process, where a
lepton radiates virtual photon, that fluctuates to a quark - antiquark pair (as
color dipole)[3].

Figure 1.1: A deep inelastic scattering scheme using color dipole idea

This coherent fluctuation is then disrupted by color interaction with differ-
ent nucleons. That corresponds to the overlap of gluon clouds in the infinite
momentum frame. A long timelife of the fluctuation leads to the existence of
coherence effects observed in experiment.
The same approach can be applied to the Drell-Yan process. In the nucleus
rest frame it looks like a bremsstrahlung of a photon, which decays to a lepton
pair. Moreover, the cross section can be expressed using the same dipole cross
section from the DIS[2].

That is a direct consequence of a factorization theorem. When a quark
passes through the nucleus, it undergoes several scattering from nucleons. The
effect of multiple scattering of quark on its bremsstrahlung is known from QED
as Landau-Pomeranchuk-Migdal effect[15] [16], that leads to a reduction of the
cross section due to destructive interferences. This effect can be seen on a
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Figure 1.2: A Drell-Yan production scheme in a target rest frame

nuclear modification factor, which is presented here. Even stronger effect can
be seen for direct photon production, which differs from the Drell-Yan process
only in the fact that emitted photon is real and do not decay into lepton pair.
Next chapter consists of the description of the Dell-Yan process in classical
parton model. The third chapter than repeats the calculation in a color dipole
approach. Fourth chapter is devoted to the discussion about a parametrization
used for describing the dipole cross section and various PDF‘s used for the
calculation. In the fifth chapter various nuclear effects expected in nuclear
collisions are discussed. The last chapter summarizes results of calculations
performed in this model and the prediction of nuclear modification factors for
RHIC accelerator.



Chapter 2

The Drell-Yan process in a
parton model

2.1 QCD factorization theorem for Drell-Yan pro-

cess

At high energy hadron colliders, we can distinguish two types of scattering
processes. Higgs boson and high pT jet production are denoted as hard processes
and their rates and properties can be predicted very well with perturbation
theory. The total cross-section and underlying events are called soft processes,
which are lead by non-perturbative QCD effects. All those processes are still
described by the QCD theory. Furthermore, hard processes are followed by soft
interactions and therefore they have to be well analyzed to obtain comparable
predictions from perturbative approach. The factorization in QCD can be used
to obtain such hard scattering cross-sections in hadron-hadron collisions. Here
we will restrict to leading order processes (LO). The factorization theorem comes
from Drell and Yan[11]. They suggested that the parton model ideas which
comes from the deep inelastic scattering can be used on certain processes in
hadron-hadron collisions. They studied the production of massive lepton pair by
quark-antiquark annihilation. They postulated that the hadronic cross-section
of the process AB → e+e− + X is[11]

σAB =
∫

dxadxbfa/A(xa)fb/B(xb)σ̂qq̄→e+e− (2.1)

where fg/A(x) are parton distribution functions from the deep inelastic scat-
tering. The domain of validity is the asymptotic limit (in analogy of Bjorken

scaling limit) τ =
M2

l+l−
s |s→+∞ fixed. The same approach can be used to other

hard scattering processes. Problems arise when we calculate perturbative cor-
rections from real and virtual gluon emission. Large logarithms from gluons
emitted collinear with incoming quarks appeared to spoil the convergence of

16



CHAPTER 2. THE DRELL-YAN PROCESS IN A PARTON MODEL 17

A

B

a

b

fa/A

fb/B

σ̂

Figure 2.1: Schematics of Drell-Yan factorization theorem

the perturbative expansion. This is the same problem as in deep inelastic scat-
tering structure function calculations. So they can be absorbed (using DGLAP
equations in the definition of the parton distributions) giving rise to logarithmic
violations of scaling. All logarithms from Drell-Yan corrections can be factored
into renormalized parton distributions as they appear in the factorization the-
orem. Restricting to LO logarithm corrections we can write[6]

σAB =
∫

dxadxbfa/A(xa, Q2)fb/B(xb, Q
2)σ̂qq̄→e+e− (2.2)

The factor Q2 is a large momentum scale, which characterizes the hard
scattering. Changes to the Q2 scale of O(1) are equivalent in this leading loga-
rithm approximation. The last step is the fact that the finite corrections after
factorization of logarithms had to be calculated separately for each process (per-
turbative O(αn

S) correction to the total cross-section). Therefore

σAB =
∫

dxadxbfa/A(xa, μ2
F )fb/B(xb, μ

2
F ) × [σ̂0 + αS(μ2

R)σ̂1 + . . . ]qq̄→e+e−

(2.3)
where μF is a factorization scale, which ”separates” the long and short-

distance physics. The μR is a renormalization scale for the QCD running cou-
pling. Formally, the total cross-section (to all orders of PT) is invariant under
changes in these parameters. In the absence of a complete set of higher order
corrections, it is necessary to make a choice for these scales to make cross-section
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predictions. For Drell-Yan process, the standard choice is μF = μR = Ml+l− .
The DGLAP equations are[6]

∂qi(x, μ2)
∂ ln μ2

=
αS

2π

∫ 1

x

dz

z
[Pqiqj (z, αS)qj(

x

z
, μ2) + Pqig(z, αS)g(

x

z
, μ2)] (2.4)

∂g(x, μ2)
∂ ln μ2

=
αS

2π

∫ 1

x

dz

z
[Pgqj (z, αS)qj(

x

z
, μ2) + Pgg(z, αS)g(

x

z
, μ2)]

where Pab are splitting functions with perturbative expansion

Pab(x, αS) = P
(0)
ab (x) +

αS

2π
P

(1)
ab (x) + . . . (2.5)

.
These equations determine the Q2 dependence of the PDF’s. The x-dependence

has to be obtained from fitting hard scattering data.

2.2 The parton model cross-section calculation

The Drell-Yan process, as stated before, lie in a production of vector bosons
or photons in hadron - hadron interactions. Let the restriction to a photon
production be valid for the purpose of our analysis considering the energy scale.
Then at the partonic level, when two hadrons collide, a quark from one hadron
and an antiquark from the second hadron annihilate by forming a time-like
photon, which then decays to a lepton pair.

q

q̄

l

l̄

γ�/Z

Figure 2.2: The Feynmann diagram of the Drell-Yan process

Let‘s denote a mass of a time-like photon as

M2 = q2 > 0, (2.6)

where qμ is a four-momentum of virtual photon.
A square of the cms energy is denoted as

s = (p1 + p2)2, (2.7)
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where pμ
1,2 is a four-momentum of appropriate hadron.

At last, let‘s introduce a Feynmann variable as

xF =
2pcms

L√
s

.= x1 − x2, (2.8)

where pcms
L is a longitudinal momentum of a dilepton in hadron - hadron

center of mass frame and x1 = 2p2q
s , x2 = 2p1q

s are Bjorken variables of appropri-
ate hadron. These variables has a meaning of a fraction of proton longitudinal
momentum, which does take part in hard process. Therefore, a quark and an
antiquark involved in this process have momentum x1P1 and x2P2 respectively.
In addition, the following equation hold (neglecting pT )

x1x2 =
M2

s
=: τ (2.9)

Structure functions for the Drell-Yan process can be extracted from a hadronic
tensor[3]

Wμν =
∫

d4xeiqx < p1p2|Jμ
(x)J

ν
(0)|p1p2 >, (2.10)

which leads to four independent structure functions for Drell-Yan process
(soft component). Partonic cross section (hard component) can be derived using
standard Feynmann rules as

dσ̂

dM2
=

4πα2
emZ2

f

3NCM2
δ(x1x2s − M2) (2.11)

Hadronic cross section can be then written using factorization theorem as[6]

dσ

dM2
=
∫ 1

0

dx1dx2

∑
f

{qf (x1)q̄f (x2) + qf (x2)q̄f (x1)} dσ̂

dM2
(2.12)

Integration over x2 leads to a form

M2 dσ

dτ
=

4πα2
em

3NC

∫ 1

0

dx1

∑
f

Z2
f{qf(x1)q̄f (

τ

x1
) + qf (

τ

x1
)q̄f (x1)} (2.13)

Therefore, the final cross section depends on a scaling variable τ as confirmed
by experiment.
There are, however, some features that cannot be explained by LO calculation.

• This cross section is approximately 2-3 times lesser than observed. That
is why the so called K-factor is introduced to extend the cross section to
a NLO value.
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• In experiment, there are photons with high pT , but it was neglected in
this approach. The primordial momentum distribution of quarks can be
included as a gauss distribution to correct this, but the width needed to
fit the experiment is much bigger than the one that correspond with the
Fermi motion.

