
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF NUCLEAR SCIENCES AND

PHYSICAL ENGINEERING

DEPARTMENT OF PHYSICS

DIPLOMA THESIS

Antikaon–Nucleus Interaction

Daniel Gazda

Prague 2007



Acknowledgments

I would like to express my gratitude to my supervisor Jǐŕı Mareš for his guidance and
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Abstract: The subject of the present work is the study of the K− meson interaction

with the nuclear medium. The K−–nuclear states were generated across the periodic

table and calculated selfconsistently within the framework of the relativistic mean-field

theory. A wide range of the K− binding energies was spanned by varying the K−

couplings to the meson fields. The K− absorption in the nuclear medium was taken into

account using the optical model phenomenology. The strength of the absorptive potential

was constrained by kaonic atom data and the phase space reduction for decay products of

the K− bound states was considered. We aimed at a detailed analysis of processes and

conditions, which determine the K− decay width. Significant contribution from the

K̄N → πΛ conversion mode was found for the K̄ binding energies in the range, where the

dominant decay channel K̄N → πΣ is closed. The assumption of the ρ2 density

dependence for the 2N -absorption modes leads to further increase of the K− conversion

width, especially for deeply bound K−–nuclear states in lighter nuclei. Calculations of

nuclear systems containing several antikaons revealed that antikaon and nuclear densities

behave quite regularly with increasing number of K− mesons, embedded in the nuclear

medium. The study of the p-wave interaction of the K− meson with a nucleus indicates

that the p-waves play a minor role in heavier nuclear systems.
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Abstrakt: Předmětem předkládané práce je studium interakce K− meson̊u s jaderným

prostřed́ım. Jaderné stavy K− meson̊u byly studovány např́ıč periodickou tabulkou v

rámci relativistické teorie středńıch poĺı. Pokryli jsme široké spektrum vazbových energíı

K− meson̊u škálováńım vazbových konstant antikaonu na mesonová pole. Absorpce K−

mesonu byla zahrnuta prostřednictv́ım fenomenologického optického modelu. Hloubka

imaginárńıho potenciálu byla určena z dat kaonových atomů, nav́ıc jsme vzali do úvahy

redukci fázového prostoru pro rozpadové produkty vázaných stav̊u. Zaměřili jsme se na

detailńı analýzu proces̊u a podmı́nek, které určuj́ı rozpadovou š́ı̌rku K− mesonu. Nalezli

jsme významný př́ıspěvek do rozpadové š́ı̌rky K− mesonu, pocházej́ıćı z konverze

K̄N → πΛ pro oblast vazbových energíı K−, kde je hlavńı rozpadový kanál K̄N → πΣ

kinematicky uzavřen. Ukázali jsme, že předpoklad kvadratické hustotńı závislosti

dvou-nukleonového absopčńıho kanálu vede k daľśımu r̊ustu rozpadové š́ı̌rky K− mesonu,

obzvláště pro hluboko vázané stavy K− v lehč́ıch jádrech. Výpočty jaderných systémů

obsahuj́ıćı v́ıce K− meson̊u ukázaly regulárńı chováńı jaderné hustoty s rostoućım počtem

vázaných K− meson̊u. Studium vlivu započteńı p-vlny do interakce K− mesonu s jádrem

prokázalo malý vliv p-vlny v těžš́ıch systémech.

Kĺıčová slova: vázné jaderné stavy K−, hustotně závislá interakce, relativistická teorie

středńıch poĺı
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1 Introduction

The subject of the present work is the study of the K− meson interaction with the

nuclear medium. It is closely related to the one of the most important, yet unsolved,

problems in hadron physics – how the hadron masses and interactions change within the

nuclear medium.

The in-medium properties of antikaons in dense nuclear matter have attracted

considerable attention since the pioneering work of Kaplan and Nelson on the possibility

of kaon condensation in nuclear matter [1, 2].

The existence of the K̄N Λ(1405) quasi-bound state lying about 27 MeV below the K−p

threshold suggests that the K̄N interaction is strongly attractive [3]. This is consistent

with low-energy K̄N scattering data [4] as well as with the measured energy shifts of the

1s atomic state of kaonic hydrogen [5]. The Λ(1405) as a K−p quasi-bound state was also

corroborated in a meson exchange picture by Jülich group [6], where the σ and ω mesons

act jointly to give strong attraction. The chiral SU(3) calculations showed that I = 0

K̄N interaction is attractive enough to bound Λ(1405) [7].

The K̄–nucleus interaction is also strongly attractive (and absorptive), as derived from

the strong-interaction shifts and widths in kaonic-atom levels [8, 9, 10, 11, 12]. This claim

is further supported by enhanced production of K− mesons observed in sub-threshold

and near-threshold heavy-ion collisions in the KaoS experiment at GSI [13, 14, 15].

Global fits of the kaonic-atom data based on a phenomenological density dependent

optical potential [8, 9, 11, 12] or a relativistic mean-field approach [12, 16, 17] yield

strongly attractive K−–nucleus potential of depths between 150–200 MeV. On the

contrary, coupled-channel calculations using K̄N interaction adopted from chiral models

and fitted to the low-energy K̄N scattering data [4] result in much shallower K̄–nucleus

potentials of depth ∼ 50 − 100 MeV [16, 18, 19, 20].

The K̄–nuclear interaction is strongly absorptive, which is due to one-nucleon absorption

reactions K̄N → πY with approximately 100 MeV (Y = Σ) and 180 MeV (Y = Λ)
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energy release for the final hyperon Y .

In recent years, the interest in this field has been focused on the question of possible

existence of deeply bound K̄–nuclear states. And sequentially, if such states exist, are

they sufficiently narrow to allow identification in the experiment? These issues have

attracted considerable interest recently when Kishimoto proposed to look for K̄–nuclear

states in in-flight (K−, p) reactions [21]. Akaishi and Yamazaki suggested to search for

K̄NN I = 0 state bound by over 100 MeV, for which the dominant K̄N → πΣ decay

channel would become kinematically forbidden [22, 23].

Following these suggestions some experimental evidence has been claimed for deeply

bound K− candidate states in (K−
stop, n) and (K−

stop, p) reactions on 4He provided by

the KEK-PS E471 experiment [24]. However, the peaks observed at KEK could be

interpreted in terms of K− absorption by a pair of nucleons [25]. Indeed, new revised

experiment with better statistics have not confirmed the previously published results [26].

Interpretation in terms of K̄–nuclear states was also used to explain few statistically

weak irregularities measured in the in-flight (K−, n) reactions on 16O in the BNL-AGS

parasite E930 experiment [27]. Other candidates for K−–nuclear states were reported by

the FINUDA collaboration in the K−
stop reaction on 6,7Li and 12C, detecting back-to-back

Λp pairs coming from K−pp → Λp [28]. The FINUDA measurement suggested

interpretation in terms of quasi-bound K−pp clusters. However, this interpretation was

again challenged in Refs. [29, 30].

