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autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).
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učení technické v Praze
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Introduction

The structure of a hadron is governed by the strong interaction between its constituents
(partons, which are identified with quarks and gluons). Currently, the most succesful theory of
strong interaction is the Quantum Chromodynamics (QCD). The growth of the gluon density
with increasing energy (resp. with decreasing Bjorken-x) has been predicted from perturbative
QCD and at some point, it was also measured experimantally at HERA [1]. However, this
growth of the gluon density would result in divergencies which have not been observed. It
is therefore expected, that at some point, the new effects arise and tame this growth. Such a
phenomenon is called saturation and implies the emergence of a new scale, which is called the
saturation scale. The evolution of parton densities with increasing energy can be viewed in
two "directions", which correspond to the evolution according to increasing Q2 or decreasing
Bjorken-x. With the increasing scale Q2 of the process one can observe the hadron with better
resolution. Therefore the original parton splits into more "smaller" partons when increasing the
resolution. This evolution is described by DGLAP equations. At small Bjorken-x the hadron
is dominated by gluons. The linear evolution of gluon densities according to ln

(
1
x

)
results

in the situation in which more gluons of the "same" size appear with decreasing x. At some
point the gluon density in the proton is so large, that the their wave functions start to overlap
and the gluons therefore recombine and the saturation is reached at this point. One model
that describes saturation is the Color Glass Condensate formalism using the JIMWLK equation
which accounts for the non-linear evolution of gluon densities. A limit case of the JIMWLK
equation is the Balitsky-Kovchegov evolution equation of the dipole scattering amplitude, which
is one of the main interests of this work.

The inner structure of hadron can be probed via the deep inelastic scattering (DIS) which
is the highly energetic scattering of a lepton off a hadron. The virtual photon is exchanged
in the interaction af an incoming lepton with the target hadron, and its inner structure can be
observed assuming very short wavelength of the photon. In the exclusive process a vector
meson can be produced in the final state. Depending on the scale Q2 of the process we can
distinguish the photoproduction at Q2 → 0 and the electroproduction at scales Q2 & 1. The
production of a vector meson is sensitive to the distribution of gluons in the impact parameter
plane, therefore this process is expected to be a good probe to search for gluon saturation. Since
we expect the emergence of a new particle in the final state, the photon-proton scattering has
to be governed by the strong interaction. This can be viewed within the color dipole approach
to deep inelastic scattering in which the photon interacts with the hadron via one of its Fock’s
states. The most probable is the interaction with the qq̄ state, hence the "color dipole" in the
name of the approach. The amplitude of the γ∗p → V Mp process depends on the overlap
of the virtual photon and vector meson wavefunctions and the cross section of the interaction
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of the color dipole with the hadron. The later depends on the impact parameter b between
the dipole and the hadron. Under the assumption that the impact parameter b dependence of
the dipole-hadron amplitude can be factorized, we can describe the transverse structure of the
hadron by an appropriate choice of the profile function. The dipole amplitude then depends
only on the Bjorken-x and the transverse size of the dipole and can be obtained as a solution to
the b-independent BK equation.

This document is organized as follows. In the first chapter I will introduce deep inelastic
scattering (DIS) and the color dipole approach to DIS. Then the production of a vector meson
within the color dipole formalism will be described. The QCD evolution equations and the satu-
ration phenonenon will be introduced in the second chapter, including the Balitsky–Kovchegov
equation with its main properties and several possible choices for the kernel and the initial
condition of the equation.

The third chapter is dedicated to dipole cross sections, which will have been introduced
within the color dipole approach of the vector meson production. Their properties are discussed
with an emphasis on the choice of factorisation of the impact-parameter b dependent part of the
dipole scattering amplitude resulting in two parts of the amplitude – x and dipole size dependent
and b-dependent. Within this chapter we describe the procedure to solve the impact parameter
independent BK equation and we compare the solutions for different choices of initial condi-
tions, kernel of the integro-differential equation, strong coupling constant behavior or the choice
of specific numerical method. Various possible choices of the form of the b-dependent part of
the dipole cross section are also discussed in this chapter. One of the recent models is a so-called
hot-spot model, which is introduced in this chapter as well.

The main results of this work will be described in the fourth chapter. First, I discuss pre-
dictions, from the models introduced before, for the structure function F2, and compare them
to the combined DIS data from the H1 and ZEUS experiments at HERA. The rest of the chap-
ter describes the predictions for exclusive J/ψ cross sections. I present three sets of predic-
tions and compare them to the experimentally measured data from HERA and even from the
ALICE experiment. First the photoproduction and electroproduction cross sections using a
Golec-Biernat–Wusthoff model of the dipole cross section are obtained. In the second part of
this chapter I will focus on the exclusive J/ψ photoproduction and electroproduction cross sec-
tions obtained using the solution of the Balitsky–Kovchegov equation to determine the dipole
cross section. And in the final part of the chapter I will show the results of the predictions for
exclusive J/ψ photoproduction and electroproduction cross sections obtained from the GBW
parametrization of the dipole cross section when using the hot-spot model to obtain the impact
parameter b-dependent part of the amplitude.



Chapter 1

Phenomenology of high-energy particle
collisions

1.1 Deep Inelastic Scattering

Deep inelastic scattering (DIS) is a highly energetic scattering of an incoming lepton off a
hadron. It represents an important processes through which we can study the inner partonic
structure of hadrons. The lepton-hadron scattering is denoted by following relation

l(k) + N(P)→ l′(k′) + X (1.1)

and its visual interpretation can be seen in Figure 1.1. In eq. (1.1) l denotes the incoming
lepton with four-momentum k and N is the hadron with four-momentum P. An incoming lepton
interacts with the hadron via the exchange of a virtual photon γ∗ with four-momentum q. The
outgoing lepton with four-momentum k′ is then represented by l′ and X denotes any final state
system allowed by conservation laws. The hadron can be either a nucleon or a nucleus with mass
number A. However in the following text we will restrict ourselves to lepton-proton interactions.
The observed proton structure changes depending on the wavelength, and thus on the transferred
momentum, of the virtual photon. When the probing photon has a long wavelength compared
to the proton size, a point-like particle with electric charge +1e is seen. With decreasing photon
wavelength the proton is first seen as a charged particle with finite size and with even greater
decrease of the wavelength, which corresponds to the increase of momentum transfer, the inner
structure of the proton becomes observable. The last described case represents the deep inelastic
scattering.

1.1.1 Lorentz invariant variables

The kinematics of lepton-nucleon scattering kinematics can be expressed using so-called
Lorentz invariant variables which are defined as follows [2], [3]

s ≡ (P + k)2 (1.2)

W2 ≡ (P + q)2 = M2
X (1.3)

11



12 CHAPTER 1. PHENOMENOLOGY OF HIGH-ENERGY PARTICLE COLLISIONS

XN(P )

l′(k′)

l(k) γ∗(q)

Figure 1.1: A schematic diagram of the electron-proton scattering. The incoming, resp. outcoming
lepton four-momentum is denoted by k, resp. k′, q denotes the virtual photon γ∗ four-momentum, P
denotes the incoming hadron four-momentum and X denotes the final state system.

Q2 ≡ −q2 = −(k − k′)2 (1.4)

x ≡
Q2

2P · q
(1.5)

y ≡
P · Q
P · k

(1.6)

ν ≡
P · q
mp

(1.7)

The Mandelstam variable s represents the total energy of the interaction in the centre-of-mass
(CMS) frame and W2 represents the centre-of-mass energy of the photon-proton system which
is equal to the square of invariant mass MX of the produced hadronic system X. The square of the
momentum transferred from lepton to proton q2 determines the photon virtuality Q2. Relation
(1.5) defines the Bjorken-x. In the infinite momentum frame it can be interpreted as the fraction
of the target proton’s longitudinal momentum carried by one of its constituents (called partons).
The inelasticity y represents the fraction of the lepton energy carried by the virtual photon and ν
is the total energy passed from the lepton to the proton, with mass mp, in the target’s rest frame.
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1.1.2 DIS cross section and parton model

The basic quantity describing any general scattering process such as (1.1) is the differential
cross section. One can calculate it by obtaining the invariant amplitude of the process which in
the case of deep inelastic scattering of electron on proton can be written [3] as the contraction
of two tensors Lµν, Wµν

|M f i|
2 =

e4

Q4 Lµν(k, k′)Wµν(P, q), (1.8)

where
Lµν(k, k′) = 2

[
kµk′ν + kνk′µ − gµν(k · k′)

]
(1.9)

is the tensor associated with the vertex at which the lepton emits the virtual photon, assuming
we can neglect the electron mass. Unlike the photon emission from the lepton, which is a
well understood process in Quantum Electrodynamics (QED), its interaction with the proton
can not be directly computed using perturbative Quantum Chromodynamics because the proton
structure is completely unknown at this stage. However we can parametrize the photon-proton
interaction by introducing the hadronic tensor Wµν. Eliminating the parity violating term and
the terms which result zero in the contraction of the tensors [3] the resulting hadronic tensor
can be written as

Wµν(P, q) = −W1gµν + W2
PµPν

m2
p
, (1.10)

where mp is the proton mass and W1, W2 are the inelastic form factors, which parametrize the
photon-proton coupling. The contraction is then

LµνWµν =
4(k · P)

y

xy2W1 +
ν

mp
W2

1 − y − xym2
p

Q2

 . (1.11)

It is common to introduce another pair of dimensionless functions - F1 and F2. They are called
the structure functions and are related to inelastic form factors as

F1 ≡ W1; F2 ≡
ν

mp
W2. (1.12)

In general, they depend on x and Q2 of the process. The QCD-related part of the scatterring is
now included in the structure functions of the proton. One can thus rewrite the lepton-proton
tensor contraction (1.13) using functions (1.12) as

LµνWµν =
4(k · P)

y

xy2F1(x,Q2) +

1 − y − xym2
p

Q2

 F2(x,Q2)
 . (1.13)

and express the differential cross section in the limit of high energies s >> M as

d2σ

dxdQ2 =
4πα2

Q4

[
y2F1(x,Q2) + (1 − y)

F2(x,Q2)
x

]
, (1.14)

where α = e2

4π ≈
1

137 is the electromagnetic coupling constant.
In Feynmann’s parton model [4, 5] the deep inelastic scattering is seen as the scattering of

the virtual photon on one of the partons which constitute the inner structure of the proton. The
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p(P ) (1− x)P

parton

e(k)

e(k′)

xP

γ∗(q)

Figure 1.2: Sketch of the parton model interpretation of the deep inelastic scattering, according to [6].

situation is illustrated in Figure 1.2. In the infinite momentum frame one can neglect the masses
of particles. The incoming particles also carry only the longitudinal part of the momentum.
Partons inside the proton carry the fraction of this momentum which is equivalent to Bjorken-x
(1.5) as mentioned in the previous section. The differential cross section of the electron-parton
scattering is then given as

d2σ

dxdQ2 =
4πα2

Q4

[
(1 − y) +

y2

2

]∑
i

e2
i fi(x), (1.15)

where the sum runs over all parton flavours, ei is the effective charge of the parton of flavour i
and fi(x) represents its parton distribution function.

Comparing this relation to the above derived relation (1.15) for the electron-proton scatter-
ing cross section and with the assumption that partons are spin-1

2 particles, one can obtain the
following expressions for the structure functions

F1(x) =
1
2

∑
i

e2
i fi(x), F2(x) =

∑
i

e2
i x fi(x); (1.16)

leading to the so-called Callan-Gross relation

F2(x) = 2xF1(x). (1.17)

Note that structure functions are independent of Q2 in the quark-parton model. This phe-
nomenon is called Bjorken scaling [7]. The Q2 dependence of structure functions can be ob-
tained from the so-called DGLAP evolution equation which will be briefly introduced in the
following chapter.
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Structure functions can also be expressed using the total cross section σγ∗p of the photon-
proton interaction, which consists of two parts [3]

σγ∗p = σT + σL = C
(
1 +

Q2

4M2x2 W2

)
(1.18)

where C is the overall normalization factor [3] given by

C =
8π2α

W2 − M2 + Q2 , (1.19)

and

σT = CW1, σL = C
[
−W1 +

(
1 +

Q2

4M2x2

)
W2

]
(1.20)

correspond to the cross section of transversaly, resp. longitudinally polarized photons scattering
off the nucleon. One can then define the transverse structure function FT as

FT ≡
2x
C
σT = 2xF1, (1.21)

and then the relation for the structure function F2 can be obtained as

F2 =
2x
C

[
Q2

Q2 + M2x2

]
(σT + σL) � FT + FL. (1.22)

Experimental measurements of the structure functions are often expressed in dependence on the
reduced cross section defined as [1]

σr(y, x,Q2) = F2(x,Q2) −
y2

1 + (1 − y2)
FL(x,Q2). (1.23)

As can be seen the longitudinal structure function FL is

FL = F2 − 2xF1. (1.24)

It represent the measure of the violation of the Callan-Gross relation (1.17) as the FL = 0 if the
proton consists of only spin- 1

2 fermions (i.e. quarks) [8]. The longitudinal structure function
therefore gives a direct measure of the gluonic contribution to the proton inner structure.

The F2 structure function and deep inelastic scattering cross section measurements were
carried out with great precision by the H1 and ZEUS experiments at HERA [1, 9].
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1.2 Color dipole model of the DIS

The dipole model provides a framework to describe the strong interaction within the deep
inelastic scattering. In the target proton’s rest frame the photon can fluctuate into a quark-
antiquark pair. The transverse size of the pair is denoted as ~r and the quark carries a fraction
z of the photon’s light-cone momentum [8, 10, 11]. The lifetime of the γ∗ → qq̄ fluctuation is
much longer than the timescale of the interaction under the condition that

x �
1

MR

where M and R are the target proton mass and radius, respectively. Thus, it is apparent that the
color dipole approach is valid at small x which corresponds to high energies. The γ∗p scattering
is then assumed to proceed in the following stages: first the incoming virtual photon fluctuates
into a qq̄ dipole, then the dipole interacts strongly with the target proton via the exchange of a
colorless state. In the first approximation we consider this state to be a pair of gluons and the
actual exchanged particle is often called Pomeron [12]. In the last stage of the interaction the
qq̄ pair recombines back to form the virtual photon. The whole process is depicted in Fig. 1.3.

The total elastic γ∗p → γ∗p cross section of the deep inelastics scattering can be obtained
from the optical theorem [10, 12] as

σ
γ∗p
T,L(x,Q2) = ImAγ∗p

T,L(x,Q2,∆ = 0) =
∑

f

∫
d2r

∫
dz|Ψ∗Ψ| fT,Lσqq̄(x̃, r) (1.25)

whereAγ∗p
T,L is the scattering amplitude for the elastic γ∗p→ γ∗p process, |Ψ∗Ψ| fT,L is the overlap

of transversaly, resp. longitudinally, polarised virtual photon wave functions, σ(x̃, r)qq̄ is the
cross section of the dipole-proton scattering and ∆ denotes the transverse momentum lost by
the outgoing proton.

