
Czech Technical University in Prague 
Faculty of Nuclear Sciences and Physical Engineering

Simulations of complex distributed 
computing systems in High Energy Physics

Prague 6.5.2011 Čeněk Zach



Prohlášení

Prohlašuji, že jsem svou  diplomovou práci vypracoval samostatně a použil 
jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém 
seznamu.

Nemám  závažný  důvod  proti  užití  tohoto  školního  díla  ve  smyslu  §  60 
Zákona  č.121/2000  Sb.,  o  právu  autorském,  o  právech  souvisejících  s 
právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne ______________                        ____________________
                 podpis



Poděkování

Chtěl bych poděkovat paní RNDr. Dagmar Adamové, CSc. za konzultace 
a  nesmírnou pomoc při psaní této práce.  Také bych chtěl poděkovat 
Dr.  Latchezaru  Betevovi,  Ph.D a Prof. Iosifu  Legrandovi,  Ph.D za 
konzultace a cenné rady.



Název práce: Simulace komplexních distribuovaných výpočetních 
systémů ve fyzice vysokých energií

Autor: Čeněk Zach

Obor: Jaderné Inženýrství

Zaměření: Experimentální Jaderná Fyzika

Druh práce: Diplomová práce

Vedoucí práce: RNDr. Dagmar Adamová, CSc., Ústav jaderné fyziky, 
AV ČR

Abstrakt: Ve své práci  jsem  studoval  výpočetní  model 
experimentu  ALICE a  simulační  nástroj  MONARC2. 
Rozšířil  jsem balík  MONARC2,  aby  obsáhl  některé 
podstatné části z výpočetního modelu experimentu 
ALICE,  jako  je  například  JobAgent  nebo  Alien 
Resource  Broker.  Použil  jsem  rozšířený  balík  k 
simulacím  6  výpočetních  center  z  Evropy.  V 
simulacích jsem sledoval efekty  požadavků  na 
umístění dat a procenta analyzačních úloh na trvání 
úloh  a  jejich efektivitu.  Také jsem provedl několik 
benchmark simulací balíku MONARC2.

Klíčová slova: Výpočty ve fyzice vysokých energií, výpočetní Grid, 
AliEn, LCG, MONARC



Title: Simulations of complex distributed computing 
systems in High Energy Physics

Author: Čeněk Zach

Field: Nuclear Engineering

Specialization: Experimental Nuclear Physics

Supervisor: RNDr. Dagmar Adamová, CSc., Nuclear Physics 
Institute, ASCR

Abstract: In my work I studied the Computing Model of the 
ALICE  experiment and  the  MONARC2  simulation 
tool. I  extended MONARC2 package to incorporate 
some  important  parts  of  the  ALICE  Computing 
Model like JobAgent or Alien Resource Broker. I used 
the  extended  package  to  simulate  a  model  of  6 
computing centers from Europe. In the simulations I 
examined  effects  of  the  requirements  on  data 
location and the percentage of analysis jobs on the 
duration  of  these jobs and  their efficiency.  I  also 
performed  a  few  benchmark  simulations  of  the 
MONARC2 package.

Key words: Computing in High Energy Physics, Computing Grid, 
LCG, MONARC, AliEn



CONTENTS i

Contents

1 Introduction 1

2 ALICE Computing Model 3
2.1 The MONARC tiered network . . . . . . . . . . . . . . . . 3
2.2 Computing resources requirements . . . . . . . . . . . . . 3
2.3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 The global picture . . . . . . . . . . . . . . . . . . . . . . 6

3 Middleware 7
3.1 Computing Element . . . . . . . . . . . . . . . . . . . . . 7
3.2 Storage Element . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Workload Management System . . . . . . . . . . . . . . . 7
3.4 VOBOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 JobAgent Model . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Job Status . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 MONARC2 11
4.1 Simulation Engine . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Job Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Execution of Jobs . . . . . . . . . . . . . . . . . . . 13
4.2.2 Job Implementations . . . . . . . . . . . . . . . . . 14
4.2.3 Activities and Job Scheduling . . . . . . . . . . . . 14

4.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Data Container . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Database . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3 Database server . . . . . . . . . . . . . . . . . . . . 16
4.3.4 Mass Storage Center . . . . . . . . . . . . . . . . . 16
4.3.5 Database index . . . . . . . . . . . . . . . . . . . . 16

4.4 Network Model . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4.1 Linkport . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.2 LAN . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.3 WAN . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.4 Router . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Using MONARC2 . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.1 Configuration files . . . . . . . . . . . . . . . . . . 18
4.5.2 Extending classes . . . . . . . . . . . . . . . . . . . 20
4.5.3 Defining output . . . . . . . . . . . . . . . . . . . . 21



CONTENTS ii

5 My Changes to MONARC2 23
5.1 VOBOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 ComputingElement . . . . . . . . . . . . . . . . . . . . . . 23
5.3 ResourceBroker and CentralTaskQueue . . . . . . . . . . . 24
5.4 JobAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 CPUUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Job Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.8 Network package . . . . . . . . . . . . . . . . . . . . . . . 25

6 Simulation of ALICE Tier-2 Centers 27
6.1 Goals of Simulation . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Parameters of Centers . . . . . . . . . . . . . . . . . . . . 27

6.2.1 Worker Nodes . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Storage Element . . . . . . . . . . . . . . . . . . . 29
6.2.3 Network . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.4 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Simulated situations . . . . . . . . . . . . . . . . . . . . . 30
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.1 Local, 20% analysis jobs . . . . . . . . . . . . . . . 31
6.4.2 Anywhere, 20% analysis jobs . . . . . . . . . . . . . 34
6.4.3 Anywhere, 50% analysis jobs . . . . . . . . . . . . . 35
6.4.4 Anywhere, 75% analysis jobs . . . . . . . . . . . . . 37
6.4.5 Results overview . . . . . . . . . . . . . . . . . . . 38

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Benchmarking MONARC2 40
7.1 Benchmark simulations . . . . . . . . . . . . . . . . . . . . 40
7.2 Machine Specifications . . . . . . . . . . . . . . . . . . . . 41
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Summary 45

9 Conclusion 46

References 47



Motto:

”There are three essential components to a Particle Physics

experiment: the accelerator, the detectors and the computing.

. . .

At the collision point, energy is turned into mass. . . . Occasionally

this leads to new particles to be produced that are not stable in

our Universe today. . . . The decay products of these particles

are electronically registered by the detectors. The computing

turns a huge flow of digital data coming out of the detectors

into useful physical information about the collisions and stores

that information, which is then processed in search of those rare

events where new particles are produced.

This is the function of the Worldwide LHC Computing Grid.

It stretches around the Globe, collecting resources in hundreds

of data centers in over 30 countries. . . . At the end of the day,

the net product of this huge enterprise is pure knowledge.”

– Robert Aymar, the Director General of CERN 2004 - 2008



1 INTRODUCTION 1

1 Introduction

The ALICE Experiment at Large Hadron Collider (LHC) at CERN [1], [2],
[3], [4], as well as the other LHC experiments, is facing the challenge to pro-
cess volumes of data from the particle collisions of the order of PetaBytes
(PB) in one data-taking year. To store, process and provide access to the
data for thousands of scientists participating in the LHC experiments, the
LHC Computing Grid (LCG) [5] has been built. Each of the LHC experi-
ments including ALICE has developed its own computing model utilizing
partly the LCG resources and services and partly the experiment-specific
Grid infrastructures.

Although from a view of a user, a Computing Grid behaves as a single
supercomputer, it is a very complicated infrastructure of networks, hard-
ware resources and software frameworks. For a good performance of the
Grid systems it is necessary to have some estimates of effects of possible
changes in the infrastructure, e.g., network and hardware failures, network
topology changes, hardware upgrades, Grid middleware updates and so
on. During the data taking, the data flow is huge and sustained over long
periods of time and a good performance of the Grid system is absolutely
essential. During this period, any latencies can cause problems with data
storage or processing or even lead to a loss of the precious data.

The highly dynamic behavior of Grid components makes it difficult to
perform detailed analysis of their behavior. A practical and acceptable ap-
proach to the description of components of a Grid system is the evaluation
by simulation (adopted for instance in [6]).

My work has been concerned in its first part with the study of the
ALICE Computing model [7]. Then, I proceeded to simulate behavior
of a Grid system components using a specific simulation package/frame-
work MONARC2 [8]. It is a discrete-event simulator which allows mod-
elling of large distributed systems. The original intention of the project
was modelling and simulation of High Energy Physics (HEP) experiments’
computing infrastructures. MONARC2 is based on Java technology with
a built-in multi-thread support for concurrent processing. It offers an
Interrupt-driven scheme for discrete event simulation, which is convenient
for description of the events arrival patterns and concurrent running tasks
sharing resources, which are typical for the HEP computing projects.