These problems apparently vanish when we pass over to the NLO calculation.
Feynmann diagrams of higher order, however, contain divergencies. Infrared di-
vergencies vanish when we sum over all real and virtual contributions. Collinear
(Bjorken) divergencies, corresponding to the situation when intermediate quark
in a QCD Compton process has a pT → 0 can be absorbed to parton densities
and therefore redefine parton distribution functions

qf (x) → qf (x) +
αs

2π
ln(

M2

κ2
)
∫ 1

x

dy

y
PfG(

x

y
)G(y) (2.14)

This shows what is meant by the DGLAP evolution of a parton density. In
principle it allows us to ”move” PDF‘s to higher energies and virtualities than
that of the deep inelastic scattering. Passing to the NLO order solves most
of problems of partonic approach, nevertheless there is a problem that the K
factor correction is of the order of 2-3 times the first order and so it can be
even larger in further orders. Furthermore, there appears to be a problem with
pT spectrum, because theoretical calculations correspond to pT ∼ M2 and even
diverge at pT → 0

dσ

dp2
T

∼ αS(p2
T )

p4
T

(2.15)

That is a consequence of the fact that large logarithms ln M2

p2
T

occur in high
orders of pQCD and therefore they have to be resumed all. It corresponds to a
resummation of soft gluons radiated from a quark or antiquark.



Chapter 3

The Drell-Yan process in
light cone dipole approach

3.1 The Light cone model cross-section calcula-

tion

In the rest frame of a target, the Drell-Yan process looks like a bremsstrahlung
of a massive photon from an incoming quark. The photon can be emitted before
or after a quark is scattered on a proton[2].

Figure 3.1: The Dell-Yan production via a color dipole approach

This photon then decays into a l+l− pair. Although the cross section is
a Lorentz invariant variable, the space-time interpretation of a process is not
a Lorentz invariant variable and therefore depends on a reference frame. The
Feynmann picture of colliding particles seen as a bunch of non-interacting par-
tons without transverse momentum can be used only in a fast moving reference
frame (so called infinite momentum frame). Only there the Drell-Yan process
can be formulated using parton densities in a proton.
In a rest frame of the target q/q̄ a quark from the incident hadron fluctuates
to a state that contains massive photon and a quark. Strong interaction with
target color field interrupts the coherence of a fluctuation and the photon is

21
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released as virtual. In analogy to the factorization theorem[3]

dσ

dlnα
(qp → γ�X) =

∫
d2ρ|Ψγ�q(α, ρ)|2σN

qq̂(αρ, x2), (3.1)

where σN
qq̂(αρ, x2) is a dipole cross section from the DIS and Ψγ�q(α, ρ) is a

light-cone(LC) distribution amplitude,i.e. an amplitude describing a possibility
that there exists a γ�q fluctuation with a transverse separation �ρ and a relative
part of LC momentum of a photon and quark is α or 1 − α respectively. The
photon in a fluctuation can be longitudinally or transversely polarized, therefore
we have to distinguish ΨT and ΨL.

q

q(1 − α)pq

αpq

γ�

ρ

uncertainty relations

Figure 3.2: A detailed look on a fluctuation propagation and its consecutive
disruption

Let’s denote

• P1 . . . four-momentum of incident beam

• P2 . . . four-momentum of a target

• �q . . . four-momentum of a virtual photon

• �qT . . . transverse momentum of a virtual photon

Now, similar relations are valid as in parton model, namely

s = (P1 + P2)2 q2 = M2 (3.2)
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Standard kinematical variables are Bjorken x’s

x1 =
2P2.q

s
x2

2P1.q

s
x1x2 =

M2 + �q2
T

s
, (3.3)

connected to a Feynmann variable via

x1 − x2 = xF (3.4)

The noninvariance of space-time description shows in a way that instead of
x1 be a part of a momentum of incident quark annihilating with an antiquark
as in parton model, here x1 is a part of momentum of proton carried away by
photon.
Light-cone wave functions for the Drell-Yan process(DY) can be expressed in
analogy with the DIS as[3]

ΨT,L
γ�q (α, ρ) =

√
αem

2π
(χ̄qÔT,L

γ�q χq)K0(ηρ), (3.5)

where

η2 = m2
fα2 + M2(1 − α)

χ . . . 2 − component spinor
ÔT

γ�q = imfα2ē(�n × �σ) − i(2 − α)(ē.�∇p) + αē(�σ × �∇ρ)

ÔL
γ�q = 2M(1 − α)

In particular, an exact form can be calculated for a subprocess q → γ�q

|Ψγ�q(α, ρ)|2 = |ΨT
γ�q(α, ρ)|2 + |ΨL

γ�q(α, ρ)|2 (3.6)

|ΨT
γ�q(α, ρ)|2 =

αem

π2
(m2

fα4K0(ηρ) + (1 + (1 − α)2)η2K2
1 (ηρ))

|ΨL
γ�q(α, ρ)|2 =

2αem

π2
M2(1 − α)2K2

0 (ηρ)

In order to form a hadronic cross section it is essential to realize that pho-
ton carries away a fraction of proton momentum of the magnitude of x1 =√

x2
F +4τ+xF

2 and correspondingly a fraction of a quark momentum of the mag-
nitude α.

dσ

dM2dxF
=

αem

3πM2

x1

x1 + x2

∫ 1

x1

dα

α2

∑
f

Z2
f (qf (

x1

α
) + q̂f (

x1

α
))

dσ(qp → qγ�p)
dlnα

=

=
αem

3πM2

1
x1 + x2

∫ 1

x1

dα

α
F p

2 (
x1

α
)
dσ(qp → qγ�p)

dlnα
(3.7)

The proton structure function needs to be evaluated in quite high xBj , where
it is well known. The existence of ”dipole” cross section is well-founded even
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if there is no physical dipole. After a quark radiates a photon it is partially
inflected in the impact parameter plane. If we denote the transverse separation
between a quark and a photon as ρ, then the center of mass of a fluctuation is
the same as for the original quark at the impact parameter plane. The distance
between photon and the center of mass is exactly (1 − α)ρ and an appropriate
distance for quark is αρ. The displacement in the coordinate frame leads to a
phase factor in the momentum frame.
The incoming quark can be expanded into interaction eigenstates[2]

|q >=
√

Z2|qbare > +cq
γ� |qγ� > + . . . (3.8)

Different eigenstates are scattered with different amplitudes, which has an
effect of disturbing the coherence amongst eigenstates. Considering the fact,
that there is no real dipole in the DY process, the non-perturbative interaction
need not to be taken into account. So we stick to perturbative light-cone wave
functions. Since the dipole cross section consider only sea quarks from gluon
decays, the LC approach to the DY process can be used only for small x2. That
is a reason for the dependence of the dipole cross section on the gluon density.
Naturally, the fact whether a sea quark belongs to incident or target quark is
frame dependent. If an incident quark or antiquark is ”slow” in the infinity
momentum frame in the limit α → 1, it can be interpreted as a sea antiquark or
quark of a target, that annihilates with an incoming parton. The annihilation
of valence quarks of a target was not taken into account.
Let’s denote that even if a quark mass is negligible, it cannot be set to zero.
Divergencies coming from finite boundaries in α integration lead to logarith-
mic divergencies in standard approach. The region α → 0 is the analogy of
Bjorken aligned jet configurations that lead to a dominant contribution to the
pT distribution. It can be obtained by four-fold Fourier transformation

dσ(qp → qγ�p)
dlnαd2pT

=
1

(2π)2

∫
d2ρ1d

2ρ2e
i�pT (�ρ1−�ρ2)Ψ�

γ�q(α, ρ1)Ψγ�q(α, ρ2) ×

×1
2
(σqq̄(αρ1) + σqq̄(αρ2) − σqq̄(α|�ρ1 − �ρ2|)). (3.9)

The LC wave function can be expressed as

Ψ�T (α, ρ1)ΨT (α, ρ2) =
αem

π2
(m2

fα4K0(ηρ1)K0(ηρ2) +

+(1 + (1 − α)2)η2 �ρ1�ρ2

ρ1ρ2
K1(ηρ1)K1(ηρ2))

Ψ�L(α, ρ1)ΨL(α, ρ2) =
2αem

π2
M2(1 − α)2K0(ηρ1)K0(ηρ2) (3.10)

Final hadronic differential cross section is

dσ

dM2dxF d2pT
=

αem

3πM2

∫ 1

x1

dα

α
F p

2 (
x1

α
)
dσ(qp → qpγ�)

dlnαd2pT
(3.11)
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3.2 The Drell-Yan pair polarization