Note that the dipole amplitude N(x̃, r) (resp. the dipole cross section σqq̄) in DIS is evaluated
at

x̃ = x

1 +
4m2

f

Q2

 , (1.26)

which represents a kinematical shift in the definition of Bjorken-x [13]. The shift is made in
order to approach safely the photoproduction limit.

The photon wave function can be derived from the QED and the square of the wave func-
tions, summed over the polarizations of virtual photon and qq̄ helicities, can be written [8, 11,
14] as

|Ψ∗Ψ|
f
T =

3α
2π2 e2

f

[(
z2 + (1 − z)2

)
ε2K2

1(εr) + m2
f K

2
0(εr)

]
, (1.27)

|Ψ∗Ψ|
f
L =

3α
2π2 e2

f

[
4Q2z2(1 − z)2K2

0(εr)
]
, (1.28)

where T and L refer to transverse and longitudinal polarization of the virtual photon, e f is the
electric charge of the quark of flavour f in the units of elementary charge, K0 and K1 are the
modified Bessel functions of the second kind (see eq. A.24 defined in Appendix A), r ≡ |~r| and

ε2 = z(1 − z)Q2 + m2
f , (1.29)
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Figure 1.3: Schematic diagram of the elastic scattering of a virtual photon off the proton in the color
dipole picture for inclusive DIS [10].

where m f is an effective mass of the quark with flavour f .
The total cross section σqq̄ for the qq̄ scattering on the proton can be (again using the op-

tical theorem [8, 10, 12]) obtained from the dipole amplitude N(x, r, b) which represents the
imaginary part of the dipole-proton scattering amplitude as follows:

σqq̄(x̃, r) = 2
∫

d2bN(x̃, r, b) = σ0N(x̃, r), (1.30)

where we assumed the average over the impact parameter [15] considering the target is finitely
big and homogeneous. The resulting σ0 parameter has the interpretation as the average area of
the quark distribution in the transverse plane and it can be obtained from a fit to experimentally
measured data.

The dipole cross section σqq̄ can be obtained from various parametrizations and models such
as the GBW parametrization [13, 16], which was one of the first succesfull parametrizations of
the dipole cross section, or the BGBK model [17] or the CGC model [18], etc. In the following,
I will use only the GBW approach which parametrizes the dipole cross section as

σGBW
qq̄ (x, r) = σ0

[
1 − exp

(
−

r2Q2
s(x)

4

)]
≡ σ0N(x, r), (1.31)

where Qs(x) denotes the x-dependent saturation scale

Q2
s(x) = Q2

0

( x0

x

)λGBW

[GeV2], (1.32)

which is closely related to the gluon density in the transverse plane. The exponent λGBW deter-
mines the growth of the dipole cross section with decreasing x and Q0, x0 are free parameters.
For large dipoles the cross section saturates and its value approaches the constant σ0.
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The dipole cross section can also be obtained as a solution to the Balitsky-Kovchegov evo-
lution equation for the dipole scattering amplitude N(x, r) (see Section 2.3.2 and Section 3.2).
The scattering amplitude reaches values between 0 and 1, where the latter corresponds to a sat-
urated state (see Chapter 2.3.2). At fixed x the dipole amplitude behaves as N → 0 for dipoles
with small transverse size r → 0 due to color transparency and for big dipoles N → 1 as it is
more probable for the big dipole to interact with the proton. On the other hand, for fixed values
of r and with decreasing x the dipole amplitude grows towards one because with increasing
energy the number of gluons grows and it is therefore more probable for the dipole to interact
with such a dense target.

Using the result (1.22) and with (1.19) we can obtain the relation for the structure function
F2 in the limit of small Bjorken-x

F2(x,Q2) =
Q2

4π2α
(σT + σL), (1.33)

which depends on the transverse and longitudinal photon-proton cross section defined in eq.
(1.25).

1.3 Production of vector mesons

In high-energy scattering processes, such as deep inelastic scattering introduced in the pre-
vious section, one can observe so-called diffractive events. Their main signature is the presence
of a large rapidity gap, which is an interval of few units of rapidity in which no particle are
produced.

One of the interesting scenarios is the exclusive production of vector mesons. These pro-
cesses represent a uniquely clear environment for the studies of cross sections of various vector
mesons such as J/ψ, ψ(2S ), ρ, φ or even Υ mesons due to the presence of areas where no
other particles are observed. These processes can also serve as excellent probes of the proton
shape and partonic structure; specifically gluon densities at low-x can be studied. An example
of diffractive scattering process can be seen in Figure 1.4, where X in general represents any
created system of particles, however here the system X is taken to be a produced vector meson.
The photon-proton interaction is viewed as a pomeron exchange. The fraction of the proton
longitudinal momentum carried by the pomeron is defined as

xP =
(P − P′) · q

P · q
=

M2
V M + Q2 − t

W2 + Q2 − m2
p
, (1.34)

where MV M and mp are the masses of the produced vector meson and proton, respectively. The
momentum transfer t = (P − P′)2 is related to ∆ introduced in Chapter 1.2 as

∆2 = −t.

Note that besides exclusive production, dissociative vector meson production — where the
scatterred proton is broken into a hadronic system — is also possible.

Production of a vector meson in deep inelastic scattering can be well described within the
color dipole approach presented in Chapter 1.2, where the photon wave function is obtained
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Figure 1.4: Schematic diagram of the diffractive scattering in DIS. The incoming, resp. outgoing electron
four-momentum is denoted by k, resp. k′, q denotes the virtual photon γ∗ four-momentum and P, resp.
P′ denotes the incoming, resp. outgoing proton four-momentum. Q2 respresents the virtuality of γ∗

defined as (1.4), W2 denotes the photon-proton centre-of-mass energy defined as (1.3), t is the squared
four-momentum transfer of the proton [19].

from QED and the vector meson wave functions are determined from a phenomenological
model. The graphical interpretation of the situation can be seen in Figure 1.5.

The amplitude for the exclusive production of a vector meson in the final state [10] is given
by

A
γ∗p→V Mp
T,L =

∫
d2r

1∫
0

dz
4π
|Ψ∗V MΨγ∗ |Aqq̄(x, r,∆), (1.35)

where |Ψ∗V MΨγ∗ | denotes the overlap of the photon and vector meson wave functions. Note that
x in this case represents Bjorken-x of the exchanged pomeron

x =
M2

V M + Q2

W2 + Q2 , (1.36)

derived from relation (1.34) under the assumption of large W2 in the electroproduction. In the
photoproduction the relation (1.36) is further simplified to

x =
M2

V M

W2 . (1.37)

Following [10, 20], the invariant amplitude (1.35) can be rewritten as

A
γ∗p→V Mp
T,L = i

∫
d2r

1∫
0

dz
4π

∫
d2b|Ψ∗V MΨγ∗ |T,L exp

[
−i

(
~b − (1 − z)~r

)
~∆
] dσqq̄

d2b
, (1.38)

where ~b represents the impact parameter between the proton and the dipole, see Figure 1.5.
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With the assumption that the trasverse profile of the proton does not have an angular depen-
dence, we can perform the angular integrations in the amplitude and reduces the prescription to

A
γ∗p→V Mp
T,L = i

∞∫
0

dr2πr

1∫
0

dz
4π

∞∫
0

db2πb|Ψ∗V MΨγ∗ |T,LJ0(b∆)J0 ((1 − z)r∆)
dσqq̄

d2b
, (1.39)

with J0 being the Bessel function of the first kind (A.21) and dσqq̄

d2b represents the differential
qq̄-proton cross section which in general depends on the impact parameter b.

Figure 1.5: Schematic diagram of the elastic scattering of a virtual photon off the proton in the color
dipole picture for exclusive vector meson production [10].

1.3.1 Wave functions

The overlap of a the virtual photon and the vector meson wave functions is defined as [15]

|Ψ∗V MΨγ∗ |T =
1
2

∑
hh̄

(
Ψ∗V M,hh̄,λ=1Ψγ∗hh̄,λ=1 + Ψ∗V M,hh̄,λ=−1Ψγ∗hh̄,λ=−1

)
, (1.40)

|Ψ∗V MΨγ∗ |L =
∑
hh̄

Ψ∗V M,hh̄,λ=0Ψγ∗hh̄,λ=0, (1.41)

where sum runs over qq̄ helicities and λ is the polarization of the virtual photon.
The photon wave functions are calculated using perturbative QED, see [14]. The vector

meson wave functions are modelled following the presumption that the vector meson is pre-
dominantly a qq̄ state with the same spin and polarization structure as in the photon case [15].

The overlap between the photon and vector meson wave functions reads [10]

|Ψ∗V MΨγ∗ |T = ê f e
NC

πz(1 − z)

[
m2

f K0(εr)φT (r, z) −
(
z2 + (1 − z)2

)
εK1(εr)∂rφT (r, z)

]
, (1.42)
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|Ψ∗V MΨγ∗ |L = ê f e
NC

π
2Qz(1 − z)K0(εr)

MV MφL(r, z) + δ
m2

f − ∇
2
r

MV Mz(1 − z)
φL(r, z)

 , (1.43)

where ê f represents the effective charge of the given vector meson, m f is the mass of the quark
of flavour f , K0 and K1 are Bessel functions of the second kind (A.24) and ε was already defined
in (1.29). The parameter δ is chosen to be 0 or 1 according to one’s choice to exclude or include
non-local part of the wave function in the overlap (1.43).

The scalar part φT,L of the wave function is in general model-dependent. For the photon case
they are given by modified Bessel functions (A.24). In the vector meson case they are obtained
under the assumption that a hadron at rest can be modelled by a Gaussian distribution in the
transverse plane. Various models of the scalar wave functions are used, for their review see e.g.
[10]. In the following work I use the boosted Gaussian model [21, 22, 23] in which the scalar
parts of the wave functions for first excited states are given as

φT,L(r, z) = NT,Lz(1 − z) exp

− m2
f R

2

8z(1 − z)
−

2z(1 − z)r2

R2 +
m2

f R
2

2

 , (1.44)

with its derivatives being

∂r
(
φT,L(r, z)

)
= −

4z(1 − z)r
R2 φT,L(r, z), (1.45)

∇2
r
(
φT,L(r, z)

)
=

[
2
r
−

4z(1 − z)r
R2

]
∂r

(
φT,L(r, z)

)
. (1.46)

For the full calculation of derivates of the scalar parts φT,L of the wave functions see Appendix
C. The constants NT,L and R are determined from the normalization conditions and from the
leptonic decay width of the vector meson, see [10].

1.3.2 Differential and total cross section

The formula for the transversal and longitudinal differential cross section for exclusive pho-
toproduction of vector mesons is given as

dσγ∗p→V Mp
T,L

d|t|
=

1
16π
|A

γ∗p→V Mp
T,L |2,. (1.47)

For the purpose of this work the amplitudeAγ∗p→V Mp
T,L given by (1.39) can be rewritten as

A
γ∗p→V Mp
T,L = iπσ0Ab · (Ar)T,L, (1.48)

with corresponding parts of the amplitude given by following relations

Ab =

∞∫
0

db
(
bJ0(b∆)Tp(b)

)
, (1.49)
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(Ar)T,L =

∞∫
0

dr
(
rN(x, r)(Az)T,L

)
, (1.50)

(Az)T,L =

1∫
0

dz
(
|Ψ∗V MΨγ∗ |J0 [r∆(1 − z)]

)
. (1.51)

Resulting differential cross section for the exclusive process is then given as a sum of
transversal and longitudinal contributions

dσγ∗p→V Mp

d|t|
=

dσγ∗p→V Mp
T

d|t|
+

dσγ∗p→V Mp
L

d|t|
=

1
16π

(
|A

γ∗p→V Mp
T |2 + |A

γ∗p→V Mp
L |2

)
. (1.52)

The total cross section can be obtained by integrating the differential cross section (1.52)
over the t in the range given by experimental data:

σ(x,Q2) =

∫
d|t|

dσ
d|t|

. (1.53)

1.3.2.1 Phenomenological corrections to the cross section

Correction on the real part of the scattering amplitude

The expression for the cross section of exclusive vector meson production (1.52) is obtained
under the assumption that the S -matrix is purely real and therefore the scattering amplitude
(1.35) is purely imaginary. One can take into account the real part of the amplitude by multi-

plying the transversal and longitudinal scattering amplitude (1.39) by a factor
√

1 + β2
T,L where

βT,L is the ratio of real to imaginary parts of the scattering amplitudeAγ∗p→V Mp
T,L [10] calculated

as

βT,L = tan
(
πλT,L

2

)
, λ ≡

∂ ln
(
A

γ∗p→V Mp
T,L

)
∂ ln

(
1
x

) . (1.54)

Performing the derivative in (1.54) for the GBW parametrization (1.31) one gets

λT,L =
1

A
γ∗p→V Mp
T,L

∂
(
A

γ∗p→V Mp
T,L

)
∂ ln

(
1
x

) =

=
1

A
γ∗p→V Mp
T,L

i

∞∫
0

dr2πr

1∫
0

dz
4π

∞∫
0

db2πb|Ψ∗V MΨγ∗ |T,LJ0(b∆)J0 ((1 − z)r∆)
∂

∂ ln
(

1
x

) (
dσqq̄

d2b

)
=

=
λGBWQ2

s(x)
4

·

∞∫
0

dr
(
r3 exp

[
−

r2Q2
s (x)

4

]
(Az)T,L

)
(Ar)T,L

.
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Skewedness correction

Since the two gluons in the diagram in Figure 1.5 in general carry different proton momenta
fractions x and x′ one should use the off-diagonal gluon distribution [15]. The skewed effect
can be accounted for in the limit of x′ � x � 1 by multiplying the transversal and longitudinal
scattering amplitude (1.39) by a factor (Rg)T,L given by [15]

Rg(λT,L) =
22λT,L+3

√
π

Γ
(
λT,L + 5

2

)
Γ(λT,L + 4)

(1.55)

where Γ(z) is the gamma function (A.19) defined in Appendix A and λT,L is obtained from
(1.54). However the skewed effect should vanish in the leading ln

(
1
x

)
limit.
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Chapter 2

QCD evolution equations of parton
densities

Figure 2.1: The evolution in Bjorken-x of the gluon, sea-quarks and valence-quarks distributions for
Q2 = 10 GeV measured at HERA. Sea-quark and gluon distributions have been reduced by a factor of
20 [24].

As proposed in the parton model [4, 5] hadrons are composed of partons which are bound
inside it by the strong force. Partons are in general identified with quarks and gluons. The
number of quarks and gluons, which is expressed by means of parton distribution functions,
changes with the boost of the proton. At low energies, which at fixed Q2 correspond to large

25
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Bjorken-x since s ∼ Q2

x , valence quark distribution functions form the main contribution to the
overall structure function F2 (1.16). However with increasing energy of the hadron, i.e. with
decreasing x, more sea quarks and gluons emerge and eventually form the main contribution to
the parton density inside the proton. Parton distribution functions for different constituents of
the proton as extraxted from HERA data can be seen in Figure 2.1. Note that the sea quark and
gluon distributions have been reduced by a factor of 20 in order to fit inside the picture.