As a first step in my work with the MONARC2 toolset, I studied and
tested its features and performance. I gained experience with its individual
packages and their customization for the simulation of a specific model of
a regional computing site. After this introductory part I performed, as a
validation study of MONARC2, a simulation to reproduce a month-average



1 INTRODUCTION 2

performance of the Storage Element (SE) at one of the ALICE Tier-2
sites [9], and namely the average traffic (see [10]). Finally, I considered a
system consisting of 6 selected ALICE Tier-2 sites. The computing and
storage resources of each site and the corresponding network system were
parameterized using information from the available monitoring systems.
Using MONARC2, I investigated the job processing performance and the
data transfer speed in dependence on job processing conditions.

At the beginning of my work with MONARC2, I intended also to make
simulations of dependence of the job submission performance at an AL-
ICE Tier-2 site on specific types of LCG Computing Elements(CE, see
later in the text). This issue was however investigated intensively by the
ALICE CERN Grid team and by the time I started to modify some of the
MONARC2 packages for the purpose of my simulations, the CREAM CE
[11] demonstrated its advantages and was adopted as the most suitable CE
for ALICE. This is the reason I turned to the study of the job processing
performance, which is a long standing and permanently topical issue in the
Grid computing for ALICE, as well as for the other LHC experiments.

In section 2, I will briefly describe the Computing model of the ALICE
experiment. In section 3, I will discuss individual elements of the Grid mid-
dleware, which will help to explain my implementation of the simulated
system into the MONARC2 framework. In section 4, I will describe in
detail the architecture and functionality of the MONARC2 toolset. Then
in section 5 I will introduce the changes I made to the MONARC2 pack-
age. In section 6, I will describe in detail the simulation of the job pro-
cessing performance with MONARC2 and the results. Section 7 concerns
benchmarking of the MONARC2 package and section 8 contains a short
summary and conclusions.



2 ALICE COMPUTING MODEL 3

2 ALICE Computing Model

The ALICE experiment is a dedicated heavy-ion (HI) experiment at the
CERN LHC. During the HI data taking it can take data with a bandwidth
of up to 2.5 GB/s . It also has its proton-proton (pp) physics program and
so it also takes pp data, with a bandwidth of up to 500 MB/s. The project
is consuming a huge amounts of computing resources and this will increase
with time. These resources are distributed at the computing facilities
of the institutes and universities participating in the experiment. This
scenario of decentralized offline computing centers has been conceived in
the MONARC model (Models of Networked Analysis at Regional Centers)
using the MONARC simulation tool.

2.1 The MONARC tiered network

MONARC suggests a distribution of computing resources in a hierarchical
layout populated by so-called Tier centers.

Tier-0 center is CERN, with tens of thousands of processing units and
PetaBytes of storage. Here all raw data coming from the ALICE Data
Acquisition system (DAQ) is safely stored and first pass reconstruction is
made.

Tier-1 centers are the major computing centers outside CERN, pro-
viding safe storage of copies of raw data. Also, these are places where
the reconstructed data is stored and multiple passes of reconstruction and
scheduled analysis are taking place. Tier-1s are responsible for a long term
storage of data produced at Tier-1 and Tier-2 centers.

Tier-2s are smaller regional computing centers. They are used for cen-
trally managed productions of Monte Carlo simulations of collision events
in the detector and for processing of end user analysis jobs.

MONARC considers also Tier-3 centers - universities and institutes
departmental computing centers intended for local analysis, and Tier-4
centers, which are end user machines, but these are not relevant in the
Grid systems of the LHC experiments.

2.2 Computing resources requirements

According to the LHC and experiments planning, for one Standard Data
Taking Year (STDY) there are foreseen 7 months of pp running, 1 month
of HI running and 4 months for a technical stop, for maintenance and
upgrades. This amounts for 10 Ms (megaseconds) for pp and 1 Ms for HI
combined with the data bandwidth of up to 500MB/s for pp and 2.5 GB/s



2 ALICE COMPUTING MODEL 4

for HI. Altogether, ALICE should be prepared to process data of the order
of PB/SDTY.

As a validation of these estimates, during the data taking in 2010, with
7 months of the pp collisions and 1 month of the Pb-Pb collisions, ALICE
recorded about 2.35 PB of raw data out of which 0.9 PB came from the
Pb-Pb collisions (this number does not include replicas of raw data files).

After more detailed analysis taking into account estimated sizes of raw
and reconstructed data objects per 1 event, expected time needed for data
processing, estimates concerning the requirements of the necessary Monte
Carlo simulations and volumes of calibration and conditions data, it is
possible to elaborate expected requirements on the hardware resources
needed for data processing and storage.

The current estimates [12] for the ALICE needs of computing resources
for year 2012 are listed in Table 1 (CAF stands for CERN Analysis Facility,
a special computer center inside CERN dedicated to prompt raw data
reconstruction and for user analysis. Tn stands for Tier-n and MSS are
mass storage systems (tapes)):

T0 CAF T1 T2

CPU (kHEP06) 55.6 10.1 146.1 140.2
Disk (TB) 8741 395 13122 11401
MSS (TB) 9645 - 23632 -

Table 1: The current estimates for the ALICE needs of computing re-
sources for year 2012

For comparison, one core of a modern processor might represent a per-
formance of about 10 HEP06 specs, so altogether the requirements con-
cerning CPU represent approximately 33 thousands of processing units and
35.6 PB of disk space. A very important fact is that almost half of the
resources is and will be provided by the Tier-2 centers, which demonstrates
the great importance of these centers in the ALICE computing model.

Unfortunately, ever since the beginning of the ALICE Grid computing,
the resources available for ALICE have been substantially lower than re-
quested, especially concerning the disk capacity, and this requires a very
complicated procedures concerning decisions which data should be perma-
nently stored.

According to the ALICE Computing Technical Design Report [7], all
raw data produced by the ALICE detectors will be stored permanently for



2 ALICE COMPUTING MODEL 5

the lifetime of the experiment. This includes 2 copies of raw data, one at
CERN and one at a Tier-1 center.

Then there are reconstruction passes, analysis objects, Monte Carlo
data, calibration, alignment and condition data. The policy as to which
data will be stored on tapes and which will go only to disks is not yet fully
specified. In the beginning of 2010, more than half of the ALICE storage
capacity was full with the data sets from the cosmic and calibration data
taking and from the first collisions period in November and December 2009.
Thus, the need of a new strategy concerning the data storage is evident.

2.3 Network

As was already mentioned, data from the ALICE detector is recorded at a
rate up to 2.5 GB/s during HI runs and up to 500 MB/s during pp runs.
The ALICE DAQ system, which collects data from the 18 ALICE subde-
tectors and performs the event building, is providing a large disk buffer on
the detector site, which is supposed to be able to store an equivalent of one
LHC data spill. At the CERN storage facility, the transfer of data from
disk to tape is performed at a rate of up to 100MB/s maximum; not all
the data recorded on disk (e.g., data from subdetectors calibration runs)
will be stored permanently.

The data traffic outside CERN and the in/out-coming traffic to/from
CERN is quite complicated.

Tier-0 ↔ Tier-1s All the raw data permanently stored at CERN are
replicated to Tier-1 centers. The data produced during the recon-
struction passes of raw data (Event Summary Data - ESD) are stored
at CERN and Tier-1s, so they are replicated from the site they were
produced. The data produced at Tier-1s during the MC production
cycles are copied to CERN. The replicas of data objects produced
during the scheduled analysis productions (Analysis Object Data -
AOD) at Tier-1s and Tier-2s can be copied to CERN.

Tier-1s ↔ Tier-2s ↔ Tier-0 This traffic includes transfers of ESDs, both
from the raw data reconstruction and the MC simulations, and AODs
from the production site to another site in the system.

Currently, the network links of the capacity of 10Gb/s between CERN
and Tier-1s and links of capacity 1-10 Gb/s between Tier-1s and Tier-2s
are available and this capacity is considered sufficient at the moment.



2 ALICE COMPUTING MODEL 6

2.4 The global picture

Most of the processes, which data objects are subject to, are fully auto-
matic. For instance, concerning the raw and the conditions data gathering,
the transfer from the detector site to the CERN storage facility, the reg-
istration of data objects in the ALICE Grid catalog, the first pass of the
reconstruction and registration and storing of its output, all this is done au-
tomatically, all processes being amply monitored. Taking another example,
the same is true concerning the launch of the MC simulation productions
and transfer, storage and registration of its output. All the data objects
available for processing are accessible with the help of tools provided by
the ALICE Grid middleware AliEn [13], i.e., the software framework for
the management of processes on the Grid. Some of the services and tools
are briefly described in the following section.

