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Abstract:

This thesis is devoted to diffraction physics at Large Hadron Collider (LHC). The experimental

part of the work studies rapidity gap production in the first data sample of integrated luminosity

of 7.1±0.2µb−1 recorded by the ATLAS experiment at
√
s = 7TeV. The rapidity gaps, defined as

regions in rapidity devoid of particle activity, were reconstructed based on both energy deposits

in ATLAS calorimeter system and tracks reconstructed in Inner Detector.

Floating rapidity gaps measured as the largest pseudorapidity gap within the detector acceptance,

η = ±4.9, were used for determination of diffractive fractions in the total inelastic cross sections.

Moreover, inclusive forward rapidity gap spectrum ∆ηF was measured. Forward rapidity, ∆ηF ,

is defined as the largest pseoudorapidity gap in event which spans from the limit of the detector

acceptance to the first detected particle. The forward rapidity gap distribution was estimated for

different cuts on final particle momenta 200, 400, 600, and 800MeV. The obtained distributions

were used to constrain Monte Carlo models. Especially, measurement of large ∆ηF production

reduce theoretical uncertainties in diffractive models while events with small ∆ηF allow to test

hadronisation and underlying event models.

In addition, models for hard diffraction and exclusive processes were implemented into Her-

wig++ Monte Carlo generator as a part of this work. These processes can be measured using

proton taggers or rapidity gap method at LHC. Their measurement improve our understanding

of diffractive production of large masses but it can be also used for precise measurement of new

phenomena.
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Chapter 1

Introduction

Typical inelastic proton-proton collision with center-of-mass energy of 7TeV at Large Hadron

Collider (LHC) produces around six charged particles with transverse momentum pT > 100MeV

per pseudorapidity unit in the central region [1]. Corresponding average distance between two

neighbouring particles is 0.15 units of pseudorapidity. However, significant fraction of inelastic

events exhibits much larger gaps between particles. These regions in rapidity devoid of particle

activity are reffered as rapidity gaps and the related quasi-elastic events are termed as diffractive.

Diffractive processes occur in approximately 30% of the collisions at LHC at
√
s = 7TeV. Their

large rapidity gap production is attributed to exchange of states with vacuum quantum numbers.

Creation of small rapidity gaps is possible also in non-diffractive events due to fluctuations in

hadronisation. However, it is exponentially suppressed with increasing gap size.

The average interaction has small momentum transfer (small mass final state) and pertur-

bative Quantum Chromodynamics is not applicable. Instead, phenomenological models are em-

ployed. The models contain large theoretical uncertainties and experimental data are required

for their constrain. Owing to large contribution into the inelastic cross section, an improvement

in understanding of diffractive processes is desirable in its own right. Moreover, diffractive disso-

ciation is closely related to the elastic scattering and the total cross section. It is important for

description of cosmic ray particles interacting with the atmosphere [2]. In addition, precise mea-

surements at LHC require good modeling of additional proton-proton interactions (pile-up) as

well as underlying events description where diffractive dissociation has to be taken into account.

Diffraction is also responsible for the significant contribution to uncertainty in the luminosity

monitoring.

This thesis studies production of the rapidity gaps at LHC at
√
s = 7TeV. Diffractive models

are constrained by measurement of large rapidity gaps while measurement of small gaps test

hadronisation and underlying event description in current Monte Carlo (MC) generators. Fur-

thermore, contribution of diffractive components into the total inelastic cross section is estimated

using different rapidity gap patterns of the corresponding processes.
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2 CHAPTER 1. INTRODUCTION

Surprisingly large fraction of events is accompanied by large rapidity gaps even in hard

production with high momentum transfer (high mass final state). Experiments at lepton-hadron

colliders observed their contribution to be around 5-10%. Models describing these processes at

electron-proton experiments are quite well constrained. However, the transition of these models

to description of hadron-hadron interactions requires introduction of a new uncertainty related

to additional soft parton scatterings which can spoil the rapidity gap. Thus the hard diffractive

contribution measured at the Tevatron was smaller around 1%. The processes containing large

rapidity gaps are even more interesting if the particular final state such as di-jet, W+W−, or

Higgs boson is produced exclusively i.e. it is accompanied only by two intact beam protons.

These processes are induced either by a strong interaction (exchange of colour singlet gluon

pairs) or by an electroweak interaction (two photon collider). Such clear environment provides

possibility for precise measurements of new states even at the hadron-hadron collisions. Some of

the processes which are especially interesting for measurement at LHC have been implemented

to a new MC generator Herwig++ as a part of this work. The collection of the forward physics

models into Herwig++ was motivated by the fact that these processes are spread among many

MC generators where some of them starts to be obsolete or they are not further tuned to data.

The first half of the thesis provides a basic theoretical and experimental apparatus needed

for the work. Brief overview of the Standard Model and Quantum Chromodynamics is given

in Chapters 2 and 3. The next chapter reviews the current theoretical and experimental status

of diffractive and exclusive processes. In the following chapter, experimental apparatus of LHC

and ATLAS detector is described. It concentrates on those parts of the detector which were

used for the rapidity gap measurements. Chapter 6 is devoted to basic MC event generation

techniques. The methods for the MC integration were necessary tools for implementation of the

forward physics processes into Herwig++. They are introduced in the first two sections. The

remaining part of the chapter gives quick overview of perturbative and non-perturbative particle

production and underlying event models. These topics have close connection to the rapidity gap

production.

The result part of this work starts in Chapter 7 by providing detailed description of models

implemented in Herwig++. Particularly, hard diffraction, central exclusive production in QCD,

and two photon initiated processes are reviewed and compared with different MC generators in

individual sections.

In the remaining chapters, the experimental results of rapidity gap production are discussed.

At first, the algorithm for rapidity gap reconstruction using the ATLAS calorimeter system in

combination of Inner Detector is introduced.

The algorithm is used for estimation of diffractive fractions in the total inelastic cross section

in Chapter 10. In addition to the previous ATLAS measurement using Minimum Bias Trigger

Scintillator [3], the novel algorithm can separate different diffractive topologies and reduce MC
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model systematic uncertainty due to larger pseudorapidity coverage provided by the ATLAS

calorimeter system and Inner Detector.

Measurement of the differential inelastic cross section as a function of rapidity gap size is

presented in Chapter 11. The measurement is done for different cuts on the transverse momenta

of final particles and results are compared with various MC models in order to give constrains

on some of their parameters.



Chapter 2

Standard Model of Particle Physics

The Standard Model (SM) is currently the most successful theory in description of phenomena in

Particle Physics. It is Quantum Field Theory based on non-Abelian gauge symmetry SU(2)L ×
U(1)Y×SU(3)C, where subscripts L denotes coupling of left-handed fields, Y is hypercharge and

C is color charge.

Such symmetry requires 12 bosons fields carrying integer spin 1 which mediate electromag-

netic, weak, and strong interaction between the fermions matter fields. Fermions, with half

integer spin 1/2, are divided into three families where each family consists of two leptons and

two quarks. Charged leptons e, µ and τ , having all the same electric charge, are accompanied by

corresponding electrically neutral neutrina νe, νµ, ντ which are considered to be massless in SM

and interact only via weak interaction. The quark fields have non-zero quantum number colour

and thus can interact, apart from electromagnetic and weak interaction, also via strong interac-

tion. Each family includes one quark with positive fractional electric charge 2/3 (u,c,t) and one

quark with negative fractional charge −1/3 (d,s,b). The fermion fields and their properties in

SM are summarized Table 2.1.

A boson which is responsible for electromagnetic interaction is photon, γ, and couples to the

matter fields which carry the electric charge. The weak interaction is transmitted by two charged

bosons W± and one neutral boson Z0 which was one of the great prediction of the Standard

Model. The bosons mediating weak interaction couples to weak hypercharge which is different

for left-handed and right-handed components of the fermion fields. This enables to describe

the well known parity violation effects in SM. The weak interaction is a short range force and

thus the mediating bosons have to be heavy. A mechanism allowing particles to acquire mass is

Higgs mechanism in which the symmetry of electroweak sector SU(2)L×U(1)Y is spontaneously

broken to U(1)Q, where subscript Q denotes electric charge. This gives a rise to new scalar

particle called Higgs boson, H, which is the only missing part of the SM that needs to be

experimentally confirmed. A detailed description of the electroweak sector in the SM can be

found in [4].

4
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The strong interaction between quarks, existing in three colour states, is mediated by eight

gluons. The force increases with growing distance between quarks and therefore quarks are

confined in form of hadronic states during normal condition. However, at very small distances

the confined quarks behave as almost free particles. This property is known as asymptotic

freedom. The theory of strong interaction is called Quantum Chromodynamics and since it

has close connection with high energy diffraction it is discussed in more detail in the following

chapter.

First Second Third Electric Weak Carry

family family family charge (e) hypercharge colour?

leptons

electron (e) muon (µ) tau (τ) -1
YL = −1/2

no
YR = 1

electron- muon- tau-
0

YL = −1/2
no

neutrino (νe) neutrino (νµ) neutrino (ντ ) YR = 0

quarks

up (u) charm (c) top (t) 2/3
YL = −1/6,

yes
YR = 2/3

down (d) strange (s) bottom (b) -1/3
YL = 1/6,

yes
YR = −1/3

Table 2.1: Summary of elementary fermion fields in SM and their properties. The YR and YL

denote weak hypercharge for right-handed and left-handed components of fermion fields respec-

tively.



Chapter 3

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a theory of strong interactions described by the Lagrangian

which is invariant under a local gauge transformation SU(3) i.e. it is invariant under a local

space-time transformation acting on the quark colour triplet Φ(x)

Φ′(x) = S(x)Φ(x), (3.1)

where S(x) is an unitary matrix with detS(x) = 1. Since the vector space of such matrices forms

representation of Lie group S(x) can be written in an exponential form

S(x) = exp(iωa(x)T a), (3.2)

where T a are generators of the SU(3) (usual choice are Gell-Mann matrices) and satisfy com-

mutation relations of the corresponding Lie algebra

[T a, T b] = ifabcT c, (3.3)

where symbol fabc is a fully antisymmetric tensor called structure constant of SU(3) [5]. The

symmetry of the Lagrangian implies existence of 8 gauged boson massless fields, AA, with spin

1 called gluons mediating strong interaction between quarks, qa. The QCD Lagrangian reads

L = −1

4
FAαβF

Aαβ +
∑

flavours

q̄a(iD/−m)a,bqb, (3.4)

where A runs over 8 colour degrees of freedom, a, b runs over 3 quark colours and m is mass

of the quark field. The first gauged term of the Lagrangian contains a contraction of two field

strength tensors

FAαβ = ∂αA
A
β + ∂βA

A
α − gfABCABαACβ . (3.5)

The presence of the third non-Abelian term is responsible for self-interactions of three and four

gluons. These interactions are not available in QED and they make a crucial difference in

behavior of higher order perturbative contributions between QED and QCD as will be seen in

6
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the following section. The second term in the Lagrangian (3.4) contains covariant derivatives

invented in analogy with the minimal substitution in QED in order to ensure the local gauge

invariance of the QCD Lagrangian

(D/α)a,b = ∂αδa,b − ig(AAαT
A)a,b. (3.6)

Since gluons are massless, the same problem as in QED arise when one gets to definition of

a gluon propagator. The definition is only possible if a particular gauge is chosen. One example

of gauge fixing terms is the covariant gauge [6] with parameter λ

L
gf

= − 1

2λ
(∂αA

α)2 (3.7)

which needs to be added to the Lagrangian (3.4). This covariant fixing term must be further

supplemented by Lagrangian with Faddeev-Popov ghosts scalar fields

L
ghost

= ∂αη
A†(Dα

ABη
B). (3.8)

The ghost fields cancel unphysical degrees of freedom which would otherwise propagate to phys-

ically measurable quantities [6].

3.1 Asymptotic Freedom and Confinement

Leading order computations in perturbative QCD are straightforward. The real difference from

Abelian QED appears when higher order contributions in αS = g
4π are included. A computation

of the higher orders requires an addition of virtual corrections. These corrections are evaluated

using loop integrals which contain ultraviolet divergences (UV) similarly as in QED. This prob-

lem has been resolved by a procedure called renormalization. In the first step of this procedure,

the UV divergent integrals are regularized by some sort of cut-off. Arbitrary scale µ is intro-

duced in order to separate finite and divergent parts of the integral. The infinities are finally

removed by redefinition of couplant, masses, quark and gluon wave functions, and ghost fields.

A new renormalized Lagrangian is constructed from the bare Lagrangian (3.4) supplemented by

a counterterm Lagrangian, canceling the divergences generated by the original Lagrangian.

a) b)

Figure 3.1: Feynman diagrams contributing to the QCD β function in one loop approximation.

The diagram b) is responsible for asymptotic freedom in QCD.
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The renormalization procedure features a large freedom of selecting finite parts of countert-

erms (called renormalization scheme) and of choosing the renormalization scale µ. However,

physical quantities cannot depend on any of these arbitrary choices. This statement is contained

in renormalization group equation which determines the running coupling and running masses [7].

The evolution equation for strong coupling constant in a mass independent scheme reads

∂αS

∂ lnµ
= β(αS(µ)) = −bα2

S(1 + b′αS +O(α2
S)), (3.9)

where the right hand side of the equation is called β-function of QCD. Its first two coefficients

are uniquely determined

b =
(11CA − 2nf)

12π
(3.10)

b′ =
(17C2

A − 5CAnf − 3CFnf)

2π(11CA − 2nf)
, (3.11)

where CA and CF are colour factors of adjoint and fundamental representation respectively. They

are defined as eigenvalues of Casimir operator in corresponding representation and take values

in the specific case of SU(3) CF = 4/3 and CA = 3. nf is the number of active quark flavours

i.e. those with mass smaller than the typical scale of a process. Higher order coefficients are

arbitrary and depend on the renormalization scheme. The fact that b is positive and thus has

opposite sign as in QED has crucial consequences. It implies that αS(µ/ΛQCD)→ 0 as µ→∞,

where ΛQCD is fundamental scale parameter with dimension of energy. This can be explicitly

seen from leading order solution of (3.9) which reads

αS(µ/ΛQCD) =
1

b ln(µ/ΛQCD)
. (3.12)

The behavior of the coupling constant is called asymptotic freedom and it is a consequence of the

non-Abelian term in (3.5) which introduces additional contributions from gluon self interaction

in quark and gluon self energies. The graphs contributing to the QCD β function at one loop

approximation can be seen in Figure 3.1.

On the other hand, the coupling constant is very large at small scales (at large distances)

and grows to infinity as µ is approaching the parameter ΛQCD. This says that perturbative

QCD is not trustable in regime close to ΛQCD ≈ 200MeV, a value corresponding approximately

to an inverse size of the hadrons. Such growth of the coupling with decreasing scale is called

confinement.

3.2 Parton Distribution Functions and Evolution Equations

Proton structure is traditionally probed at lepton-proton colliders in reactions

l(k) + proton(p)→ l′(k′) +X; l, l′ = e, µ, νe, νµ, (3.13)
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where k, k′ are four-momenta of incoming and outgoing lepton, p is the proton four-momentum

and X denotes any final state allowed by conservation laws. The reactions (3.13), depicted in

Figure 3.2, are usually described by the following set of kinematical variables

s = (k + P )2 (3.14)

Q2 = −q2 = −(k − k′)2 (3.15)

x =
Q2

2pq
=

Q2

W 2 +Q2 −m2
p

(3.16)

y =
pq

pk
=
W 2 +Q2 −m2

p

s−m2
p

(3.17)

W 2 = (q + p)2 =
Q2(1− x)

x
+m2

p, (3.18)

where mp is proton mass. At low scales, where momentum transferred Q2 is much smaller than

proton mass, proton can be considered as a point like fermion with anomalous magnetic moment

and the cross section can be computed in QED framework. However, when Q2 � mp proton

reveals to be object with internal structure composed of partons. Furthermore, at large Q2

the probability of a proton to be broken and producing a hadronic system X rapidly increases.