In experiment, different polarizations can be distinguished by the study of an-
gular distribution of DY pairs. In general, the distribution has a form of

d4σ

dxF dM2d cosΘdφ
∼ 1 + λ cos2 Θ + μ sin 2Θ cosφ +

ν

2
sin2 Θ cos 2φ (3.12)

Since λ, φ depend on a z-axis of the center-of-mass frame of a dilepton, it
has to be reformulated to fit the color dipole approach. The formulation of
the color dipole approach in the rest frame of a target restrict the z axis to
the direction of a radiated photon. Then, the rest frame of a target and the
center-of-mass frame of dilepton are connected with a boost in the z axis and
therefore transverse polarizations are in both frames the same

ztarget rest frame

incident hadron target hadron

zdilepton cms

Figure 3.3: A choice of a z axis for the polarization analysis

Since φ-dependence is hard to measure, it can be carried out by integrating
the whole formula over 2π

d3σ

dxF dM2d cosΘ
∼ 2π(1 + λ cos2 Θ) (3.13)

From the experimental observation it is known that λ = +1 for transverse
and λ = −1 for longitudinal polarization and then

λ =
σT − σL

σT + σL
(3.14)

For small pT , λ differs from 1 the more the energy decrease. In opposite,
for high pT , λ → 1. In the parton model, the following Lam-Tung relation[12]
holds

1 − λ − 2ν = 0. (3.15)

This relation, however, does not hold in a color dipole approach. This comes
from the behavior of λ in a regime pT → 0. It is essential that the double-spin-
flip amplitude ν vanish at pT = 0 to resolve kinematics. This assumption
holds in the first order in pQCD and even in the second order approximately.
Experiments suggest that following relation does not hold, but data do not fit
proper kinematic region. It is only known experimentally in large x2, where the
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color dipole approach do not count.
The dipole formalism offers easy way to calculate the DY pT distribution even in
low-pT region. Results from O(αS) parton model cannot be directly compared
to the color dipole approach since it is not an expansion in any parameter.
Instead of this, all contributions from higher order graphs enhanced by factor of
ln( 1

x2
) are included in the dipole cross section. Using proper phenomenological

parametrization there can be even non-perturbative corrections included.



Chapter 4

Phenomenological
parametrization

4.1 The dipole cross section

The dipole cross-section parametrization is the most important feature of the
whole light cone approach. Since it cannot be calculated directly it has to
be extracted from a phenomenology fit to known data. Fortunately, results
from the DIS data fits can be used for processes described by the light cone
approach[3]. In fact, every hadron cross section can be expressed using the
dipole cross section. For example, π − p scattering cross section can be written
as

σπp(s) =
∫

d2ρ|Ψπ(ρ)|2σqq̄(s, ρ). (4.1)

The only problem is that we have to be able to calculate Ψπ(ρ), which is
a probability of finding a qq̄ pair with a transverse separation ρ inside a pion.
The general form of a dipole cross-section cannot be calculated as was stated
before. But for small ρ it can be expressed using a gluon density in analogy to
DGLAP

σqq̄(xBj , ρ) =
π2

3
ρ2αS(

λ′

ρ2
)xBjG(xBj ,

λ′

ρ2
) (4.2)

There exist several parametrizations already. The simplest one is

σqq̄(s, ρ) = C(s)ρ2. (4.3)

This is just a naive approximation, where the assumption that αS and G are
independent of transverse separation is used. Probably the biggest problem of
this parametrization is the fact that it diverges when ρ → ∞ leading to infinite
probability of forming a fluctuation large enough.
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Based on a saturation model, Golec-Biernat and Wusthoff proposed a parametriza-
tion [10]

σqq̄(xBj , ρ) = σ

(
1 − e

− ρ2Q2
0

4( x
x0

)λ

)
, (4.4)

where Q0 = 1GeV, σ0 = 23.03mb, x0 = 0.0003, λ = 0.288.

Figure 4.1: The dipole cross-section vs. ρ2 - solid for HERA, dashed for THERA
energy

There can still be a problem because there is no Bjorken variable in hadron-
hadron collisions and the energy is ”hidden” in s. But if we reformulate the
dipole cross-section as a function of s, the Bjorken scaling is automatically
violated. A compromise solution is to parametrize the dipole cross-section with
ρ2s, which maintains approximate Bjorken scaling but introduce 10 parameters
and restricts a validity up to Q2 = 60GeV2. Since we know that the Bjorken
scaling is strongly violated at low xBj , we can reformulate the dipole cross-
section using s and restrict to rather low Q2.

σqq̄(s, ρ) = σ0(s)
(

1 − e
− ρ2

r2
0(s)

)
(4.5)

r0(s) = 0.88
(

s

s0

)−0.14

fm ; s0 = 1000GeV2

σ0(s) = σπp
tot(s)

(
1 +

3r2
0(s)

8 < r2
ch >π

)
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σπp
tot(s) = 23.6

(
s

s0

)0.08

mb ; < r2
ch >π= 0.44fm2

There are several other possibilities how to improve this parametrization.
The data agreement can be enhanced by introducing ”non-physically” small
quark masses. That would, however, allow for arbitrarily large separations of
quarks, which breaks a confinement. Masses are therefore selected as an inverse
of a typical confinement radius[9]

mu,d ∼ 200MeV (4.6)

There is even a possibility to include a DGLAP evolution into dipole cross
section

σqq̄(xBj , ρ) = σ0

(
1 − e−

π2ρ2αS(μ2)xG(x,μ2)
3σ0

)
, (4.7)

where the scale where we want to evaluate the gluon density is defined as

μ2 =
C

ρ2
+ μ2

0. (4.8)

The gluon density is shifted to a desired scale by using the DGLAP evolution

∂xg(x, μ2)
∂ ln μ2

=
αS(μ2)

2π

∫ 1

x

dz[Pgqj (z, αS)qj(
x

z
, μ2) + Pgg(z, αS)g(

x

z
, μ2)]. (4.9)

The initial gluon density is taken at the scale Q2
0 = 1GeV2 in the form

xg(x, μ2) = Agx
−λg (1 − x)5.6, (4.10)

where C = 0.26, μ2
0 = 0.52GeV2, Ag = 1.2 and λg = 0.28. The need for

DGLAP evolution is reasonable for extremely high energies corresponding to
x ∼ 0.001

4.2 The Proton structure function

The calculation of production cross-section at hadron colliders relies upon a
knowledge of the distribution of the momentum fraction x of partons in pro-
ton in the relevant kinematic range. These parton distribution functions are
a soft component of the cross section and therefore they cannot be calculated
perturbatively, but rather are determined by global fits to data from the deep in-
elastic scattering. Measurements of deep inelastic scattering structure functions
(F2, F3) in the lepton-hadron scattering provide the main source on quark distri-
butions q(x, Q) inside hadrons. At LO, the gluon distribution function g(x, Q)
enters directly in hadron-hadron scattering processes with jet final states. Re-
cent global parton distribution fits are carried out to the NLO and in some cases
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to the NNLO, which allows αS(Q2),q(x, Q) and g(x, Q) to mix and contribute
in the theoretical formulae for all processes. Data from deep inelastic scattering
utilized in PDF fits cover a wide range in x and Q. The accuracy of the ex-
trapolation to higher Q2 depends on the accuracy of the original measurement,
uncertainty on αS(Q2) and the accuracy of the evolution code. Most global
PDF analysis are carried out at NLO. The DGLAP evolution kernels have been
calculated at NNLO and so NNLO PDF’s calculated in this manner are avail-
able. However, any current NNLO global PDF analysis are still approximative.
All global analysis use a generic form for the parametrization of both the quark
and gluon distributions at some reference value Q0

F (x, Q0) = A0x
A1(1 − x)A2P (x, A3 . . . ). (4.11)

The reference value Q0 is usually chosen in the range of 1-2GeV. The pa-
rameter A1 is associated with small-x Regge behaviour while A2 is associated
with the large-x valence counting rules. The term P (x, A3 . . . ) is a suitably
chosen smooth function, depending on one or more parameters, that adds more
flexibility to the pdf parametrization.
There are two sets of distribution functions used in this analysis. First is a
fit to data from BCDMS,E665,NMC,SLAC,H1,ZEUS taken form [4]. The F2

parametrization has a form of

F fit
2 (x, Q2) = A(x)

[
ln(Q2

Λ2 )

ln(Q2
0

Λ2 )

]B(x) [
1 +

C(x)
Q2

]
(4.12)

A(x) = xa1(1 − x)a2 [a3 + a4(1 − x) + a5(1 − x)2 + a6(1 − x)3 + a7(1 − x)4]

B(x) = b1 + b2x +
b3

x + b4

C(x) = c1x + c2x
2 + c3x

3 + c4x
4

with Q2
0 = 20GeV2 and Λ = 0.25.