The ALICE Grid system has been in development ever since 2002 and
represents a quite complicated structure these days. Altogether, it includes
78 computing sites and 54 distributed disk storage facilities [14][15]. The
centers are spread all over the world including next to Europe and North
America also Asia, Africa and South America (see Figure 1 or [16]). For
such a complex system to be functional and deliver a steady performance,
it must be extensively monitored and there must be some predictions con-
cerning the behavior of its components in cases of heavy loads or distur-
bances of all kinds.

One possible framework for the simulation of behavior of such a com-
plex grid system components is provided just by the MONARC/MONARC2
project, study and testing of which is a part of this work.

Figure 1: Map of ALICE Tier centers around the world



3 MIDDLEWARE 7

3 Middleware

In order to correctly simulate the behavior of a Grid system, one has
to incorporate elements/services of this system-specific middleware into
the simulation framework. The framework should implement the system-
specific management of, e.g., submission, registration and processing of
jobs, data transfers, and reliability of the individual elements as realisti-
cally as needed to get correct results. WLCG uses the gLite middleware
[17]. The ALICE Grid project has developed its own middleware, AliEn
[13], which provides some project-specific tools and services not provided
by gLite. A short description follows of the services essential for the sim-
ulations.

3.1 Computing Element

Computing Element (CE) is an entry point to a grid site. It authenticates
users and submits jobs to Worker Nodes, aggregates and publishes infor-
mation from other nodes. It includes generic interface to the local cluster
called Grid Gate (GG), Local Resource Management System (LRMS) and
collection of Worker Nodes (WN). For simulation, important factors apart
from the CPU power and reliability are: percentage of jobs failed during
normal operation of CE, during degraded state of CE, percentage of time
CE is down, etc.

3.2 Storage Element

Storage Element (SE) provides storage place and access for data. Impor-
tant variables apart from available storage space, read/write speeds and
bandwidth concern reliability against overload, percentage of failed trans-
fers from/to SE and percentage of lost/corrupted files.

3.3 Workload Management System

WMS is a middleware component/grid service, that receives job submis-
sion requests from users, assigns them to an appropriate CE, monitors
their status and retrieves their output. Currently, the gLite-CE of the
gLite WMS has been deprecated in the ALICE job submission manage-
ment and the priority has been given to the CREAM-CE, which uses direct
job submission not requiring an additional WMS service.

The important factors for a WMS are its stability against overload and
the percentage of successful job submissions.



3 MIDDLEWARE 8

3.4 VOBOX

At each of the ALICE sites, a dedicated server called VOBOX is installed
on which some ALICE specific services are running. They include, e.g., the
ClusterMonitor, which transfers the monitoring information to the ALICE
Grid global monitoring system MonALISA [18], and AliEn Computing
Element, which is a service different from the WLCG CE and its purpose
is to submit so-called JobAgents, described later in the text, to the site
local WLCG CE.

3.5 JobAgent Model

As mentioned above, one of the services running on the VOBOX is AliEn
Computing Element. It is responsible for submitting JobAgents to the
local batch system. JobAgents then take place of ordinary jobs that wait in
the local queue. When assigned to a Worker Node they gather information
about, among others, available resources, installed software, free space and
close SEs and send these information to the AliEn central services. There
this information is matched against jobs waiting in the Central Task Queue
and permission to get the first matching job is sent back to the JobAgent.
JobAgent then fetches the job directly from the Central Task Queue and
runs it. After this job finishes, JobAgent again gathers info and the cycle
is repeated. This holds until the time to live (TTL) given to the JobAgent
expires and the JobAgent then dies. This is called the ”Pull model” of the
job submission management (see. Figure 2).

An opposite alternative - the ”Push model” - relies on central mon-
itoring system, which must hold all the static and dynamic information
about all the resources. These are used to ”push” jobs whenever there are
free resources available. This model does not scale well, so it is not widely
used.



3 MIDDLEWARE 9

Regional Center

Farm

CpuUnit 1

...
CpuUnit 2 CpuUnit N

VO-BOX

CEBatchsystem

Central Task Queue

Checks if there 
are waiting jobs

CE submits
 Job Agents

BS distributes 
Jobs Agents

JA sends its description 
and awaits a job 

AJB asks TQ 
for a job fitting
given description

Job Agent’s life 

JA submitted

JA gathers information
about worker node

Send request for a job
to AliEn Job Broker

Execute 
the job

Pulls
a job

Die

Doesn’t
pull a job

Job finished

AliEn Job
Broker

Figure 2: Simplified JobAgent model for the purpose of my simulations.

3.6 Job Status

One of important aspects of a job in AliEn is its status. When a job is
created by a user and submitted to the Central Task Queue it is assigned
the status INSERTED and if everything goes well continues to WAITING.
Then if the AliEn Job Broker selects this job for a JobAgent, the job’s
status changes to ASSIGNED. The JobAgent then fetches the job from
the Central Task Queue and attempts to run it - the job’s status continues
to STARTED and, if execution proceeds normally, to RUNNING. The job
then does its work and when finished changes its status to SAVING, if the
saving process completes normally, the next status is SAVED. Then there
is a process of a validation of the results which must finish successfully to
bring the job to the final status - DONE. If any of the status transitions
fails (for example the job gets assigned to a JobAgent, but the JobAgent
does not fetch it), the job ends with an error status (there are multiple
error statuses in AliEn, cf. Figure 3).

It also happens that a job stops the communication with the AliEn
central services. Its status is then changed to ZOMBIE after some time
and if it does not recover within a given time limit, it gets EXPIRED or
KILLED.See Figure 3 for the discussed schema.



3 MIDDLEWARE 10

Figure 3: Possible status for AliEn jobs.



4 MONARC2 11

4 MONARC2

MONARC (MOdels of Networked Analysis at Regional Centers) is a tool
developed with the aim to provide realistic simulations of large distributed
computing systems. The simulation framework is not intended as a de-
tailed simulator for basic components, but it aims at correct description
of the performance and limitations based on realistic mathematical mod-
els. MONARC is based on Java technology with a built-in multi-thread
support for concurrent processing. It offers an Interrupt-driven scheme for
discrete event simulation, which is well suited to describe concurrent run-
ning programs, network traffic and other concurrent running tasks sharing
resources, that are common in the HEP computing projects. It has a com-
plex GUI to simulation engine which allows dynamic change of parameters
and monitoring of simulation results.

MONARC is based on a model of interconnected regional centers. Each
has its own CPU farm, database servers, mass storage units, local area
network, job scheduler and a waiting queue. With such structure it is
possible to build a wide range of computing models.

MONARC2 is an extended version of the original MONARC simulator.
The diagram representing the most important classes of MONARC2 is
shown in Figure 4.

Figure 4: Most important classes of MONARC2



4 MONARC2 12

4.1 Simulation Engine

The simulation engine of MONARC2 uses threaded objects (Active Ob-
jects) to simulate time dependent processes, which concurrently compete
for shared resources. There is a base class Task, from which all entities
that implement a time dependent behavior – such as the running jobs, the
database servers or the network entities – must inherit. Every Task is run
by one thread. The creation and destruction of threads is expensive, so a
pool of worker threads is used. If a Task is created, it gets assigned a worker
thread and when it finishes, the worker thread returns back to the pool.
If there is not enough worker threads, more are created. Communication
between Tasks is mediated by a Scheduler using events defined in Event
class. The Scheduler is managing and monitoring the whole simulation
with the help of several data structures:

• a vector with all the tasks that are currently alive

• a pool of worker threads

• a priority queue with the future events

• a priority queue with deferred events, that already happened, but
could not be processed

Every existing Task is in one of the following states: Created, Ready,
Running, Waiting or Finished. The Scheduler goes through the following
algorithm:

1. Look at each simulation Task and:

a) If the task is in the Created state, assign it to worker thread and
change its state to Ready

b) If the task is in the Ready state, (re)start its execution

c) If the task is in the Finished state, remove it

2. Wait until all the tasks that were running are in the Waiting or Finished
state

3. Process the events

a) Take from the future queue the event(s) with the minimum time
stamp; the simulation time advances, becoming equal to that
time stamp



4 MONARC2 13

b) For each event taken from the queue, look for the destination
task; if it is in the Waiting state, deliver the event to the task,
else, put the event into the deferred queue

4.2 Job Modelling

Jobs in MONARC2 are described by a base class called Job, which defines
a job that does nothing. The class must be extended to describe an active
job. The class however contains a number of methods that can be used to
define a job’s behavior. For example, the class has the following methods:

send/waitFor Message: the method used to communicate via CPU is
linkport with any other job or service on the network

get/upload Data: the method for moving data from/to the database
server

processOnCPU: this method simulates processing on the CPU; the nec-
essary processing time of the job is given by the parameter process-
ingTime

The Job class defines many fields (attributes) like the running and
scheduling priorities, the initial and final time, the required memory. Not
all of the mentioned attributes are necessary for correct functioning of a
particular simulated system.