The possible existence of deeply bound K−–nuclear states was studied theoretically

within various approaches. Unfortunately, calculations strongly depend on the applied

model. As mentioned above, the fits to kaonic atom data, when extrapolated to the

nuclear matter density yield a strongly attractive K−–nucleus potential with the depth in

the range 150–200 MeV. Consequently, these potentials support the idea of deeply bound

K−–nuclear states. Dynamical calculations of such states, taking into account

polarization of the nuclear core due to strongly interacting K− as well as reduction of

phase space for the decay of the deeply bound K− meson provide a lower limit of
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ΓK− ' 50 MeV on the width of nuclear bound states for K− binding energy in the range

BK− ∼ 100 − 200 MeV. On the other hand, models based on a chiral K̄N amplitude,

giving much shallower optical potentials with the depth of 50–100 MeV, do not predict

narrow deeply bound K− states. The early calculations [31, 32] of few-body systems,

which initiated the quest for K−–nuclear states, did not use realistic K̄N and NN

interaction. Very recent calculations based on Faddeev coupled-channel equations [33]

give considerably larger widths than the above calculations of kaonic few-body systems.

As we have seen, the issue of deeply bound K̄–nuclear states is still far from being

understood. Clearly, the detailed treatment of ‘realistic’ K̄N interaction is needed when

extrapolating to sub-threshold region. These extrapolations are still subject to

uncertainties, which can be reduced by more accurate threshold data. Also the treatment

of the NN interaction must be handled properly, since the short-range repulsion works

against the strong compression of the nuclear core proposed in Ref. [31]. Finally, further

studies of the multi-nucleonic absorption modes are essential, since these could

substantially contribute to the widths of the K−–nuclear states at the binding energies,

where the dominant K̄N → πΣ decay channel is kinematically forbidden.

In this paper, we present dynamical calculations of the K−–nuclear states within the

relativistic mean field (RMF) approach [34]. Following up previous works in this field

[12, 35], our first aim was to explore in more detail the imaginary part of the optical

potential in the energy region, where the dominant decay channel K̄N → πΣ is closed.

One such relevant modification has been done by incorporating the K̄N → πΛ channel

with threshold some 80 MeV below the πΣ threshold. Further, we have considered the

multinucleon absorption mode K̄NN → Y N to be ρ2 density dependent. This is more

appropriate for the description of the double-scattering nature of this process. The next

goal of our calculations was to establish the effect of the p-wave interaction on the

observables such as the K− binding energy and width. Though the role of the K̄N

p-wave interaction is marginal near threshold, it might become more important for

antikaons deeply bound in the nuclear medium [36]. Finally, we studied more exotic
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nuclear systems, containing more than one antikaon in order to examine the behavior of

the nuclear medium under the influence of increasing strangeness.

In the next section we outline the K̄–nucleus RMF methodology used in this work and

describe our extension of the absorptive and p-wave interactions. The results are

presented and discussed in Section 3 and in Section 4 we summarize the present work

with conclusions and outlook.
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2 Methodology

The K−–nuclear states are studied using the theoretical framework of the relativistic

mean-field (RMF) theory applied to a system of nucleons and K− mesons. The

interaction among hadrons is modeled through the exchange of scalar and several vector

meson fields. The calculations are performed fully dynamically by successively allowing

the K− to polarize the nucleus and the polarized nucleus to affect the K−–nuclear

interaction.

The K−–absorption modes are included within the optical model approach. The optical

potential is constrained by the near-threshold K−–atom data and follows the kinematical

phase-space reduction for deeply bound K−–nuclear states.

2.1 RMF model

Our starting point is a model of relativistic quantum field theory, proposed by Walecka

and collaborators [37], which we have extended to incorporate (anti)kaonic sector. The

nucleons (ψ) and (anti)kaons (K) are treated as Dirac and Klein–Gordon fields,

respectively, interacting through the exchange of several meson fields.

The isoscalar-scalar σ-meson field is responsible for the attraction between all hadrons

under consideration. The isoscalar-vector ω-meson field acts repulsively between nucleons

as well as between antikaons but attractively between antikaons and nucleons. As a result

the K̄–nucleus interaction is strongly attractive in this approach.1 The interaction of K̄

with the isovector-vector meson (ρ) plays a minor role and was not included in previous

works (e.g. [12]). This is a good approximation for N = Z nuclei, but not necessarily for

the heavier 208Pb nucleus. We note in this respect that optical potential fits for kaonic

atoms, including data for nuclei with excess neutrons up to 238U, found no need to

1In contrary to the case of kaons, for which the vector field is repulsive and, as a result, the kaons in

nuclear medium feel weak repulsion. This sign inversion of the vector interaction can be understood in

terms of G-parity conjugation. [38]
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introduce isovector components [10]. Since one of our aims is to investigate the behavior

of multi-K̄ systems, we have introduced the φ-meson field. The φ-meson (“ φ = ss̄ ”)

mediates the interaction exclusively between strange particles. Here we assume the ideal

mixing of nucleons (i.e. no strange content) and follow the so-called OZI-rule, known

from QCD, which, very roughly speaking, suppresses the interaction between quarks

belonging to different generations [39]. Finally, the photon (A) accounts for the

electromagnetic interaction. The π- and η-mesons with unnatural parity are not included

because we are working with nuclear states which have well-defined parity. The model

Lagrangian density then reads:

L = ψ̄( i ∂/ − mN) ψ

+
1

2
∂µ σ∂µσ − 1

2
m2

σσ
2 + gσN ψ̄ψσ +

1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
ΩµνΩ

µν +
1

2
m2

ωωµω
µ − gωN ψ̄γµψωµ +

1

4
d (ωµω

µ)2

− 1

4
~Rµν · ~Rµν +

1

2
m2

ρ ~ρµ · ~ρµ − gρN ψ̄γµ~τψ · ~ρµ

− 1

4
HµνH

µν +
1

2
m2

φφµφ
µ

− 1

4
FµνF

µν − e ψ̄γµ
1
2
(1 + τ3)ψAµ

+ (DµK)†(DµK) − m2
KK†K + gσK mKK†Kσ ,

(2.1)

where the kaon and nucleon fields are treated as iso-doublets:

ψ =

 ψp

ψn

 , K =

 K

K0

 . (2.2)

The arrows above indicate isovector quantities, the dot denotes inner product, and ~τ

stands for the usual triplet of Pauli matrices. Moreover, mN , mσ, mω, mρ, mφ and mK

are the nucleon, σ-, ω-, ρ-, φ- and K-meson masses, respectively. The gσN , gωN , gρN , e

are coupling constants for the σ-, ω-, ρ-meson and the photon with respect to the

nucleon, respectively, and gσK is the σ-meson coupling constant for the (anti)kaon. The
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field tensors for the vector mesons and the photon field in 2.1 are given by:

Ωµν ≡ ∂µων − ∂νωµ ,

~Rµν ≡ ∂µ~ρν − ∂ν~ρµ − (gρN + gρK )~ρµ × ~ρν ,

Hµν ≡ ∂µφν − ∂νφµ ,

Fµν ≡ ∂µAν − ∂νAµ .

(2.3)

The coupling of the (anti)kaon to the vector meson fields is introduced through the

extended derivative Dµ [40], which is defined as:

Dµ ≡ ∂µ + i gωK ωµ + i gρK ~τ · ~ρµ + i gφKφµ + i e 1
2
(1 + τ3)Aµ , (2.4)

where gωK , gρK , gφK and e are the ω-, the ρ, the φ-meson and the photon coupling

constants with respect to the kaon.