At such conditions the reactions (3.13) are called Deep Inelastic Scattering (DIS). The proton

Q

l(k′)

l(k)

P (p′)

P (p)

W = mp

γ∗

Q

l(k′)

l(k) P (p)

W

γ∗

X

Figure 3.2: Feynman diagrams of elastic scattering (left) and inelastic scattering (right) of lepton

on the proton.

partonic content is incorporated into the theory in form of parton distribution functions (PDF)

qi(x, t), g(x, t) describing the probability to find quark with flavour i or gluon with maximum

virtuality t and carrying momentum fraction x of the proton. Because of the weak dependence

of the PDF on the scale t it was originally believed that PDF are only function of variable x1.

However, the rise of the QCD came with explanation of the dependence on the scale t. In

QCD, partons acquire virtuality by interactions with other partons inside the proton. This can
1Momentum fraction x carried by parton is equal to Bjorken x defined by (3.16).
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be seen from the cross section for emission of an extra gluon in e− + q → e− + q + g reaction

having a form

σ(1) ∝ αS

(
P (0)
qq (x) ln

M2

m2
g

+ f(x)

)
, (3.19)

where M denotes invariant mass of qg system and P (0)
qq (x) is quark splitting function giving the

probability of quark splitting to gluon and a quark which carries momentum fraction x of the

original quark. For further references, the exact form of the quark and gluon splitting functions

in the first order of perturbation theory are given

P (0)
qq (x) = P

(0)
q̄q̄ (x) = CF

[
1 + x2

1− x

]

+

, (3.20)

P (0)
gq (x) = P

(0)
gq̄ (x) = CF

[
1 + (1− x)2

x

]
, (3.21)

P (0)
qg (x) = P

(0)
q̄g (x) =

1

2
[x2 + (1− x)2], (3.22)

P (0)
gg (x) = 2CA

[
x

(1− x)+
+

1− x
x

+ x(1− x)

]
+ δ(1− x)

11CA − 2nf
6

, (3.23)

where ’+ prescription’ on the singular parts of the functions is defined as
∫ 1

0
[f(x)]+g(x)dx ≡

∫ 1

0
f(x)(g(x)− g(1))dx. (3.24)

The gluon mass mg in (3.19) is introduced in order to regularize the infrared divergent integral

of the form dM2/M2. The function f(x) is composed of terms ln 1/x, lnx. Therefore, f(x) can

be neglected in regimes where M2 is large and x is not too small or too large. Then formula

(3.19) can be generalized to n-partons emission in which the virtualities of emitting partons are

strongly ordered

σ(n) ∝ αnS
[
An lnn

M2

m2
g

+Bn lnn−1 M
2

m2
g

+O
(

lnn−2 M
2

m2
g

)]
. (3.25)

The leading logarithms in series (3.25) can be effectively resumed by the so called evolution

equations invented by Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) which takes the

form

∂

∂ ln t

(
qi(x, t)

g(x, t)

)
=
αS(t)

2π

∑

qj ,q̄j

∫ 1

x

dz
z

×
(
Pqiqj (x/z, t) Pqig(x/z, t)

Pgqj (x/z, t) Pgg(x/z, t)

)(
qj(z, t)

g(z, t)

)
.

(3.26)

DGLAP equation describes an evolution of parton distribution functions qi(x, t), g(x, t) with

factorization scale t which has meaning of maximal virtuality of the parton entering into the hard

process. The DGLAP evolution equations (3.26) needs to be supplemented by initial condititions
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Figure 3.3: Validity of evolution equations in 1/x vs Q2 plane. The plot is taken from ref. [6].

that cannot be determined from first principles and needs to be measured. This is done at

lepton-hadron colliders but due to the PDFs universality they can be used also at hadron-hadron

experiments. The total cross section is computed as a convolution of the PDFs with cross section

of a hard process

σ =
∑

i,j∈flavour

∫ 1

0
dx1dx2fi(x1, t1)fj(x2, t2)σhard(s, x1, x2, t1, t2). (3.27)

The usual choice of the factorization scale t is the momentum transfer in the hard process Q2

(i.e. (3.15) for DIS processes) similarly as in case of the renormalization scale.

In the kinematic domain where x is small andQ2 is large the double leading-log approximation

can be used to resume the terms of the type αnS lnnQ2 lnn 1/x. This can be directly derived from

DGLAP equation (3.26) using Mellin transformation and by keeping only the most singular 1/x

terms in the splitting functions. The lowest order gluon distribution function is given by [7]

g(x, t) ∼ 1

x
exp

[
12

πb
ln

ln t/Λ2
QCD

ln t0/Λ2
QCD

ln
1

x

] 1
2

, (3.28)

where b is defined in (3.10). The solution (3.28) grows as x is decreasing. If the starting

distribution is too steep at small-x then the above formula does not hold.

At small x and moderate Q2 > Λ2
QCD where gluon contribution is dominant the leading logs
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αnS lnn 1/x has to be resumed. This is done by the so called Balitsky, Fadin, Kuraev, Lipatov

(BFKL) equation which describes the evolution of unintegrated gluon distribution function

xg(x, t) =

∫ t dk2
T

k2
T
G(k2

T, t) (3.29)

in x. At leading order the BFKL equation is given by

∂G(x, k2
T)

∂ ln(1/x)
=
CAαS

π
k2
T

∫ ∞

k20

dq2
T

q2
T


G(x, q2

T)−G(x, k2
T)

|q2
T − k2

T|
+

G(x, k2
T)√

4q4
T + k4

T


 (3.30)

The regimes of validity for the mentioned evolution equation is schematically showed in

Figure 3.3. There are currently attempts for combined description of both DGLAP and BFKL

regions in one single equation. One of them is given by Ciafaloni, Catani, Fiorani, Marchesini

(CCFM) equation which uses angular ordering to described both the x and Q2 evolution with

DGLAP and BFKL equation emerging as limiting cases [8, 9].

There is a rapid rise of gluon distribution function at very small-x predicted by both DGLAP

and BFKL equations which eventually breaks down the parton model picture of scattering of

independent partons. In this so called saturation regime it becomes possible that two partons

overlap in space and the DGLAP and BFKL need to be modified for parton recombination [7].

This is still under study and more experimental data at very small-x regime are needed.



Chapter 4

Diffraction

Total hadron-hadron cross section can be divided into elastic processes where both protons are

only rescattered without energy loss and inelastic processes in which protons are usually broken

and extra particles are produced. The inelastic processes are usually further categorized into

diffractive and non-diffractive contribution.

The diffractive events can be considered quasi-elastic. Their experimental signature are

regions in rapidity devoid of particle production. These regions are called rapidity gaps. Three

different topologies with the largest cross sections of diffractive processes, shown in Figure 4.1,

are usually distinguished:

X	
  P	
  

P	
  

SD	
  

P	
  

P	
  

X	
  

Y	
  

DD	
  

P	
  

P	
  

P	
  

X	
  

DPE	
  

Figure 4.1: Schematic illustrations of the single (left), double (center) dissociation and double

pomeron exchange processes (right).

• Single diffraction (SD, pp → pX, Figure 4.1 left) includes processes in which one proton

dissociates into system which carries quantum numbers of the proton and the second proton

remains intact. The rapidity gap is produced in forward region separating the diffractive

proton and the dissociated system.

• Double diffraction (DD, pp → XY , Figure 4.1 center) in which both protons are broken.

Each dissociated system carries the quantum numbers of the protons and they are separated

13
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by a central rapidity gap.

• Central diffraction (CD, pp → pXp, Figure 4.1 right) is class of processes in which both

protons remain intact and system with quantum numbers of vacuum is produced in the

central region. There are two rapidity gaps between the protons and the centrally produced

hadronic system. These reactions are also often called double pomeron exchange (DPE)

The rapidity gaps and elastic scattering are explained in theory as an exchange of object which

carries vacuum quantum numbers. For soft diffractive processes, that dominate the diffractive

cross section, pQCD cannot be used. They are described by phenomenological models based on

Regge theory.

Regge theory was developed in 1960s when the interest in quantum fields theories as theories

for description of strong interaction declined. It is based on the analytical properties of scattering

amplitudes which was a popular approach at those times and despite the fact that other S-matrix

theories failed the Regge theory turned out to be extremely successful in the description of elastic

scattering, diffraction and the total hadron-hadron cross section. As will be described in the next

section, the Regge theory models hadronic interactions by an exchange of reggeons and pomerons

carrying vacuum quantum numbers.

In cases when pQCD can be used, the pomeron can be incorporated in QCD although the

description is more complicated than in simple Regge theory. Colour singlet object in QCD can

be represented as an exchange of at least two gluons. If the pomeron has large virtuality it can

be described as a BFKL gluon ladder [10]. This hard pomeron has different properties from

Regge pomeron, and it will be briefly discussed in the next sections.

Rarely, diffractive processes can produce object with high transverse momentum as jets,

high pT leptons, etc. This kind of processes is usually called hard diffraction even though the

pomeron is soft i.e. the virtuality Q2 of pomeron is small. Pomeron is considered to have an

internal structure and the cross section is described in terms of diffractive distribution functions

in a similar way as in the case of non-diffractive PDFs.

Finally, there is an interesting class of central diffractive processes in which a central object

is produced exclusively accompanied by scattered beam protons only. The similar topology can

occur in processes initiated by two photon exchange which can be described in QED with high

accuracy. These exclusive processes are very rare but they can play an important role in precise

searches for new physics at LHC.

4.1 Regge Theory

Regge theory is based on the properties of the S-matrix which is a linear, relativistically invariant

operator that evolves initial state |i〉 at time −∞ to final state |f〉 at time +∞

S|i〉 = |f〉. (4.1)
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Subtracting the identity operator, which corresponds to the trivial case of nothing happening,

the transition matrix T is defined as S = 1 + iT . Transition matrix is related to scattering

amplitude A(i→ f) as follows

T = (2π)4δ4(pi − pf )A(i→ f), (4.2)

where delta function enforces four-momentum conservation. Using the scattering amplitude

A(i→ f) differential cross section can be computed as

dσ =
1

Φ
|A(i→ f)|2dΠn, (4.3)

where Φ is initial flux and dΠn is the Lorentz-invariant phase-space for n particles in final state.

An important property of the S-matrix is unitarity S†S = SS† = 1 which is a direct conse-

quence of probability conservation. The unitarity of the S-matrix immediately leads to important

theorem called optical theorem which relates total cross and elastic cross section of 1+2→ 3+4

reaction by relation

σtot =
2

Φ
ImAel(s, t = 0) 's→∞

1

s
ImAel(s, t = 0), (4.4)

where s = (p1−p2)2 is center-of-mass momentum square and t = (p1−p3)2 momentum transfer.

Another crucial features for the Regge theory are analytical properties of the S-matrix and

crossing symmetry. The starting point for the construction of Regge theory is partial-wave

expansion of the scattering amplitude in the s-channel

A(s, cos θ) =
∞∑

l=0

(2l + 1)Al(s)Pl(cos θ) (4.5)

Al(s) =
1

2

∫ 1

−1
d cos θPl(cos θ)A(s, t(cos θ, s)), (4.6)

where θ is a polar scattering angle in center-of-mass frame in s channel and Pl(cos θ) are Legendre

polynomials.

The representation is well defined in the s-channel domain s ≤ 4m2 and −1 ≤ z ≤ 1 but it

cannot be continued into t and u channels. This problem was solved by Regge who came with

the idea to analytically continue the Al(s) into the complex values of angular momentum l. It

can be shown [10] that the behavior of A(s, t) is governed by pole contributions called Regge

poles. At large t the dominant contribution is given by leading simple pole li = αi(t) (for which

Re li is largest) and scattering amplitude has a form

A(s, t) ≈s→∞ −β(t)
1 + ξe−iπαi(t)

sinπαi(t)
sαi(t), (4.7)
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where βi(t) is a residuum of αi(t) and the quantum number called signature takes values ξ = ±1.

The scattering amplitude has the same form for asymptotic behavior at large t with t replaced

by s.

The poles in Regge theory are interpreted as resonances or bound states of increasing angular

momentum l. The α(t), that interpolates such resonances, is called a Regge trajectory (or

Reggeon). Regge trajectory is usually approximated by first two terms in Taylor series expanded

around t = 0 as

α(t) = α(0) + α′t, (4.8)

where α(0) is called reggeon intercept and α′ reggeon slope of the trajectory. This approxima-

tion is actually good for rather large values of t (several units of GeV2). The leading mesonic

trajectories were fitted in data and it gives the reggeon intercept to be α(0) = 0.5 and reggeon

slope of order 1GeV−2. In the case of baryonic trajectories the slope is very similar but the

intercept is lower and for some of these trajectories even negative.

The general properties of the S-matrix suggests that the Regge pole residue in equation (4.7)

should factories into coupling at each vertex. Thus, in the case of simple reggeon exchange

showed in Figure 4.2 the amplitude can be rewritten as

A(s, t) = g13g24η(t)sα(t) (4.9)

where

η(t) =
1 + ξe−iπα(t)

sinπα(t)
(4.10)

and g13(t), g24(t) are coupling at the corresponding vertices.

Using optical theorem on relation (4.9) one immediately obtains prediction for the total cross

section which in the case of a single pole contribution reads

σtot 's→∞
1

s
Im A(s, t = 0) ∼ sα(0)−1. (4.11)

Since the intercept for the Regge theories does not exceed 0.5 the total cross section should

decrease with increasing energy. However, this is not observed by experiments and the total

cross section is rather flat around energy
√
s ∼ (10-20)GeV. In order to keep such behavior of

the total cross section a new Regge trajectory with intercept equal to 1 and quantum numbers of

a vacuum was introduced. In fact the data shows that pomeron intercept slightly deviates from

unity, as will be shown later, and it is convient to denote this deviation by ε. This trajectory

is called pomeron after I. Ya. Pomeronchuk and does not correspond to any known particle or

resonance. The dependency of the total cross section on the center-of-mass energy
√
s can be

described using simple Regge-inspired parameterization introduced by Donnachie and Landshoff
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(1992) [11]

σtot = Xs0.0808 + Y s−0.4525, (4.12)

where X a Y reaction independent free parameters. The first term in (4.12) is interpreted as a

pomeron exchange whereas the second term corresponds to the reggeon contribution. It can be

seen from equation (4.11) that the pomeron and reggeon intercept yield values of αIP(0) = 1.0808

and αIR(0) = 0.5475.

The pomeron slope has been determined from a fit of the elastic cross section which takes a

form according Regge theory as

dσel

dt
= F (t)s2α(0)−2e−2α′|t| ln s, (4.13)

where F (t) is a function of t containing the residue function and the signature factor. The fit

estimates the slope to be much flatter than the Reggeon slopes α′
IP

= 0.25GeV−2. The pomeron

is the dominant trajectory in high energies in both elastic and diffractive process.

The dependence of the total cross section as a function of energy is usually parameterized

by lnγ s, where the results of the fit gives γ ≈ 2. The exponential behavior in equation (4.12)

of the pomeron term violates the unitarity based on Froissart-Martin bound which states that

the total cross section cannot grow faster with center-of-mass energy than C ln2 s. Thus the

formula (4.12) represents effective behavior violating unitarity at relatively high energies. There

are some phenomenological concepts which cure the exponential behavior of the total and elastic

cross sections predicted by Regge theory by using the eikonal approach taking into account

rescattering effects, see ref. [12, 13].