The evolution of parton densities with increasing energy can be in fact viewed in two ways.
If we fix the Bjorken-x and increase the energy, it results in increasing the scale of the pro-
cess Q2. At higher scales one can see the parton content with better resolution and thus more
"smaller" partons can be seen. This evolution is described by the DGLAP evolution equations.
On the other hand, increasing energy at the scale Q2 fixed results in smaller Bjorken-x or equiv-
alently it results in higher rapidities Y = ln

(
1
x

)
. According to the BFKL evolution equation, the

gluon density grows with decreasing x and one can thus see more partons with the "same" size.
The whole situation is depicted in Figure 2.2.

Figure 2.2: Diagram showing the QCD evolution of the partonic structure of the proton and the validity
range for the different evolution equations [25].



2.1. DGLAP EVOLUTION EQUATIONS 27

2.1 DGLAP evolution equations

The Dokshitser–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [26, 27, 28] describe
the influence of higher order pQCD corrections on the distribution functions of the parton
model. They describe the change of the parton size with increasing Q2 and fixed Bjorken-x,
i.e. for higher scales of the interaction. The DGLAP equations at leading-logarithmic order can
be written as [29]

dq f (x,Q2)
d ln Q2 =

αS

2π

1∫
x

dy
y

[
q f (y,Q2)Pqq

(
x
y

)
+ g(y,Q2)Pqg

(
x
y

)]
, (2.1)

dg(x,Q2)
d ln Q2 =

αS

2π

1∫
x

dy
y

∑
f

q f (y,Q2)Pgq

(
x
y

)
+ g(y,Q2)Pgg

(
x
y

) , (2.2)

where αS is the running coupling constant of the strong interaction, q f (y,Q2), resp. g(y,Q2),
represents the distribution function of a quark with flavour f , resp. a gluon, with a momentum
fraction y and a virtuality Q2 and the sum in eq. (2.2) runs over quarks and antiquarks of all
flavours, i.e. f = 1, ..., n f .

The functions Pi j(z) are the Altarelli-Parisi splitting functions given as

Pqq =
4
3

1 + z2

(1 − z)+

= Pgq(1 − z), (2.3)

Pqg(z) =
1
2

(
z2 + (1 − z)2

)
= Pqg(1 − z), (2.4)

Pgq(z) =
4
3

1 + (1 − z)2

z
= Pqq(1 − z), (2.5)

Pgg(z) = 6
(
1 − z

z
+

z
(1 − z)+

+ z(1 − z)
)

= Pgg(1 − z). (2.6)

The regularization "+ prescription" [29] is defined as

1∫
0

dz
f (z)

(1 − z)+

=

1∫
0

dz
f (z) − f (1)

1 − z
, (2.7)

where (1 − z)+ = (1 − z) for z < 1 but infinite at z = 1.
The evolution of parton densities is thus governed by the Pqq, Pqg, Pgq and Pgg functions.

The function Pqq represents the probability that a quark emits a gluon which results in a quark
with momentum reduced by a fraction z. The function Pqg represents the probability that a gluon
converts into a qq̄ pair with the quark carrying a fraction z of the gluon momentum and thus
the antiquark carrying a momentum fraction (1 − z). Similarly, the Pgq function represents the
probability that a quark-antiquark pair annihilates into a gluon which carries a fraction z of the
original quark momentum. And finally the Pgg function gives the probability that a gluon emits
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another gluon via the triple-gluon vertex which results in a gluon with momentum reduced by a
fraction z.

The first of DGLAP equations (2.1) therefore expresses the situation that a quark with mo-
mentum fraction x could have originated from a parent quark with a larger momentum fraction
y, which has radiated a gluon, or it could have originated from the gluon with momentum frac-
tion y, which has fluctuated into a qq̄ pair. The second DGLAP equation (2.2) represents a
similar evolution for gluons governed by the functions Pgq and Pgg. This means that a gluon
could have originated from either the qq̄ pair annihilation or from the gluon with larger momen-
tum fraction y, which has radiated another gluon [29]. A symbolic graphical interpretation of
the gluon DGLAP evolution equation can be seen in Fig. 2.3.

Figure 2.3: Symbolic representation of the gluon evolution equation (2.2). [29]

2.2 BFKL evolution equation

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution equation [30, 31] has been derived
for fixed Q2 and for the small-x limit at which DGLAP equations cease to be valid.

The BFKL equation is formulated for gluons which dominate the small-x region. In leading
logarithmic approximation it reads [32]

∂ f (x, k2
T )

∂ ln 1
x

=
3αS

π
k2

T

∞∫
0

dk
′2
T

k′2T

 f (x, k
′2
T ) − f (x, k2

T )
|k′2T − k2

T |
+

f (x, k2
T )√

4k′4T + k4
T

 (2.8)

where ~kT is the transverse momentum of the emitted gluon and f (x, k2
T ) represents the uninte-

grated gluon density which can be related to the standard gluon density by

xg(x,Q2) =

Q2∫
0

dk2
T

k2
T

f (x, k2
T ). (2.9)

Equation (2.8) can be solved analytically for fixed αS . The result in the saddle point approx-
imation [32] is then

f (x, k2
T )√

k2
T

∝

(
x
x0

)−λ
, λ =

αS NC

π
4 ln 2 (2.10)

where x0 is the initial Bjorken-x and NC is the number of colors. As can be seen, the gluon
density is expected to rise with a power of 1

x for decreasing x, i.e. xg(x,Q2) ∝ x−λ.



2.3. PARTON SATURATION AND THE COLOR GLASS CONDENSATE 29

The BFKL equation thus represents an evolution in x which plays a key role in the evolution
of the qq̄ pair within the color dipole picture which will be described in the following section.

2.3 Parton saturation and the Color Glass Condensate

The evolution of a parton density with increasing energy has already been introduced in the
previous section. Let us recall the situation in which the increase of the number of partons with
the "same" size is observed with decreasing x. This behaviour could lead to divergent cross
sections which are however not observed in experimental measurements, the cross section is
observed to be finite. The key to the explanation of this phenomenon lies in the saturation of
parton densities. At sufficiently low-x values, the phase space of the hadron is completely filled
with the created partons and therefore the emergence of other new partons is not energetically
favourable. Wave functions of partons start to overlap leading to their recombination. The
recombination naturally opens the phase space for new partons to emerge. This delicate balance
occurs along the saturation scale which separates the dilute and saturated (dense) regime as
depicted in Figure 2.2. The saturation scale in general depends on both Bjorken-x and the scale
Q2, because due to the evolution with increasing scale the saturation region is reached at even
lower x of the newly emerging partons.

The Color Glass Condensate (CGC) is an effective field theory which aims to approximate
QCD in the saturation regime at which the hadron represents a very densely packed medium
filled with interacting gluons. The name of the model is closely related to the state it describes
and its properties. "Color" stands for the fact that the medium is composed of particles with
color charge, "Glass" refers to the slow evolution of the system and the term "Condensate" is
related to the filled phase space of the hadron. For a review of the main aspects of the Color
Glass Condensate see references [24, 33].

Within the CGC framework, gluon densities at high energies are assumed to be very large
and thus they correspond to strong classical color fields. The evolution of these fields with
increasing energy can be obtained by including quantum corrections to the classical fields,
which are calculated via non-linear evolution equations such as the JIMWLK or the Balitsky-
Kovchegov equation.

The CGC model represents a useful tool to describe the QCD evolution of the early stages
of ultra-relativistic heavy-ion collisions [34]. The relativistic hydrodynamic description of the
spacetime evolution of the created QGP medium depends on the initial conditions of the colli-
sion. As the fast nuclei can be viewed as dense CGC states filled with interacting gluons, the
initial conditions could be obtained possible from the CGC framework.

2.3.1 JIMWLK equation

The Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) equation [35,
36, 37, 38] gives the evolution in Bjorken-x (or in rapidity Y) of the probability distribution of
the Wilson lines WY[V] [8]. The idea behind the JIMWLK equation derivation is to separate
partons into two groups - those with large x and those with small x. Large-x partons serve as
a classical source for the small-x partons. With the evolution in rapidity Y (or with decreas-
ing x) partons become those with large x and are incorporated among other previous classical
sources. Therefore, the JIMWLK evolution includes the successive emission of classical gluon
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fields which with decreasing-x become further sources of "new" gluon fields. It represents a
non-linear modification to the BFKL equation by accounting for the recombination of gluons.
I will introduce the JIMWLK equation only briefly in the following text. The full derivation
using the light-cone quantum field theory approach can be seen for example in [14] or in [39].
The equation reads

∂WY[α]
∂Y

=
αS

2

∫
d2xT d2yT

δ2

δαa(x−, ~xT )δαb(y−, ~yT )

(
ηab
~xT~yT

WY[α]
)

−αS

∫
d2xT

δ

αa(x−, ~xT )

(
νa
~xT

WY[α]
)
.

(2.11)

Light-cone fields α(x−, ~xT ) ≡ A+(x+ = 0, x−, ~xT ) are related to the fundamental Wilson line
which defines the propagator of an eikonal quark moving along the light-cone x−–axis as fol-
lows:

V~xT = P exp

 ig
2

∞∫
−∞

dx−taαa(x−, ~xT )

 (2.12)

where P represents the path ordering and ta are the SU(NC) generators in the fundamental rep-
resentation. Similarly the eikonal antiquark propagator can be derived as a hermitean conjugate
to (2.12).

The renormalization group procedure developed by the authors of the JIMWLK equation
allows one to resum leading logarithmic contributions to the gluon distribution functions, which
corresponds to the resummation of multiple pomeron exchanges. At the lowest level, i.e. for
one pomeron exchange, the equation reduces to the BFKL equation. [40]

Due to its complexity there exists no analytical solution to the JIMWLK equation. Its solu-
tion have been though obtained numerically, using the lattice discretization of transverse coor-
dinate space [41].

2.3.2 Balitsky–Kovchegov evolution equation

The Balitsky–Kovchegov (BK) equation gives the evolution with rapidity Y = ln
(

1
x

)
of the

qq̄ dipole scattering amplitude N(r,Y). It can be obtained from the JIMWLK evolution equation
presented in the previous section in the limit of large number of colors NC � 1, see e.g. [14].
The BK evolution equation was originally derived using two different approaches which has
resulted in the "same" nonlinear evolution equation.

Balitsky [42] based his approach on the BFKL evolution equation (2.8). As already men-
tioned, the BFKL equation violates the unitarity of the scattering amplitude at high energies.
Therefore, Balitsky proposed a gauge-invariant operator expansion for high-energy amplitudes
with the relevant operators being gauge factors ordered along light-like lines, i.e. Wilson-line
operators. The BFKL equation can then be seen as an evolution equation for these operators,
with respect to the slope of the line, and its gauge-invariant generalization performed by Balit-
sky turns out to be a nonlinear evolution equation of parton densities.

On the other hand Kovchegov, similarly as the authors of the JIMWLK equation, based
his approach on Mueller’s dipole model [43, 44]. In his work [40], Kovchegov resummed
all multiple-pomeron exchanges in DIS contributing to the structure function F2 of the target
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hadron in the leading logarithmic approximation in the large NC limit, resulting in an evolution
equation for the dipole scattering amplitude N.

The impact-parameter independent Balitsky–Kovchegov equation in its most common form
reads as

∂N(r,Y)
∂Y

=

∫
d2r1K(r, r1, r2) [N(r1,Y) + N(r2,Y) − N(r,Y) − N(r1,Y)N(r2,Y)] (2.13)

where r ≡ |~r| is the transverse size of the dipole and K(r, r1, r2) represents the kernel of the
above stated integro-differential equation.

Figure 2.4: Diagrams for the gluon emission in the color dipole evolution and its large NC limit. [45]

The interpretation of the Balitsky–Kovchegov equation can be made as follows and its
graphical illustration can be seen in Figure 2.4. The parent dipole with transverse size ~r = ~x−~y,
where ~x and ~y denote locations of the ends of the dipole, emits a gluon with position ~z when
evolved in rapidity. The gluon emission is described by the BFKL evolution equation (2.8). In
the large-NC limit the gluon can be approximated as another qq̄ pair and the situation corre-
sponds to the emergence of two new dipoles with transverse sizes ~r1 = ~x − ~z and ~r2 = ~y − ~z.
The probability is described by the first three linear terms in eq. (2.13), where the amplitudes
N(r1,Y) and N(r2,Y) correspond to the two daughter dipoles and the amplitude N(r,Y) corre-
spond to the original dipole. The last non-linear term in (2.13) corresponds to the recombination
of the newly formed qq̄ pair and ensures unitarity of the scattering amplitude in the local trans-
verse configuration space, i.e. N(r,Y) ∈ [0, 1]. The comparison of the solution N of (2.13) with
the situation when the non-linear term is omitted resulting in the unitarity violation is depicted
in Figure 2.5.

Similarly as for the JIMWLK equation, the Balitsky–Kovchegov equation does not have an
analytical solution and has to be solved numerically. Studies of the numerical solution to the
BK equation and its properties according to the choice of the initial conditions and the kernel
of the equation (2.13) were performed e.g. in [15, 45, 46] and some of them will be presented
in the following chapters.
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Figure 2.5: Comparison of the BK equation (2.13) solution (blue lines) to the BK equation solution
without nonlinear term (red lines), which corresponds to the BFKL equation (2.8) solution for N, for two
various transverse sizes r of the dipole. [47]

2.3.2.1 Choice of the kernel

The kernel of the integro-differential equation (2.13) in general causes a change in the width
of the fluctuation into qq̄ pair. It has an interpretation as the probability of gluon emission which
is then weighted by the difference of daugher dipoles and parental dipole scattering probabili-
ties. There are several prescriptions for the kernel of the Balitsky-Kovchegov equation, the ones
which are most important for this work are presented in the following text.

The BFKL kernel for the BK equation derived at leading order in αS

(
s
s0

)
has the form [45]

KBFKL(r, r1, r2) =
αS NC

2π2

r2

r2
1r2

2

. (2.14)

The strong coupling constant αS is kept at a fixed value in this prescription and the kernel is
conformally invariant. There is no divergence for r1, r2 → 0 provided N(r,Y) ∼ ra for r → 0
and a > 0 [45].