Using the classical variational principle:

δ

∫
d4x L [qj(x), ∂µqj(x)] = 0 ⇔ ∂µ

[
δL

δ(∂µqj)

]
− δL

δqj

= 0 , (2.5)

where qj is a generalized coordinate, qj ∈
{
ψ, ψ̄,K,K†, σ, ωµ, ~ρµ, φµ, Aµ

}
, one obtains

corresponding Euler–Lagrange equations of motion:

The Dirac equation for nucleons:

[ i ∂/ − mN + gσN σ − gωN γµω
µ − gρN γµ~τ · ~ρµ − e γµ

1
2
(1 + τ3)A

µ]ψ = 0 , (2.6)

the Klein–Gordon equation for the antikaon:

(D†
µDµ + m2

K − gσK mKσ)K† = 0 , (2.7)

and the meson fields:(
¤ + m2

σ

)
σ = gσN ψ̄ψ + gσKmKK†K + g2σ

2 − g3σ
3 ,(

¤ + m2
ω

)
ωµ = gωN ψ̄γµψ − gωKK†C(ω)

µ K ,−dωµ(ωνω
ν)(

¤ + m2
ρ

)
~ρµ = gρN ψ̄γµ~τψ − gρKK†~τC(ρ)

µ K + (gρN + gρK )~ρν × ~Rµν ,(
¤ + m2

φ

)
φµ = − gφKK†C(φ)

µ K ,

¤Aµ = e ψ̄ 1
2
(1 + τ3)γµψ − eK†C(A)

µ
1
2
(1 + τ3)K ,

(2.8)

7



where the common factor Cµ is defined as:

C(j)
µ = i

←→
∂µ + 2gjK

[
gωKωµ + gρK~τ · ~ρµ + gφKφµ + e 1

2
(1 + τ3)Aµ

]
(j = ω, ρ, φ,A) . (2.9)

We see that although the Dirac equation for nucleons (2.6) is not directly affected by the

presence of antikaon the right hand sides of the equation of motion for the meson fields

(2.8) contain (besides common nucleonic sources) the additional source terms induced by

the antikaon. It is to be noted that in order to obtain the set of equations for the

intermediate vector meson fields in the form (2.8), one must prove that the relation

∂µV
µ = 0 holds also for interacting fields. In Appendix B, we show that vector meson

fields are coupled to the conserved (Noether) currents and hence ∂µV
µ = 0 is satisfied for

our particular choice of the coupling scheme.

Equations (2.6)-(2.8) are non-linear quantum field equations and their exact solutions are

very complicated. Moreover, since we expect coupling constants (except e) to be large,

perturbative approaches are not useful. Fortunately, there exists approximative solution,

which becomes increasingly valid as the nuclear density increases [37]. As the source

terms on the r.h.s. of eq. (2.8) increase, the meson field operators can be replaced by

their vacuum expectation values, which are classical fields.

Further, symmetries simplify the calculations considerably. We are looking for the

nuclear ground states of doubly magic nuclei, and these are spherically symmetric. All

the K− mesons are assumed to occupy s-state, hence the spherical symmetry is retained.

Rotational invariance implies, that space-like components of intermediate boson fields

vanish. In this case, the meson fields and also the source terms on their r.h.s. depend

only on the radial coordinate r. The electromagnetic charge conservation prohibits the

charged components of the ρ-meson from appearing as classical fields. Finally, since we

are looking for stationary states, the time-derivatives of the meson fields vanish. We can
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then replace the meson fields by:

σ(x) −→〈σ(x) 〉 = σ(r) ,

ωµ(x) −→〈ωµ(x) 〉 = δµ0 ω(r) ,

ρi
µ(x) −→〈 ρi

µ(x) 〉 = δµ0 δi3 ρ(r) ,

φµ(x) −→〈φµ(x) 〉 = δµ0 φ(r) ,

Aµ(x) −→〈Aµ(x) 〉 = δµ0 A(r) .

(2.10)

With these assumptions we can rewrite field equations (2.6)-(2.8) in the form:

[−i αj∇j + (mN − gσNσ)β + gωNω + gρNτ3ρ + e 1
2
(1 + τ3)A]ψi = εi ψi ,

(−∇2 + m2
σ)σ = gσNρs + g2σ

2 − g3σ
3 + gσKmKρ

(s)
K− ,

(−∇2+ m2
ω)ω = gωNρv − gωKρK− ,

(−∇2 + m2
ρ )ρ = gρNρ3 − gρKρK− ,

(−∇2 + m2
φ)φ = − gφKρK−

−∇2A = e ρp − e ρK− ,

(−∇2+ m2
K + ΠK− )K∗ = E2

K−K∗ ,

(2.11)

where εi = i ∂tψi, EK− = i ∂tK
∗ and the antikaon self energy is given by:

Re ΠK− = −gσKmKσ − 2EK−(gωKω + gρKρ + gφKφ + eA)

−(gωKω + gρKρ − gφKφ + eA)2 .
(2.12)

The source terms on the r.h.s. of (2.11) are defined as:

ρs = 〈: ψ̄ψ :〉 ,

ρ
(s)

K− = K∗K ,

ρv = 〈: ψ†ψ :〉 ,
∫

d3x ρv = A ,

ρ3 = 〈: ψ†τ3ψ :〉 ,
∫

d3x ρ3 = Z − N ,

ρp = 〈: ψ† 1
2
(1 + τ3)ψ :〉 ,

∫
d3x ρp = Z ,

ρK− = (EK− + gωK ω + gρK ρ − gφK φ + eA0)K
∗K ,

∫
d3x ρK− = κ ,

(2.13)
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and the vector densities are normalized accordingly to yield proper (conserved) charges.

The notation 〈: :〉 represents the vacuum expectation value of a normal ordered product

of field operators. The vacuum is then represented by filled nucleon shells and κ

negatively charged antikaons K−. At this stage we are able to solve the equations (2.11)

numerically. Details concerning the numerical solution can be found in Appendix C.

Finally, we derive the binding energy of the combined A
ZX + κK− nuclear system:

B(A, Z, κ) = AmN + κmK − Etot , (2.14)

where Etot is the total energy of the system given by the vacuum expectation value of the

Hamiltonian. The Hamiltonian is obtained by the Legendre dual transformation of the

Lagrangian:

Etot = 〈: H :〉

= 〈: piq̇i − L :〉

=

∫
d3x (εiρ

(i)
v + EK−ρK− − 〈: L :〉)

=

∫
d3x {1

2
[(∇σ)2 + m2

σσ
2] − 1

2
[(∇ω)2 + m2

ωω2] − 1
2
[(∇ρ)2 + m2

ρρ
2]

− 1
2
[(∇φ)2 + m2

φφ
2] − 1

2
(∇A)2 − 1

3
g2σ

3 + 1
4
g3σ

4 + 1
4
dω4

+ 〈: ψ̄i[−i∇jγj + mN − gσNσ + gωNω + gρNτ3ρ + e1
2
(1 + τ3)]ψi :〉

+ (∇jK
∗)(∇jK) + [m2

K − gσKmKσ

− (EK− + gωKω + gρKρ + gφKφ + eA)2]K∗K} .

(2.15)

The exponential decay of the meson fields at large distances permits the following partial

integration:∫
d3x 1

2
(∇σ)2 + m2

σσ
2 =

1

2

∫
d3x σ(−∇2σ + m2

σσ
2)

=
1

2

∫
d3x σ(gσN − g2σ

2 + g3σ
3 + gσKmKK∗K) .

(2.16)

Similar manipulations for remaining fields, using the normalization conditions (2.13) and
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Euler–Lagrange equations (2.11) lead to the final expression for the total binding energy:

B(A, Z, κ) =
∑A

i=1 (mN − εi) + κ (mK − EK−)

− 1

2

∫
d3x (−gσN σρs + gωN ωρv + gρN ρρ3 + eAρp)

− 1

2

∫
d3x (−1

3
g2 σ3 − 1

2
g3 σ4 + 1

2
dω4)

+
1

2

∫
d3x [(gωK ω + gρK ρ + gφK φ + eA)ρK− + gσKmKσK∗K] .