4.2.1 Execution of Jobs

Jobs are time dependent entities, so they are executed using threads. An
Active Object called AJob (active job) is inherited from the Task class. The
job scheduler has a pool of free active jobs. When it schedules a job, it sends
an event to one of the free active jobs with the tag TAG START JOB and
the job itself is appended as auxiliary data. The active job then executes
the run() method of the job. When the job is finished, the active job starts
waiting for another event.

An estimate of time for how long should a job be running is calculated
as

time = job.processingT ime ∗ job.cpuPower/job.allocatedCPU

Where job.processingTime is expected processing time on the CPU with
power job.cpuPower. job.allocatedCPU is the CPU power allocated to the
job when running on assigned Worker Node.



4 MONARC2 14

Every time a job is added or finishes on a CPU, all the other jobs on
the same CPU receive an event with tag TAG CPU CHANGED and their
execution times are recalculated (see Figure 5). Also, jobs on the same
CPU can have different priorities. If N jobs share the same CPU, then
cpuPower assigned to the job i is calculated as

allocatedCPUi = totalCpuPower ∗ Pi/(P1 + P2 + ... + PN)

Where Pi is priority of i-th job.

Figure 5: Jobs execution time is recalculated every time another job enters
or leaves the same CPU

4.2.2 Job Implementations

The run() method is the one that should be overridden by the class ex-
tending job. Using methods mentioned above, some simple types of job
are already implemented. These include:

JobProcessData - simulates the processing of specified data

JobFTP - handles the transport of one message from one point to another

JobDatabase - basic job for working with databases

4.2.3 Activities and Job Scheduling

Jobs are created and submitted using the Activity class, which has the
mechanism for sending the jobs to a regional center. This class must be
extended by the user (who has to create the actual jobs). Each regional
center can have multiple activities which submit jobs to it. Each Activity



4 MONARC2 15

contains a vector of jobs and Double objects, which serve as the waiting
time between submissions of jobs. Activity class is also an extension of the
Task class, its RUN() method takes jobs (or Doubles) from the vector and:

• if the object is a job, submits it

• if the object is a Double, it sleeps for specified amount of time using
simHold() method

When the Activity has no more jobs to submit, it sends event with the
tag TAG NO JOBS, to announce that it finished. Each regional center
has a job scheduler, which decides on new jobs, if they should be executed
or put to the waiting queue. It is also possible for job scheduler to send a
job to another regional center. There is the jobScheduler class, which acts
as an implementation of the local batch system. If custom batch system
behavior is needed, this class should be extended. Main configuration file
accepts the name of the new class as the job scheduler parameter in the
global section.

4.3 Data Model

Two main entities are implemented to simulate the databases: the database
server, which stores data on disks, and the mass storage center, which
stores data on tapes. Both are subclasses of the class called DatabaseEn-
tity, which should be used in case of the definition of another storage device.
All the database entities have linkports and the interaction between jobs
and those entities is done through the network. For simple requests, that
do not have impact on the bandwidth share on the network, it is better to
use task event to communicate.

The smallest data unit is data container, which emulates a database file.
Data containers are grouped into databases, which reside on the database
server or mass storage center. All the data containers, databases and
database entities are managed by database index defined globally as a
field in static class MainSim.

4.3.1 Data Container

Data container is the actual ”data holder”, so it has defined attributes like
name, size (in MB), type of data it holds and database it belongs to, and
also attributes saying how many times it was accessed, the last time it was
accessed, whether it is locked (meaning it has not been entirely written
yet) and where it resides - on disk, tape or transfer.



4 MONARC2 16

4.3.2 Database

Database as the attribute is not essentially needed in the simulation, but
can help in ordering data. In the simulation it is represented by an object
holding hash table of all the containers contained in it.

4.3.3 Database server

Database server is an extension of DatabaseEntity class, implementing
general behavior of the hard-disk-based database server. It is capable of
writing, reading and getting (read and remove) data containers. A few
of its attributes are total space, used space and read/write speed/latency.
Database servers have also implemented the capability to move the least
used data containers to the closest usable mass storage system.

4.3.4 Mass Storage Center

Mass storage system operates in similar manner as database server, but has
some additional attributes like number of silos and tapes per silo, mount
time, tape size and number of drives. These are used to correctly describe
the MSSs functions.

4.3.5 Database index

Database index is used to find any data within the simulation model. As
already mentioned, it is a global object held by the static class MainSim.
Information is stored in three hashtables:

mapAddress - the hashtable mapping the dbEntities vs. addresses

mapContainers - the hashtable mapping the dbEntities vs. vectors with
their containers

mapDatabases - the hashtable mapping the dbEntities vs. databases

4.4 Network Model

It is practically impossible to simulate the network at a packet level, so
interrupt scheme is adopted. When a message transfer starts between two
endpoints, the interrupt event is sent to all messages that share at least one
part of the way. Then arrival time is calculated for all of them using the
minimum speed value of all the components on the way of each message
(similarly to jobs sharing one CPU).



4 MONARC2 17

Network in the simulation is represented by several entities: Linkport,
LAN, WAN and Router.

4.4.1 Linkport

Every entity involved in the simulation has a network linkport, which is an
entity that receives and sends messages. Linkport is defined by a unique IP
address and by the maximum bandwidth in Mbps. It must also belong to
a regional center - the name of the regional center is a required parameter
of the constructor. Linkports are connected to LANs.

4.4.2 LAN

Function of LAN - the abbreviation for Local Area Network - is self-
explanatory. It is described by a unique name and the maximum speed. It
also must belong to a regional center as required by the constructor. LAN
in the simulation keeps trace of all the messages passing through it and
sets the correct speed for them. LANs are connected to WANs.

4.4.3 WAN

The function of WAN - abbreviation for the Wide Area Network - is also
self-explanatory. Its definition and function is practically identical to LAN,
but on the higher level. WANs are connected to Routers.

4.4.4 Router

Routers in the simulation serve as connection points for WANs. They
are defined by a unique name and latency. The simulation supports three
different routing mechanisms:

EstimAvailableBandwidth: the route with the greatest available band-
width will be chosen

EstimUsedSpeed: the route with the smallest used speed will be chosen

EstimNumMessages: the route loaded with the fewest messages will be
chosen

4.5 Using MONARC2

Using MONARC2 can be (from my point of view) divided into three parts
- writing configuration files, extending classes and defining the output.



4 MONARC2 18

4.5.1 Configuration files

There is one main configuration file. This file contains the general simula-
tion settings (for example which classes should be used in the simulation or
which algorithm should be used for the network routing) and then the def-
inition of the resource layout - including CPU clusters, Storage Elements,
networks and other possible parameters. An example is shown of a simple
configuration file with two CPU clusters with VOBOX, one of them with
Storage Element connected through a router.

[global]

queue_type = vector

max_simultaneous_threads = -1

routing_type = default

load_estimator = network.AvailableBandwidth

resource_broker_address = 10.7.2.1

regional0 = CpuCluster1

regional1 = CpuCluster2

scale = 0.25

[CpuCluster1]

latitude = 15.1

longitude = 14.5

initial_pool_size = 100

lan0 = LAN1

lan0_max_speed = 1000.0

lan0_connect = WAN1

wan0 = WAN1

wan0_max_speed = 1000.0

wan0_connect0 = Router

router0 = Router

router0_latency = 0

cpu_unit0 = CPU1

database_server0 = SE1

activity0 = Activity

vobox_LAN = LAN1

vobox_linkport_address = 10.1.1.1

vobox_linkport_speed = 100.0

vobox_ce_port = 20

vobox_ce_check_interval = 600

[CPU1]

from = 0

to = 124

cpu_power = 16000.0

memory = 32000.0

cores_per_cpu = 8

page_size = -1.0

link_node = 10.1.0.1

link_node_max_speed = 1000.0

link_node_connect = LAN1

[SE1]

read_speed = 3000.0

write_speed = 1500.0

read_latency = 0.003

write_latency = 0.003



4 MONARC2 19

disk_size = 2000000000000.0

address = 10.1.2.1

link_port_speed = 450.0

lan_to_connect = LAN1

[CpuCluster2]

latitude = 15.1

longitude = 14.5

initial_pool_size = 100

lan0 = LAN2

lan0_max_speed = 1000.0

lan0_connect = WAN2

wan0 = WAN2

wan0_max_speed = 1000.0

wan0_connect0 = Router

cpu_unit0 = CPU2

vobox_LAN = LAN2

vobox_linkport_address = 10.2.1.1

vobox_linkport_speed = 100.0

vobox_ce_port = 20

vobox_ce_check_interval = 600

[CPU2]

from = 0

to = 62

cpu_power = 16000.0

memory = 32000.0

cores_per_cpu = 8

page_size = -1.0

link_node = 10.2.0.1

link_node_max_speed = 1000.0

link_node_connect = LAN2

[Activity]

class_name = Activity

A note regarding units: in general, whatever units can be chosen, but
the same ones must be used throughout the whole simulation. In this
manner the units for the network speed were chosen by authors to be
Mbit/s as these units are used in the output classes to label the axis. The
memory and disk sizes are supposed to be in MB. For CPU power however
the units were not specified, so the user must decide upon them on his/her
own (and use the same units when defining jobs).