Fitting parameters are summarized in [4]. Validity of this parametrization
lies in a kinematic range of 0.2 < Q2 < 5000GeV2 and 3.5 × 10−5 < x < 0.85.
Since this fit do not cover the whole interval in x, this function is particularly
inconvenient for low energy calculations, especially for the DY. But our main
objective is to perform this approach towards the ALICE energies, where high-x
behaviour do not contribute significantly.
The second parametrization comes from [5], where LO and NLO quarks and
gluon distribution functions are presented. For LO they are evaluated at a scale

s = ln
ln
[

Q2

0.2322

]
ln
[

μ2
LO

0.2322

] , μ2
LO = 0.23 (4.13)
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using a function

xv(x, Q2) = Nxa(1 + Axb + Bx + Cx3/2)(1 − x)D (4.14)

and parameters for each valence quark mentioned at [5], dependent on s.
The gluons and sea quarks parametrization has a form of

xw(x, Q2) =
[
xa(A + Bx + Cx2)(ln(1/x))b + sαe−E+

√
E′sβ ln(1/x)

]
(1 − x)D.

(4.15)
Since valence quark u is normalized to 2 and valence quark d to 1, the

structure function of a proton is described by

xF p
2 (x, Q2) = Z2

uxuv(x, Q2) + Z2
dxdv(x, Q2) + Z2

u2xus(x, Q2) + Z2
d2xds(x, Q2),

(4.16)
where Zu and Zd are electric charges of appropriate quarks. The validity

lies in a region of 0.4 < Q2 < 106GeV 2 and 10−5 < x < 1.
The only difference between LO and NLO paramatrizations lies in a fact that
NLO is evaluated with other parameters[5] at the scale

s = ln
ln
[

Q2

0.2482

]
ln
[

μ2
NLO

0.2482

] , μ2
NLO = 0.34 (4.17)

The validity remains the same.

4.3 The Deuteron structure function

The deuteron structure function can be either extracted from the DIS directly
or composed from quark and gluon structure functions. The latter has a dis-
advantage in the fact hat it neglects collective effects even if they are not as
strong.
The first deuteron structure function used in this analysis comes from [4]. This
global fit to BCDMS,E665,NMC ans SLAC data gives a stand-alone function
for a whole deuteron. Explicit form of this function is the same as for a pro-
ton with different set of parameters, mentioned in [4]. A validity region is
0.2 < Q2 < 220GeV 2 and 0.0009 < x < 0.85.
The second deuteron structure function is constructed from quark and gluon
structure functions taken from [5] as in case of a proton. The fact that each
quark distribution is normalized to a different value is manifested in different
coefficients beside each distribution.

xF p
2 (x, Q2) = Z2

u(
3
2
)xuv(x, Q2)+Z2

d(3)xdv(x, Q2)+Z2
u4xus(x, Q2)+Z2

d4xds(x, Q2),

(4.18)
Validity region is the same as for a proton.



Chapter 5

Transition from p-p to
p-A(d-A) collisions

5.1 The parton model calculation

As it was said before, using the DIS data for p-p collisions one cannot make
reasonable generalization for the DY process to p-A or A-A collisions. Nuclear
effects are described by a quantity named the nuclear modification factor

RpA
DY (x1, x2) =

σpA
DY (x1, x2)

AσNN
DY (x1, x2)

RAB
DY (x1, x2) =

σAB
DY (x1, x2)

ABσNN
DY (x1, x2)

(5.1)

If we use a cross-section calculation from chapter 2, the nuclear generaliza-
tion would look like[2]

σpA
DY (x1, x2) = N

∑
f

Z2
f

∫
d2bTA(�b)

(
qv
f (x1)RA

s (x2,�b)q̄s
f (x2)︸ ︷︷ ︸

annihilationof qp
v with qA

s

+

q̄s
f (x1)RA

v (x2,�b)qv
f (x2) + qs

f (x1)RA
s (x2,�b)q̄s

f (x2) +

q̄s
f (x1)RA

s (x2,�b)qs
f (x2) + val − val︸ ︷︷ ︸

strongly suppresed

)
(5.2)
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σAB
DY (x1, x2) = N

∑
f

Z2
f

∫
d2b

∫
d2sTA(�s)TB(�b − �s) (5.3)

(
qv
f (x1)RA

v (x1, �s)q̄s
f (x2)RB

s (x2,�b − �s)︸ ︷︷ ︸
annihilationof qA

v with qB
s

+

+q̄s
f(x1)RA

s (x1, �s)qv
f (x2)RB

v (x2,�b − �s) +

+qs
f(x1)RA

s (x1, �s)q̄s
f (x2)RB

s (x2,�b − �s) +

+q̄s
f(x1)RA

s (x1, �s)qs
f (x2)RB

s (x2,�b − �s) +

+ val − val︸ ︷︷ ︸
strongly suppresed

)
(5.4)

σNN
DY (x1, x2) = N

∑
f

Z2
f

(
qv
f (x1)q̄s

f (x2) + q̄s
f (x1)qv

f (x2) +

+qs
f (x1)q̄s

f (x2) + q̄s
f (x1)qs

f (x2)
)

(5.5)

All parton distributions qf are taken at the same virtuality Q2 = M2. The
RA

q (x, b) is a function of the impact parameter for small x. It reaches maximum
for b = 0(central collision) and vanishes as b → RA. However, data from
the deep inelastic scattering in p-A collisions provide only information about∫

d2bRA
q (x,�b) and therefore the calculation cannot be performed. Nevertheless,

there was introduced an ad-hoc assumption that RA
q � b in a parton model.

But as was stated earlier, that is in direct contradiction with the experiment
because it leads to the situation when nuclear shadowing is independent of a
centrality.

5.2 The p-A cross-section calculation

Naively, one can assume that the transition from a proton target to a nuclear
target leads to A times a p-p cross-section. But as was seen from experiments,
nuclear effects have quite strong influence on a final cross-section. For middle
xBj the ratio σA

AσN resp. F A

AF N is suppressed due to the EMC effect. In the region
around xBj ∼ 0.1, the ratio is enhanced due to a nuclear anti-shadowing. For
extremely small values of xBj , there is a permanent decrease due to a nuclear
shadowing[3].

In order to cross from p-p collisions to p-A collision it is necessary to adapt
the cross-section calculation properly. In a light cone approach it is quite easy
to do so. That is because it do not separate a hard and a soft component but
rather separate subprocesses from each other. It is therefore easy to change
the part corresponding to the interaction of a quark with a nucleon for a part
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Figure 5.1: The dependence of nuclear effects on the energy scale for several
elements

describing the interaction of a quark with a nucleus. The basic assumption is
that the coherence time is long enough (tc >> RA) and so the fluctuation can
pass through the whole nucleus without loosing coherence. This is fully met
at energies corresponding to x ∼ 0.1. In this limit, the incoming quark can
be dissolved to a system of Fock states with a constant transverse separation
�ρ. Since parton configurations with a constant transverse separation in an im-
pact parameter space constitute eigenstates of an interaction, the σA can be
calculated using the eikonalization of σN (Glauber theory)[13]

σA
qq̄(ρ, x) = 2

∫
d2b

(
1 − (1 − 1

2A
σN

qq̄(ρ, x)TA(b))A

)
, (5.6)

where A is a mass number of a nucleus. The nuclear thickness TA can be
expressed as

TA(b) =
∫ +∞

−∞
dzρA(b, z), (5.7)

where ρA is a nuclear density, parametrized with for example Woods-Saxon
approximation. For detailed derivation see appendices. In order to use this
approach for high energies, contributions from higher Fock states have to be
included. A term corresponding to 1 scattering can be extracted from a Glauber
cross section by expanding to the first order in σN . A dipole interacts with a
target by the exchange of a colorless gluonic system(=pomeron)[2].

The unitarity cut of the amplitude creates a multiple gluon radiation and
therefore higher Fock states. This shows that for a single scattering σN takes
into account all Fock states of an incoming parton. The energy dependence
of σN is then generated by the phase space of gluons from higher Fock states
|qq̄G >, |qq̄GG > . . .
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Figure 5.2: Single scattering of higher Fock state

For multiple scattering terms, we can again use the fact that σN
γ�q = σN

qq̄ = σN
DIS .

The n-times scattered dipole will provide n pomeron ladders.