Then we can easily calculate the binding energy of the K−:

BK− = B(A,Z, κ) − B(A,Z, κ − 1) . (2.17)

From the above expressions, it is evident that the K− binding energy contains besides the

single particle energies (with subtracted masses) also the additional mean-field

contributions, which represent the rearrangement energy of the nuclear core.

2.2 Optical model phenomenology

As we have seen, the RMF approach can be naturally extended to incorporate antikaons

in the nuclear medium. We are then able to calculate the K− binding energy and

estimate the dynamical response of the nuclear system to the presence of the K− meson.

Nevertheless, there are still important properties of K−–nuclear states or phenomena of

possible interest, which are not directly addressed by the traditional RMF methodology.

One must then resort to more phenomenological models.

Imaginary potential

In order to achieve physical relevance of our calculations, we considered the K−

absorption modes in the nuclear medium, hence evaluated the decay width. In our model,

the K−–nuclear states acquire a width by allowing the antikaonic self energy ΠK− to

become complex and replacing EK− → EK− − i /2 ΓK− . Since the imaginary part of the

optical potential is not addressed by the RMF approach, the Im ΠK− was adopted from

11



the optical model phenomenology 2. The optical potential depth was fitted to reproduce

K− atomic data, while the nuclear density was treated as a dynamical quantity in our

selfconsistent calculations. Once the antikaon is embedded in the nuclear medium, the

attractive K̄N interaction causes the rise of the nuclear density and thus leads to the

increased K̄ width. On the other hand, the phase space available for decay products is

reduced, especially in the case of deeply bound states. To render this, suppression factors

multiplying Im ΠK− were introduced, explicitly considering K̄ binding energy for the

initial decaying state and assuming two-body final state kinematics.

The first considered decay channel is the pionic conversion mode on a single nucleon:

K̄N → πΣ, πΛ (70%, 10%) , (2.18)

with thresholds about 100 MeV and 180 MeV, respectively, below the K̄N total mass.

Due to the single scattering nature of these processes, corresponding part of the

pseudopotential is constructed in the first approximation:

Im Π
(1)

K− = (0.7f1Σ + 0.1f1Λ)V
(1)
0 ρv(r) , (2.19)

where the factors 0.7 and 0.1 represent the branching ratios known from the CERN

bubble chamber experiments [42], V
(1)
0 comes from the kaonic atom fits and the

suppression factors f1Y (Y = Σ, Λ) are given by:

f1Y =
M3

01

M3
1

√
[M2

1 − (mπ + mY )2][M2
1 − (mY − mπ)2]

[M2
01 − (mπ + mY )2][M2

01 − (mY − mπ)2]
Θ(M1 − mπ − mY ) , (2.20)

with M01 = mK + mN and M1 = M01 − BK− .

The second considered decay channel is the non-pionic conversion mode on two nucleons:

K̄NN → Y N (20%) , (2.21)

with thresholds about mπ ' 140 MeV lower than the single-nucleon thresholds. Since

this channel is heavily dominated by the ΣN final state, the ΛN channel was not

2See e.g. Ref. [41].
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considered and our attention focused on the quadratic density dependence of the related

part of the pseudopotential. The quadratic density dependence is a direct consequence of

a double scattering character of the multinucleon absorption process, demanding usage of

the second order term in the multiple scattering expansion for pseudopotential. The

corresponding part of the pseodopotential in its double-scattering approximation is given

by:

Im Π
(2)

K− = 0.2 f2ΣV
(2)
0 ρ2

v(r)/ρ0 , (2.22)

where constant 0.2 represents branching ratio, ρ0 = 0.16 fm−3 appears from dimensional

requirements and V
(2)
0 is again determined from the kaonic atom data. The suppression

factor f1Σ has the form:

f2Σ =
M3

02

M3
2

√
[M2

2 − (mN + mΣ)2][M2
2 − (mΣ − mN)2]

[M2
02 − (mN + mΣ)2][M2

02 − (mΣ − mN)2]
Θ(M2 − mΣ − mN) , (2.23)

with M02 = mK + 2mN and M2 = M02 − BK− .

p–wave interaction

In addition to the s-wave interaction we considered also p-waves. Though the K̄N p-wave

interaction, dominated by the Σ(1385), plays only a minor role near threshold, it might

become more important for the K̄ tightly bound in a nucleus [36]. In order to study the

role of p waves, we have extended the K− self energy ΠK− to incorporate the p-wave

interaction through the phenomenological Kisslinger potential [43]:

Π
(P )

K− = 4π

(
1 +

EK−

mN

)−1

[∇ρv(r)] · c0∇ , (2.24)

where c0 is due to the contribution of the Σ(1385) p-wave resonance [44].
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3 Results and discussion

We performed calculations of the K−-nuclear s states in 12C, 16O, 40Ca, and 208Pb [34]

using both the linear (L-HS [45]) and non-linear (NL-SH [46], NL-TM1(2) [47])

parametrizations of the nucleonic Lagrangian density. These RMF parametrizations give

quite different predictions of the nuclear properties. In particular, the non-linear models

yield in general a lower value of the nuclear compressibility3. Therefore, stronger

polarization effects due to the presence of the K− could be anticipated in comparison

with the linear models.

The (anti)kaon coupling constants to the meson fields were chosen as follows: The

coupling constant g0
ωK was fixed to g0

ωK = 1/3gωN following the simple quark model. The

constant g0
σK comes from the fits to kaonic atom data, which yielded g0

σK = 0.2 gσN for

linear and g0
σK = 0.233 gσN for the non-linear parametrizations. Finally, the coupling

constants gρK and gφK were adopted from SU(3) relations: 2 gρK =
√

2 gφK = 6.04 [40].

It is to be noted, that g0
σK and g0

ωK were taken as a ‘reference’ point of our calculations.

In order to scan over different values of the K− binding energies, a particular way of

varying the coupling constants was used. Starting from giK = αi g
0
iK = 0 (i = σ, ω), we

first scaled up αω → 1. Then we scaled up ασ → 1 (for αω = 1), and finally we again

scaled up αω until the binding energy of BK− ' 200 MeV was reached.

3.1 Effects of additional meson fields

The coupling of the ρ-meson to the K− acts repulsively on the K− and produces a small

decrease of the binding energy. Even for the case of 208Pb, where the most significant

effect can be anticipated due to large excess of neutrons, N > Z, the decrease of the

value of BK− reaches . 5 MeV for BK− . 200 MeV for all the considered RMF

parametrizations. More interesting is that the ρK− coupling results in a weak isospin

3The compression modulus of nuclear matter is defined as: K∞ = 9ρ2
0

d2

dρ2 E/A
∣∣∣
ρ=ρ0
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Figure 1: Isovector nuclear density ρ3 = ρp − ρn in 16
K−O with and without the interaction

of K− with the ρ-meson for the K− binding energy BK− = 100 MeV, using the NL-SH

parameter set.

deformation of the nuclear core. In Fig. 1 we show the effect of the ρK− coupling on the

isovector nuclear density (ρ3 = ρp − ρn) in 16O using the NL-SH parameter set. The open

circles stand for the isovector nuclear density in the case when the K− is bound by 100

MeV and does not interact via the ρ-meson and electromagnetic field. The dotted line

then illustrates the modification of the isovector nuclear density when the K− interacts

electromagnetically but still not by the ρ-meson exchange. Finally, the solid circles

represent the isovector nuclear density, when both the ρ-meson exchange and Coulomb

interaction are switched on. The ρK− coupling leads to additional rearrangement of the

nuclear core. The proton denstity distribution is enhanced over the neutron distribution

in the central part of the nuclear core. Note that the situation is inverse when the ρK−

coupling is not considered. This rearrangement is also apparent in the nucleonic

single-particle energies presented in Fig. 2. First column shows the sequence of the
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Figure 2: Nucleonic single-particle energies in 16
K−O with and without the interaction of

K− with the ρ-meson for BK− = 100 MeV, using NL-SH parameter set.

nucleon single-particle energies for 16O in the absence of the K− using the NL-SH model.