The prescription (2.14) can also be modified to include the running coupling by the choice
αS → αS (r2) and therefore the BK equation includes also corrections of higher order. The
strong coupling constant αS [48] is no longer fixed and it depends on the size of the parent
dipole r as

αS ,n f (r
2) =

4π

β0,n f ln
(

4C2

r2Λn f

) (2.15)
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where the constant C is the uncertainty inherent to the Fourier transform from momentum to the
position space and is usually obtained from a fit to data. The parameter Λn f is the QCD scaling
parameter and can also be obtained from a fit or it can be calculated from the experimentally
measured value of αS as it, in general, depends on the number of active flavours n f . The later
approach will be described in Chapter 2.3.2.3. The parameter β0,n f is defined at the one loop
approximation of the running coupling as

β0,n f = 11 −
2
3

n f . (2.16)

A more recent form of the kernel to the running coupling BK (rcBK) equation was derived
by Balitsky [49] and is given by

KBal(r, r1, r2) =
αS (r2)NC

2π2

[
r2

r2
1r2

2

+
1
r2

1

(
αS (r2

1)
αS (r2

2)
− 1

)
+

1
r2

2

(
αS (r2

2)
αS (r2

1)
− 1

)]
(2.17)

The Balitsky prescription is usually preferred since it gives slower evolution speed consistent
with the experimental data of physical observables [11].

2.3.2.2 Initial conditions

The initial condition for the differential equation (2.13) at which the evolution in rapidity Y
starts is needed for its numerical solution. There are again several choices of initial conditions
and its parameters which we briefly introduce in the following text. One of the typical and
frequently used initial form of the scattering amplitude comes from the Golec-Biernat–Wusthoff

model [13] and has the form [15, 45]

N(r,Y = 0) = 1 − exp
− (r2Q2

s0
)γ

4

 . (2.18)

Another widely used initial form of the scattering amplitude comes from the McLerran–
Venugopalan model [50] and has the following form [15, 46]

N(r,Y = 0) = 1 − exp
− (r2Q2

s0
)γ

4
ln

(
1

rΛ
+ e

) . (2.19)

Both initial conditions (2.18) and (2.19) depend on several parameters which can usually be
obtained from a fit to data. The parameter Q2

s0
is the saturation scale for the largest x which

is considered in the computation. The anomalous dimension γ controls the slope of the dipole
amplitude with respect to decreasing dipole size r. Note that e in (2.19) is the Euler’s number
and not the elementary charge as one could guess. The parameter Λ in (2.19) represents an
infrared cutoff of the dipole-nucleon cross section at the level of two gluon exchange or in the
semiclassical limit [15]. In general, it does not have to be identical with the scaling parameter
Λn f which will be introduced in the following chapter. However Λ is often set as Λ3 from (2.21)
or it can be obtained from a fit [15].
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2.3.2.3 Variable number of flavours scheme

As already mentioned in the previous section, the scaling parameter Λn f in general depends
on the number of flavours active in the interaction and can be obtained from the experimentally
measured value of αS using the reciprocal prescription [15].

For n f = 3 only light quarks contribute to the interaction. However fluctuations of the
virtual photon wave function (1.27) and (1.28) into dipoles consisting of a heavy flavour quark-
antiquark pair are also allowed. Such contribution should be accounted for in the calculation of
the running coupling (2.15).

The value of n f is chosen as number of quark flavours lighter than the momentum scale
µ2 = 4C2

m f
associated with the scale r2 at which the running coupling is evaluated. Branches

of the coupling with adjacent n f are matched at the scale corresponding to the quark masses
r2
∗ = 4C2

m2
f
. At one-loop accuracy of (2.15) and (2.16) at which the BK equation with kernel

(2.17) is computed the matching is done according to

αS ,n f−1(r
2
∗) = αS ,n f (r

2
∗). (2.20)

which results in the reciprocal relation for Λn f determination

Λn f−1 =
(
m f

)1−
β0,n f
β0,n f−1

(
Λn f

) β0,n f
β0,n f−1 (2.21)

Values of Λn f are determined from Λ5 which is determined from the experimentally mea-
sured value of αS at the Z0 mass as

Λ5 = MZ exp
(
−

2π
αS (MZ)β5

)
. (2.22)

By the term heavy quarks it is usually meant that charm and beauty quarks contribute, the
top quark dipoles are not considered due to the large mass of t quark. For only light quarks
contribution one has the choice in the approach to obtain the Λ3 parameter value. It can be
either calculated using the mentioned scheme (2.21) or eventually it can be determined from a
fit.

Also it is important to note that αS is artificially frozen at the certain constant value for
dipole sizes larger than the scale at which the running coupling constant reaches the given value
according to

r2
S AT =

4C2

Λ2
n f

exp
(

4π
β0,n f αS ,fix

) (2.23)

where αS ,fix is the value of the frozen running coupling, e.g. αS = 0.7. The value of n f in
(2.23) is taken according to appropriate region of r2 at which the coupling is fixed. This cutoff

is due to the fact that also very large dipoles are included in the calculation of the BK equation.
These dipoles correspond to emission of gluons with arbitrarily small transverse momenta and
therefore the running coupling has to be regulated in the infrared region.



Chapter 3

Dipole cross sections

In this chapter, I study the dipole-proton amplitude under the asumption that the dependence
on impact parameter b and on energy can be factorized. Then I foucus on the energy dependent
part within the BK equation to study how changes in the solution method affect the resulting
amplitude. In particular, I study different kernels, Runge-Kutta methods, and prescriptions to
compute the running coupling αS . In the last part of this chapter I describe a model for the
b-dependent part of the amplitude.

3.1 Factorized dipole-proton amplitude

Let us recall the relation (1.30) for the total cross section of the qq̄ dipole scatterred off the
proton in DIS. Under some assumptions (see Chapter 1.2) we obtained the cross section σqq̄

determined only by the parameter σ0 and the dipole scattering amplitude N(x, r), the impact
parameter b dependence being trivial. However, for the description of the production of vector
meson states one has to include the dependence of the cross section on the proton structure.

The impact parameter b dependence of the dipole cross section is therefore non-trivial in this
case. One of the possible approaches is to include it into the proton profile function Tp(b), which
parametrizes the transverse distribution of the proton. This factorization has already been used
e.g. in [51]. We will make use of this approach in our calculations of the J/ψ photoproduction
cross-sections in Chapter 5. The differential dipole-proton cross section in (1.39) can be then
written as

dσqq̄

d2b
= 2N(x, r, b) = σ0N(x, r)Tp(b) (3.1)

and from the normalization condition ∫
d2bTp(b) = 1 (3.2)

one can obtain the total dipole cross section as defined in Chapter 1.2

σqq̄ =

∫
d2bσ0N(x, r)Tp(b) = σ0N(x, r) (3.3)

where the parameter σ0 is obtained from a fit to data, either as one of the free fit parameters
or it can be estimated using the parameter B, which is fixed by the average squared transverse

35
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B0 [GeV−2] α′ [GeV−2] W0 [GeV]

Q2 . 1 GeV2 4.603 0.164 90

Q2 = 2 − 80 GeV2 3.860 0.019 90

Table 3.1: Parameters to the relation (3.4) for W-dependent value of B. [52].

radius of the proton [15] and under the assumption that the normalisation condition (3.2) does
not hold.

In general the value of B should depend on W and is different for each dipole cross section
parametrisation. This dependence was measured at HERA [52] leading to a formula

B(W) = B0 + 4α′ ln
(

W
W0

)
(3.4)

where B0, W0 and α′ are parameters obtained from a fit to data for various kinematic regions in
dependence on the scale Q2 and they are listed in Tab. 3.1.

3.2 Solution to the Balitsky–Kovchegov equation

In this section we present the approach to the numerical solution of the Balitsky-Kovchegov
evolution equation (2.13) defined in Chapter 2.3.2. The evolution in rapidity is performed by
the Runge-Kutta methods introduced in Appendix A. The specific form of each method with
respect to the eq. (2.13) is stated in Appendix B. Evolution proceeds with the step in rapidity
∆Y = 0.05. All the integrals stated in Appendix B are calculated using the Simpson’s rule
(A.17) defined in Appendix A.

Since the composite Simpson’s rule works on the grid spaced uniformly between the integra-
tion limits we define a logarithmic grid in r spaced uniformly from minimum rmin = 10−7 GeV−1

to maximum rmax = 102 GeV−1 value of r. Note that by r we mean a size of the vector ~r which
determines the transverse size of the dipole. The integral on the right-hand side of equation
(2.13) depends on the size of ~r1 and therefore for every r it has to be evaluated separately for
each value of r1. Because we work with polar coordinates, the value of r2 can be obtained in
each loop over r1 according to

r2 =

√
r2 + r2

1 − 2rr1 cos(ϕ) (3.5)

where ϕ represents the angle between ~r and ~r1. One can thus rewrite the differential d2r1 in
eq. (2.13) as r1dr1dϕ and therefore for every r1 it is neccessary to calculate the integral over
the angle ϕ between the limits [0, 2π]. Or alternatively, due to the fact that cosine is an even
function, one can calculate the definite integral on the interval [0, π] and multiply the result by
a factor 2. And of course, one has to include the Jacobian coming from the logarithmic spacing
of the grid in r.

In the case that the point r2 does not match one of the set grid points at which the initial
condition and every following step in rapidity evolution have been computed, it is necessary to
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Initial condition αS cut-off Q2
s0 [GeV2] γ [−] C [−] σ0 [mb]

a GBW, with light quarks 0.7 0.241 0.971 2.460 32.357

b MV, with light quarks 0.7 0.165 1.135 2.520 32.895

c MV, with heavy quarks 0.7 0.165 1.099 3.813 18.740

Table 3.2: Parameters used for the solution of the Balitsky–Kovchegov equation for different initial
conditions according to fits from [15].

interpolate the value of N(r2,Y) at this point. A Lagrange interpolation of the 1st order, i.e. the
linear interpolation (A.11) defined in Appendix A is used for this purpose.

It is also necessary to point out that for the same values of ~r and ~r1 eq. (3.5) results in r2 = 0.
Such points have to be excluded from the calculation because r2 = 0 results into a divergent
kernel K(r, r1, r2) and therefore the whole integral with the approximate solution given by the
sum (A.17) diverges.

Parameters used for the solution to the BK equation (2.13) according to the choice of initial
condition, flavour contribution and fixed or running coupling are listed in Table 3.2. We set the
infrared cutoff on the running coupling as αS ,cuto f f = 0.7. The parameter Λ in the MV initial
condition (2.19) is set as Λ = 0.241 GeV or we opt to set it to Λn f , the particular choice will be
specified in the following sections.

3.2.1 Choice of the kernel and the initial condition

In the following section we present a study of the Balitsky-Kovchegov evolution equa-
tion solution N(r,Y) in dependence on the choice of particular initial condition and kernel of
the integro-differential equation (2.13). For the purpose of this study we set the Λn f param-
eter in running coupling (2.15) and Λ parameter in MV initial condition to the same value
Λ3 = 0.143 GeV obtained from the variable flavour scheme introduced in Chapter 2.3.2.3. The
implementation of this scheme into the procedure for the solution to BK equation is discussed
in Chapter 3.2.3. All the results were obtained using Classical method A.8, i.e. the Runge-Kutta
method of the fourth order. The appropriate choice of the method is discussed in Chapter 3.2.2.

First we present a comparison of the solution to the BK equation using the BFKL kernel
(2.14) with the coupling constant fixed at αS = 0.7 and the same kernel using the running cou-
pling αS given by the relation (2.15). The solution is obtained from the GBW initial condition
(2.18) with parameters set from Table 3.2) set (a). As can be seen in Figure 3.1 the evolution is
much faster for fixed coupling than for running coupling, as already proven in previous studies
[13, 53, 54]. The slower evolution of the N(r,Y) due to the running coupling is caused by the
decreasing value of αS for smaller dipole sizes as can be seen from Figure 3.6. This solution
therefore provides more appropriate description of the dipole behaviour at large rapidities since
value of αS (r2) decreases.

The comparison of the two kernels - BFKL kernel (2.14) and Balitsky kernel (2.17) - defined
in Chapter 2.3.2 is provided in Figures 3.2 and 3.3, for GBW initial condition with parameters
given by Table 3.2 set (a) and MV initial conditions with parameters given by Table 3.2 set
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Figure 3.1: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target for the
GBW model initial condition (2.18) with the BFKL kernel (2.14) with the fixed coupling αS = 0.7 and
with the running coupling αS (2.15).

(b), respectively. The results for various rapidities indeed confirm the statement that Balitsky
kernal 2.17 provides slower evolution speed which is in better accordance with experimental
data according to [11]. Comparing the two figures we also conclude that this behaviour is
independent on the choice of the initial condition.

In Figure 3.4 we compare the effect which may come from the choice of the GBW or the
MV initial condition with the same parameters from Table 3.2 as in the previous case. As can
be seen, the initial conditions slightly differ which is more or less apparent when the evolution
to small rapidities Y is performed. However at higher rapidities the solution N(r,Y) no longer
depends on the specific choice of initial condition, exhibiting a so-called geometric scaling
phenomenon [55]. After several units of rapidity the shape of the initial condition is "forgotten"
and the solution N(r,Y) propagates independently on the original prescription at Y = 0. This
phenomenon in solution to the BK equation was studied in more detail in [56].

In conclusion we observed that the running coupling prescription is necessary for the appro-
priate description of the behavior of dipole cross section using the Balitsky-Kovchegov equa-
tion. In accordance with previous studies [11, 15, 45, 46] we choose to use the Balitsky pre-
scription for the BK equation kernel and perform the evolution from MV initial condition in
following studies.
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3.2.2 Comparison of different Runge-Kutta methods applied to the BK equation

In this section we present the result of the rapidity evolution of the dipole scattering ampli-
tude N(r,Y) and compare the solutions to the BK equation according to the choice of one of the
Runge-Kutta methods described in Appendix A and specified for the BK equation in Appendix
B. For the purpose of this comparison we have chosen to solve the equation (2.13) using the
McLerran-Venugopalan initial condition (2.19) with parameters set according to Table 3.2 row
(c) and with Λ = 0.241 GeV set as was used in the paper [46]. The running coupling constant
was calculated under the assumption that only light quarks contribute thus we set n f = 3.

As can be seen in Figure 3.5 at small dipole sizes r the system is in dilute regime and
N(r,Y) ∼ r2. With increasing r signs of saturation become apparent and for large dipole sizes r
the scattering amplitude reaches its maximum value N(r,Y) = 1 which results from the unitarity
constraints. With increasing rapidity Y the saturation phenomenom becomes more apparent
even for small dipole sizes.

In the same figure the comparison is given for the solution of BK eq. using Runge-Kutta
methods of the 1st order - Euler method (denoted as RK1), 2nd order - Heun’s method and 4th

order - Classical method. Minor difference between the Euler method and Classical method
can be observed at highest available rapidity Y = 100 to which the evolution was performed.
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Figure 3.2: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target for the
GBW model initial condition (2.18) with the running coupling αS (2.15) for the BFKL kernel (2.14) and
for the Balitsky kernel (2.17).
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Figure 3.3: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target for the
MV model initial condition (2.19) with the running coupling αS (2.15) for the BFKL kernel (2.14) and
for the Balitsky kernel (2.17).

At lower rapidities the difference is almost invisible. Also there is no observable difference
between the Heun’s method and Classical method even at high rapidities. It is therefore apparent
that the choice of specific numerical RK method has no significant influence on the behavior
and resulting values of the solution N(r,Y) to Balitsky-Kovchegov equation. However in the
following I will restrict myself to the Classical method due to its higher precision.