Figure 5.3: Multiple scattering of higher Fock state

That idea leads to a gluon radiation in Bethe-Heitler regime, when each
interaction leads to the independent radiation of gluons. But there exist a
Landau-Pomeranchuk-Migdal effect(LPM), that point to the fact that the gluon
radiation is suppressed, because quark doesn’t have enough time to recreate its
color field in order to radiate again. This is discussed in more details in the
section about a nuclear shadowing.
As the energy rises, the lifetime of this states can become long enough to rescat-
ter a gluon on the nucleon.

Figure 5.4: Multiple scattering of higher Fock state in the limit of long coherence
time - gluon scattering
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Such processes lead to a reduction of a gluon density GA, because two
pomerons from the target nucleon merge into one just before the interaction
with a fluctuation. As a consequence, the nuclear cross-section is further sup-
pressed. Merging of two pomerons can be included into our calculations by
substituting σN

qq̄ with RGσN
qq̄ , where RG is a gluon shadowing ratio

RG(x, Q2) =
GA(x, Q2)

AGN (x, Q2)
= 1 − ΔRG(x, Q2) (5.8)

Substituting into Glauber cross-section, one obtains

σA
qq̄(x, ρ) = 2

∫
d2b(1 + (1 − A

2A
σN

qq̄RG(x, Q2, b)TA(b) + . . . )) =

= AσN
qq̄ [1 − 1

A

∫
d2bΔRGTA] + O((σN

qq̄)
2) + . . . (5.9)

Final formula is then

σA
qq̄(ρ, x) = 2

∫
d2b

(
1 − (1 − 1

2A
σN

qq̄(ρ, x)RG(x,
λ

ρ2
, b)TA(b))A

)
. (5.10)

A Fock state |qq̄G > leads to a multipomeron fusion of a type nIP → IP .
But fusions of a type nIP → mIP, corresponding to a Fock state |qq̄mG > is
not included. Therefore we perform a summation over m for all processes of a
type nIP → IP to describe nIP → mIP. That is under assumption that each
gluon in a state |qq̄mG > reacts to multiple scattering independently on other
gluons. This is called Gribov’s interpretation of a Glauber eikonal shadowing.
The gluon shadowing factor can be calculated using LC Green functions. We
restrict ourselves on a shadowing of |qq̄G > state of longitudinally polarized
photon. All qq̄ dipoles from longitudinal photons have a dimension of 1

Q2 and
so a gluon can propagate on a long distance from the dipole. Furthermore, the
qq̄ dipole is in a color-octet state after radiation of a gluon and the whole state
looks like a GG dipole. A crucial for the calculation of the gluon shadowing is
to determine the distance that gluon can propagate from the quark dipole in
the impact parameter space. Diffraction experiments show that a mean dipole
size is of the order r0 ∼ 0.3fm. Such small gluon cloud around valence quarks
is incorporated into the LC wave function by the means of the non-perturbative
gluon interaction. A small size of GG dipole leads to quite small gluon sup-
pression. For most values of x, gluon shadowing rises with the thickness of a
medium. For medium x ∼ 0.01, the gluon shadowing is very small and do not
need to be taken into account. For LHC energies x ∼ 10−5 the factor has to be
extracted somehow.

5.3 The d-A cross-section calculation

For the purpose of extending the calculation from p-A to d-A collisions, it is nec-
essary to change the structure function of a proton with the structure function
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of a deuteron. The dipole cross-section σpA can be used for d-A calculation,
because it is independent of incident particle and describes only the interac-
tion of a dipole with a target medium. The nuclear modification factor for d-A
collisions should be suppressed in contrast to the p-A factor, due to stronger
influence of valence quarks and isospin effect.



Chapter 6

Nuclear effects on cross
section

6.1 Nuclear shadowing

6.1.1 The Parton model description

A partonic interpretation of the shadowing depends on a reference frame. In the
infinite momentum frame, the shadowing occurs due to a partonic fusion that
leads to a reduction of the partonic density in the low-xBj region. In the Drell-
Yan process, the incoming quark interacts with the microstructure of proton.
That, however, cannot be done at infinitely short time. Uncertainty relations
tell us, that the bigger the colliding energy is, the longer the interaction takes.
In the parton model, energy is substituted by xBj and time is substituted by
ln 1

xBj
in the DGLAP equation

∂2xBjG(xBj , Q
2)

∂ ln 1
xBj

∂ ln Q2
=

Ncαs

π
xBjG(xBj , Q

2) (6.1)

For fixed αs the solution behaves asymptotically as[3]

xBjG(xBj , Q
2) ∼ e

2

r
Ncαs

π ln 1
xBj

ln Q2

Q2
0 (6.2)

Since fast moving nucleus is heavily contracted, parton clouds that carry
only small part of a momentum are contracted far less. Therefore, clouds start
to overlap. As the energy rises, the gluon density starts to move up and partons
start to interact with each other. Using processes like GG → G or GG → qq̄
the parton density of a nucleus is reduced in contrast with the parton density
of free protons. However, this explanation leads to the value of the shadowing
dependent only on energy, not the centrality of the collision. It is even indepen-
dent of the process that takes place, because it is only a feature of a Lorentz
contraction.

38
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6.1.2 The Color dipole analysis

In the case of a fixed target frame, the naive interpretation is that incoming
quark undergoes several scattering and produce the bremsstrahlung every time
it hits a nucleon. But in classical electrodynamics, Landau and Pomeranchuk[15]
derived, that the cross-section of bremsstrahlung production by a high-energy
charged particle in an amorphous medium is strongly suppressed. A quantum
mechanical version of this effect is known as Landau-Pomeranchuk-Migdal(LPM)
effect[16]. For low x2, the multiple scattering of a quark in a nucleus leads to
the LPM suppression of a quark bremsstrahlung[2]. This effect is responsible for
nuclear shadowing for the DY process. The explanation lies in a fact that quark
needs quite a long time to recreate its electromagnetic field after producing a
bremsstrahlung. This coherence time(length) goes from uncertainty relations

lc =
1
qL

=
α(1 − α)Eq

(1 − α)M2 + α2m2
f + p2

T

. (6.3)

If a quark is ”hit” during this time again, it cannot radiate another photon.
Furthermore, it is obvious that Fourier components with high-pT can radiate
sooner than low-pT and as a consequence are less shadowed. High-pT corre-
sponds to a narrow fluctuation and low-pT corresponds to a wide fluctuation.
There is a visual analogy to this description. In the nuclear target, a set of nu-
cleons vie for which will release a photon. If a fluctuation has a small transverse
size, it can travel through the whole nucleus without breaking the coherence,
because there isn’t any nucleon that can provide a pT -kick big enough to break
it. Since all nucleons have equal probability to interact, the shadowing is weak.

boundary to release a fluctuation

Figure 6.1: A passage of a fluctuation through a nucleus in the short coherence
time limit

If a fluctuation is wide enough, only a small impulse is needed to release a
photon. Therefore, the coherence of a fluctuation is broken in the first scattering
on the surface of a nucleus and it cannot radiate again till the end of a nucleus.
That is why nucleons deep in the nucleus do not give significant contribution
to the probability of releasing a photon and so they are shadowed by surface
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nucleons. Moreover, for high energy experiments the fluctuation with long co-
herence time do not need to take into account the energy loss. The dilepton
is not affected by energy losses of a quark and so the suppression is only due
to a shadowing. For low energy experiments the fluctuation is short and the
suppression of the cross-section is due to the combination of the shadowing and
energy losses of a quark before it fluctuates.
Since photon carries a portion x1 of proton momentum, the coherence length
for the DY can be expressed as

lc =
1

mNx2

(1 − α)M2

(1 − α)M2 + α2m2
f + p2

T

. (6.4)

The role of xBj from the DIS has a variable x2 here. As for small xBj in
the DIS the coherence length for the DY can extend the radius of a nucleus
for low x2. In the limit lc → +∞ the whole nucleus behaves as one scattering
center and the Glauber approximation can be used. Therefore, the partonic
cross-section can be expressed in LC factorized form[2]

dσ

dlnα
(qA → γ�X) =

∫
d2ρ|Ψγ�q(α, ρ)|2σA

qq̂(αρ, x2), (6.5)

σA
qq̄(ρ, x) = 2

∫
d2b

(
1 − (1 − 1

2A
σN

qq̄(ρ, x)TA(b))A

)
(6.6)