The next column indicates the rearrangement of the single-particle energies produced by

the K− bound by 100 MeV, but with no ρK− coupling. The last column displays further

modification of the single-particle energies when ρK− coupling is also considered. The

most pronounced effect is observed for the 1s1/2 states, which become significantly more

bound when the K− is present. When the ρK− coupling is included, the 1s1/2 proton and

neutron energies change their order. Further, the energy splitting between the proton and

neutron energy levels, caused by the Coulomb interaction, decreases since ρ-meson acts

against the Coulomb interaction.

The addition of the φ-meson interaction produces a decrease of the K− binding energy in

systems with more than one K− meson, as it mediates interaction exclusively among

strange particles (see additional comments on Fig. 7). Generally, for all the considered

parametrizations and nuclei the φ-repulsion increases with BK− due to the increasing

source term (K− density) on the r.h.s. of the equation of motion for the φ-meson field in

(2.11) and amounts to several MeV for the binding energies BK− . 200 MeV.
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3.2 Optical model modifications

In Fig. 3 we show the calculated width ΓK− as function of the binding energy BK− for 1s

states in 12
K−C (upper panel) and 40

K−Ca (lower panel) for the nonlinear parameter set

NL-SH. In the K− absorption via the mesonic channel, we considered either only the πΣ

50
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Γ K
- 

(M
eV

)

πΣ; ρ

πΣ; ρ2

πΣ, πΛ; ρ2

πΣ, πΛ; ρ2
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-

Figure 3: Widths of the 1s K−-nuclear state in 12
K−C (upper panel) and 40

K−Ca (lower panel)

as function of the K− binding energy, for absorption through K̄N → πΣ with or without

K̄N → πΛ and with ρ or ρ2 dependence for K̄NN → ΣN (for the NL-SH model).

17



6 4 2
r (fm)

0

0.1

0.2

0.3

0.4

0.5
ρ N

 (
fm

-3
)

0 2 4 6
r (fm)

no K
-

B
K

- = 50 MeV

B
K

- = 100 MeV

B
K

- = 150 MeV

B
K

- = 200 MeV

12
CK

-

40
CaK

-

Figure 4: Nuclear density ρN of 12
K−C (left panel) and 40

K−Ca (right panel) for several 1s

K−-nuclear states with specified binding energy, for the NL-SH model. The dotted curves

denote the corresponding nuclear density in the absence of the K− meson.

mode (circles) or both the πΣ and πΛ decay modes (squares). The widths calculated

assuming ρ and ρ2 density dependence of the 2N-absorption mode are denoted by solid

and empty symbols, respectively. Replacing ρ by ρ2 for the density dependence of the

multi-nucleon absorption of the K− leads to increased widths of the 1s K−–nuclear states

as demonstrated in Fig. 3 for 12
K−C and 40

K−Ca, and also in Fig. 5 and Fig. 6 for 16
K−O and

208
K−Pb. The effect of the ρ2 dependence of the 2N absorption mode clearly increases with

the K− binding energy BK− as a consequence of the increasing nuclear density. While it

is less than 10 MeV for BK− . 100 MeV, for BK− & 150 MeV it amounts to ≈ 20 MeV in

carbon and even ≈ 30 MeV in calcium. It is to be noted that the increase of the width is

particularly pronounced in 40Ca for BK− & 150 MeV. It is a consequence of much more

pronounced increase of the central nuclear density in Ca than in C due to the strongly

bound K−, as demonstrated in Fig. 4.
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Figure 5: Widths of the 1s K−-nuclear state in 16
K−O for the NL-SH model (upper panel),

and 208
K−Pb for the L-HS model (lower panel) as function of the K− binding energy.

For completeness, we present in Fig. 5 the widths ΓK− in 16O for the nonlinear model

NL-SH (upper panel) and in 208Pb for the linear model L-HS (lower panel). Switching on

the πΛ adds further conversion width to K−–nuclear states. In the energy range of

BK− ∼ 100 − 160 MeV, the width ΓK− increases by about 20 MeV. The πΛ conversion

vanishes at BK− ≈ 175 MeV as illustrated in Figs. 3 and 5. The effect of the πΛ
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Figure 6: Widths of the 1s K−-nuclear state in 16
K−O as function of the K− binding energy,

for the L-HS, NL-SH and NL-TM2 parameter sets.

conversion is almost uniform for both linear and nonlinear parametrizations in all nuclei

under consideration. On the other hand, the ρ2 dependence of the multi-nucleon

absorption mode exhibits strong sensitivity to the considered nucleus and also to the

applied RMF model. In Pb, there is almost no difference between widths ΓK− calculated

using the ρ and ρ2 dependence. Nonlinear parametrizations, represented here by NL-SH

and TM2, give larger increase of the decay width ΓK− due to the ρ2 density dependence

of the 2N absorption mode than linear ones as could be anticipated from lower

compressibilities predicted by the nonlinear models. This model dependence is also

illustrated in Fig. 6 on the widths ΓK− in 16O calculated with the linear L-HS and

nonlinear NL-SH and NL-TM2 parametrizations of the RMF model.

Finally, we studied the effect of the p-wave K−-nucleus interaction. In Table 3.2 we show

the effect of the p-wave interaction on the K− binding energy BK− , single-particle

binding energy Bsp
K− and decay width ΓK− for the 1s K−–nuclear states. We present here
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12C 40Ca

BK− (MeV) Bsp
K− (MeV) ΓK− (MeV) BK− (MeV) Bsp

K− (MeV) ΓK− (MeV)

S 100.0 109.8 51.1 100.0 104.4 35.0

S+P 112.8 123.3 56.9 105.6 111.8 38.3

Table 1: The effect of the p-wave interaction on the K− binding energy BK− , single-particle

binding energy Bsp
K− = mK − Re EK− and decay width ΓK− for the 1s K−–nuclear states

in 12
K−C and 4

K−0Ca, for the NL-SH parameter set.

results just for a single value of the K− binding energy, BK− = 100 MeV, and for the

NL-SH parametrization. The corresponding values for the linear L-HS model are almost

equivalent. In the Table, the results for only the s-wave K− interaction are denoted by S

while the calculations including the p-wave interaction are denoted by S+P. As can be

seen, the introduction of the p-wave interaction leads to the increase of the binding

energy by ≈ 12 MeV in 12
K−C and by ≈ 5 MeV in 40

K−Ca. The decay width is then

enhanced by ≈ 6 MeV for carbon and by ≈ 3 MeV for calcium. This enhancement of the

decay width is a consequence of the dependence of the ΓK− on the K− binding energy

BK− in the relevant region of BK− (see Fig. 3) and also of the moderate increase of the

nuclear density distributions when compared to the purely s-wave interaction.