With additional classes I introduced in the code I also created another
configuration file called other.conf (the name of the main configuration file
can be defined by the user as it is given to the simulation as an argu-
ment). This file contains the setting for JobAgents, CentralTaskQueue,
ComputingElement and for events used for the communication substitut-
ing the network functionality. An example follows:

[job_agent]

connection_time_out = 600



4 MONARC2 20

delay_gather_info = 0.1

scheduling_priority = 10.0

running_priority = 10.0

cpuUtilization = 0.15

lifeTime = 200000

minLifeTimeToAsk = 0

maxJobs = -1

timeToAbortJob = 1800

dataLocation = ANYWHERE

[computing_element]

connection_time_out = 600

check_interval = 600

[event]

travel_time = 0.1

[task_queue]

delay_find_job = 0.1

maxTimeAssigned = 900

maxTimeRunning = 150000

maxConcurentSearches = 8

4.5.2 Extending classes

The user has at his/her disposal many implemented classes, that can be
used right away. There is however one class, which the user must extend
in order to simulate anything - the Activity class. This class is used to
submit work to its center and the user must tailor this class to accomplish
the desired functionality. The following code is a simple example of the
pushJobs() method, which is practically the only one that needs to be
overridden to extend the Activity class. It submits a numJobs of jobs,
where each job has to process number of data units data units. It always
waits for time to wait seconds after submitting each job.

number of data units is a random number from 0 to 99, time to wait

is also random number from 0 to (delay-1). numJobs and delay are pa-
rameters read from another configuration file - the user can have as many
configuration files as he needs.

public void pushJobs() {

int i;

Date now = new Date();

random = new Random(now.getTime());

for (i = 0; i < numJobs; i++) {

int number_of_data_units = random.nextInt(100);

int time_to_wait = random.nextInt(delay);

JobProcessData job = new JobProcessData(10, 10, "raw", number_of_data_units);



4 MONARC2 21

addJob(job);

addTime(time_to_wait);

}

start();

}

As mentioned above many other classes can be extended or replaced to
get the wanted behavior.

4.5.3 Defining output

The output is defined in the form of an XML file. Many output formats
are available, including text and graphics. The graphic format is in a form
of graphs and has an advantage of being immediately usable, but lacks
precision as it is averaged on the fly. The text format on the other hand
needs some processing to actually see the results, but is much better for
data keeping, more precise simulations and an eventual debugging.

Practically everything that goes on in the simulation can be monitored
using clients. Clients are extensions of the SimClient class resp. the File-
ClientI interface and each of them is run by its own thread. They connect
to the monitored object and wait for it to report changes, which are then
logged.

The most useful clients are already implemented. If the user wants a
special monitoring, he/she has to extend the appropriate class. Monitoring
can also be real-time, which is useful when one needs immediate results.

The following code is an example of the graphics output definition. In
this code, the monitored entity is the whole computing farm and 3 clients
are used as parameters. These monitor the CPU utilization, the total
number running and waiting jobs and the total CPU and memory load.

<client name="out1" class="monarc.output.GraphicClient.FarmCPUUtilization"/>

<client name="out2" class="monarc.output.GraphicClient.FarmJobs"/>

<client name="out3" class="monarc.output.GraphicClient.FarmIntern"/>

<declare farm="Prague" cluster="farm" class="monarc.output.parameters.OutputParameters">

<parameter client="out1"/>

<parameter client="out2"/>

<parameter client="out3"/>

</declare>

To present an example of the text output definition, I show the following
output which was defined using the FileComplex class. This logs every
information it is given in text files sorted in the hierarchy of directories



4 MONARC2 22

that matches the objects hierarchy in the simulation. This client can thus
be used to monitor anything:

<client name="client1" class="monarc.output.FileClient.FileComplex.FileClient" save="."/>

<client name="client2" class="monarc.output.FileClient.FileComplex.FileClient" save="."/>

<declare farm="Prague" cluster="farm" class="monarc.output.parameters.OutputParameters">

<parameter client="client1"/>

</declare>

<declare farm="Prague" cluster="linkport" node="10.1.2.1"

class="monarc.output.parameters.OutputParameters">

<parameter client="client2"/>

</declare>



5 MY CHANGES TO MONARC2 23

5 My Changes to MONARC2

In order for the simulation to reflect ALICE Computing model, I had to
implement several new classes and introduce them into the MONARC2
package. These were VOBOX, (AliEn) ComputingElement, JobAgent,
(AliEn) ResourceBroker and CentralTaskQueue. I also modified some of
the existing classes, for example CPUUnit or JobScheduler. I also intro-
duced a Scale factor to deal with performance issues.

MONARC2 package offers a friendly way to use custom classes. If
you want to use your own CPUUnit, you can set it in the configuration
file. I was however forced to do some changes directly in the package,
to implement VOBOX, Resource Broker and Central Task Queue, so I
decided it would be simpler if I modified them directly.

I also slightly modified some classes of the network package.

5.1 VOBOX

VOBOX, as mentioned above, is a server running some specific AliEn ser-
vices. For the purpose of my simulation it was only necessary to have it run-
ning the AliEn Computing Element. My implementation of the VOBOX
into the MONARC2 package is represented by a simple class containing
ComputingElement and a linkport.

5.2 ComputingElement

ComputingElement (CE) class is responsible for submitting JobAgents to
the local batch system. This is a simplification - in reality the procedure
has two steps: 1. the submission of a JobAgent to the WLCG Computing
Element installed at the considered site and 2. the passing of the JobAgent
by the local WLCG CE into the local batch queue.

Since CE needs to perform some actions (unlike VOBOX, which in the
simulation does nothing) it is not derived from the class Object (a base
java class) but from the class Task. It is periodically checking the local
batch system for and if the number of waiting JobAgents drops below the
maximum amount of running jobs at the regional center, the CE starts
submitting new JobAgents. It does not submit more JobAgents than the
number of jobs waiting in the Central Task Queue. If there are no more
jobs in the Central Task Queue, it ends.



5 MY CHANGES TO MONARC2 24

5.3 ResourceBroker and CentralTaskQueue

The ResourceBroker is responsible for matching requests from JobAgents
with the jobs waiting in the Central Task Queue. Since the Resource
Broker is also a central service as well as the Central Task Queue, I merged
them - the ResourceBroker class contains a Vector taskQueue which holds
waiting jobs.

It is also derived from the Task class. The ResourceBroker communi-
cates with Activities, to accept jobs (this is due to the merging with the
Central Task Queue), and JobAgents. Communication is implemented us-
ing events instead of the network messages. This is mainly a performance
issue. The more ongoing transfers are in the system, the slower the simu-
lation is. Thus only transfers that are important for simulation results or
transfers whose influence is not negligible are implemented using network.
ResourceBroker ends when there are no jobs in the Central Task Queue
(i.e. in the vector taskQueue) and no jobs are incoming (no future events
with incoming jobs are scheduled in the simulation scheduler).

5.4 JobAgent

JobAgents in the simulation behave almost in the same way as in reality,
except that in reality the AliEn Resource Broker returns info about the
assigned job and the JobAgent fetches the payload (assigned job) directly
from the Central Task Queue. In the simulation the payload is returned
from the ResourceBroker.

The JobAgent class is derived from the Job class, so for the local batch
system it is just another job.

To trace the progress of jobs in the simulation I implemented the field
jobStatus. The simulation is monitoring the times when a status of a job
changes. A job can obtain all of the states as in reality except for IN-
SERTED (after the job is received by the Central Task Queue, it proceeds
directly to the status WAITING). One extra status FIRST MATCHED
was introduced. Job enters this status while waiting in the Central Task
Queue when it is first matched against a request from a JobAgent. When
it is not necessary to simulate user submission time, it is simpler to submit
all jobs at once. This makes it hard to compare waiting times in the queue.
In these cases the FIRST MATCHED status can help.



5 MY CHANGES TO MONARC2 25

5.5 CPUUnit

The original CPUUnit class implements 1 core CPU. I rewrote it to im-
plement a multi-core CPU, with load sharing resembling reality. I also
rewrote some other methods of the original CPUUnit class.

5.6 Job Scheduler

The reason to modify this class was mainly to make it aware of payloads
being run by JobAgents (JA). In the simulation the JAs are submitted
in the same manner as normal jobs, because the JobScheduler class takes
care of assigning an ajob (the class from the engine package derived from
the Task class, thus owning a thread which is used to execute the job) and
doing other things, so it was simpler this way. I also rewrote some other
methods to comply with the needs of the simulation.