The eikonal term leads to a reduction of a cross-section since it contains
the LPM suppression. For a finite coherence length, the DY cross-section is
determined using the Green function technique(see Appendices)

dσ(qA → γ�X)
dlnα

= A
dσ(qp → γ�X)

dlnα
− Re

∫
d2b

∫
R

dz1

∫ +∞

z1

dz2

∫
d2ρ1

∫
d2ρ2

(Ψγ�q(α, ρ2))�ρA(b, z2)σqq̄(s, αρ2)G(ρ2, z2|ρ1, z1)ρA(b, z1)σqq̄(s, αρ1)Ψγ�q(α, ρ1),

where the Green function G fulfils a 2D Schrödinger equation

(
i

∂

∂z2
+

Δ⊥(ρ2) − η2

2Eqα(1 − α)
+

i

2
ρA(b, z2)σqq̄(s, αρ2)

)
G(ρ2, z2|ρ1, z1) =

= iδ(z2 − z1)δ2(�ρ2 − �ρ1) (6.7)

The phase factor e−iqmin
L (z2−z1) is implicated in the Green function[3]. Hadronic

cross-sections are then

dσpp

dM2dxF
=

αem

3πM2

∫ 1

x1

dα

α
F p

2 (
x1

α
)
dσ(qp → qpγ�)

dlnα

dσpA

dM2dxF
=

αem

3πM2

∫ 1

x1

dα

α
F p

2 (
x1

α
)
dσ(qA → qpγ�)

dlnαd2pT
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The same is applied to d-A collisions, except that we exchange the F p
2 for

F d
2 . Furthermore, we have to neglect nuclear effects in the deuteron structure

function, assume the isospin symmetry and neglect finite dimensions effect. The
shadowing is described by nuclear modification factors

RpA =
dσ(pA→l+l−X)

dM2dxF

Adσ(pp→l+l−X)
dM2dxF

(6.8)

RdA =
dσ(dA→l+l−X)

dM2dxF

2Adσ(pp→l+l−X)
dM2dxF

(6.9)

6.1.3 The Shadowing in A-A collisions

For the determination of the shadowing in more complicated in A-A collisions,
it is essential to extend our view. In the σAB, there appears nuclear shadowing
for sea and valence quarks. They have to be evaluated in order to extend the
calculation. The shadowing for sea quarks can be extracted from the DIS using
a Glauber approximation[2].

Rs(x, Q2, b) = (6.10)

=
2
∫ 1

0
dα
∫

d2ρ|Ψqq̄(ρ, α, Q2)|2(1 − (1 − 1
2AσN

qq̄(ρ, x)RG(x, λ
ρ2 , b)TA(b))A)

TA(b)
∫ 1

0
dα
∫

d2ρ|Ψqq̄(ρ, α, Q2)|2σN
qq̄(ρ, x)

This expression is valid only in a ”frozen approximation”, i.e. tc >> RA

resp. x → 0. The shadowing for valence quarks was presumed to be negligible.
The formula for Rs is valid only for gluons since σN

qq̄ contains only a part that
grows with energy and corresponds to a gluon exchange. Therefore the color
dipole approach can be used only for x < 0.01, where gluons dominate amongst
sea particles. This part of the dipole cross-section is called a pomeron. In the
same sense, the valence part corresponds to the reggeon. That is

σN
qq̄(ρ, x) = σIP

qq̄ (ρ, x)︸ ︷︷ ︸
gluonic part

+ σIR
qq̄ (ρ, x)︸ ︷︷ ︸

valence part

(6.11)

The valence part has to correspond to the distribution of valence quarks in
a proton for small x

σIR = Nρ2√x. (6.12)

Using this expression we can write

Rv(x, Q2, b) = (6.13)

=

∫ 1

0 dα
∫

d2ρ|Ψqq̄(ρ, α, Q2)|2σIR
qq̄ (ρ, x)(1 − 1

2AσIP
qq̄ (ρ, x)RG(x, λ

ρ2 , b)TA(b))A∫ 1

0 dα
∫

d2ρ|Ψqq̄(ρ, α, Q2)|2σIR
qq̄ (ρ, x)
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6.2 Nuclear broadening

The last thing to discuss is how the nuclear medium will influence the pT dis-
tribution of the DY pair. The full formula for the pT distribution is

d3σqA

d ln αd2pT
=

αem

(2π)44E2
q (1 − α)2

2Re

∫
R

dz1

∫ +∞

z1

dz2

∫
d2bd2kT d2ρ1d

2ρ2

e

“
iα�p2�ρ2−iα�p1�ρ1−i

R +∞
z2

dzVopt(b,ρ2,z)−i
R z1
−∞ dzVopt(b,ρ1,z)

”

Ô�
γ�q(ρ2)Ôγ�q(ρ1)G(ρ2z2|ρ1z1). (6.14)

We will introduce the transverse momentum of the incident quark in respect
to the direction of a virtual photon

�p1 =
�pT

α
(6.15)

and the transverse momentum of the outgoing quark with same conditions

�p2 = �kT − (1 − α)�pT

α
. (6.16)

The interaction with the nuclear medium is incorporated in the Green func-
tion and the optical potential[3]

Vopt(b, ρ, z) = − i

2
ρA(b, z)σqq̄(s, ρ). (6.17)

In the limit of infinite energy of the incoming quark, the cross-section can
be expressed as

d3σqA

d ln αd2pT
=

1
(2π)2

∫
d2ρ1d

2ρ2e
i�pT (�ρ1−�ρ2)Ψ�

γ�q(α, ρ1)Ψγ�q(α, ρ2)

1
2
(σA

qq̄(αρ1) + σA
qq̄(αρ2) − σA

qq̄(α(ρ1 − ρ2))) (6.18)

where as σA
qq̄ the Glauber formula is taken(see 5.6).

Let’s see moments of this distribution. Broadening can be displayed on the
mean value of p2

T

δ < p2
T >=< p2

T >A − < p2
T >N (6.19)

< p2
T >A=

∫ pmax
T

0
d2pT p2

T
dσpA

d2pT∫ pmax
T

0 d2pT
dσpA

d2pT

(6.20)

The mechanism behind this phenomenon can be expressed qualitatively. It
is essential to distinguish short coherence time fluctuations and long time fluc-
tuations. For short tc the hard fluctuation is created inside the nucleus and is



CHAPTER 6. NUCLEAR EFFECTS ON CROSS SECTION 43

immediately split. Before fluctuating, the quark can have soft interactions in
the initial state. That will not produce lepton pairs, but it will raise the mean
pT . The fast parton undergoes several interactions and provide something like
a Brownian motion in the transverse plane.

Figure 6.2: The Brownian motion of a quark passing through the medium -
nuclear broadening in the limit of a short coherence time

Finally, a quark reaches the hard interaction region, where the DY pair is
created, with different pT than at the beginning. This difference will pass over
to the photon and consequently to the dilepton. Therefore, the pT distribution
is wider for p-A than for p-p case. This situation cannot be described using a
standard parton approach by modifying quark distribution functions.
For a long coherence time, the explanation is different. The high-energy incident
quark evolve to a fluctuation long before the nucleus. A photon and a quark in
the fluctuation cannot influence each other due to the time dilatation. Therefore,
the broadening cannot come from multiple interactions of a quark in the nucleus.
But one can see, that not all fluctuations contribute to the DY pair production
equally. The smaller the fluctuation is(=bigger intrinsic relative pT between
quark and dilepton) the bigger ”kick” in the pT plane from the target nucleon
is needed for loosing the coherence. Big fluctuations with small intrinsic pT will
with high probability loose the coherence during the first scattering. In contrast
to one scattering on a nucleon target, multiple scattering inside the nucleus can
split smaller fluctuations.

Figure 6.3: Contributions of different fluctuations to a pT spectrum - nuclear
broadening in the limit of long coherence time
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This mechanism prefer DY pairs with ”middle” pT . In high-pT only one
scattering dominates and the enhancement of the production do not come. The
pT distribution then widens again. This mechanism is called a color filtering.
The enhancement in the region above 1GeV is called Cronin effect. The specific
value of a broadening depend on the maximal pT we use for the analysis. The
same feature can be seen in experimental data.
Nuclear broadening and nuclear shadowing are deeply connected. It can be
shown that when there is one of them, there is also the second present[2].