3.3 Systems with more antikaons

In figure 7 we present 1s K− binding energies BK− and widths ΓK− in 16O with one and

two bound antikaons for the NL-SH parameter set. The K− binding energy BK− of the

2nd K− in the double-K− nucleus 16
2K−O is lower than the K− binding energy in 16

1K−O for

the binding energies BK− below . 90 MeV. Primarily, this is a consequence of the

dominance of the mutual repulsion between the two K− mesons over the polarization of

the nuclear core caused by the presence of the second K−. It is to be noted that this

result is amplified by the larger width ΓK− in the case of two antikaons, which acts

repulsively, and also by assuming just vector-meson exchanges at low binding energies
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Figure 7: 1s K− binding energy (upper panel) and width (lower panel) in 16O with 1 and

2 antikaon(s) as function of the ωK and σK coupling strengths, for the NL-SH model (αω

and ασ are varied as indicated).

BK− , which are repulsive between K− mesons (in contrast to the scalar interaction 4).

The situation becomes inverse at BK− ' 90 MeV when the K− binding energy in 16
2K−O

becomes larger than in 16
1K−O, reflecting strong polarization of the nuclear core (see fig. 8

and 9). The enhancement of the binding energy BK− in the double K− nucleus is then

responsible for the crossings of the curves for the K− decay widths ΓK− at BK− ' 90 and

170 MeV, caused by the binding energy dependence of the suppression factor. We witness

a sharp decrease of the width ΓK− in 16
2K−O at BK− ' 230 MeV, when the 2N -absorption

channel of K− gets closed.

4If we consider that antikaons interact solely via the (scalar) σ-meson exchange and switch off the

imaginary potential, the binding energy BK− of the 2nd K− in 16
2K−O is always larger than BK− in 16

1K−O.
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Figure 8: Average nuclear density ρ̄ for 16O and 208Pb with 1K− and 2K−’s as function of

the 1s K− binding energy, for the NL-SH model.

In figure 8 we show the average nuclear density ρ̄ in 16O and 208Pb with one K− meson

and two K− mesons as function of the K− binding energy. Adding the second K− to the

nuclear system leads to further polarization of the nuclear core. The enhancement of the

average nuclear density is quite pronounced in light nuclei (16O) while in heavy nuclei

(208Pb) it is rather small.

The nuclear densities ρN(r) and the K− densities ρK−(r) due to one K− and two K−

mesons embedded in the nuclear medium are compared in Fig. 9 for 16O (top) and 208Pb

(bottom). The presented density distributions correspond to various selected values of

BK− , as indicated. For comparison, we also show the density distribution ρN for the

nucleus without K−. The K− density ρK− is normalized to the number of antikaons κ in

the system. The ρK− distributions indicate that the antikaons in the s-state are

concentrated near the nuclear center. This causes a sizable enhancement of the nuclear

density ρN(r) in the neighboring region, strongly localized within r ≤ 2 fm. This is

particularly distinct in the case of Pb for higher values of BK− .

23



0.1

0.2

0.3

0.4

ρ N
 (

fm
-3

)

no K
-

B
K

- = 60 MeV

B
K

- = 120 MeV

B
K

- = 180 MeV

6 4 2 0
r (fm)

0

0.1

0.2

0.3

0.4

ρ K
- 

(f
m

-3
)

2 4 6
r (fm)

16
O

1K
- 2K

-

0.1

0.2

0.3

ρ N
 (

fm
-3

)

no K
-

B
K

- = 60 MeV

B
K

- = 120 MeV

B
K

- = 180 MeV

  10 8 6 4 2 0
r (fm)

0

0.02

0.04

0.06

0.08

ρ K
- 

(f
m

-3
)

0 2 4 6 8 10
r (fm)

208
Pb

1K
-

2K
-
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the absence of the K− meson.
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Figure 10: Nuclear density ρN (upper panels) and K− density ρK− (lower panels) in 16O

and 208Pb with 1, 2, 3 and 4 antikaons, for the NL-SH model. The last K− is bound by

BK− = 100 MeV. The dotted curve stands for the 16O density in the absence of the K−

meson.

In Fig. 10 we present density distributions ρN and ρK− in 16O and 208Pb with 1,2,3, and

4 antikaons calculated within the NL-SH parametrization. The K− couplings were chosen

such that the last K− was bound by 100 MeV. The K− density is again normalized to

the number of antikaons κ. The density distributions behave quite regularly as function

of κ; we witness gradual increase of ρK− . The central nuclear density in 16
4K−O, with a

small saddle at r ≈ 0, is only about 50% larger than ρN in 16
1K−O. In 208Pb, the central

nuclear density for κ = 4 is enhanced even less, by about 30% compared to the nucleus

with one K− meson embedded.
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4 Summary

In the present work, we analyzed in detail processes and conditions, which determine the

decay width of deeply bound K−–nuclear states in the nuclear medium. We performed

fully selfconsistent dynamical calculations of the K−–nuclear states within the RMF

approach. In our calculations we allowed for a few K− mesons to be embedded in the

nuclear medium.

We verified that the interaction of the K− meson with the ρ-meson field has a small

effect on the K− binding energy and produces weak isospin deformation of the nuclear

core. For all considered nuclei and RMF parametrizations the ρ-meson exchange

decreases the K− binding energy BK− by . 5 MeV for BK− . 200 MeV. Similarly, the

introduction of the φ-meson exchange in systems with more K− mesons leads to a

decrease of the K− binding energy by several MeV in the considered range of BK− .

The introduction of the πΛ decay channel in the single-nucleon absorption mode

enhances the K− conversion width for the K− binding energies BK− . 170 MeV. This

enhancement is almost uniform for both linear and nonlinear parametrizations in all

nuclei under consideration. The most remarkable contribution occurs for the K− binding

energies in the range BK− ≈ 100 − 160 MeV and reaches ≈ 20 MeV. The assumption of

the ρ2 density dependence for the 2N -absorption mode adds further conversion width

especially to the deeply bound K−–nuclear states. The increase is particularly large for

lighter nuclei and nonlinear parametrizations as anticipated from strong polarization

effects.

We studied nuclear systems containing a few K− mesons. The calculations revealed that

the K− and nuclear densities behave quite regularly with increasing number of antikaons

embedded in the nuclear medium. The central nuclear density in 16
4K̄

O and 208
4K̄

Pb is only

about 50% and 30%, respectively, larger than the central nuclear densities in systems

with one K− meson.

The calculations involving the p-wave interaction of the K− meson with a nucleus
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indicate that the p-wave interaction plays only a minor role in heavier nuclear systems.

Since the influence of the p-wave interaction increases with the decreasing atomic

number, it may still become important for tightly bound few-body K− systems.
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28



[18] T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34.

[19] J. Shaffner-Bielich, V. Koch, M. Effenberger, Nucl. Phys. A 669 (2000) 153; A.

Ramos, E. Oset, Nucl. Phys. A 671 (2000) 481; A. Cieplý, E. Friedman, A. Gal, J.
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Appendices

A Notation and conventions

We adhere primarily to the conventions of Bjorken and Drell [48]. Physical units are

chosen with ~ = c = 1.

Contravariant xµ and covariant xµ four-vectors are written as:

xµ = (t, ~x) ≡ x ,

xµ = (t,−~x) ,

∂µ ≡ ∂

∂xµ

=

(
∂

∂t
,−∇

)
,

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇

)
.