3.2.3 Variable scale scheme

In conclusion of our studies of the dependence of the Balitsky-Kovchegov evolution equa-
tion solution on the specific choice of initial condition, method, parameters and other condi-
tions we present a comparison of the solution dependence on the choice of the number of active
flavours n f . The comparison is made for the choice of parameters from row (c) of Table 3.2 and
the solution to the Balitsky–Kovchegov equation is obtained with the kernel (2.17) and using
the Classical Runge-Kutta method.

The running coupling αS (r2) calculated from (2.15) according to the variable number of
flavours scheme introduced in Chapter 2.3.2.3 can be seen in Figure 3.6. The values of quark
masses, β and Λn f parameters are listed in Table 3.3. The values of Λn f are determined according
to relation (2.21) from the experimentally measured values of the strong coupling constant
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Figure 3.4: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target for the MV
model initial condition (2.19) and the GBW model initial condition (2.18) with the running coupling αS

(2.15) for the Balitsky kernel (2.17).

αS (MZ) = 0.118 at the Z0 mass MZ = 91.187 GeV [57]. The comparison is made with the
running coupling αS (r2) calculated with Λ = 0.241 GeV, set according to [46]. The running
coupling is fixed at the value 0.7 for the saturation value of the dipole size according to (2.23).

Significant influence on the running coupling values can be seen between the choice of Λ

parameter fixed and Λ ≡ Λn f obtained from the variable flavour scheme. The variable scheme
results in the infrared cutoff of αS at higher values of dipole sizes r than the calculation with
fixed value of Λ = 0.241 GeV. The difference between the choice of specific flavour contribu-
tion within the variable flavour scheme is present for dipole sizes r . 1 GeV−1.

The comparison of the number of active flavours choices in the solution of BK equation can
be seen in Figure 3.7. For small rapidities up to Y ≈ 10 there is no significant difference between
the fixed scale with n f = 3 and variable scale according to the number of active flavours.
However with increasing Y the solutions exhibit the influence of the choice of active flavours.
The heavy quarks contribution is prominent at very high rapidities at which it enhances the
solution N(r,Y) for very small dipole sizes.
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Figure 3.5: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target up to
rapidity Y = 100 for RK methods of 1st (B.4), 2nd (B.5) and 4th (B.6) order.
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Figure 3.7: Evolution of the scattering amplitude N(r,Y) of a qq̄ dipole with a hadronic target up to the
rapidity Y = 100 for the fixed scale with n f = 3, Λfix = 0.241 GeV and the variable scale for n f = 3, 4, 5,
Λ3 = 0.143 GeV, Λ4 = 0.119 GeV and Λ5 = 0.087 GeV.

Quark type n f m f [GeV] β Λn f [GeV]

light = u,d,s 3 0.14 9.00 0.143

charm 4 1.4 8.33 0.119

beauty 5 4.18 7.67 0.087

Table 3.3: Parameters in variable flavour scheme for given quark with flavour n f and resulting Λn f

parameters. Values of quarks masses m f are set according to fits performed in [15].
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3.3 Proton profile function

The guon density in the proton can be parametrised using various prescriptions for the proton
profile function Tp(b).

The simplest form of the profile function is a step function

Tp(b) =
1
πB

θ
(√

B − b
)

; σ0 = 2πB (3.6)

Another widely used form of the profile function is a Gaussian distribution

Tp(b) =
1

2πB
exp

(
−

b2

2B

)
; σ0 = 4πB (3.7)

which provides more realistic description of the proton transverse profile than the step function
(3.6).

The proton profile can also be modelled based on the pion exchange model with the idea
that the proton consists of a hard core given by steep Gaussian profile surrounded by a soft
pion cloud given by a broad Gaussian profile, both of them being centered in the middle of the
proton. The prescription reads

Tp(b) =
1

4πBh
exp

(
−

b2

2Bh

)
+

1
4πBs

exp
(
−

b2

2Bs

)
(3.8)

where the values Bh and Bs have to be fitted to data.
The above described shapes of the transverse profile of the proton are compared in Figure

3.8 where the parameter Bh corresponds to the width of the steep Gaussian profile describing
the hard core of the proton and the parameter Bs corresponds to the width of the broad Gaussian
prodile describing the soft cloud. For demonstration purpose the values of B in step function
(3.6) and Gaussian distribution (3.7) of the function Tp(b) are set to B ≡ Bs.

3.3.1 Hot spots model

The proton profile can also be seen as a set of gluon clusters, called hot spots, whose number
and position fluctuate from interaction to interaction. This approach was used to study exclusive
and dissociative production of J/ψ in [58].

The proton profile can be then defined as a sum of Nhs of these regions of high gluonic
density as

Tp(b) =
1

Nhs

Nhs∑
j=1

Tg

(
~b − ~b j

)
; σ0 = 4πB (3.9)

where each hot spot has a Gaussian distribution

Tg(b) =
1

2πBhs
exp

(
−

b2

2Bhs

)
. (3.10)

Each ~b j is obtained from a 2-dimensional gaussian distribution with width B. The parameter
Bhs can be interpreted as an average of the squared transverse radius of hot spots.
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Figure 3.8: Transverse profile of the proton using various models.

p0 p1 p2

0.011 -0.58 300

Table 3.4: Parameters for the x-dependents number of hot spots Nhs according to [58] and [59].

The number of hot spots Nhs can be in general dependent on x which makes the proton
profile (3.9) energy dependent. We use the following prescription for Nhs introduced in [58]:

Nhs = p0xp1
(
1 + p2

√
x
)

(3.11)

where p0, p1 and p2 are the parameters. This prescription should follow the idea that at fixed
scale the number of gluons increases with increasing energy (i.e. with decreasing x).

The implementation of this model is the following:
First one has to choose sufficiently large number Nconf of possible configurations. In each of
them one has to calculate Nhs given by eq. (3.11) and get the integer value of Nhs as its mean
value or from a zero-truncated Poisson distribution. For each hot spot one has to obtain a random
value of ~bi. Then one has to calculate the hot spot profile (3.10) for each Nhs and then obtain
its weighted sum (3.9) in each configuration. At the end sum over all possible configurations is
calculated and weighted by Nconf.

Visualisation of three random configurations of the transverse structure of the proton ob-
tained from the hot spots model are presented in Figures 3.9, 3.10 and 3.11 for three different
choices of Bjorken-x in relation (3.11). As can be seen, various different configurations are
allowed within the model.
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Figure 3.9: Shape of the transverse profile of the proton generated from hot spots model for x = 2 · 10−4

with Nhs = 7.
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Chapter 4

Results

The main objective of this work is to study the photoproduction and electroproduction of
vector mesons, namely, the study of the J/ψ meson have been chosen. In the following sec-
tions I will first present predictions for the structure function F2 in deep inelastic scattering and
compare the predictions with experimentally measured data. Then we will focus on the predic-
tions for cross sections of J/ψ production using various approaches to the dipole cross section
presented in the previous chapter. Again, we will provide the comparison of our results to the
experimentally measured data.

All of the integrals in the following calculations of cross sections have been solved employ-
ing the Simpson’s rule (A.17) defined in Appendix A.

4.1 Structure function F2 in DIS

I computed the predictions for structure function F2 (1.33) in deep inelastic scattering in or-
der to verify our choice of parameters for the description of vector meson production. The
scale Q2 = 2.7 GeV2 has been chosen since it is close to the J/ψ photoproduction scale
Q2 = 2.4 GeV2 according to [58]. The predictions for the scale Q2 = 0.2 GeV2 have also
been computed. The predictions are compared to HERA data combined from H1 and ZEUS
experiments [9].

The comparison for Q2 = 2.7 GeV2 can be seen in Figure 4.1. Parametrizations according
to set (a) and (d) in Table 4.1 will be used in further studies of vector meson production. As
can be seen, these two sets of paramters describe the data reasonably well. For demonstration
purposes I also compared these two predictions and data to the predictions using parameters
given by set (b) and (c) from Table 4.1. These two sets of parameters were extracted from a
fit performed by Golec-Biernat and Wusthoff in original publication [13], which proposed the
parametrization (1.31). The predictions exhibit higher contribution to F2 for small-x however
they agree with the data reasonably well.

In the same plot we also show a prediction for F2 using the solution N(x, r) to the BK equa-
tion in the dipole cross section (1.30). The evolution of the scattering amplitude is evaluated
at rapidity Y = ln

(
x0
x̃

)
with x0 = 0.01 [46] and x̃ defined as (1.26). Although the F2 pre-

diction obtained using BK equation exhibits the same higher contribution to F2 at small-x we
can conclude that this prediction again provides a reasonable description of the data. It is also

49
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in accordance with the other presented models, especially with the prediction from the GBW
parametrization with parameters given by set (c) from Table 4.1, which include the charm quark
contribution to the total DIS cross section (1.25).

n f λGBW x0 σ0 [mb]

a 3 0.210 2.00 · 10−4 22.998

b 3 0.288 3.04 · 10−4 23.030

c 4 0.277 0.41 · 10−4 29.120

d 4 0.287 1.11 · 10−4 23.900

Table 4.1: Parameters for the GBW parametrization (1.31) including only light quarks n f = 3 and also
including charm quark contribution n f = 4. Light and charm quark masses were set as ml = 0.14 GeV
and mc = 1.4 GeV, respectively.
(a) parametrization used in [58] in studies of J/ψ production using hot spots model where σ0 = 4πB
with B = 4.7 GeV−2.
(b)-(c) original GBW parametrization with only light quarks contribution and with charm constribution,
respectively [13].
(d) parameters from a fit performed in [10].
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Figure 4.1: Prediction for the structure function F2 in deep inelastic scattering for Q2 = 2.7 GeV2 using
the GBW parametrization with parameters given in Table 4.1 and using the solution of the BK equation
with running coupling kernel (2.17), the MV initial condition (2.19) and parameters given by set (c) in
Table 3.2.
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These predictions of the structure function F2 were also computed for the scale Q2 =

0.2 GeV2 and compared to HERA data [9]. The comparison can be seen in Figure 4.2. At
this scale, the GBW parametrization with parameters given by set (b) and set (d) from Table 4.1
provide good description of the H1 and ZEUS data. The GBW parametrization with parameters
given by set (c) from Table 4.1 also provides good description of the data, although it slightly
overestimates the data in low x. This is in accordance with the behavior of this set of parameters
in the case of Q2 = 2.7 GeV2 depicted in Figure 4.1. The GBW parametrization with parameters
given by set (a) from Table 4.1 provides a good desctiption of the data for x > 10−5. However,
for lower x it tends to underestimate the data which may be the result of lower λGBW parameter
when compared to other sets of parameters in Table 4.1. The prediction of the structure function
obtained using the solution N(x̃, r) to the BK equation provide very good description of the data
and it is in good accordance with models obtained from GBW parametrization with parameters
given by sets (b) and (d).
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Figure 4.2: Prediction for the structure function F2 in deep inelastic scattering for Q2 = 0.2 GeV2 using
the GBW parametrization with parameters given in Table 4.1 and using the solution of the BK equation
with running coupling kernel (2.17), the MV initial condition (2.19) and parameters given by set (c) in
Table 3.2.
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4.2 Production of J/ψ meson

I present the predictions for J/ψ photoproduction and electroproduction cross sections in
this section. The cross section is obtained using the dipole cross section obtained from the
GBW parametrization (1.31) or from the solution N(x, r) to the Balitsky-Kovchegov equation
(2.13). We will also present the prediction for the J/ψ photoproduction and electroproduction
cross sections using hot-spot model introduced in Chapter 3.3.1.

4.2.1 Wave functions

In the following section we present properties of the J/ψ wave function and its overlap with
the photon wave function which were defined in Chapter 1.3. Parameters for the J/ψ wave
function are given in Table 4.2.

The scalar part (1.44) of the vector meson wave function obtained from the boosted Gaus-
sian model is depicted in Figure 4.3. As can be seen, the function is symmetrical around the
momentum fraction value z = 0.5. This model also gives similar contribution for the J/ψmeson
originating from transversally and longitudinally polarized virtual photons. This is due to the
similar value of NT and NL parameters originating from the normalization condition.

The overlap of the meson-photon wave functions (1.42) and (1.43) integrated over z is de-
picted in Figure 4.4 for a virtuality Q2 = 0.05 GeV2. The transverse part of the overlap de-
noted by the red line clearly gives higher contribution to the cross section than the longitudi-
nal part. Depicted results also suggest that the interaction of the proton with dipole of sizes
r = 0.1 − 1 GeV−1 is preferred at this scale.
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Figure 4.3: Scalar part of the vector meson wave function for transverse (left) and longitudinal (right)
polarization of the γ∗ using boosted Gaussian model for several momenta fractions z.
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ê f m f [GeV] MV M [GeV] NT [−] NL [−] R2 [GeV−2]

2
3 1.4 3.097 0.578 0.575 2.3

Table 4.2: Parameters for the J/ψ vector meson and the photon wave functions overlap and for the scalar
part of the vector meson wave function obtained from the boosted Gaussian model, according to [15].
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Figure 4.4: Transverse and longitudinal parts of the overlap of the photon and vector meson wave func-
tions integrated over the momentum fraction z for a virtuality Q2 = 0.05 GeV2.

4.2.2 Cross sections using the GBW parametrization

In this section I present the predictions for the exclusive J/ψ photoproduction and electro-
production cross sections. The properties of all of the parts of the integral over momentum
fractions Az defined as (1.51) were described in the previous section. The integral over the
dipole sizes Ar defined as (1.50) is determined by the Az and the dipole scattering amplitude
N(x, r).

The later is obtained from the GBW parametrization (1.31) with parameters set from Table
4.1 row (d) according to [10]. This parametrization also determines the σ0 parameter. Alterna-
tively, the parameter σ0 can be obtained from relation σ0 = 4πB using the parameter B.

The b-dependent part Ab, defined as (1.49), of the photon-proton amplitude (1.39) is deter-
mined by the choice of proton profile function Tp(b). Various options are discussed in Chapter
3.3. We have chosen the Gaussian distribution (3.7) since it provides a simple yet rather realistic
parametrization of the proton transverse profile. The integral over b (1.49) can be solved either
numerically in the same manner as other integrals in this study, i.e. using Simpson’s rule (A.17),
or it can be solved analytically. We have decided to obtain the solution of Ab from numerical
calculation.
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The differential cross section obtained from (1.52) using σ0 = 23.9 mb according to Table
4.1 row (d) is presented in Figure 4.5 for various choices of the B parameter and compared
to the data from the H1 experiment at HERA [60]. As can be seen this approach does not
provide satisfactory predictions for the differential cross section, especially for low values of |t|
which form the main contribution to the cross section. Therefore in the Figure 4.6, we provide
predictions for the differential cross section with the same parameters except σ0, which was
obtained using relation σ0 = 4πB for various choices of B. This approach provides much more
accurate description of the HERA data. I chose the value of the B to be B = 4 GeV−2 based
on the results depicted in the Figure 4.6. This choice provides very good description of the
differential cross section, especially for the low |t| values, as can be also seen in Figure 4.7 (full
red line).