∫ pmax
T →+∞

0 d2pT p2
T

dσpA

d2pT∫ pmax
T →+∞

0
d2pT

dσpA

d2pT

= η2 +
CA(x2)
σqA(α)

∫
d2ρ|Ψγ�q(α, ρ)|2 (6.21)

η2 = (1 − α)M2 + α2m2 ; σqA(α) =
∫

d2pT σqA(pT , α) (6.22)

CA(x2) =
∂σA

qq̄(ρ, x2)
∂ρ2

∣∣∣
ρ→0

(6.23)

If we include shadowing, then

CA(x2) = CN (x2)
∫

d2bRG(x2, b)T (b) = CN (x2)(A −
∫

d2bΔRG(x2, b)T (b))

(6.24)

⇒ δ < p2
T >= (ΔRDY − 1

A

∫
d2bΔRG(x2, b)T (b))

ACN(x2)
σqA(α)

∫
d2ρ|Ψγ�q(α, ρ)|2,

(6.25)
where ΔRDY is a nuclear suppression for DY pairs and ΔRG is a nuclear

suppression for gluons. Therefore, if we want non-zero broadening, we need the
shadowing for quarks and gluons. The cut-off pmax

T is hidden in the integral
of |Ψ|2. The need of this cut-off corresponds to the maximal acceptance of the
detector where the pT distribution is measured. Using several approximations,
the formula can be further simplified. The wave function distribution can be
substituted by a Gaussian

|Ψ(α, ρ)|2 → αem

2π
(1 + (1 − α)2)η2n2e−k2

0ρ2
k2
0 = 2βη2, (6.26)

where n2 and β are parameters. Then
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∫
d2pT p2

T

dσpA

d ln αd2pT
=

∫
d2pT p2

T

1
(2π)2

∫
d2ρ1d

2ρ2e
ipT (ρ1−ρ2)Ψ�(α, ρ1)Ψ(α, ρ2)

1
2
(σA

qq̄(αρ1, x1) + σA
qq̄(αρ2, x2) − σA

qq̄(α|ρ1 − ρ2|, x2)) =

= π

∫
d2b(

2C(α)α2TA(b)
k2
0

+
2(C(α)α2TA(b))2

(2k2
0 + C(α)α2TA(b))2

) =

= π

∫
d2b(

2C(α)α2TA(b)
k2
0

+
(C(α)α2TA(b))2

k4
0

+ . . . )∫
d2pT

dσpA

d ln αd2pT
= π

∫
d2b(

C(α)α2TA(b)
k4
0

+
(C(α)α2TA(b))2

k6
0

+ . . . )

For the proper choice of parameters n and β the following conditions have
to hold:

• ∫ +∞
0 ρ2K2

1 (ηρ)dρ = n2
∫ +∞
0 ρ2e−k0ρ2

d2ρ ⇒ n2 = 16β
3

• We set β so that < ρ2 > remains the asymptotic form of K1(x)⇒ β = 1

Using these conditions, the result is pmax
T ∼ 10GeV[2].

In the limit, where tc → 0, the broadening rises linearly with the path it travels
in the nuclear medium before the DY pair is released.

δ < p2
T >q= C(x2) < TA >= C(x2)

∫
d2b

T 2
A(b)
A

(6.27)

After a dilepton is released, the broadening can be written as

δ < p2
T >DY =< α2 > δ < p2

T >q, (6.28)

where

< α2 >=

∫ 1

0
dαα2

∫
d2ρ|Ψqγ�(ρ, α, M2)|2σN

qq̄(ρ, x)∫ 1

0
dα
∫

d2ρ|Ψqγ�(ρ, α, M2)|2σN
qq̄(ρ, x)

(6.29)

is a fraction of momentum of a quark that goes to the DY pair.
Now, we are in the situation when we have two expressions in each kinematical
regime. In the long coherence time regime, if we expand the σA

qq̄ in σN
qq̄TA(b),

then the integration over the longitudinal part of a light-cone wave function can
be performed analytically(the transverse part diverges) and the broadening can
be written as

δ < p2
T >tc>>RA= KC(x2)

∫
d2b

TA(b)
A

(6.30)

K =
< (σN

qq̄)
2 >

4| < σN
qq̄ > |2 < · · · >=

∫
d2ρ . . . |ΨL

γ�q|2 (6.31)
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The value K depends on the particular choice of the dipole cross-section and
should converge to 1.
As the broadening depends on the pmax

T , the comparison to experimental data
is quite difficult. It would be better to construct a variable from δ < p2

T >,
which is independent on pmax

T . For example

< σpNp2
T >:=

∫ pmax
T

0

d2pT p2
T σpN (pT , α) (6.32)

diverges logarithmically for pmax
T → +∞. Since a divergence type is the

same as for a nuclear case, so the variable

δ < σp2
T >:=< σpAp2

T > −A < σpNp2
T > (6.33)

is independent of any cut-off, because divergencies cancel themselves. Al-
though it cannot be measured directly, it is far better variable for the comparison
with data.



Chapter 7

Results and predictions

Now, results of the computation using a color dipole approach will be presented.
First of all, let’s discuss the applicability of this model. It has to be pointed out
that although both valence and sea quarks are taken into account in distribution
functions, in color dipole scheme only the pomeron exchange is included and so
the valence content is ignored. It corresponds to a situation when the reggeon
part of a dipole cross section is neglected and the sea part(pomeron) dominates.
That is particularly convenient in very high energy collisions. The range of
validity is not known exactly, but it was suggested[9] that it is meaningful for
x2 < 0.1. Our parametrization comes from a fit to the DIS data for xBj < 0.01
and Q2 < 500GeV2. Most of data available for the comparison do not fit to this
kinematic range and furthermore they are integrated over xF and M2 and so
there are contributions not involved in the color dipole approach.
For the purpose of comparison, data for the DY process from p-p collisions at
the E866 experiment[7] corresponding to the energy 800GeV in a lab. frame
will be used. Parameters xF and M are chosen such that they agree with mean
values of the interval

0.55 < xF < 0.8 < xF >= 0.63 (7.1)

4.2 < Mμ+μ− < 5.2 < M >= 4.8 (7.2)

5.2 < Mμ+μ− < 6.2 < M >= 5.7 (7.3)

Besides it has to be pointed out that it is necessary to include a non-zero
quark mass mq. The reason is that LC wave functions are dominated by con-
tributions from modified Bessel functions of the second kind K0 and K1 that
diverge as the argument approaches 0. For the DY process, it is not so im-
portant since the argument is enhanced by a dilepton part ∼ M2. But for the
inclusive direct photon production, where M2 = 0, the argument is determined
by a chosen value of a quark mass. The calculation however do not depend
overly on a particular value of this mass.

47
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The quantity we will compare to data is an invariant cross-section E d2σ
d3p which

is connected to our derivations as

E
d3σ

d3p
=
√

M2 + p2
T + x2

F

s

4
2√
s

d3σ

d2pT dxF
(7.4)
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Figure 7.1: The Drell-Yan pT spectrum from E866 compared to the color dipole
approach model using two distribution functions, xF = 0.63, M = 5.7GeV
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Figure 7.2: The Drell-Yan pT spectrum from E866 compared to the color dipole
approach model using two distribution functions, xF = 0.63, M = 4.8GeV
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Results suggest that color dipole calculations do not describe a region pT → 0
very well. But the fact, that in this limit the DY cross-section do not diverge as
in LO pQCD shows the advantages of such description. One of the possibilities
why data do not match can be a soft non-perturbative primordial pT distribution
of partons in proton. Moreover, experimental data for pT → 0 should be taken
with care since there exist a contradiction amongst several experiments for the
DY pair production in low pT . For example experiments E772 and E866[7] are
in a good agreement through the whole pT spectra of a dilepton except for the
region pT → 0 where they disagree.
Next, the DP production is tested under same conditions. Now, the xF = 0
and M2 = 0, so there is no need to select any average values. Results are
compared to data from the experiment PHENIX[8] for p-p collisions at the
energy

√
s = 200GeV in a midrapidity.
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Figure 7.3: The Direct Photon pT spectrum from PHENIX compared to the
color dipole approach model using two distribution functions

Results suggest that this model do not give a good approximation to data.
But it has to be stated that both lines lie within experimental errors and so it
can be used for further analysis.
Further predictions from this model will be nuclear effects for the Drell-Yan and
the Direct Photon production in p-A and d-A collisions. Since there are no data
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to compare, they have to serve as a prediction of measurable phenomena. These
effects can be described by corresponding nuclear modification factors(see 6.8
6.9). For the DY production in p-A collisions assuming xF = 0.6 and M = 6GeV
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Figure 7.4: The dependence of a nuclear modification factor for the DY process
in p-A collisions on three distribution functions

It is obvious that at small pT there is a strong suppression due to the shad-
owing. In the central region there is an enhancement of a p-A cross-section
known as the Cronin effect, caused by the nuclear broadening. The magnitude
of Cronin enhancement is approximately 10%. For large pT the modification
factor converges to 1. It corresponds to an idea that for large pT valence quarks
in a proton distribution function dominates over all other factors and RpA con-
verges to ∫ 1

x1
AF p

2 dα

A
∫ 1

x1
F p

2 dα
= 1 (7.5)

Differences between proton distribution functions are nearly negligible. The
dependence of this ration on the choice of M and xF is depicted on following
figures.
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Figure 7.5: The dependence of RpA on the choice of M for both PDF’s. On the
left, the Adeva-Akdogan parametrization is used. On the right, the GRV-LO
parametrization is used
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Figure 7.6: The dependence of RpA on the choice of xF for both PDF’s. On the
left, the Adeva-Akdogan parametrization is used. On the right, the GRV-LO
parametrization is used

It can be seen that the Cronin enhancement decrease with increasing M and
decreasing xF .
For the DP production, results are summarized in the following figure. Since
xF and M are obsolete in DP scheme, they are fixed at zero.