(A.1)

The Dirac equation for a free particle of mass M reads:

(i γµ∂
µ − M)ψ = (i ∂/ − M)ψ = 0, (A.2)

where we use Feynman “slash” notation a/ ≡ aµγ
µ. The gamma matrices obey:

γµγν + γνγµ = {γµ, γν} = 2 gµν , (A.3)

where gµν is a metric tensor given by:

gµν = Diag (1,−1,−1,−1,−1) . (A.4)

In the standard (Dirac-Pauli) realization the gamma matrices are written as:

γ0 =

 1 0

0 −1

 , ~γ =

 ~σ 0

0 −~σ

 , (A.5)

with the Pauli matrices defined by:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (A.6)
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B Conserved currents

The existence of conserved currents is a direct consequence of the invariance of the

Lagrangian density (2.1) under the global transformations of the involved fields. Using

Euler–Lagrange equations (2.5), it follows that:

0 ≡ δL =
δL

δqj

δqj +
δL

δ (∂µqj)
δ (∂µqj)

= ∂µ

(
δL

δ (∂µqj)
δqj

)
= ∂µj

µ

(B.1)

It is then straightforward, using Gauss–Ostrogradski–Green theorem, to show that:

dF

dt
≡ d

dt

∫
d3x j0(x) = 0 , (B.2)

i.e., F represents a conserved quantity (charge).

At first we consider the global phase transformation of the nucleonic and kaonic

isospinors:

ψ → ei λN ψ , K → ei λKK , (B.3)

where λN , λK ∈ R. The Lagrangian density (2.1) is evidently invariant under this

transformation. Using (B.3) and expanding transformed fields for λN , λK → 0, we obtain

field variations:

ei λN ψ ' (1 + i λN)ψ ⇒ δψ = i λNψ ,

ei λKK ' (1 + i λK)K ⇒ δK = i λKK ,
(B.4)

Following (B.1) one obtains conserved current induced by this symmetry transformation:

jµ
v = λN ψ̄γµψ

+ λKK†{i
←→
∂µ + 2gωK

[
gωKωµ + gρK~τ · ~ρµ + gφKφµ + e 1

2
(1 + τ3)Aµ

]
}K .

(B.5)

The first part of jµ
v can be identified with the baryonic current, thus the conserved

quantity (B.2) is the baryon number. The second part, connected to the kaon field, leads

to the conservation of the kaon number.
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The next transformation which clearly leaves the Lagrangian density invariant is the

same transformation as (B.3) but realized only on the upper components of the kaon and

nucleon isospinors:

ψp → ei λN ψp , K → ei λKK . (B.6)

By similar manipulations as in the previous case we again get the field variations:

δψp = i λNψp δK = i λKK , (B.7)

which by substituting into (B.1) lead to the following current:

jµ
e = λN ψ̄γµ 1

2
(1 + τ3)ψ

+ λKK† 1
2
(1 + τ3)

{
i
←→
∂µ + 2gωK

[
gωKωµ + gρK~τ · ~ρµ + gφKφµ + e 1

2
(1 + τ3)Aµ

]}
K ,

(B.8)

which can be interpreted as the electromagnetic current and leads to the conservation of

the electromagnetic charge.

The last conserved current, which we need for derivation of the equations of motion for

the meson fields in (2.8), is induced by the isospin transformation:

ψ → ei ~θ·~τψ , K → ei ~θ·~τK , ~ρµ → ei ~θ·~T ~ρµ , (B.9)

where ~θ ∈ R3 may differ for each field, which is not indicated here for simplicity of the

following formulae.

It is not immediately evident, that this transformation leaves the Lagrangian density

invariant. We can restrict ourselves to the infinitesimal transformations:

ψ → (1 + i ~θ · ~τ)ψ ,

K → (1 + i ~θ · ~τ)K ,

ρj
µ → (1 + i θi(Ti)jk)ρ

k
µ = [1 + i θi(−i εijk)]ρ

k
µ

= (~ρµ + ~θ × ~ρµ)j ,

(B.10)

since every finite transformation can be obtained as infinite set of infinitesimal

transformations. Next we can show, that the isospin transformation preserves squares of

the following quantities:
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• ψ̄τjψ → (ψ̄ − i ψ̄θiτi)τj(ψ + i θiτiψ) = ψ̄τjψ + i ψ̄τjθiτiψ − i ψ̄θiτiτjψ + O(θ2)

' ψ̄τjψ + i ψ̄θi[τj, τi]ψ = ψ̄τjψ + i ψ̄θi(2i εjikτk)ψ = ψ̄τjψ − 2i ψ̄(~θ × ~τ)jψ

⇒ (ψ̄~τψ)2 → (ψ̄~τψ)2 + O(θ2)

• similar manipulations for the kaonic field K lead to the same result:

(K†~τK)2 → (K†~τK)2 + O(θ2)

• and evidently: (~ρµ)2 → (~ρµ)2 + O(θ2)

Since our Lagrangian density (2.1) contains only terms with ~ρ 2–like behavior, the

rotations in the isospin space are symmetry transformations.

The conserved current associated with this transformation reads:

~jµ = λN ψ̄γµ~τψ + λR~ρ ν × ~Rµν

+ λKK†~τ
{

i
←→
∂µ + 2gωK

[
gωKωµ + gρK~τ · ~ρµ + gφKφµ + e 1

2
(1 + τ3)Aµ

]}
K ,

(B.11)

for any arbitrary λN , λR, λK ∈ R.

Using these results and equations of motion for massive vector meson fields, which follow

from the Lagrangian density (2.1):

∂µFµν − mΦΦν = j(Φ)
ν , (B.12)

where j
(Φ)
ν is a conserved current, we can show that:

∂ν∂µFµν − mΦ∂νΦν = ∂νj(Φ)
ν , (B.13)

and thus:

∂νΦ
ν = 0 (B.14)

for any Φµ ∈ {ωµ, ~ρµ, φµ}.

For massless photon field, one has a freedom of gauge transformation:

Aµ → Aµ + ∂µf , (B.15)

which can be constrained by Lorentz condition:

∂µA
µ = 0 . (B.16)
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C Numerical solution

5 Although the baryon field in (2.11) is still an operator, the meson fields are classical. It

means that Dirac equation is linear and we can seek normal-mode solutions of the form:

ψ(x) = e−i εtψ(~x) .

This leads to:

H ψ(~x) = ε ψ(~x)

H = [−i αj∇j + (mN − gσN σ)β +gωN ω0 + gρN τ3ρ0 + e 1
2
(1 + τ3)A0] , (C.1)

where H is the single-particle Dirac Hamiltonian. Considering both positive and

negative energy solutions uα(~x) and vα(~x), the baryon field operator can be expanded as:

ψ̂(~x) =
∑

α

âαuα(~x) + b̂†αvα(~x) (C.2)

in the Schrödinger picture. Here, â†
α and b̂†α are creation operators for baryons and

antibaryons, respectively. The label α specifies the full set of quantum numbers

describing the single-particle solutions. Since the system is assumed spherically

symmetric and parity conserving, α contains the angular momentum and parity quantum

numbers (for details see e.g. Ref. [48]).

For the the single-particle angular momentum operator:

~J = ~L + ~S = ~x × ~p +
1

2
~Σ , (C.3)

where Σi = (i /2)εijkγ
jγk or:

~Σ =

 ~σ 0

0 ~σ

 , (C.4)

it holds:

[H , Ji] = [H , ~J2] = 0 , for i = 1, 2, 3 , (C.5)

5Following text was partly adopted from Ref. [37] and modified in order to incorporate antikaons.