In the Figure 4.7 the computed distribution is compared to the one obtained using σ0 =

23.9 mb (full black line). Dashed lines correspond to the cross section obtained without aply-
ing the corrections (1.54) and (1.55) to the scattering amplitude Aγ∗p→V Mp

T,L . These corrections
indeed represent a substantial contribution to the differential cross section and therefore can not
be neglected. Predictions for electroproduction differential cross sections of the J/ψ photopro-
duction and their comparison to the H1 data [60] can be seen in Figures 4.8 and 4.9 for the same
choice of the B = 4 GeV−2 parameter. We also present a comparison of the H1 data [60] and
our predictions of the differential cross section as a function of W in several bins of |t| for elastic
process at Q2 = 0.05 GeV2 and electroproduction at Q2 = 8.9 GeV in Figures 4.10 - 4.13.
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Figure 4.5: The comparison of various choices of the B parameter for the differential cross section of the
J/ψ meson at W = 100 GeV, Q2 = 0.05 GeV2 using the GBW parametrization with σ0 = 23.9 mb.
Parameters were used according to Table 4.1 row (d).
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Figure 4.6: The comparison of various choices of the B parameter for the differential cross section of the
J/ψ meson at W = 100 GeV, Q2 = 0.05 GeV2 using the GBW parametrization with σ0 estimated from
as σ0 = 4πB. Parameters were used according to Table 4.1 row (d).
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Figure 4.7: The differential cross section of the J/ψ meson at W = 100 GeV, Q2 = 0.05 GeV2 and with
B = 4 GeV−2. The GBW parametrization was used with parameters according to Table 4.1 row (d).

The predictions for the total exclusive γ∗p→ J/ψp cross section and the comparison to H1
data [60, 61] are presented in Figures 4.14 - 4.16. We present a comparison of three different
approaches to the σ0 and B parameters in Figure 4.14 where predictions for photoproduction
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Figure 4.8: The differential cross section of the J/ψ meson at W = 100 GeV, for Q2 = 3.2 GeV2 (left)
and Q2 = 7 GeV2 (right) and with B = 4 GeV−2. The GBW parametrization was used with parameters
according to Table 4.1 row (d).

]2|t| [GeV
0 0.2 0.4 0.6 0.8 1 1.2

]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

1−10

1

10

  

H1 data 2005

B, correctedπ = 4
0

σ

B, uncorrectedπ = 4
0

σ

W = 100 GeV

2
 = 22.4 GeV

2
Q

2
B = 4 GeV

Figure 4.9: The differential cross section of the J/ψ meson at W = 100 GeV, Q2 = 22.4 GeV2 and with
B = 4 GeV−2. The GBW parametrization was used with parameters according to Table 4.1 row (d).

at Q2 = 0.05 GeV are shown. The σ0 = 23.9 mb choice truly does not provide such an
accurate description of the data as the choice of σ0 = 4πB with B = 4 GeV−2 in both cases.
The disagreement has already been discussed in the previous text and these results only confirm
our previous conclusion on this issue. In the same graph, we also present a prediction for the
total γ∗p → J/ψp cross section obtained using W-dependent values of B according to relation
(3.4). We conclude that this approach also provides reasonable predictions for the exclusive J/ψ
photoproduction cross section using the GBW parametrization with parameters set according
to Table 4.1 row (d) [10]. This conclusion is supported by the results for the total γ∗p → J/ψp
electroproduction cross sections compared to H1 data at Figures 4.15 and 4.16.
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Figure 4.10: The differential cross section of the J/ψ meson as a function of W for |t| = 0.03 GeV2 (left)
and |t| = 0.1 GeV2 (right), Q2 = 0.05 GeV2 and B = 4 GeV−2. The GBW parametrization was used
with parameters according to Table 4.1 row (d).
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Figure 4.11: The differential cross section of the J/ψ meson as a function of W for |t| = 0.22 GeV2 (left)
and |t| = 0.43 GeV2 (right), Q2 = 0.05 GeV2 and B = 4 GeV−2. The GBW parametrization was used
with parameters according to Table 4.1 row (d).

4.2.3 Cross sections using the BK solution

In this section I present the predictions for the exclusive J/ψ photoproduction and electro-
production cross sections obtained using the dipole scattering amplitude N(x, r) from a solu-
tion to the Balitsky-Kovchegov evolution equation (2.13). The procedure for obtaining the BK
equation solution was introduced in Chapter 3.2. We have used the kernel (2.17) with running
coupling and evolution was performed from the McLerran-Venugopalan initial condition (2.19)
with parameters set according to Table 3.2 row (c). These parameters include the charm quark
contribution to the dipole scattering amplitude [15]. The evolution was performed at rapidity
Y = ln

(
x0
x

)
where x0 represents the Bjorken-x value from which the evolution from MV initial

condition starts. All the other procedures concerning the cross section calculation were per-
mormed in the same manner as described in previous section where the GBW parametrization
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Figure 4.12: The differential cross section of the J/ψ meson as a function of W with B = 4 GeV−2 for
|t| = 0.83 GeV2 with Q2 = 0.05 GeV2 (left) and for |t| = 0.05 GeV2 with Q2 = 8.9 GeV2 (right). The
GBW parametrization was used with parameters according to Table 4.1 row (d).
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Figure 4.13: The differential cross section of the J/ψ meson as a function of W for |t| = 0.19 GeV2 (left)
and |t| = 0.64 GeV2 (right), Q2 = 8.9 GeV2 and B = 4 GeV−2. The GBW parametrization was used
with parameters according to Table 4.1 row (d).

was used.
Similarly to the previous section we present the comparison of the differential cross section

to the H1 data [60, 61] at Q2 = 0.05 GeV2 for various choices of the B parameters in Figure
4.17. Due to the reasons discussed in previous section we no longer use the σ0 parameter
estimated from a fit from [15]. Based on the results presented in Figure 4.17 we have chosen
the value B = 5 GeV for the next calculation. As can be seen from Figures 4.18 and 4.19 this
choice provides a satisfactory agreement with the data. We also present the predictions for the
differential cross section as a function of W for various values of |t| in Figures 4.20 - 4.13. For
the elastic process at Q2 = 0.05 GeV2 our predictions are in a good agreement with the data,
although for higher values of W and |t| the trend of the model underestimates the data. For the
electroproduction at Q2 = 8.9 GeV2 a somehow satisfactory result is obtained at |t| = 0.19 GeV2

in Figure 4.23 (left), however for the other two |t| bins our prediction is rather unsuccessful.
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Figure 4.14: The total cross section of the J/ψ meson at Q2 = 0.05 GeV2 with B = 4 GeV−2 and using
W-dependent B according to (3.4). The GBW parametrization was used with parameters according to
Table 4.1 row (d).
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Figure 4.15: The total cross section of the J/ψ meson with B = 4 GeV−2 and using W-dependent B
according to (3.4) at Q2 = 3.2 GeV2 (left) and at Q2 = 7 GeV2 (right). The GBW parametrization was
used with parameters according to Table 4.1 row (d).

The predictions for the total γ∗p → J/ψp cross section are presented in Figures 4.24, 4.25
and 4.26 and compared to H1 data [60]. In Figure 4.24 we again present the comparison between
the fixed choice of the B parameter at value B = 5 GeV−2 and the W-dependent parameter B
scenario for the elastic process at Q2 = 0.05 GeV2. As can be seen both approaches describe
the data very well at low values of W, however they tend to underestimate the data for the values
of energy W larger than W ≈ 180 GeV. The choice of σ0 = 4πB with B = 5 GeV2 provides
good agreement with the data for electroproduction processes, as can be seen from Figures 4.25
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Figure 4.16: The total cross section of the J/ψ meson at Q2 = 22.4 GeV2 with B = 4 GeV−2 and using
W-dependent B according to (3.4). The GBW parametrization was used with parameters according to
Table 4.1 row (d).

 ]2|t| [ GeV
0 0.2 0.4 0.6 0.8 1 1.2

]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

1

10

210

  
H1 data 2005

2B = 4 GeV
2B = 4.25 GeV

2B = 4.5 GeV
2B = 4.75 GeV

2B = 5 GeV
2B = 5.25 GeV

2B = 5.5 GeV

W = 100 GeV

2
 = 0.05 GeV

2
Q

Figure 4.17: The comparison of various choices of the B parameter for the differential cross section of the
J/ψ meson at W = 100 GeV, Q2 = 0.05 GeV2 using the BK equation (2.13) solution with σ0 estimated
from as σ0 = 4πB. Parameters were used according to Table 3.2 row (c).

and 4.26. The W-dependent approach to the parameter B, however, significantly overestimates
the J/ψ electroproduction cross section at Q2 = 3.2 GeV2. We therefore don’t further employ
this approach for the electroproduction cross-sections depicted in Figure 4.26.
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Figure 4.18: The differential cross section of the J/ψ meson with B = 5 GeV−2 at Q2 = 0.05 GeV2 (left)
and at Q2 = 3.2 GeV2 (right). Solution to the BK equation (2.13) was used with parameters according
to Table 3.2 row (c).
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Figure 4.19: The differential cross section of the J/ψ meson with B = 5 GeV−2 at Q2 = 7 GeV2 (left)
and at Q2 = 22.4 GeV2 (right). Solution to the BK equation (2.13) was used with parameters according
to Table 3.2 row (c).

4.2.4 Exclusive J/ψ cross section with hot-spot model

In this section I provide a prediction for the exclusive J/ψ photoproduction cross section
using hot-spot model to parametrize the transverse structure of the proton. The main properties
of this model are presented in Chapter 3.3.1. The b-dependent part of the amplitude (1.39) is
solved analytically in this case, details are given in Appendix D. The dipole scattering amplitude
N(x, r) is obtained from the GBW parametrization (1.31) with parameters set to row (a) of the
Table 4.1. The parameter B is set as B = 4.7 GeV and σ0 is obtained from σ0 = 4πB as in
previous studies. Average of the squared transverse radius of hot spots is set to Bhs = 0.8 GeV−2

and the parameters for the x-dependent value of number of hot spots given by (3.11) are given
in Table 3.4. All the parameters were set according to paper [58]. In this paper however the
authors use a fixed number of hot spots in each configuration. Since we obtain the number of



62 CHAPTER 4. RESULTS

50 100 150 200 250 300

W [GeV]

210

310]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

  

H1 data 2005

corrected

uncorrected

2
|t| = 0.03 GeV

2
 = 0.05 GeV

2
Q

2
B = 5 GeV

50 100 150 200 250 300

W [GeV]

210

310]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

  

H1 data 2005

corrected

uncorrected

2
|t| = 0.1 GeV

2
 = 0.05 GeV

2
Q

2
B = 5 GeV
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Figure 4.21: The differential cross section of the J/ψ meson as a function of W for |t| = 0.22 GeV2 (left)
and |t| = 0.43 GeV2 (right), Q2 = 0.05 GeV2 and B = 5 GeV−2. Solution to the BK equation (2.13) was
used with parameters according to Table 3.2 row (c).

hot spots Nhs in the given configuration from the zero-trunctated Poisson distribution (see [62])
the slight change of the p2 parameter was applied according to paper [59]. This change however
should not affect the exclusive cross section results.

The predictions for the differential cross section are shown in Figure 4.27. We compare
these predictions to the two sets of data measured at the H1 experiment [61]. Our predictions
provide a satisfactory description of the data for low values of |t|, especially at < W >= 78 GeV
which is the mean value of energy W at which the high energy data set [61] was obtained.



4.2. PRODUCTION OF J/ψ MESON 63

50 100 150 200 250 300

W [GeV]

1

10

210]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

  

H1 data 2005

corrected

uncorrected

2
|t| = 0.83 GeV

2
 = 0.05 GeV

2
Q

2
B = 5 GeV

50 100 150 200 250 300

W [GeV]

10

210

]
2

 [
n

b
 G

e
V

d
|t
|

σ
d

  

H1 data 2005

corrected

uncorrected

2
|t| = 0.05 GeV

2
 = 8.9 GeV

2
Q

2
B = 5 GeV

Figure 4.22: The differential cross section of the J/ψ meson as a function of W with B = 5 GeV−2 for
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Solution to the BK equation (2.13) was used with parameters according to Table 3.2 row (c).
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Figure 4.23: The differential cross section of the J/ψ meson as a function of W for |t| = 0.19 GeV2 (left)
and |t| = 0.64 GeV2 (right), Q2 = 8.9 GeV2 and B = 5 GeV−2. Solution to the BK equation (2.13) was
used with parameters according to Table 3.2 row (c).

The prediction for the energy dependence of the total exclusive J/ψ photoproduction cross
section using hot-spot model is depicted in Figure 4.28 and compared to both the high energy
and low energy H1 datasets [61], the H1 data [60] measured at < Q2 = 0.05 GeV2 and also to
the data obtained by the ALICE experiment in p − Pb collisions at

√
s = 5.02 TeV at the LHC

[63]. In the p − Pb ultra-peripheral collisions the lead nucleus is taken as a virtual photon flux
source since it is more probable for the lead ion to radiate the virtual photon and also the cross
section of the coherent virtual photon interaction is much larger for the proton than for the lead
nucleus. We conclude that the model describes reasonably well the data from both experiments.

I also present the prediction for the energy dependence of the total exclusive J/ψ electropro-
duction cross section with the hot-spot model. The comparison of results and H1 data [60] is
depicted in Figures 4.29, 4.30 and 4.31. The predictions for Q2 = 3.2 GeV2 and Q2 = 7 GeV2

provide satisfactory description of the provided data. The prediction of the model for electro-
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Figure 4.24: The total cross section of the J/ψ meson at Q2 = 0.05 GeV2 with B = 5 GeV−2 and using
the W-dependent parameter B according to (3.4). Solution to the BK equation (2.13) was used with
parameters according to Table 3.2 row (c).
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Figure 4.25: The total cross section of the J/ψ meson at Q2 = 3.2 GeV2 with B = 5 GeV−2 and using
the W-dependent parameter B according to (3.4). Solution to the BK equation (2.13) was used with
parameters according to Table 3.2 row (c).

production cross section at Q2 = 22.4 GeV however uderestimates the data but still is within
the uncertainties of the data. The conslusion is therefore that parametrization of the transverse
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equation (2.13) was used with parameters according to Table 3.2 row (c).