As it was previously mentioned the pomeron concept can be also introduced in QCD if

the pomeron virtuality is large and the pertubative theory can be used. This hard BFKL

pomeron is expressed in terms of so called reggeized gluon ladders exchanges [10]. However,

properties of the BFKL pomeron differ from the Donnachie and Landshoff pomeron. The leading

singularity in the BFKL scattering amplitude is a cut rather than a simple pole and moreover,

the pomeron intercept is very large αIP(0) ≈ 1.5. Nevertheless, it seems that correct description

of the minimum bias data requires combination of the phenomenological Regge inspired model

and QCD BFKL description. This is presented for example in recent model of Khoze, Martin and

Ryskin (KMR) [14] which combines hard BFKL pomeron description with a dedicated treatment

of low mass diffraction motivated by original s-channel picture of Good and Walker [15], in

which proton and excited proton eigenstates scatter elastically from the target with different

absorption coefficients. Their model leads to a considerable enhancement of cross section for low

mass production which is compatible with current LHC data.
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4.2 Soft Diffraction Phenomenology

Soft diffractive phenomena cannot be described in pQCD due to small momentum transfer. In-

stead phenomenological description based on the Regge theory reviewed in the previous chapter

is employed. The majority of the currently used theoretical models are based on a triple pomeron

coupling approach. One of the main ingredient for its derivation is a consequence of the opti-

cal theorem called Mueller’s generalized optical theorem. It extends optical theorem to relate

inclusive cross section 1 + 2→ 3 +X to discontinuities of three-body forward elastic amplitude

A123̄(s, t,M2) of reaction 1 + 2 + 3̄→ 1 + 2 + 3̄. The mathematical form of the theorem is

(2π)32E
d3σ

d3p
=

1

s
DiscM2 A123̄(s, t,M2), (4.14)

whereM2 = (p1 +p2−p3)2 is square of the mass of the produced hadronic system X and DiscM2

denotes discontinuity in the mass plane.

A scattering amplitude for the single inclusive reaction 1+ 2→ 3+X can be expressed using

the Regge theory in the form

A(12→ 3X) ∼
∑

i

gi13(t)gi2X(t)ηi(t)
( s

M2

)αi(t)
, (4.15)

where M2 is invariant mass of the hadronic system X, the sum runs over the contributing

reggeons and the relation cos θt ∼ (s/M2) as s → ∞ was used. Using the Mueller’s generalized

optical theorem (4.14) one can derive the following formula

16π2s
d2σSD

dM2dt
=
∑

i,j,k

gi13(t)gj∗13(t)ηi(t)η
∗
j (t)

( s

M2

)αi(t)+αj(t)
gk22(0)gijk(t)(M

2)αk(0), (4.16)

where gijk is the triple reggeon coupling. The schematic derivation of the triple reggeon diagram

(4.16) can be seen in Figure 4.3. In the case of SD reactions the outgoing hadron 3 carries

the same quantum numbers as the initial hadron 1. Therefore the trajectories i and j have to

be the pomeron trajectories. The last trajectory k can be either pomeron or reggeon but for

large masses M2 the pomeron trajectory dominates and thus the reggeon contribution is usually

neglected. Furthermore, it is experimentally known that the triple pomeron coupling is nearly

independent of t and thus the cross section (4.16) can be written in factorized form

s
d2σSD

dM2dt
=

1

16π2
|gIP|2

( s

M2

)2α
IP

(t)−1
σIP(M2), (4.17)

where σIP(M2) is pomeron cross section and the rest is called pomeron flux with pomeron-proton

coupling gIP. Diffractive processes are usually described in variable ξ = M2/s. In the case of the

single diffractive processes ξ corresponds to fractional momentum loss of the diffractive proton

i.e ξ = |~p3|/|~p1|. The factorized cross section expressed in ξ reads

d2σSD

dξdt
= fIP(ξ, t)σIP(M2) (4.18)



4.2. SOFT DIFFRACTION PHENOMENOLOGY 19

with pomeron cross section σIP(M2) and pomeron flux fIP(ξ, t) given by

fIP(ξ, t) =
1

16π2
|gIP|2ξ1−2α

IP
(t) (4.19)

σIP(M2) = gIP(0)gIPIPIP(0)(M2)αIP
(0)−1. (4.20)

Description of double diffractive dissociation in which both protons dissociate into systems

X and Y having masses MX and MY can be derived in similar way. The cross section can be

written as a factorization of two SD and elastic scattering cross sections

d3σDD(12→ XY )

dM2
XdM

2
Y dt

=
d2σSD(12→ X2)

dM2
Xdt

d2σSD(12→ Y 1)

dM2
Y dt

/
dσel(12→ 12)

dt
(4.21)

and using equations (4.13) and (4.20) one can obtain formula

16π3s
σDD(12→ XY )

dM2
XdM

2
Y dt

= g2
IP(0)g2

IPIPIP(0)

(
s

M2
XM

2
Y

)2α
IP

(t)−1

(M2
X)αIP

(0)−1(M2
Y )αIP

(0)−1. (4.22)

In the following, the convention MY < MX is adopted.

In order to experimentally constrain diffractive models, it is important to realize that there

is a strong correlation between size of rapidity gap ∆y and variables ξX , ξY . For SD event, the

rapidity gap between the final state proton and the system X satisfies

∆y ' − ln ξX . (4.23)

In experiments, pseudorapidity of particle

η = − ln tan

(
θ

2

)
, (4.24)

where θ is particle polar angle, is used as an approximation of particle rapidity y. Since the

equality y = η holds for particle with zero mass, the approximation is very accurate for high

energetic particles where the mass of the particle can be neglected. Therefore using the pseudo-

rapidity gap instead of rapidity gap in (4.23) does not increase the error of the relation. It follows

from equations (4.23) and (4.18) that the differential cross section as a function of rapidity gap

size, ∆η, for single diffractive processes is approximately constant

dσSD

d∆η
' constant. (4.25)

To conclude, the ξ dependence in diffractive models can be experimentally constrained either by

direct measurement of momentum fraction loss in SD events or by measurement of rapidity gap

distribution. The former method requires proton taggers allowing to detect the intact diffractive

protons propagating very close to the beam inside the beam pipe. The later approach has been

used in the analysis presented in Chapter 11.

As in the case of the total cross section the triple-Regge description of the SD cross section

behaves as σSD ∼ s2ε which violates the unitarity for sufficiently large energies. Moreover, it
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Figure 4.2: Simple reggeon exchange diagram.
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Figure 4.3: Schematic derivation of SD cross section using Mueller’s generalized optical theorem

which leads to triple reggeon coupling shown in the most right diagram.

where !Pp
! ðtÞ is set to a constant,!Pp

! , as it has been shown
to be independent of t [7].

Regge theory was successful in describing elastic, dif-
fractive and total hadronic cross sections at energies up toffiffiffi
s

p $ 60 GeV, with all processes accommodated in a sim-
ple Pomeron pole approach, as summarized in Ref. [5].
Results from an experiment on photon dissociation on
hydrogen [8] were also well described by this approach.
However, the early success of Regge theory was precari-
ous. The theory was known to asymptotically violate uni-
tarity, as the $s" power law increase of the total hadron-
hadron cross sections would eventually exceed the
Froissart bound of !T < #

m2
#
% ln2s, which is based on ana-

lyticity and unitarity.
The confrontation of Regge theory with unitarity came

at much lower energies than what would be considered
asymptopia by Froissart bound considerations. As collision
energies climbed upwards in the 1980s to reach

ffiffiffi
s

p ¼
630 GeV at the CERN S !ppS collider and

ffiffiffi
s

p ¼
1800 GeV at the Fermilab Tevatron !pp collider, diffraction
dissociation could no longer be described by Eq. (3),
signaling a breakdown of factorization. The first clear
experimental evidence for a breakdown of factorization
in Regge theory was reported by the CDF Collaboration
in 1994. In a measurement of the single diffractive cross
section in !pp collisions [9], CDF found a suppression
factor of $5 ($ 10) at

ffiffiffi
s

p ¼ 546 GeV (1800 GeV) rela-
tive to predictions based on extrapolations from

ffiffiffi
s

p $
20 GeV (see [11–13]).

III. SCALING PROPERTIES AND
RENORMALIZATION

The breakdown of factorization in Regge theory was
traced back to the energy dependence of the single diffrac-
tive cross section, !tot

sd ðsÞ $ s2", which is faster than that of
the total cross section, !totðsÞ $ s", so that as s increased
unitarity would be violated if factorization held. This can
be seen more clearly in the s2" dependence of
d!sdðM2; tÞ=dM2jt¼0 of the cross section obtained from
Eq. (3) by a change of variables from $ to M2 using $ ¼
M2=s:

Regge : d!sdðM2; tÞ=dM2jt¼0 $ s2"=ðM2Þ1þ": (5)

In 1995 it was shown [10–12] that unitarization could be
achieved and the factorization breakdown in single diffrac-
tion dissociation fully accounted for by interpreting the
Pomeron flux of Eq. (3) as a probability density and
renormalizing it so that its integral over $ and t could not
exceed unity:

fP=pð$; tÞ ) N(1
s % fP=pð$; tÞ (6)

Ns )
Z $ðmaxÞ

$ðminÞ
d$

Z (1

t¼0
dtfP=pð$; tÞ $ s2"= lns: (7)

Here, $ðminÞ ¼ M2
!=s, where M2

! ¼ 1:4 GeV2 is the ef-
fective threshold for diffraction dissociation, and
$ðmaxÞ ¼ 0:1 [12]. With a Pomeron flux integral
$s2"= lns, the s dependence introduced through the renor-
malization factor N(1

s replaces the power law factor s2" in
Eq. (5) by lns ensuring unitarization:

d!sdðM2; tÞ=dM2jt¼0 !RENORM $ lns=ðM2Þ1þ": (8)

In the QCD inspired parton model approach presented in
Sec. IV, this renormalization procedure eliminates over-
lapping rapidity gaps caused by multiple Pomeron emis-
sions while preserving the ð$; tÞ, or ðM2; tÞ, dependence of
the differential cross section.
In Fig. 1 (from Ref. [12]), !tot

sd ðsÞ is compared with
Regge predictions using the standard and renormalized
Pomeron flux factors. The renormalized flux prediction is
in excellent agreement with the data. An important aspect
of renormalization is that it leads to a scaling behavior
whereby d!sdðM2Þ=dM2 has no power law dependence on
s. This ‘‘scaling law’’ holds for the differential soft single
diffractive cross section as well, as shown in Fig. 2 (from
Ref. [13]).
The elastic and total cross sections are not affected by

the renormalization procedure presented here. Uni-
tarization for the elastic and total cross sections may be
achieved using an eikonal approach, e.g. as reported in
Ref. [14] where excellent agreement is obtained between
p*, #*, and K* cross section data and the corresponding
predictions based on Regge theory and eikonalization.
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FIG. 1. Total pp= !pp single diffraction dissociation cross sec-
tion data (both !p and p sides) for $< 0:05 compared with
predictions based on the standard and the renormalized
Pomeron flux [12].
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The features of the data displayed in Figs. 1 and 2 are

obtained below in the parton model approach to diffrac-
tion. As these features are used to derive the ratio of ! to"0,
they play a crucial role in validating the model.

IV. PARTON MODEL APPROACH

The Regge theory form of the rise of the total pp= !pp
cross sections at high energies,#tot

pp= !ppðsÞ ¼ #$ % s!, which
requires a Pomeron trajectory with intercept "ð0Þ ¼ 1þ !,
is precisely the form expected in a parton model approach,
where cross sections are proportional to the number of
available ‘‘wee’’ (lowest energy) partons. In [15], the
parton model cross section is obtained as #tot

pp= !pp ¼ N '
#$, where N is the flux of wee partons and #$ the cross
section of a wee parton interacting with the target proton.
The wee partons originate from emissions of single partons
cascading down to lower energy partons in treelike chains.
The average spacing in (pseudo)rapidity [16] between two
successive parton emissions is (1="s, where "s is the
strong coupling constant. This spacing governs the wee
parton density in the $ region where particles are pro-
duced, defined here as "$0, which in the case of the total
cross section is equal to "$ ¼ lns and leads to a total pp
cross section of (see [15]):

#tot
pp= !pp ¼ #$ % e!"$: (9)

This expression is similar to the Regge theory Pomeron
contribution to the total cross section. Since from the

optical theorem #tot
pp= !pp is proportional to the imaginary

part of the forward (t ¼ 0) elastic scattering amplitude, the
full parton model amplitude may be written as

Im felpp= !ppðt;"$Þ ( eð!þ"0tÞ"$; (10)

where "0ðtÞ is introduced as a simple linear parametriza-
tion of the t dependence. The parameter "0 reflects the
transverse size of the cluster of wee partons in a chain,
which is governed by the "$ spacing between successive
chains and is thereby related to the parameter !.
For the relationship between "0 and ! we turn to single

diffraction dissociation, which through the coherence re-
quirement isolates the cross section from a single wee
parton interacting with the proton, since all possible inter-
actions of the remaining wee partons are shielded by the
formation of the diffractive rapidity gap. Based on the
amplitude of Eq. (10), the single diffractive cross section
in the parton model approach takes the form:

d2#sdðs;"$; tÞ
dtd"$

¼ 1

NgapðsÞ
' Cgap % F2

pðtÞfeð!þ"0tÞ"$g2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pgapð"$;tÞ

% % % ½#$e
!"$0*; (11)

where:
(i) the factor in square brackets represents the cross

section due to the wee partons in the $ region of
particle production "$0;

(ii) "$ ¼ lns-"$0 is the rapidity gap;
(iii) % is a QCD color factor selecting color-singlet gg

or q !q exchanges to form the rapidity gap;
(iv) Pgapð"$; tÞ is a gap probability factor representing

the elastic scattering between the dissociated pro-
ton (cluster of dissociation particles) and the sur-
viving proton;

(v) NgapðsÞ is the integral of the gap probability distri-
bution over all phase space in t and "$;

(vi) F2
pðtÞ in Pgapð"$; tÞ is the proton form factor de-

fined in the discussion of the parameters that appear
in the Pomeron flux in Eq. (3); and

(vii) Cgap is a normalization constant, whose value is
rendered irrelevant by the renormalization division
by NgapðsÞ.

Since "$ ¼ + ln&, the form of Eq. (11) is identical to
the Regge form of Eq. (3). This identifies Cgap and %#$ as

#$=16' and #Pp
$ , respectively. However, there is an im-

portant difference from the Regge expression, namely, the
renormalization factor introduced in Sec. III.
The traditional way to proceed would have been to

consider single diffraction as the elastic scattering between
the dissociated and escaping protons and use the eikonal
procedure to achieve unitarity. The first attempt to apply

14   GeV    (0.01 < ξ < 0.03)

20   GeV    (0.01 < ξ < 0.03)

546  GeV   (0.005 < ξ < 0.03)

1800 GeV  (0.003 < ξ < 0.03)

1____

(M2)1+∆
.....