35



i.e., H is rotationally invariant. Consequently, the j and m quantum numbers of the

angular momentum may be used to label the states. Although ~L2 does not commute with

H , the spin operator ~S2 = ~Σ2/4 obeys [H , ~S2] = 0, so the spin s = 1/2 is another

constant of motion. Moreover, if we define the operator:

K = γ0[~Σ · ~J − 1/2] = γ0[~Σ · ~L + 1] (C.6)

then [H , K ] = 0, which also provides a constant of motion. Since:

K 2 = ~L2 + ~Σ · ~L + 1 = ~J2 + 1/4 (C.7)

it follows that the eigenvalues (−κ) of the operator K obey:

κ = ±(j + 1/2) (C.8)

and κ is a nonzero integer. If we act on the upper and lower two-component wave function

ψ =

 ψA

ψB

 (C.9)

with the operator K :

K ψ = −κψ =

 −κψA

−κψB

 =

 (~σ · ~L + 1)ψA

−(~σ · ~L + 1)ψB

 , (C.10)

i.e., ψA and ψB are eigenstates of (~σ · ~L + 1) with opposite eigenvalues. For

~L2 = ~J2 − ~Σ · ~L − 3/4, it follows that:

~L2ψA = [(j + 1/2)2 + κ]ψA ≡ lA(lA + 1)ψA ,

~L2ψB = [(j + 1/2)2 − κ]ψB ≡ lB(lB + 1)ψB .
(C.11)

Thus, although ψ is not an eigenstate of ~L2, the upper and lower components are

separately eigenstates. For given j and κ, the values of l may be determined from:

j(j + 1) − lA(lA + 1) + 1/4 = − κ ,

j(j + 1) − lB(lB + 1) + 1/4 = κ .
(C.12)
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Since the two-component wave functions have fixed j and s = 1/2, lA and lB must be

j ± 1/2. Their angular momentum and spin parts are therefore spherical harmonics:

Φκm =
∑
mlms

< l ml 1/2 ms|l 1/2 j m > Yl ml(θ, φ)χms

j = |κ | − 1/2, l =

 κ κ > 0

−(κ + 1) κ < 0
, (C.13)

where Yl ml
is a spherical harmonics and χms is a two-component Pauli spinor. For a

given κ, eq. (C.8) and the first relation in (C.12) uniquely determine j and l, as indicated

in (C.13). Thus the single-particle wave functions in a central, parity-conserving field

may be written as:

ψα(~x) = ψnκmt(~x) =

 i [Gnκt(r)/r]Φκm

−[Fnκt(r)/r]Φ−κm

 ζ t . (C.14)

Since the Hamiltonian H also commutes with the isospin operator T3 and ~T 2, the states

may be labeled by their charge or isospin projection t (t = 1/2 for protons, t = −1/2 for

neutrons), and ζ t is a two-component isospinor. The principal quantum number is

denoted by n. The phase choice in (C.14) leads to real bound state wave functions F and

G for real potentials in eq. (C.1).

Using the general form of the solutions (C.14), we evaluate the local source terms in the

meson field equations. We assume that the ground state consists of filled shells up to

some n and κ. (This is consistent with spherical symmetry and is appropriate for doubly

magic nuclei.) In addition, we assume that all bilinear products of baryon operators are

normal ordered.

With these assumptions, the baryon density becomes:

ρv(r) = 〈: ψ̂†(~x)ψ̂(~x) :〉

=
occ∑
α

u†
α(~x) uα(~x)

=
occ∑
a

(
2ja + 1

4πr2

)
[ |Ga(r)|2 + |Fa(r)|2] , (C.15)
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where a ≡ {n, κ, t} denotes remaining quantum numbers. The other densities may be

calculated analogously.

With these results, we rewrite the meson field equations as:

(
d2

dr2
+

2

r

d

dr
− m2

σ) σ(r) = − gσN ρs(r)

− g2 σ2(r) + g3 σ3(r) − gσK mKρ
(s)

K−(r)

= − gσN

occ∑
a

(
2ja + 1

4πr2

)
[ |Ga(r)|2 − |Fa(r)|2]

− g2 σ2(r) + g3 σ3(r) − gσK mKρ
(s)

K− ,

(
d2

dr2
+

2

r

d

dr
− m2

ω) ω(r) = − gωN ρv(r) + dω3(r) + gωK ρK−(r) ,

= − gωN

occ∑
a

(
2ja + 1

4πr2

)
[ |Ga(r)|2 + |Fa(r)|2] ,

+ dω3(r) + gωK ρK−(r)

(
d2

dr2
+

2

r

d

dr
− m2

ρ) ρ(r) = − gρN ρ3(r) + gρK ρK−(r) ,

= − gρN

occ∑
a

(
2ja + 1

4πr2

)
[ |Ga(r)|2 + |Fa(r)|2](−1)ta−1/2 ,

+ gρK ρK−(r)

(
d2

dr2
+

2

r

d

dr
− m2

ω) φ(r) = + gφKρK−(r) ,

(
d2

dr2
+

2

r

d

dr
) A(r) = − e ρp(r) + e ρK−(r)

= − e
occ∑
a

(
2ja + 1

4πr2

)
[ |Ga(r)|2 + |Fa(r)|2](ta + 1/2)

+ e ρK−(r) ,

(C.16)

where the densities are given in (2.13).

The equations for baryon wave functions follow immediately upon substituting (C.14)

into (C.1):

d

dr
Ga(r) +

κ

r
Ga(r) − [Ea − gωK ω(r) − tagρN ρ(r)

−(ta + 1
2
) eA(r) + M − gσN σ(r)]Fa(r) = 0 ,

(C.17)
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d

dr
Fa(r) −

κ

r
Ga(r) + [Ea − gωK ω(r) − tagρN ρ(r)

−(ta + 1
2
) eA(r) − M + gσN σ0(r)]Ga(r) = 0 .

(C.18)

The normalization condition for nucleons reads:∫
dr (|Ga(r)|2 + |Fa(r)|2) = 1 . (C.19)

The coupled nonlinear differential equations (2.11) have to be solved by an iterative

procedure. For a given trial set of meson fields, the Dirac equations (C.18) are solved by

Runge-Kutta integration, integrating outward from the origin and inward from large r,

matching solutions at some intermediate radius to determine the eigenvalue Ea. Analytic

solutions in the regions of large and small r allow proper boundary conditions to be

imposed. The Klein-Gordon equation for the antikaon is solved with this trial set of

meson fields as well, with the reasonable estimate of the antikaon energy EK− .

Once the baryon and antikaon wave functions are determined, the source terms in the

meson Klein-Gordon equations are calculated and the meson fields recomputed by

integrating over the static Green’s function:

D(r, r′; mi) = − 1

mirr′
sinh(mir<) exp(−mir>) . (C.20)

The Green’s function embodies the boundary conditions of exponential decay at large r

and vanishing slope for the fields at origin. For example, the solution of the

Klein–Gordon equation for the scalar field reads:

σ(r) =

∫
dr′r′2[−gσN ρs(r

′) − g2 σ2(r′) + g3 σ3(r′) − gσK mKK∗(r′)K(r′)]×

× D(r, r′; mσ) .

(C.21)

The new meson fields are then introduced in the equations of motion for nucleons and the

antikaon. The entire procedure is repeated until selfconsistency is achieved.
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