5.7 Scale factor

I hit some performance issues while simulating larger systems. In my
case the simulation slows down exponentially with the growing number
of network messages. To overcome this problem I implemented a Scale
factor. It is set in the main configuration file and using it, MONARC2
automatically scales down the defined model - number of CPUUnits, speeds
of network elements, number of jobs and so on. Most results are then
exactly the same as they would be using the original setup. For example
number of finished jobs will be different and because the Scale factor is
not used to modify the results, it must be up-scaled back by the user.

Since the slowdown caused by the growing number of network messages
is exponential, using the Scale factor leads to a better statistics with the
same simulation time.

5.8 Network package

There is one missing feature in the MONARC2 network package: it does
not offer a way to set an external load on a network entity. Usually com-
puting centers or experiments do not have dedicated connections between
them. Sharing with others has important impact on the bandwidth they
have available - the more connections you have the bigger share you get.
As MONARC2 does not offer this, there are two ways (I could think about)
to accomplish this effect in the simulation.



5 MY CHANGES TO MONARC2 26

You can create extra network entities, connect them to an existing con-
sidered network entity and transfer ”real” messages over it, thus creating
an extra load on this part of the network. But as the model gets more
complicated, it gets slower, mainly because of the increasing number of
network messages. This method would thus have a negative effect on the
pace of the simulation.

The Second option is to modify the source code and implement the
feature yourself. This is, however, quite tricky as the source code of the
network package is not publicly available. Luckily the classes implementing
network entities can be extended and then used in the simulation instead
of the original ones. One such way - the one I used - is to override methods
for adding and removing messages from a network entity and recalculate
total speed before the original the method is called, so that the speed of
the entity will be set to the share you should have according to the ratio
of yours-to-all connections.

Unfortunately, this has a flaw. Imagine a situation when you have for
example 1 Gbit/s link with 600 external connections. Suppose you have 400
connections using this link, so in the simulation you are given (meaning:
speed of link is changed to) 400 Mbit/s. Now what if 200 of your con-
nections have bottlenecks elsewhere and are able to go maximally 1 kbit/s
maximum each. This leaves the rest of your messages with 200 Mbit/s
extra bandwidth which would in reality be distributed over all capable
messages - even the external ones. This flaw can lead to higher transfer
speeds of some messages, if this feature is needed. If this workaround is
not activated, it has no effect on the simulation at all.



6 SIMULATION OF ALICE TIER-2 CENTERS 27

6 Simulation of ALICE Tier-2 Centers

The objective of this work was to use and subsequently to modify the
MONARC2 tool, so that it could be utilized to simulate a part of the
ALICE computing infrastructure.

6.1 Goals of Simulation

One goal of the presented simulations was to find the effect of different
conditions for the location of data processed by the jobs at a considered
regional center on the processing efficiency. The regional centers considered
were Tier-2s which are dedicated to processing of simulation and analysis
jobs.

The most recent policy in the workload management in the ALICE
Grid system is, that the jobs are sent where their data is. This gives the
network traffic a break from what would arise from jobs downloading their
data from distant Storage Elements. On the other hand, this prolongs
the time the jobs spend in the Central Task Queue waiting for specific free
slots. There has been some arguments that today’s networks are capable of
handling the situation without this constraint and that the average overall
time to finish jobs would be actually shorter.

6.2 Parameters of Centers

The simulated system resembles a real situation. Since I have some experi-
ence with working at the Prague Tier-2 center, the computing farm Golias
[9], and I also had the access to the logs from the local batch system, which
is very important for the evaluation of the behavior of the processed jobs,
I considered a system of the Prague site plus 5 other close sites. For the re-
source layout see Figure 6. Each center is composed of a number of Worker
Nodes (WN), a Storage Element (SE) and a VOBOX. The information on
given computer centers and networks connecting them was extracted from
MonALISA and simplified for the purposes of this simulation. Each center
has a unique configuration. I will write it down for Golias only and the
configuration files for the other centers I can provide on demand.

6.2.1 Worker Nodes

For ALICE, Golias has 125 worker nodes, each with 8 cores of the power
2000 and 32GB of memory. Every worker node has a linkport (which is
practically a network card) with the speed 1 Gbit/s and is connected to



6 SIMULATION OF ALICE TIER-2 CENTERS 28

Figure 6: The layout of 6 centers from central Europe. Speeds of links are
given in Mbit/s.



6 SIMULATION OF ALICE TIER-2 CENTERS 29

the Local Area Network (LAN). There are no failures of worker nodes nor
of individual cpu cores nor of memory.

6.2.2 Storage Element

Golias has 3 SEs with excessive capacity about 2 EB - because the space
consumption is of no importance in this simulation. The same goes for the
read and write speed which are 3 Gb/s and 1.5 Gb/s, respectively. The
limiting factor then is the network connection, which is 450 Mbit/s for
each SE. Storage elements are also connected to LAN and do not fail.

6.2.3 Network

The top level of network can be seen from Figure 6. Each center has a
Gbit LAN connected to its own router. The external load of 100 messages
is put on each LAN. The network also does not fail.

6.2.4 Jobs

As mentioned earlier, there are 2 types of jobs in the simulation. One of
them is the simulation job, also often called production job, which only
needs to download the input data once upon the start and then uploads to
an SE the output data when finishing. These jobs are from obvious reasons
called CPU intensive. In my simulation, the download of the input data
for the production jobs was neglected. The distribution of the processing
time of jobs on a CPU with the power 2000 was calculated as follows:

ProcessingT ime = (3500 ∗ randomNormal + 18000)seconds

The second type of a job is the analysis job. These jobs process
streamed data from a storage element and at the end upload results. Un-
fortunately it is quite difficult to obtain a good profile of an analysis job.
I was able to obtain some approximate data from the local batch system
of the computing center Golias, but these apply for JobAgents that can
represent several jobs, so the profile I have is quite a wild estimate, which
however was adequate enough for the purpose of this simulation. The dis-
tribution of the processing time per MB of data to analyze on a cpu with
the power 2000 follows:

ProcessingT imePerMB = (4 ∗ randomNormal + 5)seconds



6 SIMULATION OF ALICE TIER-2 CENTERS 30

AmountOfDataToAnalyse = (6400 ∗ e−0.0015∗randomInteger(5000) + 10)MB

The analysis job then uploads its results of the size of square root of
the size of the analyzed data. The memory requirements of both types of
jobs are not important.

Implementation The implementation was done in the way, that there
is only one data type in the simulation called ’uniform’ which represents a
file of the size 10 MB. When a job is created, it is decided how many and
which files will the job analyze. When the job is executed, it downloads
all the files. Then it calculates how much time it needs to process all the
data. If the time is less or equal to the time it took to download the data,
the job ends and the efficiency is calculated as

job efficiency = time to process/time to download

Otherwise the efficiency is 1 and the job continues until the total run-
ning time is equal to the time needed to process the data.

For the simulation it looks like the job was subsequently downloading
10 MB files, than sometimes it waits a bit and then ends. Thus, for one
job there are at least two transfers (i.e. network messages) – it has to
download at least 1 input file and upload results.

6.3 Simulated situations

There are two main simulations. The first where the jobs are sent only to
the center that has their data on its SE (labeled ’local’). In the simulations
of the second type (labeled ’anywhere’) jobs are sent to the first free job
slot. The ’anywhere’ one was done with 20,50 and 75% of analysis jobs.
The ’local’ one with only 20% and served as reference point.
Measured variables (plots and averages):

I have performed two main simulations. In the first type of the simu-
lation, the jobs were sent only to the center that has their data on its SE
(labeled ’local’). In the simulations of the second type (labeled ’anywhere’),
the jobs were sent to the first free job slot. The ’anywhere’ simulations
were done for 20, 50 and 75% of analysis jobs of all the concurrently run-
ning jobs. The ’local’ simulation was done with only 20% of the analysis
jobs and served as a reference point. The measured variables (plots and
averages) were as follows:

• FIRST MATCHED → ASSIGNED



6 SIMULATION OF ALICE TIER-2 CENTERS 31

• RUNNING → SAVING

• Transfer speed

• Job efficiency (CPU time/wall time)

Please note, that since the production jobs in the simulation did not
download any data, all the results are given for analysis jobs only.

6.4 Results

Here I will present a set of figures and a short description of individual
measurements.

6.4.1 Jobs using only local data (the ’local’ simulation), 20% of
jobs are analysis

Figure 7 shows the waiting time in the Central Task Queue from the mo-
ment the job was matched against a request from a JobAgent for the first
time. In average, jobs waited 1.46 minutes. Figure 8 shows the time it took
the jobs to finish their work - stream and process the data. The average
working time was 1.84 hours. Figure 9 shows the transfer speed of network
messages. The average transfer speed was 400 kB/s. Finally, Figure 10
shows the job efficiency with the average of 69%.