←_____ 546 GeV   std.
flux prediction

← 1800 GeV  std.
flux prediction

∆ = 0.05 ________→

∆ = 0.15 _________→

renorm. flux
prediction

_________→

std. and renorm.
flux fits

|↑

FIG. 2. Cross sections d2#sd=dM
2dt for pþ pð !pÞ ! pð !pÞ þ

X at t ¼ +0:05 GeV2 and
ffiffiffi
s

p ¼ 14, 20, 546, and 1800 GeV.
Standard (renormalized) flux predictions are shown as dashed
(solid) lines. At

ffiffiffi
s

p ¼ 14 and 20 GeV, the fits using the standard
and the renormalized flux coincide [13].
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Figure 4.4: Deviation of standard Regge description from data. Left plot shows single diffractive

pp/p̄p cross section for ξ < 0.05 as a function center-of-mass energy
√
s. Differential cross section

∂2σSD/∂M2∂t in p̄p collisions at t = −0.05 GeV2 at different energies
√
s =14, 20, 546 and

1800GeV is presented. The renormalized flux invented by Goullianos agrees with data for both

distributions. Plots are taken from ref. [16, 17].
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grows even faster than the total cross section. This theoretical threat is fulfilled and triple-

Regge description starts to deviate from the data already at
√
s = 22GeV, see Figure 4.4.

Goullianos proposed in ref. [16] unitarization procedure in which the pomeron flux is considered

as a probability density simply describing the ξ and t distributions of the exchanged Pomeron

in a diffractive process. Thus the flux is renormalized to have the integral over ξ and t equal to

one. It can be seen in Figure 4.4 that such a phenomenological approach leads to surprisingly

excellent description of data. Furthermore, it also follows a dependency of the single diffractive

cross section as a function of invariant mass squared M2 of the dissociated system.

4.3 Hard Diffraction Phenomenology

l l′
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Figure 4.5: Leading order diagram for diffractive di-jet production in DIS.

The investigation of processes in which high pT objects, such as jets, are produced is relatively

a new field of research. The first diffractive jet production with large rapidity gaps was observed

by the UA8 collaboration in 1988 [18]. In the following years the hard diffraction has been

intensively studied at HERA but also at pp̄ collisions at the Tevatron. The observation of a

surprisingly large contribution of diffractive processes to DIS (5-10%) rise an interest of physics

community about this phenomena. Diffractive DIS

l(k) + proton(p)→ l(k′) + proton(p′) +X (4.26)

is characterized by the rapidity gap between the scattered proton with momentum p′ and hadronic

final state X what suggests an exchange of object with vacuum quantum numbers between the

proton and virtual photon γ∗, see Figure 4.5. There is also a fraction of events in which the

proton dissociates and produces a hadronic system Y with the same quantum numbers as proton.
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The hadronic system Y is separated by rapidity gap from the hadronic system X. This processes

is called double diffraction in DIS.

Diffractive DIS is described by the same set of kinematical variables as inclusive DIS (3.14 -

3.18), but in order to describe three-momentum of the outgoing proton, ~p′, the set of kinematical

variables is supplemented by momentum transfer squared, t, and proton fractional momentum

loss, ξ, defined as

t = −(p′ − p)2, (4.27)

ξ =
(p− p′) · q

p · q . (4.28)

The cross section for diffractive DIS can be written in analogy with inclusive DIS. It has

been proven in pQCD that factorization theorem holds also in the case of diffractive processes

in DIS [19]. Hence, the cross section can be written in terms of diffractive parton distribution

function fD(x,Q2, ξ, t)

dσeP→eXY =
∑

i

fD(x,Q2, ξ, t)⊗ dσei(x,Q2), (4.29)

where the sum runs over all parton flavours in proton and dσei(x,Q2) is parton electron cross

section. In analogy to DIS, the diffractive PDF expresses a probability to find a parton with the

momentum fraction x and virtuality up to Q2 inside hadron h.

The form of the diffractive PDF function fD(x,Q2, ξ, t) can be determined from the predic-

tions of the Regge theory. Generalizing the result from the previous chapter into γ∗p collision

in DIS one finds that the diffractive PDF can be further factorized into a pomeron (reggeon)

flux fIP(IR)/p(ξ, t) and a pomeron (reggeon) distribution function f
IP(IR)
i (β,Q2) (introduced by

Ingelman and Schlein [20]) which in general has a form

fD(x,Q2, ξ, t) = fIP/p(ξ, t)f
IP
i (β,Q2) + ηIRfIR/p(ξ, t)f

IR
i (β,Q2), (4.30)

where variable

β =
Q2

2q · (p− p′) (4.31)

is interpreted as the momentum fraction of the struck parton inside the pomeron (reggeon) and

satisfies the relation x = βξ. It is worth mentioning that recent measurements of diffractive PDF

at HERA [21] show that pomeron is composed mostly by gluons. The pomeron (reggeon) flux

motivated by Regge theory is parameterized in the following

fIP(IR)/p(ξ, t) = AIP(IR)
eBIP(IR)t

ξ2αIP(IR)−1 . (4.32)

The pomeron (reggeon) trajectory is again approximated by first two terms of Taylor series

α(t) = α(0)+α′t. For large masses of the hadronic systemX the pomeron contribution dominates
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and reggeon term in (4.30) is usually neglected. The pomeron distribution function cannot be

determined from the first principles. Its boundary conditions at Q2
0 has to be fitted from data

and its evolution in Q2 is obtained from the solution of DGLAP equations (3.26).

Measurements at lepton-hadron collisions suggest that the behavior of the diffractive pro-

cesses can be describe in the same way as inclusive DIS. There is however one major difference.

The diffractive PDF are not universal in the sense that the factorization (4.30) breaks down at

hadron-hadron colliders contrary to non-diffractive production.

The factorization breaking has been observed in all three diffractive topologies SD, DD, and

DPE processes at the Tevatron. The usual method is measurement of ratio of diffractive to non-

diffractive production rate R = D/ND which is compared to the same ratio obtained at HERA.

The measurements of SD and DD di-jet at energies
√
s = 1800GeV and

√
s = 630GeV production

show suppression by factor 10 and 5 respectively. The suppression of the diffractive production

at hadron-hadron colliders is a consequence of a presence of another, predominantly soft, parton

interactions during the hadron collision. It should be pointed out that this suppression is similar

to the one observed in soft diffractive processes with respect to the Regge predictions which was

discussed in the previous chapter.

In 1993, Bjorken came with theoretical concept of gap survival probability 〈S2〉 [22] which is

defined as the fraction of events in which additional interactions do not spoil the rapidity gap. The

survival probability is defined in an eikonal picture which is an approximation technique of high

energy forward scattering originally developed for potential scattering in Quantum Mechanics

where particle energy dominates the interaction potential [10]. If the processes producing rapidity

gaps can be calculated by

σ(s) =

∫
db2A(b, s)σ(b, s), (4.33)

where A(b, s) describes parton densities in transverse plane of colliding hadrons and σ(b, s) is a

cross section for given impact parameter b. The survival probability is then given by

〈S2〉 =

∫
db2A(b, s)σ(b, s)S2(s, b)

σ(s)
, (4.34)

in which S2(s, b) is probability that two hadrons pass through each other at impact parameter b

without any interaction. Since it is reasonable to expect that with increasing
√
s the interactions

between the hadron remnants become stronger and thus there is a higher probability to destroy

the gap, the concept of survival probability explains an observed decrease of ratio RD
ND with

growing center-of-mass energy
√
s.

The survival probability factor is currently the largest uncertainty for description of diffractive

and exclusive processes at the LHC. The results depend on the model used for parameterization

of S2(s, b) and parton densities A(b, s). For SD production at
√
s = 14TeV the predictions

are about 6% [23]. Recent preliminary result, of the measurement of diffractive di-jets with
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transverse momentum pT > 20GeV at
√
s = 7TeV [24] done by the CMS collaboration, sets the

upper limit on the rapidity gap survival probability around 21%.
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FIG. 3. Ratio of diffractive to nondiffractive dijet event rates
as a function of x (momentum fraction of parton in p̄). The solid
lines are fits to the form R̃!x" ! R0!x#0.0065"2r for b , 0.5.

of the diffractive to ND parton densities of the antiproton,
as “viewed” by dijet production. We will denote the asso-
ciated structure functions by Fjj!x" ! x$g!x" 1

4
9q!x"%,

where g!x" is the gluon and q!x" is the quark density; the
latter is multiplied by 4

9 to account for color factors. The
shape of the R̃!x" distribution exhibits no significant j de-
pendence. A fit to all the data in the region 0.035 , j ,
0.095 yields R0 ! !6.1 6 0.1" 3 1023 and r ! 0.45 6
0.02 with x2#d.o.f. ! 0.76. The exponent r is insensitive
to systematic uncertainties in jet energy calibration, which
generally depend on hjet. A 30% change in the SD or ND
underlying event energy values results in a 14% change
in R0; adding in quadrature an estimated 20% normaliza-
tion uncertainty yields an overall systematic uncertainty of
625%. Another uncertainty arises from the sensitivity of
the parameters R0 and r to the number of jets used in evalu-
ating x. Using only the two leading jets yields R0 !
!4.8 6 0.1" 3 1023 and r ! 0.33 6 0.02 (x2#d.o.f. !
1.21), while by using up to four jets with ET . 5 GeV we
obtain R0 ! !7.0 6 0.1" 3 1023 and r ! 0.48 6 0.02
(x2#d.o.f. ! 0.74). About 48% (23%) of the SD (ND)
events have no jets of ET . 5 GeV, other than the two
leading jets; for these events R0 ! !9.6 6 0.2" 3 1023

and r ! 0.31 6 0.03 (x2#d.o.f. ! 1.18).
The diffractive structure function of the antiproton is

obtained from the equation

F̃D
jj!b" ! R̃!x ! bj" 3 F̃ND

jj !x ! bj" .

We have evaluated F̃D
jj!b" for jtj , 1 GeV2,

0.035 , j , 0.095, and ET ! jet1, jet2" . 7 GeV using
the GRV98LO parton density set [13] in F̃ND

jj !x ! bj".

The result is shown in Fig. 4. The solid curve is a fit
to the data of the form F̃D

jj!b" ! B!b#0.1"2n in the
range !1023#j" , b , 0.5, which corresponds to the
region 1023 , x , 0.5jmin of Fig. 3. For our average
j of 0.065 the value of b ! 0.1, for which F̃D

jj ! B,
corresponds to x ! 0.0065, for which R̃ ! R0. This
fit yields B ! 1.12 6 0.01 and n ! 1.08 6 0.01 with
x2#d.o.f. ! 1.7. The systematic uncertainty in B is
60.28, carried over from that in R0. The lower and upper
boundaries of the filled band surrounding the data points
represent the b distributions obtained by using only
the two leading jets or up to four jets of ET . 5 GeV,
respectively, in the evaluation of x. The dashed (dotted)
curve is the expectation for F̃D

jj!b" calculated from fit 2
(fit 3) of the H1 diffractive structure function [1] evaluated
at Q2 ! 75 GeV2, which approximately corresponds to
the average value of !Ejet

T "2 of our data. The H1 structure
function, which was derived from data in the region of
j , 0.04, has two terms, presumed to be due to Pomeron
(IP) and Reggeon (IR) exchanges. Each term consists of
the structure function of the exchanged Pomeron/Reggeon
multiplied by the corresponding flux factor, f!IP,IR"#p̄!j, t":

F̃D
jj!b" !

X

i!IP,IR

Z tmin

t!21

Z j!0.095

j!0.035
Ci ? fi#p̄!j, t"

? Fi
jj!b" dj dt .

FIG. 4. Data b distribution (points) compared with expecta-
tions from the parton densities of the proton extracted from
diffractive deep inelastic scattering by the H1 Collaboration. The
straight line is a fit to the data of the form b2n. The lower (up-
per) boundary of the filled band represents the data distribution
obtained by using only the two leading jets (up to four jets of
ET . 5 GeV) in evaluating b. The dashed (dotted) lines are
expectations from the H1 fit 2 (fit 3). The systematic uncer-
tainty in the normalization of the data is 625%.
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Figure 4.6: Difractive structure function as a function of β measured by CDF collaboration [25].

Data are compared with expectation from the parton densities of the proton extracted from

DDIS measured by H1 collaboration [26].

In the case of SD di-jet production pp̄ → p̄X, CDF collaboration has been able to extract

the diffractive structure function1 of the anti-proton FD
jj(β) [25]. They measured SD to ND ratio

as a function of Bjorken x, RSD
ND(x). In leading order of pQCD, the RSD

ND(x) is equal to the ratio

of SD to ND structure function of p̄. Hence, the difractive structure function FD
jj(β) can be

obtained by multiplying the RSD
ND(x) by the known inclusive structure function

Fjj(x) = x


g(x) +

4

9

∑

f

(gf (x) + q̄f (x))


 , (4.35)

and by substituting β = x/ξ. Obtained distribution shows a large discrepancy in both shape

and normalization of diffractive structure functions as can be seen in Figure 4.6.

It is interesting to study the factorization breaking in diffractive processes where multiple

gaps are produced. In the DPE two rapidity gaps separate proton and anti-proton from the

centrally produced system. CDF collaboration [27] measured a ratio of DPE to SD di-jet events

RDPE
SD (x) as a function of Bjorken scaling variable x. If the factorization breaking is proportional
1The structure of the differential cross section in (diffractive) DIS dσ/dQ2dx (dσ/dQ2dxdξdt) is determined

from the Lorentz invariance, unitarity, gauge invariance and parity conservation apart from the so called (diffrac-

tive) proton structure functions Fi(x,Q
2) (Fi(x,Q

2, ξ, t)), where i = 1, 2 in γ∗p scattering, containing information

about proton structure. The structure functions are proportional to (diffractive) parton distribution functions,

see more in ref. [10].
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to number of gaps, the equality

RSD
ND(x) = RDPE

SD (x) (4.36)

should hold. However,the result of the measurement which can be seen in Figure 4.7 indicates that

relation (4.36) is not satisfied. The double ratio DR = RSD
ND/R

DPE
SD is estimated to be 0.19 [27].

Thus if another soft parton is irradiated it spoils both gaps in DPE with an approximately the

same probability as one gap in SD.
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FIG. 3. Distributions for DPE events [(0,0) bin in Fig. 2]
(points) compared with corresponding single diffractive (non-
diffractive) distributions shown as solid (dashed) histograms:
(a) mean jet ET , (b) mean h of the dijet system, (c) azimuthal
angle difference between the two leading jets, and (d) ratio of
dijet mass obtained from the energies within jet cones of h-f
radius 0.7 to total central system mass. The shaded histogram
shows the expected mass fraction for events in which the dijet
mass accounts for the total mass of the central system.

livetime acceptance, flive, and the rapidity gap acceptance,
fRG, defined as the ratio of the DPE events with a rapidity
gap on the p side to the total number of DPE events within
a given jp range. Analyzing the data without the NBBCp̄ #
6 cut yields 8.5 more DPE events, from which we ob-
tain fBBCp ! !93 6 4"%. The single vertex requirement,
which is imposed to reject events due to multiple interac-
tions, also rejects single interaction events with extra (fake)
vertices due to track reconstruction ambiguities. Remov-
ing this requirement we obtain 5.1 more DPE events, yield-
ing fvtx ! !96 6 3"%. By measuring the probability of
finding NBBCp ! NFCALp ! 0 in events with no recon-
structed vertex collected by triggering only on beam-beam
crossings, we determined the BBCp#FCALp livetime frac-
tion to be flive ! !97 6 3"%. Finally, from studies of
the correlation between the jp and the BBCp and FCALp
multiplicities, the rapidity gap acceptance for events with
0.01 , jp , 0.03 was found to be fRG ! !84 6 11"%.