The course is similar to the DY case, but here there starts to be a difference
between both parametrizations mainly in the magnitude of a Cronin effect. It
differs by 10% approximately. However, this increase is compensated by the
level of shadowing, therefore the area under both curves remain the same. That
indicates the consistency of this prediction. The convergence for large pT re-
main here preserved similar to the DY.
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Figure 7.7: The dependence of a nuclear modification factor for the DP process
in p-A collisions on two distribution functions
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If we pass over to d-A collisions, the DY production predict the course
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Figure 7.8: The dependence of a nuclear modification factor for the DY process
in d-A collisions on three distribution functions
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Figure 7.9: The dependence of RdA on the choice of M for both PDF’s

In this case, for large pT curves should converge to the value
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Figure 7.10: The dependence of RdA on the choice of xF for both PDF’s

∫ 1

xF
AF d

2

2A
∫ 1

xF
F p

2

∼ 0.77 − 0.83 (7.6)

which is in agreement with results. A course and a dependence of other
effects agrees with results for the p-A factor. The convergence in the case of
xF dependence vary with different xF as can be seen from the formula above.
In a figure describing the xF dependence of RdA for the first PDF the value
xF = 0.8 cannot be taken into account since this PDF has a validity range up
to xF = 0.85 and so the integration ranges are out of the validity range.
Similar for the DP production

where the convergence is given by the formula∫ 1

0
AF d

2

2A
∫ 1

0 F p
2

∼ 0.83. (7.7)

Curves for both parametrizations differ again, but only such that the integral
remain constant.
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Summary and Conclusions

The color dipole approach was used to calculate the cross-section and pT spec-
trum of the Drell-Yan and the Direct Photon production. The comparison with
data shows a good agreement and therefore usefulness of this approach for nu-
clear predictions. Nuclear modification factors are presented for p-A and d-A
collisions for both processes. They reconstruct all expected phenomena - nu-
clear shadowing, Cronin effect and the convergence. Also the dependence of
both factors on xF and M is presented for the DY process. The magnitude of
Cronin effect vary with different xF and M as was predicted. Results show that

• The DY spectrum is described pretty well for both PDF’s for pT >
0.5GeV. For lower pT data are not easy to describe using our model.
Both PDF’s then differ considerably at high pT .

• The DP spectrum do not match very well with data in low pT region. For
pT > 7GeV the description of data is considerably improved. Both PDF’s
give almost the same predictions that lies within experimental errors.

• The nuclear modification factor for the DY in p-A collisions shows quite
strong suppression for pT < 2GeV due to the shadowing. In the region
between 2 and 6GeV, the Cronin enhancement of 5% can be seen. For
high pT the convergence to 1 is reconstructed.

• The nuclear modification factor for the DP in p-A collisions shows the
shadowing for pT < 1GeV. The Cronin effect is here 20 − 30% according
to the PDF used. Difference between both parametrizations seems quite
strong but the overall integral of both lines and the high pT limit are the
same for both PDF’s which indicate consistency of a prediction.

• The nuclear modification factor for the DY in d-A collisions indicate the
same behavior as for p-A. The value of the Cronin enhancement is again
about 5%.

56
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• The nuclear modification factor for the DP in d-A collisions differs consid-
erably for each PDF. The Cronin enhancement is approximately 5% lower
that in the p-A case. The convergence for the GRV parametrization is
faster than for the other PDF, but both converge to the proper value 0.83

These predictions are performed for energies corresponding to the RHIC
accelerator. Further progress can be made towards the LHC energies. Fur-
thermore, there are some effects that can be included into the PDF to describe
phenomena like the EMC effect. That will be the aim of further analysis
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The Glauber-Gribov eikonalization theory

For the purpose of the derivation of σA
qq̄ and therefore nuclear effects also, it is

essential to analyze multiple scattering of a hadron fluctuation inside a target.
In general, it can be described by the optical model of a Glauber-Gribov the-
ory. Basics of this theory were formulated by Glauber[13] for non-relativistic
quantum mechanics. The optical model comes from the eikonal approximation
under condition that different scattering phases are additive. That model was
generalized by Gribov[14] for the relativistic quantum field theory, but only up
to the double scattering. Final scattering amplitude for a nucleus is then given
by a sum of all amplitudes from multiple scattering[13]

F (s) =
A∑

n=1

F (n)(s) (1)

F
(n)
S =

(
i

k

)n−1 ∫
d2b

∫
R

dz1ρA(b, z1)
∫ +∞

z1

dz2ρA(b, z2) . . .

∫ +∞

zn−1

dznρA(b, zn)

∑
h

fγ�→h1e
−iq

γ�→h1
L (z2−z1)fh1→h2e

−iq
h1→h2
L (z3−z2) . . . fhn−1→γ�

Figure 1: The n-fold scattering amplitude scheme with n-1 intermediate
hadronic states

The assumption is that the impact parameter does not change during the
collision. Integration ranges take into account that i + 1th collision can happen
after the ith one. After the first collision, the virtual photon pass over to
a multiparticle hadronic state h1. The scattering amplitude of such process is
denoted as fγ�→h1 . Furthermore, the transfer of longitudinal momentum qγ�→h1

L

is manifested as oscillating phase factor for all intermediate states

qγ�→h1
L =

Q2 + M2
h1

2ν
(2)
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In the end, the summation over all possible intermediate states is needed.
According to the optical theorem, the final cross-section can be written as

σtot =
4π

k
Im(f(0)) (3)

⇓
σγ�A(s) =

2F (s)
k

There is, of course, a problem that these intermediate states are not known.
Here comes the idea to interpret a virtual photon as a superposition of hadrons
with the same quantum numbers - vector mesons. This is so called generalized
vector dominance model (GVDM). Therefore, invariant masses of fluctuations
are fixed, but still transition amplitudes between fluctuations are not known.
Here, we introduce the vector dominance model(VDM), where all non-diagonal
transitions are omitted. It says, that we take only mesons that have a meson-
nucleon cross-section σV p ∼ 1

M2
V

. Such steep decrease of a cross-section leads
to the fact that shadowing appears as a higher loop effect and therefore do not
vanish at high Q2(Gribov paradox). The shadowing has to fulfil two conditions

• A mean free path of hadronic fluctuation has to be long enough to expe-
rience multiple scattering

1
ρAσeff

<< RA

• A coherence length lc has to be greater than the internucleon separation

In order to determine scattering amplitudes for higher scattering, we will use
the knowledge of interaction eigenstates. In this set, there are no non-diagonal
transitions. The problem is, that masses of eigenstates are to be determined for
a given lc. But such masses are not defined in a mixed representation and so
we cannot evaluate it properly. Only in the limit lc → +∞ the whole expansion
can be summed in the eikonal form

σγ�A = 2
∫

d2b

∫ 1

0

dα

∫
d2ρ|Ψqq̄(α, ρ)|2

(
1 − e−

σqq̄(s,ρ)TA(b)
2

)
+

2
∫

d2b

∫ 1

0

dα

∫
dαG

αG

∫
d2ρ1d

2ρ2|Ψqq̄G(α, αG, ρ1, ρ2)|2.(
1 − e−

σqq̄G(s,ρ1,ρ2)TA(b)
2

)
+ . . . (4)

Restricting ourselves to the first order, we can write

σγ�A =
{

2
∫

d2b
(
1 − e−

σqq̄(s,ρ)TA(b)
2

)}
, (5)
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where

{. . . } =
∫ 1

0

dα

∫
d2ρ|Ψqq̄(α, ρ)|2 . . . (6)

This is a difference from a glauber eikonal approximation, where

σγ�A = 2
∫

d2b
(
1 − e−

σqq̄(s,ρ)TA(b)
2

)
(7)

and is called Gribov inelastic correction[14]. But that is valid only where lc
is sufficiently large and ρ can be considered constant, i.e. for very big energies.
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