I will skip these comments for the simulations with jobs using data
stored ’anywhere’ and only present figures with the explanation in the
figures captions. Also the FIRST MATCHED → ASSIGNED figure will
not be shown. In fact the only condition for matchmaking jobs was the data
location which in this case was not ’local’, but ’anywhere’, so consequently
this value was for all the jobs 0.



6 SIMULATION OF ALICE TIER-2 CENTERS 32

0 5 10 15 20 25 30 35
0

500

1000

1500

N
um

be
r 

of
 jo

bs

Time [minutes]

FIRST_MATCHED −> ASSIGNED, data: local, 20%

Figure 7: The FIRST MATCHED → ASSIGNED plot for ’local’ simula-
tion with 20% of analysis jobs. Average is 1.46 minutes.

0 6 12 18 24 30 36
0

20

40

60

N
um

be
r 

of
 jo

bs
 (

%
)

Time [hours]

RUNNING −> SAVING, data: local, 20%

Figure 8: The RUNNING → SAVING plot for ’local’ simulation with 20%
of analysis jobs. Average is 1.84 hours.



6 SIMULATION OF ALICE TIER-2 CENTERS 33

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10
x 10

4

N
um

be
r 

of
 tr

an
sf

er
s

log
10

Speed [MB/s]

Transfer speed, data: local, 20%

Figure 9: The transfer speed of network messages for ’local’ simulation
with 20% of analysis jobs. Average is 0.40 MB/s.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

N
um

be
r 

of
 jo

bs

job efficiency

Job efficiency, data: local, 20%

Figure 10: The job efficiency (cpu time/wall time) for ’local’ simulation
with 20% of analysis jobs. Average is 69%.



6 SIMULATION OF ALICE TIER-2 CENTERS 34

6.4.2 Jobs using data stored anywhere (the ’anywhere’ simula-
tion), 20% of jobs are analysis

0 6 12 18 24 30 36
0

20

40

60

N
um

be
r 

of
 jo

bs
 (

%
)

Time [hours]

RUNNING −> SAVING, data: anywhere, 20%

Figure 11: The RUNNING → SAVING plot for ’anywhere’ simulation with
20% of analysis jobs. Average is 2.16 hours.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

5

10

15
x 10

4

N
um

be
r 

of
 tr

an
sf

er
s

log
10

Speed [MB/s]

Transfer speed, data: anywhere, 20%

Figure 12: The transfer speed of network messages for ’anywhere’ simula-
tion with 20% of analysis jobs. Average is 0.42 MB/s.



6 SIMULATION OF ALICE TIER-2 CENTERS 35

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

N
um

be
r 

of
 jo

bs

job efficiency

Job efficiency, data: anywhere, 20%

Figure 13: The job efficiency (cpu time/wall time) for ’anywhere’ simula-
tion with 20% of analysis jobs. Average is 58%.

6.4.3 Anywhere simulation, 50% of jobs are analysis

0 6 12 18 24 30 36
0

20

40

60

N
um

be
r 

of
 jo

bs
 (

%
)

Time [hours]

RUNNING −> SAVING, data: anywhere, 50%

Figure 14: The RUNNING → SAVING plot for ’anywhere’ simulation with
50% of analysis jobs. Average is 3.52 hours.



6 SIMULATION OF ALICE TIER-2 CENTERS 36

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

2000

4000

6000

8000

N
um

be
r 

of
 tr

an
sf

er
s

log
10

Speed [MB/s]

Transfer speed, data: anywhere, 50%

Figure 15: The transfer speed of network messages for ’anywhere’ simula-
tion with 50% of analysis jobs. Average is 0.99 MB/s.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

N
um

be
r 

of
 jo

bs

job efficiency

Job efficiency, data: anywhere, 50%

Figure 16: The job efficiency (cpu time/wall time) for ’anywhere’ simula-
tion with 50% of analysis jobs. Average is 47%.



6 SIMULATION OF ALICE TIER-2 CENTERS 37

6.4.4 Anywhere simulation, 75% of jobs are analysis

0 6 12 18 24 30 36
0

20

40

60
N

um
be

r 
of

 jo
bs

 (
%

)

Time [hours]

RUNNING −> SAVING, data: anywhere, 75%

Figure 17: The RUNNING → SAVING plot for ’anywhere’ simulation with
75% of analysis jobs. Average is 5.88 hours.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

2000

4000

6000

8000

N
um

be
r 

of
 tr

an
sf

er
s

log
10

Speed [MB/s]

Transfer speed, data: anywhere, 75%

Figure 18: The transfer speed of network messages for ’anywhere’ simula-
tion with 75% of analysis jobs. Average is 1.49 MB/s.



6 SIMULATION OF ALICE TIER-2 CENTERS 38

0 0.2 0.4 0.6 0.8 1
0

50

100

150

N
um

be
r 

of
 jo

bs

job efficiency

Job efficiency, data: anywhere, 75%

Figure 19: The job efficiency (cpu time/wall time) for ’anywhere’ simula-
tion with 75% of analysis jobs. Average is 36%.

6.4.5 Results overview

All the averaged results can be seen in Table 2.

Average Local, 20% Any, 20% Any, 50% Any, 75%

FM → ASSGN [minutes] 1.46 0 0 0
RUN → SAV [hours] 1.84 2.16 3.52 5.88
Efficiency 69% 58% 47% 36%
Transfer speed [MB/s] 0.40 0.42 0.99 1.49

Table 2: Overview of the simulation results

6.5 Discussion

The simulation I have performed using MONARC2 predicts, that, in this
case, using data stored at distant Storage Elements and adding on the
percentage of analysis jobs running at the site:

• the average efficiency of job processing will go down

• the average job processing time will grow several times

• the average transfer speed will grow



6 SIMULATION OF ALICE TIER-2 CENTERS 39

If there was not the last observation (see the last row in the Table 2),
the results would match general expectations. However it is unexpected
that the average speed is rising.

When you look at Figure 18 it can be virtually separated at the value
−0.5 in two parts. The transfers on the left are very slow and they are
effectively blocking the corresponding jobs. This leaves quite a lot of band-
width for other transfers which can be seen on the right side of the figure.
These transfers are boosted so their corresponding jobs get processed much
faster. For one slow transfer there can be hundreds of fast ones. This is the
main reason, for the rising transfer speed. The ’external load modification’
flaw (see Section 5.8) also adds on this effect.

The effect of slow against fast transfers is not reflected in the job ef-
ficiency nor the job duration. This is due to the fact that one job can
represent many transfers (see Section 6.2.4). Some of them might be slow,
some of them are fast. When one job downloads 1000 files (10 MB each)
at 10 MB/s and finishes in 15 minutes and another job downloads 100 files
at 0.01 MB/s ( 28 hours), the average duration will be around 14 hours,
but the average transfer speed will be 9 MB/s. Also, in the case of job
efficiency, even if a job gets the data instantly, the efficiency cannot be
higher than 100%.



7 BENCHMARKING MONARC2 40

7 Benchmarking MONARC2

In MONARC2, the network is handled by classes from the network pack-
age. It works well for small systems, but as the network environment
becomes more complicated simulation slows down exponentially. Since the
network package of MONARC2 is a part of the simulator core, for which
the source code is not publicly available, I can only guess what is behind
this slowdown. It is possible that algorithm used to recalculate the speed
of individual messages creates in more complicated situations cascades of
recalculations - each message could trigger recalculation of all other mes-
sages that share some part of the way. Even thousands of changes of ’used
bandwidth’ were reported with a single time stamp in the output of a
single linkport.

With the simulations from Section 6 I touched the limits of the MONARC2
package. Using the same level of detail for more complicated models would
require an enormous amounts of time - my model was scaled down 4 times
and still required several days to finish. The bottleneck seems to be the
network package of MONARC2, which has difficulties with managing many
messages coming from many different sources. This is why I did a bench-
marking of MONARC2 to evaluate its limits.

7.1 Benchmark simulations

First I should make clear, that these simulations were done with the orig-
inal MONARC2 package (v2.1.12).

I used a symmetrical model of 6 identical regional centers connected in
a ring topology with 1 Gbit/s links (see Figure 20). Each center had:

• 501 CPUs per center

– each CPU had a 1 Gbit/s linkport

• 1 SE per center with a 2 Gbit linkport

• the memory and processing power were not important

Using this model I did 3 different simulations:

Simulation 1. (CPU): only processing jobs (processOnCpu method),
there were no network transfers in this simulation

Simulation 2. (local): All jobs were ”download” jobs, they downloaded
some data from the local Storage Element (SE) and ended - there
was no traffic between the regional centers



7 BENCHMARKING MONARC2 41

Center1

Center4

Center2

Center3Center6

Center5

Routers

1 Gbit/s links

Figure 20: The symmetrical layout of 6 regional centers connected in the
ring topology with 1 Gbit/s links.