To test factorization, we compare the ratio RDPE
SD !xp"

with our previously measured [1] ratio RSD
ND!xp̄" at xp !

xp̄ $ x as a function of x. For this comparison, we re-
strict the data to the regions 7 , E

jet1,2
T , 10 GeV, jtp̄j ,

1 GeV2, 0.035 , jp̄ , 0.095, and for DPE 0.01 , jp ,
0.03. In the chosen jp range, the SD background in the
DPE candidate event sample is negligibly small. The two
ratios, normalized per unit j, are shown in Fig. 4. The
errors are statistical only. The SD#ND ratio has a nor-
malization systematic uncertainty of 620%. The vertical

dashed lines mark the DPE kinematic boundary (left) and
the value of x ! jmin

p (right). The weighted average of
the DPE#SD points in the region within the vertical dashed
lines is R̃DPE

SD ! 0.80 6 0.26. Factorization demands that
R̃DPE

SD be the same as R̃SD
ND at fixed x and j. Since the

jp and jp̄ regions, which are respectively relevant for the
DPE#SD and SD#ND ratios, do not overlap, we examine in
the inset in Fig. 4 the j dependence of the ratios R̃!x" (per
unit j), where the tilde over the R indicates the weighted
average of the points in the region of x within the verti-
cal dashed lines in the main figure. The ratio R̃SD

ND, shown
in six j bins in the region 0.035 , j , 0.095, is flat in
j. A straight line fit to the six R̃SD

ND ratios extrapolated to
j ! 0.02 yields R̃SD

ND ! 0.15 6 0.02. The ratio of R̃SD
ND to

R̃DPE
SD is D $ R̃SD

ND#R̃DPE
SD ! 0.19 6 0.07. The deviation

of D from unity represents a breakdown of factorization.
Focusing on the proton side in Fig. 1, DPE#SD at

p
s

may be viewed as SD#ND at the diffractive mass energy
of

p

jp̄s, which is reduced relative to
p

s due to the pres-
ence of the gap on the antiproton side. This situation is
analogous to the suppression of hard diffraction rates ob-
served at the Fermilab Tevatron [1,3] relative to expecta-
tions based on the lower energy diffractive deep inelastic
scattering measurements at HERA. Thus, it appears that D
decreases as the energy, or equivalently the h range avail-
able for the formation of a rapidity gap increases. Such
behavior is expected by the (re)normalized gap probabil-
ity model [8], as well as by models based on rapidity gap
survival probability [5].
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the DPE kinematic boundary (left) and the value of x ! jmin

p
(right).

4219

Figure 4.7: Ratios of DPE to ND and SD to ND di-jet event rates per unit ξ as a function of

Bjorken x measured by CDF [27].

Apart from the diffractive di-jet production, Tevatron also investigated a production of W/Z

[28] bosons which in combination with results on diffractive di-jets and b-quark production [29]

is sensitive to gluon content of the pomeron.

4.4 Central Exclusive Production in QCD

Great attention has been recently payed to central exclusive production (CEP) pp̄→ p⊕X⊕ p̄ in
which exclusively produced object is accompanied only with the two intact beam protons which

are separated by two large rapidity gaps denoted by ⊕. Such clean environment provides an

opportunity for accurate measurements even at hadron colliders. An invariant mass of exclusively

produced object X can be precisely measured from the deflection of collided protons.

The protons are usually slightly deflected that they remain in the beam pipe and propagate

through the magnetic field, close to the beam. Hence, special instruments permitting the detec-

tors to approach as close as possible to the beam such as, Roman pots or Hamburg beam pipes,

are used for measurement of the proton position. The measured proton position then allows a
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Figure 4.8: Leading order diagram for exclusive Higgs boson productions in pp collision.

reconstruction of fractional momentum loss of the proton ξ = |~p′|/|~p|. The invariant mass MX

is then given by

MX ≈
√
ξ1ξ2s, (4.37)

where ξ1 and ξ2 are fractional momentum losses of the protons and s is center-of-mass energy

squared. In addition, the centrally produced object has almost zero orbital momentum in z

direction Jz ≈ 0 in exclusive events. This implies that the production of di-jet system with mass

Mjj initiated by quarks with mass mq is suppressed by factor mq/Mjj and thus the heavy quark

production is enhanced at given Mjj . Moreover, the produced system has to carry a positive

C-charge conjugation and P-parity which is the consequence of gluon exchange with the quantum

numbers of a vacuum.

One of the biggest motivation for measurement of the QCD exclusive processes was measure-

ment of the Higgs boson at LHC. Even though Monte Carlo studies suggest that the measurement

of the SM Higgs will not be possible due to its small cross section which has been estimated to be

3 fb [30] there are still possibilities of light Higgs in MSSM scenario or other exotic measurements

for which exclusive production can be used [31].

There are several phenomenological models describing exclusive QCD production. The non-

perturbative Bialas-Landschoff model [32] applies Regge theory in order to describe exclusive

production. The exclusivity of the process is provided by exchange of two reggeized gluons

between interacting hadrons and hard subprocess which is then described by perturbative QFT.

A perturbative QCD approach was invented in Durham by Khoze, Martin and Ryskin [30].

Since their model is currently the most successful in description of available data, we choose it

for implementation to the Herwig++ MC generator. Therefore this model is worth a closer

description which can be found in Section 7.3.1.

It should be mentioned that a perturbative model with similar approach as KMR has been

recently developed by Cudell, Hernández, Ivanov, Dechambre which differs from KMR mainly

by different kinematical assumptions [33].

Different explanation of rapidity gaps and exclusivity is achieved by Soft Color Interaction
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model [34]. In this case, the colour singlet exchange is achieved by additional soft gluon exchange.

In particular, when the gluon from the proton enters to the hard processes it leaves the proton

remnant and the hard scattering state in the colour octet state. An additional soft gluon exchange

which takes place at hadronisation phase can change these objects back into the colour singlet

states separated by rapidity gap. This model has a great success at HERA but it can provide

also alternative description of exclusive processes in hadron-hadron collisions.

The first measurement of central exclusive processes in hadron-hadron collisions has been

made at Tevatron by CDF collaboration in which exclusive production of di-jet system was

observed [35]. In order to distinguish CEP processed from the inclusive DPE in which both

protons also remain in the beam pipe, they used the following observable

Rjj =
Mjj

Mx
, (4.38)

in which Mjj is the di-jet mass and MX is the mass of the whole final state excluding the p and

p̄. In the case of CEP di-jet production it is expected that Rjj = 1, while for the DPE di-jet

production the Rjj distribution should be concentrated at smaller values due to the presence of

pomeron remnants. The excess of the events with Rjj ≈ 1 has been observed and described by

the MC implementation of KMR (ExHuME [36]) and Bialas-Landschoff model (DPEMC [37]).

It should be mentioned that the Bialas-Landschoff model predicts much weaker pT spectra of the

jets than perturbative KMR model. More tests have been done in order to tune parameters of

models for exclusive diffraction. This is necessary if one wants to use the models for measurement

of new physics at the LHC. For example Tevatron made observations of exclusive production of

charmonium state χC [38] and few rare events of γγ [39] which give further constrains to CEP

models. Recently, LHCb collaboration presented its preliminary results on the measurements of

exclusive χC and J/Ψ,Ψ(2S) at
√
s = 7TeV [40] which are in good agreement with theoretical

predictions.

4.5 Photon Initiated Processes

Exclusive production of some final states such as di-leptons, WW in SM is dominated by two-

photon exchange rather than gluon singlet exchange. The interaction of the photons yields

production of central object separated by large rapidity gaps from the scattered intact hadrons.

The schematic diagram of two photon production can be seen in Figure 4.9. Such mechanism

is well described in the framework of Quantum Electrodynamics in which the cross section can

be very precisely computed as a convolution of photon luminosity and hard interaction of the

radiated photons. The probability of emitting photon with virtuality Q2 and carrying momentum

fraction x of the initial proton is expressed by flux derived by Budnev [41]. This small Q2

approximation will be described in Section 7.1 in more detail.
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Figure 4.9: Diagram of two photon production of exclusive central system X in pp collisions.

In analogy to exclusive QCD processes, there is a possibility that an exchange of soft parton

between outgoing protons can occur which leads to dissociation of the protons and spoils the

rapidity gap. The Durham group estimates in [30] the survival probability in two photon pro-

duction to be 0.75 and 0.9 for Tevatron and LHC (
√
s = 14TeV) energies respectively. The cross

sections for two photon production are very small (total cross section for WW at
√
s = 14TeV is

predicted to be 96 fb) and thus most of the interesting measurements can be done only at LHC.

So far only production of e+e− [42] and µ+µ− [38] pairs were measured by CDF at Tevatron and

by CMS at LHC at
√
s = 7TeV in small data sample 36 pb−1 [43]. The obtained results agree

very well with the theoretical predictions.



Chapter 5

Large Hadron Collider and ATLAS

Experiment

5.1 Large Hadron Collider

The Large Hadron Collider (LHC) is currently the most powerful hadron-hadron (ion-ion) collider

in the world situated in Switzerland French boarder near Geneva. LHC is designed to accelerate

proton beams with energy of 7TeV and large instantaneous luminosity L = 1×1034 cm2s−1. The

luminosity expresses proportionality between event rate Rev and cross section of the process of

interest

Rev = Lσ (5.1)

and therefore high luminosity is desired for discoveries or precise measurement of rare processes.

The luminosity depends on the beam parameters and in the case of beams with Gaussian distri-

bution it can be written as

L =
N2nfrevF

4πσxσy
, (5.2)

where N is number of protons in bunch, n number of bunches per beam, frev is revolution

frequency, σx, σy are vertical and horizontal beam sizes, and F the geometric luminosity reduction

factor due to beam crossing angle at the interaction point [44,45].

Such high performance of LHC machine is achieved by 16 radio frequency cavities that

accelerate the beams, 1232 super-conducting bending dipole magnets producing a magnetic field

strength of 8.33T, 392 focusing quadrupole and further optical elements which are distributed

around the circle with circumference of 27 km.

There are several steps before the protons are injected to the LHC and accelerated into

required energy. The accelerating complex with the main LHC detectors can be seen in Figure 5.1.

First, the protons are extracted from hydrogen atoms using a high electric field and accelerated

to energy of 50MeV at linear accelerator Linac2. The protons continue to Proton Synchrotron

29
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Figure 5.1: Schematic plot of CERN accelerator complex with LHC and its 4 main experiments.

Booster to obtain an energy of 1.4GeV. After that, protons gradually increase their speed in

Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) to energies 25GeV and 350GeV

respectively. Finally, the beams are fed to LHC where they are accelerated to final energy.

After that, the beams are collided at four different interaction points (IP) at which six following

experiments are placed: ATLAS [46], CMS [47], ALICE [48], LHCb [49], TOTEM [50], LHCf [51].
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Figure 5.2: The maximum instantaneous luminosity versus week delivered to ATLAS (left) and

average number of events per beam crossing at the start of an LHC fill versus day (right). Figures

taken from ref. [52].

The LHC accelerated its first beam and recorded first collisions in September 2008. Due to an

accident, which caused large damage on the accelerator optics, the LHC was shut down for more

then one year. In November 2009, LHC was restarted again. In the first period, LHC accelerated
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protons only up to 450GeV and used beams of low intensity. In March 2010, the LHC started

to collide protons with center-of-mass energy
√
s = 7TeV, which was the largest energy that

had been achieved in hadron-hadron colliders. The first periods of data taking were done at low

instantaneous luminosity which was gradually increased during the year 2010, see Figure 5.2.

Higher instantaneous luminosity can be achieved either by addition of further bunches into the

beam, i.e. by increasing n in (5.2), or by squeezing the bunches, i.e. decreasing the beam size

σx, σy. The later approach leads to higher probability of multiple collisions per bunch crossing

which is described by Poisson distribution with the mean number of interactions µ given by

µ = σtot L /f, (5.3)

where f is bunch crossing frequency. The bunch crossing frequency can differ from revolution

frequency, frev, because not all the beam buckets around the ring where bunches could be injected

have to be filled. It should be noted, that during a particular run the instantaneous luminosity

decreases due to degradation of the beam. The degeneration of luminosity as a function of time

has following dependence

L(t) =
L0

(1 + t/τ)2
, (5.4)

where initial decay time τ is given by the initial beam parameters. The peaked luminosity in the

first LHC runs was L = 1× 1027cm2s−1 which corresponds to µ ' 0.005. While runs, collected

by ATLAS at the end of the year 2011, reached peak luminosity L = 3×1033cm2s−1 and µ = 20.

Figure 5.2 presents the peaked luminosity and mean number of interactions per bunch crossing

as a function of days in the year 2010.

The mean number of interactions per bunch crossing plays an important role for diffractive

measurements which are done using rapidity gap method. The rapidity gaps cannot be recon-

structed in events with more than one interaction per bunch crossing and therefore the runs with

large µ are not convenient for these measurements. Rapidity gap measurements discussed in

Chapters 10 and 11 were done using the first run in 2010 where the mean number of interactions

per bunch crossing was below 0.005.

5.2 ATLAS Detector

A Toroidal LHC ApparatuS (ATLAS) is the largest detector at the LHC. This general purpose

detector is designed to explore new physics phenomena which are either predicted by various

theoretical models or not and they could lead to rise of new theories. Moreover, ATLAS has also

large potential to perform high precision measurements especially of heavy particles as W , Z or

top quark and final states with large transverse momenta.

ATLAS overall length and height are about 46m and 26m, respectively, and it weights about

7000 tons. The layout of the detector can be seen in Figure 5.3. ATLAS is composed of Inner
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Detector tracker, which is the inner most detector dedicated for reconstruction of tracks and

vertices of charged particles. Superconducting solenoid magnet surrounding the inner detector

with strength of 2T enables precise measurement of transverse momenta of charged particles.

Inner Detector is followed by electromagnetic and hadronic calorimeter system which is designed

to measure energies of particles with very high transverse momenta. Muon chambers are outer

most detectors dedicated for measurement of muons tracks and their transverse momenta. A

toroidal magnets consist of barrel toroid and two end-cap toroids which create a magnetic field

of magnitude 3.9T and 4.1T, respectively, provide large bending power for muon spectrometers.

Several forward detectors are available at the ATLAS: Minimum Bias Trigger Scintillator,

LUCID, Zero Degree Calorimeter and ALFA which serve mainly for event triggering and lumi-

nosity measurement.

The coordinate system of ATLAS detector which will be used in the following text is briefly

summarized here. The nominal interaction point defines origin of the coordinate system. The

beam axis is identical to z-axis. Its positive and negative sides are denoted as A and C respec-

tively. The positive x-axis points from the interaction point to the center of the LHC ring and

the positive y-axis is defined as pointing upwards. The azimuthal angle, φ, is measured around

the beam axis. The polar angle, θ, is the angle from the beam axis and the pseudorapidity is

defined according to formula (4.24). Transverse momentum pT and distance R are projections

of the momentum p and the distance from the origin, respectively, to transverse plane, x-y.

The detectors which were used or can be possibly used in future for the rapidity gap analysis

are discussed in more detail in this chapter. For the rest of the detectors a reader is referred

to [46].

Figure 5.3: Overall view of the ATLAS detector. Figure is from [53].
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5.2.1 Inner Detector

Inner Detector (ID) provides hermetic and robust pattern recognition and primary and secondary

vertex measurements. It reconstructs tracks of charged particles with very high efficiency down

to small transverse momenta (50MeV) therefore it has been used for rapidity gap definition.

Due to solenoidal magnetic field of strength 2T ID gives accurate information about transverse

momenta of charged particles. The detector is situated very close to the beam pipe. The most

inner layer is only 50.5mm away from the beam. The pseudorapidity acceptance of ID spans

up to |η| = 2.5. The inner detector layout can be seen in Figure 5.4. The ID consists of three

independent but complementary sub-detectors: Pixel Detector, Semiconductor Tracker (SCT),

Transition Radiation Tracker (TRT).