]2|t| [GeV
0 0.2 0.4 0.6 0.8 1 1.2

]
2

 [
n
b
 G

e
V

d
|t
|

σ
d

1

10

210

310

  

H1 data, <W> = 78 GeV

H1 data, <W> = 55 GeV

Model, <W> = 78 GeV

Model, <W> = 55 GeV

2
 = 0.1 GeV

2
Q

2
B = 4.7 GeV

Figure 4.27: The differential cross section of the exclusive J/ψ photoproduction at Q2 = 0.1 GeV2 with
B = 4.7 GeV−2 using hot-spot model with parameters from Table 3.4. The GBW parametrization was
used with parameters according to Table 4.1 row (a).

structure of the proton provided by the hot-spot model gives satisfactory results for both the
exclusive photoproduction and electroproduction cross sections.
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Figure 4.28: The total cross section of the exclusive J/ψ photoproduction at Q2 = 0.1 GeV2 with
B = 4.7 GeV−2 using hot-spot model with parameters from Table 3.4. The GBW parametrization was
used with parameters according to Table 4.1 row (a).
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Figure 4.29: The total cross section of the exclusive J/ψ electroproduction at Q2 = 3.2 GeV2 with
B = 4.7 GeV−2 using hot-spot model with parameters from Table 3.4. The GBW parametrization was
used with parameters according to Table 4.1 row (a).
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Figure 4.30: The total cross section of the exclusive J/ψ electroproduction at Q2 = 7 GeV2 with B =

4.7 GeV−2 using hot-spot model with parameters from Table 3.4. The GBW parametrization was used
with parameters according to Table 4.1 row (a).
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Figure 4.31: The total cross section of the exclusive J/ψ electroproduction at Q2 = 22.4 GeV2 with
B = 4.7 GeV−2 using hot-spot model with parameters from Table 3.4. The GBW parametrization was
used with parameters according to Table 4.1 row (a).
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Conclusion

The exclusive vector meson production can be used as a probe of gluon structure of hadrons.
There are several approaches and models which describe the individual parts of the γ∗p→ V Mp
scattering amplitude. The photon wave function can be obtained from Quantum electrodynam-
ics and its properties are well known. However the vector meson wave function has to be
modelled in order to obtain its overlap with the virtual photon wave function, for example by
the the boosted Gaussian model used in this work. Another non-trivial task is to obtain the
amplitude of the dipole-proton scattering which in general depends on the impact parameter
b. One of the possible approaches is to express the b-dependence of the dipole-proton cross
section by the function Tp(b) which parametrizes the transverse structure of the proton. The
appropriate choice of Tp(b) again represents a challenge. I have chosen to examine two choices
- the parametrization of the transverse proton profile by the simple Gaussian distribution (3.7)
and the parametrization using the hot spots model 3.3.1. This model allows us to consider a pro-
ton as a set of clusters with high gluonic density (called hot spots). The proton profile is then
estimated from various random configurations of such clusters. The rest of the dipole-proton is
then determined by the b-independent dipole scattering amplitude N(x, r) and the normalisation
factor σ0. The later is determined by a fit to data. The dipole scattering amplitude N(x, r) can
be obtained from the simple parametrization (1.31) from model of Golec-Biernat and Wusthoff

or it can be obtained as the solution to the evolution equation of parton densities such as the
Balitsky–Kovchegov equation (2.13).

The Balitsky–Kovchegov evolution equation was numerically solved using the Runge-Kutta
methods of the first, the second and the fourth order, Simpson’s rule and the linear interpola-
tion. Several input choices were investigated. I have solved the Balitsky–Kovchegov equation
using the LO kernel (2.14) with either fixed and running strong coupling constant αS using
the GBW initial condition (2.18). From the comparison of the resultant N(r,Y) evolution the
conclusion is that the choice of a fixed coupling does not provide satisfactory results since the
evolution proceeds too fast. The running coupling, even at the one loop approximation of αS ,
therefore provides more sufficient evolution of the dipole scattering amplitude N(r,Y). I have
also compared the evolution of N(r,Y) using the LO kernel (also called the BFKL kernel within
this work) given by eq. (2.14) and the NLO kernel (also called the Balitsky kernel) given by
eq. (2.17), both with the running coupling and for both initial conditions - GBW (2.18) and
MV (2.19). The conclusion is that the the NLO kernel provides much more sufficient N(r,Y)
evolution which is slower and the result is consistent with the data as will be discussed later.
The comparison of the two choices of the initial conditions for the NLO kernel shows only
small differences of the dipole scattering amplitude N(r,Y) at small rapidities. These differ-
ences are gradually disappearing with the increasing rapidity, exhibiting the geometric scaling
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phenomenon. The dipole can be in general formed by the qq̄ pair of any flavours which al-
lows the heavy charm and beauty quarks to contribute to the dipole scattering amplitude. The
contribution of the top quark is not accounted as its lifetime is shorter then the mean lifetime
of the dipole existence. Heavy quark contribution influences the running coupling values and
therefore via the kernel it affects the resulting evolution in Y of the dipole scattering amplitude.
Since the transverse distance of the qq̄ is smaller for the quarks of heavier flavours, the scatter-
ing amplitude is therefore larger than that of the dipole formed by only light quarks at the same
rapidity Y .

The solution to the Balistky–Kovchegov equation was used for the dipole scattering ampli-
tude estimation within the deep inelastic scattering. We have obtained the prediction for the
structure function F2 and compared it to the predictions obtained from the GBW parametriza-
tion of the dipole-proton cross section with various choices of the prescription (1.31) parame-
ters. I have also compared all the mentioned predictions of the F2 structure function with the
HERA data [9] combined from H1 and ZEUS experiments. The conclusion is that the predic-
tions are in good agreement with the data. In the following parts of this work I have therefore
focused on the vector meson production, which can also be viewed in the color dipole frame-
work.

First I have chosen to estimate the exclusive J/ψ cross section using a simple and direct
GBW prescription for the dipole scattering amplitude N(x, r). The comparison of the differential
and the total J/ψ exclusive photoproduction and electroproduction cross section with the data
yields very satisfactory results for such a simple model. The best agreement was obtained using
a B-dependent factorσ0 = 4πB with the choice of the Gaussian distribution width B = 4 GeV−2.
I have also employed the energy-dependent prescription (3.4) for the values of the B parameter.
This concrete prescription was obtained from fits to the H1 experiment data [52]. As a result
of the presented calculations suggest, this prescription provide very good description of the
experimental data in both photoproduction and electroproduction for the GBW parametrization.
Such an agreement is truly remarkable as the employed model is rather simple, yet it depends
on the number of various parameters estimated from a fit to the relevant data.

I have also performed all of the above described calculations of the exclusive J/ψ photo-
production cross sections using the previously obtained dipole scattering amplitude N(x, r) as a
solution of the running coupling Balitsky-Kovchegov evolution equation (2.13) with the NLO
Balitsky kernel (2.17), McLerran-Venugopalan model inspired initial condition (2.19) and al-
lowing the charm quark contribution within the variable scale scheme 2.3.2.3. The slight change
of the Gaussian width B = 5 GeV−2 parameter had to be make in order to compensate the re-
sulting difference between the two approaches to the dipole scattering amplitude N(x, r). The
differential J/ψ cross section data [60] are described reasonably well with these predictions.
However the trend of the differential cross section energy dependence differs from the mea-
sured data at high values of W and also for electroproduction at Q2 = 8.9 GeV. The total
photoproduction γ∗p → J/ψp cross section at Q2 = 0.05 GeV2 with the σ0 = 4πB parame-
ter gives reasonably good results when compared to the data for both fixed B = 5 GeV−2 and
energy dependent value of B according to (3.4). However the W-dependent value of B seems
to be an inappropriate choice for the electroproduction at Q2 = 3.2 GeV, Q2 = 7.0 GeV and
Q2 = 22.4 GeV.

The prediction of the exclusive J/ψ photoproduction cross section were also obtained with
the hot spots model as the way to parametrize the transverse structure of the proton. Both



4.2. PRODUCTION OF J/ψ MESON 71

the differential and the total cross section calculations exhibit a good agreement with the two
sets of the HERA data measured at H1 experiment. The total cross section is also compared
to the data from ultra-peripheral collisions of p − Pb at ALICE experiment. Our predictions
give very satisfactory predictions to the both H1 and ALICE data. The electroproduction cross
sections were also obtained using this approach to the transverse proton profile parametrization.
It provides good agreement with the combined H1 and ZEUS data, especially at Q2 = 3.2 GeV2

and Q2 = 7 GeV2. The results for exclusive J/ψ electroproduction are new and therefore
their successful description of the HERA data is very promising for future studies of vector
meson production using the hot-spot model. The interesting phenomenon for further work is
the dissociative J/ψ cross section which represents a significant contribution to the total J/ψ
cross section. However the increasing trend of the cross section with increasing energy W,
observed in the exclusive case, should exhibit a turnover at the value W ≈ 500 causing the
disappearance of the dissociative contribution to the total J/ψ cross section at high energies as
have been predicted in [58].

The above concluded three sets of results for exclusive J/ψ photoproduction and electro-
production indicate that the approach to the impact-parameter dependence of the dipole cross
section presented in Chapter 3 provides very good description of the experimentally measured
data. It is therefore highly desirable to examine its applicability to other vector mesons or to the
interaction of nuclei, as have recently been presented in papers [59, 64].

All of the presented approaches rely on a set of various parameters which determine the be-
havior of the given model. These parameters were mostly obtained from various fits to HERA
data, see e.g. [10, 15]. The above presented models are therefore strongly dependent on the
given choice of the parameters and inaccuracy of the result correlates with the appropriate
choice of parameters.

To conclude, in this thesis we have explained the concept of color dipole approach to the
deep inelastic scattering 1.2 and to the vector meson production 1.3. We have also introduced
the basic concepts of evolution equations of parton densities 2 and the concept of parton satu-
ration 2.3. We have numerically solved the Balitsky-Kovchegov evolution equation (2.13) and
examined the dependence of the solution N(r,Y) on the choice of the kernel prescription, initial
condition, order of the numerical Runge-Kutta method and the choice of heavy quarks contri-
bution. A prediction of the structure function F2 in deep inelastic scattering was obtained with
the use of GBW parametrization (1.31) and also with the use of rcBK equation given by (2.13)
with the kernel 2.17 and the initial condition (2.19). These predictions were compared with
the data from HERA experiments 4.1. We have also estimated the predictions of the exclusive
J/ψ vector meson production and compared them to the data from H1 and ALICE experiments.
The predictions were obtained using a GBW parametrization and also using the solution to
the rcBK equation with the pressumption of the parametrization the transverse structure of the
proton with the Gaussian distribution. We have also obtained the prediction for the exclusive
J/ψ production by modelling the proton transverse structure with the so-called hot-spot model.
Therefore all the tasks of this master’s thesis assigment were successfully fulfilled.
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Appendix A

Numerical methods

A.1 Runge-Kutta methods

By the term Runge-Kutta (RK) methods we usually denote several numerical methods which
we use to approximate the solution of differential equations of the first order with an initial
condition, the Cauchy problem

y′(x) = f (x, y(x)), y(x0) = y0. (A.1)

According to [65] let I = (x0, x0 + T ) be the integration interval with T ∈ (0,∞) fixed and
for h > 0 let xn = x0 + nh with n = 0, 1, ...Nh. Then points xn are the discretization nodes which
divide I into the set of subintervals In = [xn, xn+1]. Integer Nh is the maximum integer which
fulfills the condition xNh ≤ x0 + T . Let us denote ηn the approximation at point xn of the exact
solution y(xn) ≡ yn, the value f (xn, ηn) is denoted as fn and we obviously set η0 ≡ y0.

These methods are also called one step (or single-point) as the method uses the approxima-
tion ηn of the eq. (A.1) solution yn to advance the approximation to the next value ηn+1. In the
case that ηn+1 depends only on ηn we call the method explicit. Otherwise, it is called an implicit
method. In the following text we will focus on explicit methods only as we do not make use of
the any of implicit methods.

A Runge-Kutta method can be written in its most general form as [65]

ηn+1 = ηn + hΦ(xn, ηn, h; f ) (A.2)

where Φ is the increment function which depends on the step size h as follows:

Φ(xn, ηn, h; f ) =

s∑
i=1

biKi, Ki = f

xn + cih, ηn + h
s∑

j=1

ai jK j

 . (A.3)

Coefficients ai j, bi and ci fully describe an Runge-Kutta method and the following condition
holds

ci =

s∑
j=1

ai j. (A.4)

If the coefficients ai j are equal to zero for i ≤ j the method is explicit and hence each Ki can
be obtained using i− 1 coefficients K1, ...Ki−1 that have already been determined in the previous
step. The parameter s denotes the number of stages of the method which is for s ≤ 4 equal to
the order of the method. In the following text we will introduce three most common methods.
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Euler method

Forward Euler method represents one of the Runge-Kutta method of the first order. It can
be derived by the simple observation that f (x, y(x)) in (A.1) is the slope of y(x). Therefore, for
h , 0 it approximately stands [66]

y(x + h) = y(x) + h f (x, y(x)). (A.5)

Starting with an initial condition y0 ≡ u0 defined in (A.1) and using a step length h one
thus arrives to approximations ηn to the values yn of the exact solution at equidistant points
xn = x0 + nh given by the following relationship

ηn+1 = ηn + h f (xn, ηn), xn+1 = xn + h. (A.6)

For the Euler method the function Φ(xn, ηn, h; f ) in the general relation (A.2) is therefore
simply equal to f (xn, y(xn)) in the limit of h→ 0. For the ilustration, the graphical interpretation
of the method can be seen in Figure 4.32.

Figure 4.32: Graphical interpretation of the Euler method. [66]

Heun’s method

Heun’s method represent a second order Runge-Kutta method. Indeed, if we take s = 2 in
general relation (A.2) we obtain for the step size h , 0 the approximation of the exact solution
yn at (n + 1)-th step as [65]

ηn+1 = yn + hΦ(xn, yn, h; f ) = yn + h(b1K1 + b2K2)

where
K1 = f (xn, y(xn)) ≡ fn, and K2 = f (xn + hc2, yn + hc2K1).
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Expanding K2 to the 2nd order of the Taylor series in the neighbourhood of point xn we get
for the approximation at (n + 1)-th step

ηn+1 = yn + h fn(b1 + b2) + h2b2c2( fn,x + fn fn,y) + O(h3)

where by fn,x and fn,y we denote the partial derivative of fn evaluated at (xn, yn). Comparing the
previous expansion to the same expansion performed on the exact solution

yn+1 = yn + hy′n +
h2

2
y′′n + O(h3) = yn + h fn +

h2

2
( fn,x + fn fn,y) + O(h3)

we obtain that the coefficients of the Runge-Kutta method have to satisfy

b1 + b2 = 1 and b2c2 =
1
2
.

There exist two solutions to the above relations. The RK coefficients are in case of Heun’s
method as follows

b1 =
1
2
, b2 =

1
2

and c2 = 1

and therefore the relation of the approximation at (n + 1)-th steps for the Heun’s method stands

ηn+1 = ηn +
h
2

[
f (xn, ηn) + f (xn + h, ηn + h f (xn, ηn))

]
. (A.7)

Classical method

Using the equivalent method as in previous part where we derived the relation for Heun’s
method we can obtain the relation for approximations in the case of higher-stage methods, ac-
counting for equivalent number of terms in the Taylor’s expansion and therefore acquire higher-
order Runge-Kutta methods.