Simulation 3. (global): All jobs were ”download” jobs, they downloaded
some data from a random SE and ended

10 jobs per second were submitted to each regional center.

7.2 Specifications of the machine used for the de-
scribed simulations

CPU: Intel Xeon 5130, 4 cores, 2 GHz each, hyper-threading off

Memory: 4 GB

OS: Linux 2.6.9-89.0.23.ELsmp, redhat based

Java: sun jre 1.6.0 21

No other significant processes were running on the machine during my
simulations (at least at any time I checked).



7 BENCHMARKING MONARC2 42

7.3 Results

ǫ =
∆simulation time

∆real time
(1)

The ’CPU’ simulation reached maximum of 3000 running jobs at the
time of 50 seconds and crashed at 490 seconds when the machine ran out
of memory and failed to create any new threads. The ǫ however never
dropped under 10−1 (see Figures 21, 23 and 24).

The ’local’ and ’global’ simulations crashed after approximately 70 sec-
onds for the same reason (note that they use 2 threads per job - one for
the job itself and one for the transfer). Here the ’global’ simulation got
even to 10−4 - see Figures 22, 23 and 24.

After having discussed my findings with the developers of MONARC2
we concluded, that for more complicated models it would be more appropri-
ate to use the class CPUCluster instead of the class CPUUnit. CPUCluster
is practically the same as CPUUnit only with an enormous memory, many
virtual CPUs and only one linkport (instead of hundreds). This would
very likely lead to faster simulations. MONARC2 also offers the class
JobOpt, which represents an optimized job, that can handle multiple jobs
and transfers with a single thread.

Unfortunately, due to time constraints I have not performed this addi-
tional benchmarking simulation test.



7 BENCHMARKING MONARC2 43

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

Simulation time [s]

R
ea

l t
im

e 
[s

]

Simulation time

 

 

cpu

Figure 21: The simulation time vs real time plot for the ’CPU’ simulation.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10

5

Simulation time [s]

R
ea

l t
im

e 
[s

]

Simulation time

 

 

local

global

Figure 22: The simulation time vs real time plot for the ’local’ and the
’global’ simulation.



7 BENCHMARKING MONARC2 44

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Simulation time [s]

R
ea

l t
im

e 
[s

]

Simulation time

 

 

cpu

local

global

Figure 23: The simulation time vs real time plot for all the simulations.

0 500 1000 1500 2000 2500 3000 3500 4000

10
−4

10
−3

10
−2

10
−1

10
0

∆ 
si

m
. t

im
e 

/ ∆
 r

ea
l t

im
e

Running jobs

Simulation speed

 

 

cpu

local

global

Figure 24: The ǫ vs running jobs plot for all the simulations.



8 SUMMARY 45

8 Summary

In my present work, I first studied the Computing model of the ALICE
experiment, focusing in particular on the aspects of the processing of data
in the ALICE distributed computing environment: the ALICE Grid. This
includes using the services and resources available from LCG and also the
ALICE-specific infrastructure: the AliEn framework. A very important
part of the ALICE distributed computing system is represented by the
Tier-2 centers, which provide almost half of the computing and disk re-
sources.

With about 80 computing sites of the ALICE distributed system spread
all over the world, it is necessary to master a machinery of job processing
and data storage and transfers, which would ensure an efficient usage of
the available resources with as few bottlenecks as possible. When building
such a complicated system, it is essential to have a possibility to use results
of reasonably realistic simulations of the behavior of various components of
the system under big load, which should go along with the real stress-tests
of the system. Since the basic part of the ALICE computing potential
is concentrated in the Tier-2s, simulations of their behavior under heavy
loads of jobs are of basic importance.

The second part of my work was concerned with the study and exten-
sion of the MONARC2 simulation framework and tools for the purpose
of simulations of the ALICE Tier-2 centers. The aim of MONARC2 and
its predecessor MONARC is to provide a design and optimization tool
for building of large distributed computing systems. The simulator is in
particular customized for the LHC-specific HEP data processing.

I successfully extended the MONARC2 simulator package to include
needed parts of the ALICE Computing Model like JobAgent or AliEn
Resource Broker. Then I created a model of six ALICE Tier-2 sites which
included the Prague computing center Golias and additional 5 ALICE
regional centers from Central Europe. With this model I ran simulations to
predict effects of different requirements on the location of data processed by
jobs on the jobs’ duration, efficiency and other important characteristics.

As a result, my simulations have shown that the average time needed
for the processing of jobs grows up and the average efficiency of the jobs
processing drops down when the processed data files are stored at dis-
tant centers. A similar effect was produced when I was changing the ratio
between the number of the simulation and analysis jobs: when the per-
centage of the analysis jobs goes up, the average processing time grows
and the average efficiency drops.



9 CONCLUSION 46

While the mentioned observations were something one would in general
expect, there was also a surprising result of the average data transfer speed
growing as a result of having the data stored on distant centers and raising
the percentage of analysis jobs. I have discussed possible reasons for this
behavior.

These presented results are specific to the chosen model. For other
models of computing centers and layouts, the results might not have been
the same.

Using my specific model, I ran into difficulties with the performance of
the MONARC2 simulator. Therefore, I completed a couple of benchmark
simulations to test the limits of the MONARC2 package.

9 Conclusion

In the real situation analysis of data consists basically of two tasks: to get
the data and to process the data. The ’getting the data’ part is done by
the network and the processing is done by computers. To have an optimal
performance means to have these two parts in balance.

When you have faster computers, they will wait for the network to
transfer the data. When you have faster network, it will not be used to
its full potential. Sometimes it is worth using only a part of the CPU
resources (when the network is slower), so that you would get some results
faster and the energy consumption would be reduced, while the total time
of processing all the data would be the same.

In simple situations analytic solutions can be found, but in the case of
the complex systems like the LHC Computing Grid, the simulations are the
only way how to estimate or predict the behavior of such systems. The first
months of the LHC operations characterized by the envisaged enormous
volumes of PetaBytes of the recorded raw data have clearly shown the
importance of the smooth functioning of the data processing machinery.
Any failures of or bottlenecks in this system is a threat of loosing the
precious data or running into problems with the data processing, this time
loosing the basic Physics results.



REFERENCES 47

References

[1] ALICE Colaboration. Alice: Physics performance report volume I.
J. Phys., G30(1517), 2004.
http://aliceinfo.cern.ch/Collaboration/index.html.

[2] ALICE Colaboration. Alice: Physics performance report volume II.
J. Phys., G32(1295), 2006.
http://aliceinfo.cern.ch/Collaboration/index.html.

[3] CERN. http://www.cern.ch.

[4] LHC: The Large Hadron Collider. http://lhc.web.cern.ch/lhc/.

[5] LHC Computing Grid. http://lcg.web.cern.ch/LCG/.

[6] C. M. Dobre and V. Cristea.
A Simulation Model for Large Scale Distributed Systems.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=

4430426, 2008.

[7] P. Cortese et al. Alice computing: Technical design report. Technical
report, CERN, 2005.
http://aliceinfo.cern.ch/Collaboration/Documents/TDR/

Computing.html.

[8] C.M. Dobre and C. Stratan. Monarc simulation framework.
Proceedings of the RoEduNet International Conference, Timisoara,
Romania, May 2004.
http://monarc.cacr.caltech.edu:8081/www_monarc/monarc.

htm.

[9] Web page of the Golias farm. http://www.particle.cz/farm/.

[10] C. Zach, L. Betev, and D. Adamova. Simulation of the job processing

performance at an ALICE Tier-2 site with MONARC. accepted for
publication in the Proceedings of the 18th International Conference
on Computing in High Energy and Nuclear Physics (CHEP) 2010
(to appear in Journal of Physics: Conference Series, 2011).

[11] CREAM CE.
http://grid.pd.infn.it/cream/.



REFERENCES 48

[12] Y. Schutz. New site resources profile requirements and pledges.
http://indico.cern.ch/conferenceDisplay.py?confId=

66646&view=cdsagenda.

[13] P. Saiz et al. Alien - alice environment on the grid.
Nucl. Instrum. Meth., A502:437–440, 2003.
http://alien.cern.ch/twiki/bin/view/AliEn/Home.

[14] Status of Sites services.
http://alimonitor.cern.ch/stats?page=services_status.

[15] Status of SEs.
http://alimonitor.cern.ch/stats?page=SE/table.

[16] Map of ALICE sites.
http://alimonitor.cern.ch/map.jsp.

[17] gLite. http://glite.web.cern.ch/glite/.

[18] C. Grigoras et al. MonALISA: An Agent Based, Dynamic Ser-
vice System to Monitor, Control and Optimize Distributed Systems.
Proc. of the CHEP’07 Conference, Victoria, Canada, September 2007.