Figure 5.4: The Inner Detector consists of three subdetectors: Pixel Detectors, Silicon Tracker

(SCT) and Transition Radiation Tracker (TRT). Figure is from [54].

Pixel Detector

Pixel Detector is the inner most detector with highly granular silicon sensors. It consists of three

barrel and three end-cap layers. Overall, they contain 1744 pixel modules in which sensors and

readout electronics are assembled. The basic readout unit pixel has size in (R − φ × z) only

50× 400µm2 providing precision of measurement to be 10µm (R − φ) and 115 µm (z) in both

barrel and end-cap regions [46]. The high accuracy in all three detector coordinates is necessary

especially in high multiplicity events that are produced in LHC.
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Semiconductor Tracker

SCT is a silicon detector similar to pixel detector with strip sensor elements and 80µm readout

pitch. SCT has four barrel layers and four end-cap layers on both sides. Each layer is composed

of modules which have two sensors to measure both coordinates. Thus SCT usually provides

4 precision points in the φ, z, R coordinates per track. The precision of measurement of z

coordinate is smaller than precision of pixel detector.

Transition Radiation Tracker

TRT is the most outer component of the inner detector with smaller tracking precision with

respect to Pixel and SCT detectors. TRT plays an important role in electron identification, cross-

checking and complementing the calorimeter information, especially at energies below 25GeV.

It is composed of straw tubes with a diameter of 4mm filled with non-flammable gas mixture

and wire in the center. TRT detects the transition radiation emitted by passing high energetic

particle. The different emission thresholds for electrons and particles with higher masses allow

effective electron identification, especially e/π± separation. The TRT can give about 36 hits on

average for a passing particle. The large number of hits increases robustness and precision of the

momentum measurements.

5.2.2 Calorimeter

Due to large pseudorapidity coverage, |η| < 4.9, and ability to detect both charged and neutral

hadrons, ATLAS calorimeter system is well suited for rapidity gap measurements. A view of

the ATLAS calorimeter system is presented in Figure 5.5. The calorimetry is composed of an

electromagnetic calorimeter (EM) covering the pseudorapidity region |η| < 3.2, a hadronic barrel

calorimeter (TileCal) covering |η| < 1.7, Liquid Argon (LAr) hadronic end-cap calorimeters

(HEC) covering 1.5 < |η| < 3.2, and forward calorimeters (FCal) covering 3.1 < |η| < 4.9.

Electromagnetic Calorimeter

The EM calorimeter is divided into a barrel part (|η| < 1.475) and two end-caps (1.375 < |η| <
3.2). The barrel calorimeter has two identical half-barrels, separated by a small gap (6mm) at

z = 0. Each end-cap calorimeter is mechanically divided into two coaxial wheels: an outer wheel

covering the region 1.375 < |η| < 2.5, and an inner wheel covering the region 2.5 < |η| < 3.2.

The EM calorimeter is a lead-liquid argon (LAr) sampling detector. The EM has accordion-

shaped geometry providing complete φ symmetry without azimuthal cracks. The lead absorber

thickness was optimized as a function of η to achieve a good performance in energy resolution.

The total thickness of the EM calorimeter is > 24 radiation lengths (X0) in the barrel and > 26

X0 in the end-caps.
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Figure 5.5: Scheme of the ATLAS calorimeter system. Figure taken from [55].

The total dead material placed in front of the calorimeter has about 2.3X0 at η = 0, and

increases with pseudorapidity in the barrel, see Figure 5.6. In order to correct for particle energy

losses due to passing the dead material presampler is installed in pseudorapidity region |η| < 1.8.

Over the high precision measurement range |η| < 2.5 which overlaps with the inner detector

acceptance, the EM calorimeter has three sampling layers in depth and high granularity. The rest

of the EM calorimeter, 2.5 < |η| < 3.2, has two sampling layers and a coarser lateral granularity.

Overall, there are about 180000 calorimeter cells in the EM calorimeter.

The EM calorimeter performance was measured with electron test beam of energies up to

300GeV. The energy resolution of the EM barrel at η = 0.9 was measured to be [56]

σ(E)

E
=

10%√
E
⊕ 0.39%

E
⊕ 3%, (5.5)

where E denotes energy of the beam in units of GeV and σ(E) is the standard deviation of recon-

structed energy in EM. The terms on the right hand side corresponds to sampling fluctuations,

electronic noise and effects due to non-homogenity of the calorimeter.

Tile Calorimeter

Tile calorimeter is a large hadronic sampling calorimeter using iron as the absorber and scintil-

lating tiles as the active material. The tiles are placed radially and staggered in depth. They

create periodic structure along z axis. Tiles are 3mm thick and the total thickness of the iron
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Figure 5.6: Material distribution in X0 (left) and λ (right) at the exit of the ID envelope,

including the services and thermal enclosures. The distributions are shown as a function of |η|
and averaged over φ. The breakdown indicates the contributions of external services and of

individual sub-detectors, including services in their active volume. Figures are from [46].

plates in one period is 14mm. The light produced from the tiles is converted into electric sig-

nal using wavelength shifting fibers followed by two separated photo-multipliers. The readout

cells are pseudo-projective, in η, towards the interaction region. The granularity of TileCal is

∆η ×∆Φ = 0.1× 0.1 with total number of channels about 10 000.

TileCal is composed of one barrel and two extended barrels. The barrel and extended barrels

are azimuthally divided into 64modules. Radially, the TilCal is segmented into three layers with

1.5, 4.1 and 1.8 nuclear interaction lengths (λ) in barrel and 1.5, 2.6 and 3.3 λ in extended barrel.

The total depth of the calorimeter system at the outer edge of the tile-instrumented region is 9.7

at η = 0.

TileCal provides energy resolution

σ(E)

E
=

52%√
E
⊕ 5%, (5.6)

which has been estimated from the test beam of pions with energy between 20 and 350GeV [57].

LAr Hadronic End-Cap

HEC calorimeters are copper LAr sandwiches with parallel geometry. The LAr technology has

been used in forward region due to larger radiation hardness with respect to tiles. Each of the

HEC consists of two independent wheels of an outer radius 2.03m. In addition, each wheel is

divided into two longitudinal segments. In order to avoid a dip in calorimeter performance at the

transition region between the hadronic end-cap and the forward calorimeter, the HEC reaches

up to |η| = 3.2 to overlap with the forward calorimeter which acceptance starts at |η| = 3.1. The

HEC resolution for single pions of energy from 5 to 200GeV was measured in a test beam and



5.2. ATLAS DETECTOR 37

found to be [56]
σ(E)

E
=

71%√
E
⊕ 6%. (5.7)

Forward Calorimeter

The FCal has to cope with the high level of radiation. It is integrated into the end-cap cryostat,

with a front face at about 4.7m from the interaction point. The FCal contains both electromag-

netic and hadronic parts. The first electromagnetic segment uses copper as absorber material,

while the other two hadronic segments are made out of tungsten. The LAr is used as the sensitive

medium due to radiation hardness. The energy resolution in the forward region is [56]

σ(E)

E
=

100%√
E
⊕ 10%. (5.8)

5.2.3 Minimum Bias Trigger Scintillator

The Minimum Bias Trigger Scintillator (MBTS) is a detector devoted for triggering of minimum

bias interactions in first years of LHC run. The quality of the MBTS detector is gradually

degradeted due to the radiation damage. Two MBTS arms are located about 3.6m from the IP

in the z direction on the inner face of the end-cap calorimeter cryostat. Both arms are divided into

inner and outer wheel covering a pseudorapidity regions 2.09 < |η| < 2.82 and 2.82 < |η| < 3.84,

respectively. Each wheel is uniformly segmented in φ and is composed of eight counters. Due to

its high efficiency to detect charged particles and forward region coverage, the MBTS detector

is convenient for event selection in rapidity gap measurements of minimum bias interactions.

5.2.4 LUCID

LUCID detector (LUminosity measurement using Čerenkov Integration Detector) is installed

17m from the ATLAS interaction point. Its main purpose is measurement of instantaneous

luminosity by determining an average number of interactions per bunch crossing. This is achieved

by counting the number of charged particles in the forward direction in each bunch crossing. The

luminosity calibration is determined through van der Meer beam scans [59,60].

The LUCID detector consists of two modules that are located in the available space between

the beam pipe and the conical beam-pipe support structure and cover pseudorapidity in range

5.4 < |η| < 6.1. As its name suggests, the detector is based on Čerenkov light detection which is

emitted by charged particles passing its medium isobutane (C4F10). The photomultiplier signal

output time can be measured with an accuracy of 100 ps which is by far sufficient to allow

bunch-by-bunch luminosity monitoring.

It should be noted that the efficiency of detecting charged particles is rather low (about 5%)

and taking into account its small coverage, the detector is not ideal for rapidity gap definition.
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EM CALORIMETER Barrel End-cap

Coverage |η| < 1.475 1.375 < |η| < 3.2

Longitudinal segmentation 3 samplings 3 samplings 1.5 < |η| < 2.5

2 samplings 1.375< |η| < 1.5

2.5 < |η| < 3.2

Granularity (∆η ×∆φ)

- Sampling 1 0.003×0.1 0.025×0.1 1.375< |η| < 1.5

0.003×0.1 1.5 < |η| < 1.8

0.004×0.1 1.8 < |η| < 2.0

0.006×0.1 2.0 < |η| < 2.5

0.1×0.1 2.5 < |η| < 3.2

- Sampling 2 0.025×0.025 0.025×0.025 1.375< |η| < 2.5

0.1×0.1 2.5 < |η| < 3.2

- Sampling 3 0.05×0.025 0.05×0.025 1.5 < |η| < 2.5

PRESAMPLER Barrel End-cap

Coverage |η| < 1.52 1.5 < |η| < 1.8

Longitudinal segmentation 1 sampling 1 sampling

Granularity (∆η ×∆φ) 0.025×0.1 0.025×0.1
HADRONIC TILE Barrel Extended barrel

Coverage |η| < 1.0 0.8 < |η| < 1.7

Longitudinal segmentation 3 samplings 3 samplings

Granularity (∆η ×∆φ)

- Samplings 1 and 2 0.1×0.1 0.1×0.1
- Samplings 3 0.2×0.1 0.2×0.1
HADRONIC LAr End-cap

Coverage 1.5 < |η| < 3.2

Longitudinal segmentation 4 sampling

Granularity (∆η ×∆φ)

0.1×0.1 1.5 < |η| < 2.5

0.2×0.2 2.5 < |η| < 3.2

FORWARD CALORIMETER Forward

Coverage 3.1 < |η| < 4.9

Longitudinal segmentation 3 samplings

Granularity (∆η ×∆φ) ∼ 0.2× 0.2

Table 5.1: Pseudorapidity coverage, granularity and longitudinal segmentation of the ATLAS

calorimeters [58].
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5.2.5 Zero Degree Calorimeter

Zero Degree Calorimeter (ZDC) is a sampling calorimeter with tungsten and steel plates used

as radiators and quartz strips as a sensitive medium. The calorimeter has an electromagnetic

and hadronic part corresponding to approximately 29X0 radiation length and 1.14 λ nuclear

interaction length, respectively. Two stations are placed 140m downstream from the IP, one

on each side of ATLAS. They occupy the region of a neutral particle absorber just behind the

point where the beam pipe splits into two. Since charged particles are deflected outwards by

beam magnetic elements, the ZDC calorimeter is sensitive primarily to neutral particles in a

pseudorapidity region |η| ≥ 8.3. The ZDC is dedicated for beam tuning, luminosity monitoring

and triggering on minimum bias events. ZDC calorimeter could be useful especially for discrim-

ination between different diffractive topologies (separation of SD, DD and DPE) but in first two

years of the LHC runs the MC simulation of ZDC was not ready and thus it was not used for

gap definition.

5.3 ATLAS Trigger

LHC produces events in rate of the order of 109 collisions per second, therefore it is impossible

to record and store such amount of data with the current technology. Experiments have a set of

hardware and software algorithms called trigger that selects the interesting rare physics processes

with high efficiency and rejects much higher rate background. The decision has to be made each

bunch crossing for every interaction thus the speed of the algorithms is crucial. The ATLAS

strategy foresees a reduction of the event rate at three levels: LVL1, LVL2 and Event Filter

(EF).

The LVL1 trigger receives data at the full LHC bunch-crossing rate of 40MHz and needs

to reduce this rate to 100 kHz. The LVL1 contains very fast hardware based algorithms with

limited precision. LVL2 algorithms are software algorithms with higher accuracy. However, in

order to achieve required speed only objects from the region of interest, which is a window in

phase-space in which LVL1 algorithm made positive decision, are processed. The LVL2 trigger

needs to be able to reduce the rate to 1 kHz. The EF algorithms work with almost the same

accuracy as the offline algorithms. They use information about the whole events but they are

usually seeded from LVL2 trigger. EF reduces the rate down to 100Hz which can be recorded

into a storage element.

In the first runs, the luminosity was so low that LVL1 trigger has been primarily used to

select data. In the case of rapidity gap analysis, MBTS_1 trigger has been used to select events

from colliding proton bunch crossings with at least single hit in MBTS. For beam-background

and for study of cell noise the Random Trigger was used. This trigger selects events in empty

bunches, single bunches and bunch crossing randomly with some prescale.
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Monte Carlo Event Generators

Monte Carlo (MC) generators are programs which attempt to generate physical events with

the same probability as they occur in nature. This requires to integrate differential cross section

predicted by theory but also include non-perturbative hadronisation effects and underlying events

in order to describe real situation of particle state before entering a detector. Propagation

of the particles through matter of the detector is then simulated using another programs as

Geant4 [61] which are also based on MC technique but they will not be discussed here. These

programs enable comparison between theory and data and therefore MC generators play role of

an interface between theory and experiment.

There is a vast number of MC generators dedicated for description of high energy collisions.

Some of them are general purpose as Pythia [62], Herwig [63], Sherpa [64] or Phojet [65]

but there are also many generators specialized for specific processes. Diffractive and exclusive

processes discussed in the previous chapter are spread among many MC generators. Minimum

bias models including soft diffraction can be found in Pythia6, Phojet [66] and recently they

have been also included into C++ version Pythia8 [67]. Soft diffraction description is based

there on the Regge triple-pomeron approach. These three generators were used for measurements

of rapidity gaps which is going to be discussed in Chapters 10 and 11.

The generators dedicated for a description of hard diffraction are Pompyt [68], based on

Pythia6, and Pomwig [69] based on Herwig. The QCD exclusive production has been imple-

mented into DPEMC and later to ExHuME as was already mentioned in the previous section.

The LPAIR [70] generator has been intensively used at the Tevatron for a description of two

photon initiated processes. At last, it should be mentioned that many of above forward physics

processes have been recently collected into FPMC [71] MC generator which extends DPEMC.

The list of the generators containing different diffractive processes is rather long and some

of the generators starts to be obsolete and thus it is difficult to use them. Moreover, in last few

years, the leading generators Pythia, Herwig written in FORTRAN has been rewritten to new

C++ versions as Pythia8, Herwig++ [72] or Sherpa. These generators are now intensively

40
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being extended to include new processes both in LO and NLO of perturbation theory, multi-jets

algorithms and most importantly their models are tuned to data.

Due to the above reasons Herwig++ has been extended for hard diffraction, QCD and QED

exclusive processes which are interesting to study at the LHC. The concrete implementation will

be discussed in the next Chapter 7. This section gives an overview of the basic MC integra-

tion techniques which are necessary to understand for implementation of new physics into MC

generators. Furthermore, summary of particle production in perturbative partons showers and

non-perturbative hadronisation phase is given together with basis of modeling underlying events

and minimum bias interactions. These phenomena are closely connected with the production of

rapidity gaps discussed in Chapters 10, 11.