The RK method of the 4th order, also called the classical method can be obtained expanding
the Taylor’s series of the approximation and the exact solution to the fourth order. Due to its
demanding nature will not perform the whole procedure here and we will only introduce the
definition of the classical method.

For the RK method of fourth order the increment function Φ(xn, ηn, h; f ) stands as

Φ(xn, ηn, h; f ) =
1
6

(K1 + 2K2 + 2K3 + K4)

where
K1 = f (xn, y(xn))

K2 = f
(
xn +

h
2
, ηn +

h
2

K1

)
K3 = f

(
xn +

h
2
, ηn +

h
2

K2

)
K4 = f (xn+1, ηn + hK3)

and the classical method is therefore defined as [65]

ηn+1 = ηn +
h
6

(K1 + 2K2 + 2K3 + K4). (A.8)
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A.2 Lagrange interpolation

Interpolation methods represent a tool for the approximation of given functions at certain
point x, assuming we know the values of the function at given set of points [x0, ...xn] for i =

0, 1, ..., n. One of the cases of the set of interpolation techniques is the polynomial interpolation
in which we obtain the desired value of the function using a polynom

P(x) ≡ a0 + a1x + a2x2 + ... + anxn

of the degree n, which depends on n + 1 parameters a0, ..., an.
Let us first introduce the theoretical basis of the polynomial interpolation methods, the gen-

eral Lagrange interpolation formula [66]

P(x) ≡
n∑

i=0

fiLi(x) ≡
n∑

i=0

fi

n∏
k=0
k,i

x − xk

xi − xk
, (A.9)

where P(x) is a polynomial of the degree 6 n fulfilling P(xi) = fi for i = 0, ..., n and Li(x) are
the Lagrange polynomials of the degree i which satisfy

Li(xk) = δik =

1 if i = k
0 if i , k

and thus we define [66] them as

Li(x) B
(x − x0)...(x − xi−1)(x − xi+1)...(x − xn)

(xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xn)
.

For n = 1 the Lagrange polynomials are

L0(x) =
x − x1

x0 − x1
and L1(x) =

x − x0

x1 − x0
.

Using these we get a Lagrange interpolation of the 1st order, also called a linear interpolation

f (x) ≡ P(x) =
f1(x − x0) − f0(x − x1)

x1 − x0
, fi = f (xi), i = 0, 1. (A.10)

The above derived formula can be also rewritten as

f (x) = f (x0) +
f (x1) − f (x0)

x1 − x0
(x − x0) (A.11)

of which we make use later on.
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A.3 Simpson’s rule

Simpson’s rule is a numerical method for evaluation of the definite integral of a function if
the values of the integrand over the integration interval are known. Simpson’s rule is the special
case of the so-called Newton-Cotes integration formulas. They can be obtained if we replace
the integrated function f (x) by an interpolating polynomial Pn(x) of the order n > 0 [66]. Then∫ b

a
f (x)dx ≈

∫ b

a
Pn(x)dx. (A.12)

Let us consider a uniform partition of the closed interval [a, b] given by

xi = a + ih, i = 0, ..., n,

where h B b−a
n is the step length.

Using a Lagrange interpolation formula (A.9)

Pn(x) ≡
n∑

i=0

fiLi(x), fi B f (xi) = Pn(xi) and Li(x) =

n∏
k=0
k,i

x − xk

xi − xk
. (A.13)

Let us now introduce a new variable t which fulfills x = a + ht. Then Li(x) can be expressed as

Li(x) = φi(t) B
n∏

k=0
k,i

t − k
i − k

. (A.14)

Integrating the interpolating polynomial we obtain∫ b

a
Pn(x) =

n∑
i=0

fi

∫ b

a
Li(x)dx = h

n∑
i=0

fi

∫ n

0
φi(t)dt = h

n∑
i=0

fiαi.

If we conclude all the above derived relationships, the Newton-Cotes integration formulas which
give an approximate value of the definite integral from the function f (x) over the finite interval
[a, b] can be written as∫ b

a
f (x)dx ≈

∫ b

a
Pn(x)dx = h

n∑
i=0

fiαi, fi = f (a + ih), h B
b − a

n
. (A.15)

The coefficients αi B
n∫

0
φi(t)dt do not depend od the integrand function f (x) nor the limits a, b.

They depend solely on the degree n of the interpolating polynom.
For n = 2 the corresponding coefficients are α0 = 1

3 , α1 = 4
3 and α2 = 1

3 . Using these
coefficients we obtain the following rule∫ b

a
f (x)dx ≈

∫ b

a
P2(x)dx =

h
3

[
f0 + 4 f1 + f2

]
(A.16)

which is called the Simpson’s 1/3 rule [66].
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Usually, Newton-Cotes formulas are not applied directly to the entire interval [a, b]. They
are rather applied in each of the set of N subintervals into which the interval of integration [a, b]
is equidistantly divided. The total approximate value of the integral is then given as a sum of
the approximations calculated in each of the intervals resulting in the so-called composite rule.

If N is an even number, the Simpson’s rule (A.16) can be applied to each of subintervals
[x2i, x2i+1, x2i+2] as described above and summing all of these N

2 subintegrals gives the composite
Simpson’s rule

∫ b

a
f (x)dx ≈

h
3

 f (a) + 2

N
2 −1∑
i=1

f (x2i) + 4

N
2∑

i=1

f (x2i−1) + f (b)

 . (A.17)

The error E( f ) of the (A.17) is given as a sum of all N
2 individual errors to the Simpson’s

rule (A.16) applied on each of subintervals [66]

E( f ) =

∫ b

a
Pn(x)dx −

∫ b

a
f (x)dx =

h5

90

N
2 −1∑
i=0

f (4)(ξi) =
b − a
180

h4 f (4)(ξ), ξ ∈ (a, b). (A.18)

A.4 Special functions

Gamma function

The gamma function is defined [67] as

Γ(z) =

∫ ∞

0
tz−1e−tdt (A.19)

where z can in general be any complex number. It satisfies the recursive relation

Γ(z + 1) = zΓ(z).

Additionally, for complex numbers z, for which holds Re(z) > 1, the reflection formula for
Re(z) < 1 can be expressed as

Γ(z)Γ(z − 1) =
π

sin(πz)
.

For the z being an integer, gamma function can be related to factorial of n using

n! = Γ(n + 1).

Bessel functions of the First and the Second Kind

The Bessel functions of the first kind Jν(x) are defined as the solutions to the Bessel differ-
ential equation

x2 d2y

dx2 + x
dy
dx

+ (x2 − ν2)y = 0 (A.20)
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and can be expressed [67] by the series representation

Jν(x) =

( x
2

)ν ∞∑
k=0

(
− x2

4

)k

k!Γ(ν + k + 1)
. (A.21)

with ν being an integer.
The Bessel functions of the second kind Yν(x) (also called the Neumann functions Nν(x))

are the solutions to the Bessel differential equation (A.20) which is singular at its origin. It can
be expressed for non-integer ν using the Bessel functions of the first kind (A.21) by the series
representation

Nν(x) = Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
. (A.22)

Modified Bessel functions of the Second Kind

Modified Bessel functions of the second kind Kν(x) are (together with the modified Bessel
functions of the first kind Iν(x)) one of the solutions to the modified Bessel differential equation
[67]

x2 d2y

dx2 + x
dy
dx
− (x2 + ν2)y = 0. (A.23)

They can be expressed by the relationship

Kν =
π

2
iν+1 [Jν(ix) + iNν(ix)] (A.24)

for ν > 0 and x > 0, using the above defined Bessel functions (A.21) and (A.22). As can be
seen, modified Bessel functions correspond to the usual Bessel functions evaluated for purely
imaginary arguments.
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Appendix B

Numerical solution to the BK equation
using Runge-Kutta methods

For the Balitsky-Kovchegov equation (2.13) we define following expressions [46]:

I0 ≡

∫
d2r1K(r, r1, r2) [N(r1,Y) + N(r2,Y) − N(r,Y) − N(r1,Y)N(r2,Y)] (B.1)

I1 ≡

∫
d2r1K(r, r1, r2) [1 − N(r1,Y) − N(r2,Y)] (B.2)

I2 ≡

∫
d2r1K(r, r1, r2). (B.3)

Eq. (2.13) is then solved numerically using Runge-Kutta methods presented in Chapter 2
over a grid in r. For the RK method of the 1st order, i.e. the forward Euler method, solution
reads

N(r,Y + ∆Y) = N(r,Y) + ∆YI0, (B.4)

for the RK method of the 2nd order, i.e. Heun’s method, solution reads

N(r,Y + ∆Y) = N(r,Y) + ∆YI0 +
(∆Y)2

2
I0I1 −

(∆Y)3

2
I2
0 I2 (B.5)

and for the RK method of the 4th order, i.e. the Classical method, solution reads

N(r,Y + ∆Y) = N(r,Y) +
∆Y
6

(I0 + 2K2 + 2K3 + K4) (B.6)

where

K2 ≡ I0 +
∆Y
2

I0I1 −
(∆Y)2

4
I2
0 I2

K3 ≡ I0 +
∆Y
2

K2I1 −
(∆Y)2

4
K2

2 I2

K4 ≡ I0 + ∆YK3I1 + (∆Y)2K2
3 I2.
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Appendix C

Calculation of the derivatives of the scalar part of
vector meson wave function

For the 1S vector meson states such as J/ψ the transverse and longitudinal scalar parts of
the vector meson wave function using the boosted Gaussian model is given by the following
description

φT,L(r, z) = NT,Lz(1 − z) exp

− m2
f R

2

8z(1 − z)
−

2z(1 − z)r2

R2 +
m2

f R
2

2

 . (C.1)

The first derivative according to r is then calculated as

∂r
(
φT,L(r, z)

)
= NT,Lz(1 − z) exp

− m2
f R

2

8z(1 − z)
−

2z(1 − z)r2

R2 +
m2

f R
2

2

 · (−4z(1 − z)r
R2

)
resulting in

∂r
(
φT,L(r, z)

)
= −

4z(1 − z)r
R2 φT,L(r, z). (C.2)

The second derivative to the φT,L(r, z) according to r is calculated as

∂2
r
(
φT,L(r, z)

)
= −

4z(1 − z)
R2 φT,L(r, z) −

4z(1 − z)r
R2 ∂r

(
φT,L(r, z)

)
=

= −
4z(1 − z)

R2 φT,L(r, z) +

(
−

4z(1 − z)r
R2

)2

φT,L(r, z) = −
4z(1 − z)r

R2

[
1
r
−

4z(1 − z)r
R2

]
φT,L(r, z)

resulting in

∂2
r
(
φT,L(r, z)

)
=

[
1
r
−

4z(1 − z)r
R2

]
∂r

(
φT,L(r, z)

)
. (C.3)

And finally the Laplacian of the φT,L(r, z) in polar coordinates is given as

∇2
r
(
φT,L(r, z)

)
= ∂2

r
(
φT,L(r, z)

)
+

1
r
∂r

(
φT,L(r, z)

)
=

[
1
r
−

4z(1 − z)r
R2

]
∂r

(
φT,L(r, z)

)
+

1
r
∂r

(
φT,L(r, z)

)
resulting in

∇2
r
(
φT,L(r, z)

)
=

[
2
r
−

4z(1 − z)r
R2

]
∂r

(
φT,L(r, z)

)
. (C.4)
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Appendix D

Analytical solution to the integral over the impact
parameter for the hot spots model

The scattering amplitude to the γ∗p→ V Mp process stands as

A
γ∗p→V Mp
T,L = i

∫
d2r

1∫
0

dz
4π

∫
d2b|Ψ∗V MΨγ∗ |T,L exp

[
−i

(
~b − (1 − z)~r

)
~∆
] dσqq̄

d2b
(D.1)

with the dipole cross section expressed as

dσqq̄

d2b
= σ0N(x, r)Tp(b) (D.2)

where the profile function Tp(b) in the hot spots model has the form

Tp(b) =
1

2πBhsNhs

Nhs∑
j=1

exp

− (~b − ~bi)2

2Bhs

 . (D.3)

We can thus rewrite the amplitudeAγ∗p→V Mp
T,L as

A
γ∗p→V Mp
T,L = i

∫
d2r

1∫
0

dz
4π
|Ψ∗V MΨγ∗ |T,Lei(1−z)~r~∆N(x, r)

σ0

2πBhsNhs

∫
d2be−i~b~∆

Nhs∑
j=1

e−
(~b−~b j)

2

2Bhs ≡ iσ0ArAb

where the part Ab can be, under the presumption that one can exchange the sum and the integral,
solved in the following way:

Ab =
1

2πBhsNhs

∫
d2be−i~b~∆

Nhs∑
j=1

e−
(~b−~b j)

2

2Bhs =
1

2πBhsNhs

Nhs∑
j=1

∫
d2be−i~b~∆e−

(~b−~b j)
2

2Bhs

Performing the substitution ~c = ~b − ~bi we obtain:

Ab =
1

2πBhsNhs

Nhs∑
j=1

e−i~b j~∆

∫
d2ce−i~c~∆e−

c2
2Bhs =

1
2πBhsNhs

Nhs∑
j=1

e−i~b j~∆

∫
d2ce−

1
2Bhs

(
c2+2i~cBhs~∆

)
=

=
1

2πBhsNhs

Nhs∑
j=1

e−i~b j~∆

∫
d2ce−

1
2Bhs

(
(~c+iBhs~∆)2+B2

hs∆
2
)

Next we shall substitute ~f = ~c + iBhs~∆ resulting in:

Ab =
1

2πBhsNhs

Nhs∑
j=1

e−i~b j~∆

∫
d2 f e−

1
2Bhs

( f 2+B2
hs∆

2) =
1

2πBhsNhs

Nhs∑
j=1

e−i~b j~∆e−
Bhs∆2

2

+∞∫
0

2π f d f e−
f 2

2Bhs
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and finally we shall substitute g = −
f 2

2Bhs
with differentials obtained from the substitution as

f d f = −Bhsdg resulting in

Ab =
2π

2πBhsNhs

Nhs∑
j=1

e−i~b j~∆e−
Bhs∆2

2

−∞∫
0

(−Bhs)dgeg =
1

Nhs

Nhs∑
j=1

e−i~b j~∆e−
Bhs∆2

2

0∫
−∞

dgeg

Integrating over g we obtain for the b-dependent part of the γ∗p→ V Mp amplitude

Ab = e−
Bhs∆2

2
1

Nhs

Nhs∑
j=1

e−i~b j~∆ (D.4)

where the argument in the sum can be further decomposed as

exp
(
−i~b j~∆

)
= cos

(
~b j~∆

)
+ i sin

(
~b j~∆

)
.

The resulting scattering amplitudeAγ∗p→V Mp
T,L is then given as

A
γ∗p→V Mp
T,L = iσ0e−

Bhs∆2

2

 1
Nhs

Nhs∑
j=1

e−i~b j~∆

 · ∫ d2r

1∫
0

dz
4π
|Ψ∗V MΨγ∗ |T,Lei(1−z)~r~∆N(x, r). (D.5)
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