6.1 Monte Carlo Integration

Monte Carlo is a name for a class of numerical algorithms which are based on the generation of

random numbers. It is difficult to generate truly random numbers because they can be produced

only by physical processes such as thermal noise or radioactive decays. Therefore in practice, a

pseudo-random generators which can generate long sequences with good random properties are

used. The sequence is usually determined with fixed set of numbers, called seed, which enables

to repeat calculation with exactly the same random numbers sequence. Further properties of

pseudo-random generators can be found in ref. [73].

One of the basic MC method is a numerical integration. An integral of function F (x) =

f(x) · g(x) in interval [x1, x2] where g(x) is an probability density function with
∫ x2
x1

dxg(x) = 1

and f(x) is any integrable function on the interval [x1, x2] can be estimated as

I =

∫ x2

x1

dxF (x) ≈ x2 − x1

N

N∑

i=1

f(xi) ≡ 〈f〉g, (6.1)

where x1, x2, ..., xN are random numbers generated according to the probability distribution

function g(x). In the basic method, the random numbers are generated uniformly in interval

[0, 1] and thus g(x) = 1. Formula (6.1) represents an average of the function f(x) at the generated

points xi and it converges to precise value I according to the Strong Law of Large Numbers.

The uncertainty σI is given by

σI ≈
√
x2 − x1

N
[〈f2〉g − 〈f〉2g], (6.2)

where 〈f〉g, 〈f2〉g are averages of the function f and f2 respectively defined in the sense of (6.1)

and the term in the brackets is a variance of the estimator 〈f〉g.
First, equation (6.2) shows that the speed of convergence goes as O(

√
1/N). In the case of

one dimensional function f(x), the MC method is much slower than other common integration

techniques as Trapezium rule O(1/N2) or Simpson rule O(1/N4). However, performance of these
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algorithms decreases with increasing number of dimensions d asO(1/N
k
d ), where k corresponds to

the speed in 1-dimension, while the convergence speed of MC integration remains the same with

increasing number of dimensions d. Thus the MC integration is well suited for the integration of

differential cross sections which require integration over multidimensional phase-space.

The second thing that can be read off (6.2) is a possibility of improving convergence by vari-

ance reduction. The improvement is achieved by choosing an appropriate probability distribution

function g(x) that smoothes the function f(x). The new probability distribution function g̃ that

approximate function f(x) · g(x) can be introduced as

I =

∫ x2

x1

f(x)g(x)

g̃(x)
g̃(x)dx ≈ x2 − x1

N

N∑

i=1

f(xi)g(xi)

g̃(xi)
(6.3)

to reduce the variance and thus enhance the convergence speed. This method is called importance

sampling and in practice it can be achieved by a proper Jacobian transformation of the integral

(6.1) so that the integral is flat in the new transformation variable.

In many cases we do not have the prior knowledge of the distribution in order to use an

analytic transformation. For such situations there are adaptive MC methods which are able

to reduce the variance automatically. These methods divide an integration area into smaller

elements which size is based on the behavior of the integrand. The MC integrations are performed

separately in each of these regions to yield an estimate of the integral and the variance. If the

variance is too large the region is further divided into smaller partitions. One of the commonly

used automatic approaches for evaluation of multidimensional integrals in MC generators is

called VEGAS and its detailed description can be found in ref. [74]. It should be noted, that

such automatic adaptive algorithms are never as good as analytic Jacobian transformations.

As we have seen, we need to be able to generate random variables according to various

distribution functions in order to make the integration more effective. In several cases, there is an

analytic method how to transform random numbers r1, r2, ..., rN which are generated according to

uniform distribution u(r) to sequence x1, x2, ..., xN distributed according to desired probability

distribution g(x). The transformation function x(r) can be obtained from the comparison of

cumulative distributions

F (x(r)) =

∫ x(r)

−∞
g(x′)dx′ =

∫ x

−∞
u(r′)dr′ = r (6.4)

if the integral of function g(x) can be inverted. This is possible only in few special cases. For

the rest, a numerical algorithm called von Neummann’s acceptance rejection can be alternatively

used. The algorithm can be described as follows

• Generate a random number according to the distribution w(x) which can be obtained by

analytic transformation (6.4) and which approximates the distribution g(x) with condition

w(x) ≥ g(x).
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• Random number x is accepted with a probability given by g(x)/w(x).

The last point is called unweighting. The sequence of the accepted random numbers x is then

distributed according the parton distribution function g(x).

6.2 Event Generation

It is clear from the previous discussion that Monte Carlo integration can effectively integrate high

dimensional functions with complicated boundaries. Therefore, it is well suited for evaluation of

cross sections where an integral over multi-particle phase-space and incoming parton densities

functions needs to be performed. Differential cross section dσ(x1, ..., xn) can be very complicated

and can contain a large number of peaks. An example can be a sharp peak coming from Breit-

Wiegner distribution which is frequently used in resonance decays. These peaks need to be

removed by a proper Jacobian transformation as was described in the previous section. The

resulted flattened cross section is integrated using an adaptive sampling method. The kinematics

of produced particles in given event is generated according to the new distributions using the

acceptance rejection method. In order to get events as they occur in nature an unweighting needs

to be performed. The generator uses several thousands of events in order to find the maximum of

differential cross section dσmax. An event is then accepted with probability dσ(x1, ..., xn)/dσmax.

The unweighting efficiency is usually estimated as the average 〈dσ/dσmax〉 and if its value is in

range 0.001...0.005, the generation is considered to be effective.

This straight forward algorithm can be directly used for generation of processes at leading

order of perturbation theory. However, in the next to leading order calculation it is know from

KLN theorem that it is necessary to sum up the virtual and the real emissions in order to cancel

out infrared divergences. For m particles in a final state this can be written as

σNLO =

∫
dσNLO =

∫

m
dσV +

∫

m+1
dσR. (6.5)

In the numerical algorithm, the separate integrals cannot be evaluated and summed due to the

infinities which they contain. One needs to reorganize them in such a way that each separate

integral is finite. There are two general methods used for NLO matrix element integration. The

older one is phase-space slicing algorithm [75] which separates problematic slice of phase-space

and approximates its integrand by a constant. The second algorithm called subtraction method

was introduced by Catany and Seymour [76]. The basic idea of the algorithm is existence of

a function dσA which has similar behavior as the real contribution dσR and therefore by their

subtraction we get a finite integral. On the other hand, if dσA can be analytically integrated over

one particle final state it can be added to the virtual contribution dσV which also results into a

finite integral. Since we added and subtracted the same number the overall integral remains the
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same. In general MC techniques for integration of higher orders in perturbation theory are very

complicated and go beyond the scope of this thesis.

6.3 Parton Showers

Parton showers represent an intermediate step between hard scattering and non-perturbative

hadronisation process. In QCD, quarks and gluons radiate another partons which are predom-

inantly soft or emitted in collinear direction. The parton showers are based on the assumption

of collinear emissions same as the DGLAP equations (3.26). In the collinear approximation, the

cross section for (n+ 1) final state partons can be written in the universal form

dσ(n+1) = σ(n)αS

2π

dQ2

Q2
Pij(z)dz, (6.6)

where σ(n) is a cross section for n partons in final state, Pij(z) are Altarelli-Parisi splitting kernels

already introduced in Section 3.2 and Q2 is virtuality of the branching parton. The parton shower

can be understood as a Markov process describing a series of independent branchings which is

driven by the so called Sudakov Form Factor. The Sudakov Form Factor ∆i(Q
2, Q2

0) expresses

a probability that there is no resolvable emission during evolution of parton i from scale Q2 to

Q2
0 and it reads

∆i(Q
2, Q2

0) = exp


−

∫ Q2

Q2
0

dQ′2

Q′2

∫
dx
x

αS(Q′2)

2π

∑

j

Pij(x)


 . (6.7)

Using the Sudakov Form Factor the DGLAP equation can be rewritten into the integral form [7]

fi(x,Q
2) = ∆i(Q

2, Q2
0)fi(x,Q

2
0) +

∫ Q2

Q2
0

dQ′2

Q′2
∆i(Q

2, Q2
0)

∆i(Q′2, Q2
0)

∑

j

∫
dz
z

αS(Q′2)

2π
Pij(z)fj(x/z,Q

′2).

(6.8)

The first term gives the probability of having no resolvable emission during evolution from the

scale Q2 down to scale Q2
0. The second term corresponds to the probability that a branching

i→ ij occurs at a scale Q′2 with momentum fraction z. The set of integral equation (6.8) can be

solved by repeated back substitution. However in practice, MC generator generates uniformly a

random number RQ inside the interval [0, 1] and solve

RQ =
∆i(Q

2, Q2
0)

∆i(Q′2, Q2
0)

(6.9)

to determine the scale Q′2 at which the emission occurs. This is recursively repeated for all

partons until their scale Q2 does not drop below some cut-off scale Q2
min where the parton

shower stops. The new momentum fraction, x′, carried by the emitted parton, j, is determined

by equation ∫ x′/x

ε

αS(Q′2)

2π
Pij(z)dz = Rx

∫ 1−ε

ε

αS(Q′2)

2π
Pij(z), (6.10)
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where Rx is a uniformly distributed random number at the interval [0, 1]. The resolution param-

eter ε is introduced in order to avoid the divergence of the splitting function corresponding to

unresolved soft emission.

The above algorithm is used for a time-like evolution of final parton radiation. The numerical

implementation of initial state radiation cannot directly use (6.8). It would not be possible to

guarantee that the generated parton cascade will produce a parton compatible with preselected

hard scattering. This problem can be solved by backward evolution scheme in which partons

entering to the hard scattering are evolved back to low-scale hadrons by taking into account

PDFs that specifies the hard process. To do this, the Sudakov Form Factor ∆i(Q
2, Q2

0) needs to

be replaced by

Πi(Q
2, Q2

0;x) = ∆i(Q
2, Q2

0)
fi(x,Q

2
0)

fi(x,Q2)
, (6.11)

which corresponds to probability of evolving parton, i, backward from the scale Q2 and momen-

tum fraction x to the scale Q2
0 < Q2 with unchanged momentum fraction x and without any

resolvable emission. To see this, let dFi(Q2, Q2
0;x) denote the fraction of partons of flavour i

having virtuality Q2 and momentum fraction x and comming from a resolvable branching in the

interval [Q2, Q2 + dQ2]. Then Πi(Q
2, Q2

0;x) can be expressed as

Πi(Q
2, Q2

0;x) = 1−
∫ Q2

Q2
0

dFi(Q′2, Q2
0;x) =

= 1−
∫ Q2

Q2
0

dQ′2
1

fi(x,Q2)

∑

j

∫
dz
z

∆(Q′2, Q2)
αS(Q′2)

2π
Pij(z)fj(x/z,Q

′2) =

= 1− 1

fi(x,Q2)

∫ Q2

Q2
0

dQ′2
∂

∂Q′2

[
fi(x,Q

′2)

∆(Q′2, Q2)

]
,

(6.12)

where the third equality uses the fact that ∆(Q2, Q′2) = ∆−1(Q′2, Q2). Generation of branching

at scale Q′2 is then implemented in the same manner as in the case of the forward evolution

RQ = Πi(Q
2, Q′2;x), (6.13)

where RQ is a uniform random number generated in interval [0, 1]. To estimate the momentum

fraction x′, the (6.12) have to be multiplied by extra factor of f(x′, Q′2) that will be divided

out in the next backward step in Q2. Thus z = x/x′ needs to be generated according to the

probability distribution
αS(Q′2)

2π

Pij(z)

z
f(x/z). (6.14)

All the previous treatments of parton showers were derived in the collinear approximation.

In the case of soft gluon radiation, which is also enhanced in the multi-parton cross section,

universality as (6.6) holds only at the level of amplitudes i.e. the cross section for emission

of extra soft gluon contains an interference between more Feynman diagrams. However, in

order to formulate an algorithm for MC generator, the emission of the soft gluon needs to be
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associated with a particular parton. As already mentioned in Section 3.2, the DGLAP equation

requires strongly ordered virtualities in order to resum leading logarithms but one can redefine

the DGLAP equation in term of different ’equivalent’ ordering variable. It has been shown that

coherent soft gluon effects can be taken into account if we choose the ordering variable of parton

shower to be an opening angle between two partons. This is known as angular ordering of the

parton showers.

The angular ordering parton showers are implemented in the most frequently used generators

Pythia and Herwig. It is worth noting that there is a complementary approach which solves the

problem of soft enhancement in terms of dual dipole cascade. The model is based on observation

that colour dipole e.g. qq̄ pair radiates a gluon in analogy with electromagnetism. The colour

dipole model is implemented in MC program Ariadne [77].

6.4 Hadronisation Models

The parton shower produces perturbatively parton cascade with final partons of scale down to

a fixed cut-off Q0 ≈ 1GeV. Due to such low scale the QCD coupling is large and pQCD cannot

be further used. In order to describe transition of partons into final stable hadrons which can

be experimentally observed phenomenological hadronisation models have to be employed. Three

basic hadronisation models are discussed in this chapter: independent fragmentation which does

not take into account colour connection and is less successful as other two models, string frag-

mentation implemented in Pythia for which colour connection is essential, and its alternative,

the cluster hadronisation used in Herwig.

6.4.1 Independent Fragmentation

The first hadronisation model which has been introduced by Field and Feynman [78] is known as

the independent fragmentation. The model assumes that each parton fragments independently.

The fragmenting quark is combined with an anti-quark from qq̄ pair, created from the vacuum,

to produce a meson which carries momentum fraction z of the original quark. The leftover

quark with momentum fraction (1 − z) then fragments in the same way. The procedure is

repeated until the left energy drops below some cut-off. The momentum fraction is determined

according to the fragmentation function Dh
q (z, pT) which expresses the probability that quark q

fragments into hadron h that carries a momentum fraction z of the original quark and transverse

momentum pT. The fragmentation function cannot be derived from the first principles and has

to be measured. Independent fragmentation treats gluon as qq̄ pair in which gluon momentum is

distributed between quark and anti-quark either according to Altarelli-Parisi splitting function

Pqg(z) or quark carries whole gluon momentum and anti-quark zero momentum or other way

around. Although the model was quite successful in describing multi-jet events at LEP it suffers
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by several weaknesses such as violation of momentum and flavour conservation and infrared

safety. Therefore nowadays the independent fragmentation is rarely used.

6.4.2 String Hadronisation

q

q̄

g

Figure 6.1: a) String evolution initiated by qq̄ pair. b) Gluons are treated as kinks that carries

energy and momentum on the string.

String hadronisation model has practically similar algorithm to fragment qq̄ pairs into mesons

as independent fragmentation. The model is based on the idea that when quarks in qq̄ pair are

moving apart, a colour field between the q and q̄ collapses into a narrow flux tube of uniform

energy density per unit length. The field is approximated by a linear potential created by a

string with tension κ ≈ 1GeV/fm. Thus qq̄ pair oscillates outwards and inwards passing through

one another and transferring energy to and from the string what is termed as yo-yo mode. If the

kinetic energy of the initial q0q̄0 pair is large enough the string breaks up and creates another

q1q̄1 pair. The q0 can join the q̄1 to create a meson leaving the q1 unpaired. The q1q̄0 can again

produce new q2q̄2 pair in the same manner and the creation of mesons iteratively continues until

there is no energy left. The space time picture of the string evolution can be seen in Figure 6.1.

The probability of breaking up the string and creating a qq̄ pair is given by Wilson’s exponential

area decay law which takes the form

dP
dA

= P0 exp(−P0A), (6.15)

where A is the space-time area within the backward light-cone of the point at which the new qq̄

is created and P0 is a constant reflecting uniformness of the string.

In practice, the model is described in transverse mass mT =
√
m2 + p2

T and light-cone

momentum fraction z of the fragment. First, the algorithm selects flavour of the qiq̄i pair

according to some probabilities. If the qiq̄i have no transverse mass, the pair is classically

created at one point and it is propagated in the field. However, if the pair has a transverse mass

the quarks in the pair would have to be produced in some distance that the field between them

can be transformed into the transverse mass. The Lund model invents a concept of quantum



48 CHAPTER 6. MONTE CARLO EVENT GENERATORS

mechanical tunneling i.e. the pair is created at one point and tunnels to classically allowed region

with probability

exp

(
−πm

2
T

κ

)
= exp

(
−πm

2

κ

)
exp

(
−πp

2
T

κ

)
. (6.16)

This leads to a flavour independent pT component which is generated according to Gaussian

distribution. Since the string has initially no transverse momentum the pT is compensated

between qiq̄i. Having the transverse momentum generated we need to determine the energy of

mesons and longitudinal momentum z. Since the hadrons are required to be on-shell it is enough

to generate only momentum fraction z. This is usually generated according to a fragmentation

function fij(z) describing the probability that a quark with flavour i combines with an anti-quark

with flavour j to give a meson with remaining fractional momentum of the system z. It should

be noted that there is a freedom from which side of the string the hadronisation proceeds. The

requirement of the independence of such choice, called left-right symmetry, uniquely determines

the fragmentation function to be

fij(z) ∝
1

z
zai
(

1− z
z

)aj
exp

(
−bm

2
T
z

)
. (6.17)

The string model becomes more distinct from independent fragmentation when the gluons are

added into the game. The gluons produce energy and momentum carrying kinks on each string.

As an example, a qq̄g event in which the string is stretched from the q via g to q̄ can be seen

in Figure 6.1. Since the gluon is attached to two strings, the force acting on the gluon has

double magnitude compared to the force acting on individual quarks. It has been shown in QCD

that the ratio between the force on gluon and on quark is 2/(1 − 1/N2
c ) thus the string model

has effectively infinitely many colours. The fragmentation of kinked strings leads to a better

agreement with experiment than independent fragmentation in angular distribution of hadrons

in e+e− three-jet final state.

So far we have discussed the production mechanism of mesons only. The generalization of

the mesons production into baryons is not unique and three different mechanisms are available in

Pythia. The simplest scenario assumes that any flavour qi can represent a quark or a di-quark

qiqi in a colour triplet state. The baryons are then produced by combination of nearest quark

or di-quark pairs in a similar way to meson production. More general frameworks for baryon

production are simple popcorn and advanced popcorn models where baryons are produced from

several qq̄ pairs between which one or several mesons are formed from intermediate qq̄ pairs. A

schematic diagram for baryon production in these models can be seen in Figure 6.2.

It should be emphasized that Lund String hadronisation solves the weaknesses of the inde-

pendent fragmentation, such as momentum and flavour violations, infrared and collinear safety.

Its sometimes criticized feature is a large set of free parameters, especially related to the flavour

properties, that needs to be tuned to data. On the other hand, the Lund String hadronisation

model gives in general the most successful description of experimental data.
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Hadronization in Z 0 decay 751

Figure 8. A schematic of baryon production in the diquark model (left) and ‘popcorn’ model
(right) leading to MBB and BMB configurations respectively.

‘weight’ [155]. The standard scheme available in JETSET [21, 156] involves rearranging
identical boson momenta so that they are distributed according to the pairwise correlation
function. Full multiboson correlations may be included, but at the cost of additional
computing time. The effect of including Bose–Einstein correlations may be likened to
adding an attractive inter-boson force, leading to ‘lumpier’ distributions. The experimental
situation is discussed in section 7.1.

3.2.5. Baryons and the popcorn mechanism. In the Lund string model, baryon production
poses particular problems of principle. The basic difficulty appears to stem from incomplete
knowledge of the internal structure of a baryon [157]. Is it a quark–diquark system or a
three quark system? This ignorance poses less of a problem for HERWIG and to some
extent the UCLA string model because these essentially only need to know a baryon’s mass
and spin. However the Lund string works directly with the (di)quarks themselves and so
in the absence of a guiding principle it therefore allows for two options, the diquark [158]
and popcorn [133] baryon production mechanisms.

The diquark mechanism is a straightforward generalization of the quark meson
production model and was the first to be fully developed [158]. However a stepwise quark
model for the production of baryons was the first to be proposed [144] and implemented
[159]. Whilst this only evolved later [133] (and is continuing to evolve [160]) into the
popcorn mechanism it would be a misconception to regard it as especially contrived or
unnatural. When a qq0q̄q̄0 (or qq̄) pair is produced in a string’s colour field with the same
colour as the end quarks they precipitate a string break: the diquark mechanism [158]. When
a (virtual) qq̄ pair is produced the possibility that they have a different colour to that of the
end quarks allows a non-zero colour field to exist between them in which further real qq̄ pairs
could form, leading to the sequence BB,BMB etc: popcorn production [133]. Perhaps not
unsurprisingly the popcorn mechanism requires a (modest) number of new free parameters.

The main practical consequence, so far, of introducing popcorn production appears
to be a lessening of the phase space correlations between baryon–antibaryon pairs (see
section 7.3). The fragmentation function for baryons is also expected to be softened [161]
(compared with a meson with the same transverse mass) as the result of popcorn production:
in particular BMB sequences cause a suppression of leading baryons [160]. (This would
suggest using aqq > aq in the LSFF (14).) The actual level of popcorn production required to
describe data is still the subject of debate but it may be related to the a parameter of the LSFF
[161]. Interestingly a search for the expected chain-like structures, such as correlated 3K+p̄
systems, has failed to see any positive evidence [162]. Allowing three-body decays of clus-
ters is expected to have similar effects to introducing popcorn production in string models.

3.3. Cluster models

Whilst clusters initially appeared as intermediate states in the string model of Artru and
Mennessier [134] the first fully-fledged cluster hadronization models originated at CalTech
[137, 163]. (Cluster-like structures also naturally arose in the earlier statistical bootstrap

Figure 6.2: A schematic diagram of baryon production taken from ref. [79]. Diquark model

(left) which produces BB̄ as nearest neighbours and popcorn model (right) allowing configura-

tion BMB̄, where B and M denotes baryon and meson respectively. The lines show flavour

correlation.

6.4.3 Cluster Hadronisation

The cluster hadronisation models are based on preconfinement property derived in pQCD [80].

Preconfinement states that at the end of the parton shower the mass and spatial distributions

of colour singlet combinations of partons (clusters) are universal i.e. they depend only on the

cut-off scale of the parton shower Q0 and QCD parameter ΛQCD but not on the scale or nature of

the hard process. The preconfinment also implies that the mass distribution of clusters rapidly

falls at high masses. Typical cluster mass distribution for different scales of hard process Q2

generated in Herwig is presented in Figure 6.3.
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Figure 17: Invariant mass distribution of colour-singlet clusters in Herwig.

multiplets of hadrons of each spin and parity, in order not to bias the flavour
selection. This can entail some guesswork about the masses and decays of
excited heavy-flavour hadrons that are not yet well established.

This basic model of cluster decay comes surprisingly close to fitting the
hadron distributions observed in jet fragmentation, with virtually no free pa-
rameters other than the shower cuto↵. The multiplicities of di↵erent flavours
of mesons and baryons are determined by their masses and spins, and their
transverse momenta relative to the jet axis are naturally limited by the phase
space available in cluster decay. The characteristic di↵erences between quark
and gluon jets, with the latter having softer hadron spectra, higher multi-
plicities and wider profiles, all come from the higher rate of parton showering
from gluons; apart from leading flavour e↵ects, the relative proportions of
di↵erent hadron species in all types of jets should be universal.

For a more refined description of hadronic final states, at the level de-
manded nowadays from event generators, the basic cluster model described
above requires some adjustments. The sharp transition from perturbative
to non-perturbative physics at the cuto↵ scale tends to over-suppress heavy
states such as multiply-strange (e.g. ⌦�) and charmed baryons. A smoother
transition over a range of scales would clearly be more physical. Light-
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Figure 6.3: Invariant mass distribution of colour singlet of clusters simulated in Herwig, taken

from ref. [81]. The spectrum does not depend on the scale of the hard process Q and rapidly

falls in large masses.

The simplest way how to form a colour singlet cluster is to non-perturbatively split the gluons



50 CHAPTER 6. MONTE CARLO EVENT GENERATORS

produced by the parton shower into qq̄ pairs. Neighbours qq̄ can be then combined into colour

singlets with the momentum given by the sum of the momenta of the constituent quarks. This

approach creates the basis of hadronisation model used in Herwig. Since the cluster mass

spectrum is both universal and peaks at low masses, the clusters are considered as highly excited

hadron resonances which decay into hadrons. If the cluster is too heavy, that can happen in

a small fraction of cases, it needs to be split into lighter clusters before it can be decayed to

hadrons. The cluster fissions into two cluster if its mass M satisfies

MClpow ≤ Clmax + (m1 +m2)Clpow , (6.18)

where Clmax, Clpow are parameters of the model and m1, m2 are masses of parton constituents

of the cluster. The fission continues until clusters do not reach required masses for decay into

hadrons. For a cluster of a given flavour1 (q1, q̄2) a quark-antiquark or diquark-antidiquark pair

(q, q̄) is extracted from the vacuum and a pair of hadrons with flavours (q1, q̄) and (q, q̄2) is

formed. For the production of hadrons a(q1,q̄) and b(q,q̄2) the weight W is estimated as

W (a(q1,q̄), b(q,q̄2)) = Pqwasawbsbpab, (6.19)

where Pq is the weight for production q1q̄2 pair with given flavour, wb and wb are weights for

production of hadrons a and b, sa and sb are suppression factors for given hadrons and pab

is the phase-space available for their production. There are different approaches that vary in

implementation of the cluster decay products selection. The original approach in [82] has been

improved by model [83] which cures the issue of low rate baryon production.

Herwig++ extends the described cluster hadronisation model by possibility of colour recon-

nection [84]. This occurs at the stage where clusters are formed from the parton-shower products.

Algorithm allows to reshuffle colour cluster constituents between two cluster pairs. It looks for

cluster pairs where reconnection would result in the smallest sum of cluster masses and performs

a reconnection according to a reconnection probability parameter. The introduction of colour

reconnection leaded to a great improvement in the description of charge particle distributions

measured by ATLAS collaboration [1, 85].

The cluster model in combination with angular-ordered parton showers gives a fairly good

overall description of high-energy collider data, usually slightly less good than the string model,

but involving fewer parameters.

6.5 Underlying Events and Minimum Bias Simulation

When two hadrons pass through each other there is a change that more than one parton-parton

interaction occurs. The probability grows with increasing center-of-mass energy,
√
s, of colliding

1Information about flavour of cluster constituents is propagated through the cluster fission procedure, see [81]

for further details.
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hadrons thus the effect at LHC energies is important. Most of the parton-parton collisions lead

to production of soft particles and thus create a ’pedestal’ to hard process of our primary interest

which occurs much less likely than the soft process. In order to perform precise measurement of

the hard processes it is necessary to understand the underlying production and be able to model

it in MC programs.

 [GeV]
T,min

p
1 2 3 4 5 6 7

 [m
b]

σ

210

310

410
MRST2007 LO*
CTEQ6L
MRST2001 int.

DL
DL+CDF

DL soft + hard

Figure 9: The inclusive jet cross section calculated at LO for three di↵erent proton PDFs,
compared to various extrapolations of the non-perturbative fits to the total pp cross section
at 14 TeV centre-of-mass energy. From [99].

An intuitive way of arriving at the idea of multiple interactions is to view
hadrons simply as “bunches” of incoming partons. No physical law then pre-
vents several distinct pairs of partons from undergoing scattering processes
within one and the same hadron-hadron collision. The other key idea to bear
in mind is that the exchanged QCD particles are coloured, and hence such
multiple interactions, even when soft, can cause non-trivial changes to the
colour topology of the colliding system as a whole, with potentially major
consequences for the particle multiplicity in the final state.

In the soft QCD region, the t-channel gluon propagator almost goes on
shell (reminiscent of the case of bremsstrahlung, described in detail in Sec-
tion 4), causing the subprocess di↵erential cross section to become very large,
behaving roughly as:

d�̂2j /
dt

t2
⇠ dp2

?
p4
?

, (44)

An integration of this cross section from a lower cuto↵ p?min to
p

s, using
the full (leading-order) QCD 2 ! 2 matrix elements folded with some recent
parton-density sets, is shown in Fig. 9, for pp collisions at 14 TeV [99]. The
solid curves, representing the calculated cross sections as functions of p?min,
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Figure 6.4: The inclusive hard cross section for three different proton PDFs, compared to various

extrapolations of the non-perturbative fits to the total pp cross section at 14TeV center-of-mass

energy. Plot taken from ref. [86].

The idea of multi-parton interactions is based on an observation that a cross section of hard

parton-parton scattering per one hadron-hadron collision as a function of minimum transverse

momentum pmin
T exceeds the total cross section at sufficiently small pmin

T

σhard(pmin
T ) =

∫ √s/4

pmin
T

dpT
dσ
dpT

> σtotpp . (6.20)

The example of the predicted dependence σhard(pmin
T ) on the pmin

T for LHC at
√
s = 14TeV can

be seen in Figure 6.4. The σhard(pmin
T ) exceeds the total inelastic cross section estimated by

Donnachie-Landshoff at pT ' 5GeV. In order to interpret this behavior one needs to realize that

the σtot expresses inclusive number i.e. if n parton interactions with p > pmin
T occur during one

pp collision this needs to be counted as one event for σtot but as n events in σhard(pmin
T ). In fact,

one needs to deal with a divergence of the number of interactions per one hadron collision as

pmin
T → 0 which is due to rapidly increasing parton distribution functions at small x.
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The divergence is suppressed by employing correlation due to momentum conservation. This

is approached differently in Pythia and Herwig. While Pythia orders the multiple interactions

in Bjorken variable x and ensures that the sum of momentum fraction x over all interactions

does not exceed unity, Herwig++ estimates the number of interactions n as a first guess but

generates only so many interactions so that the energy conservation is not violated.

The residual divergence for pmin
T → 0 in the non-perturbative region can be understood in

following way. If a gluon with a sufficiently small transverse momentum is emitted from the

hadron it cannot resolve the individual colour charges and thus its effective coupling decreases.

This is expected to happen at least at

pmin
T ' }

rp
≈ 0.2 GeV · fm

0.7 fm
≈ 0.3 GeV ' ΛQCD (6.21)

but the typical value where MC generators starts to regulate is pmin
T ≈ 2GeV. The most simple

regularization is a sharp cut-off, however, Herwig++ and Pythia8 use more smooth regular-

ization scenarios. Herwig++ generates soft scatters below the cut pmin
T , where the cross section

for soft scatters is estimated as the difference of the non-diffractive cross section determined from

Donnachie-Landshoff model and the cross section for semi-hard scattering. Pythia8 uses the

fact that the cross section diverges as α2
S(p2

T)/p4
T and it can be smoothly regularized by factor

α2
S(p2

T + p2
T0)

α2
S(p2

T)

p4
T

(p4
T + p4

T0)
, (6.22)

where pT0 is a free parameter which needs to be tuned to data.

The multi parton interactions in Pythia and Herwig are based on assumptions that the

scatterings between partons are independent. Hence, the number of semi-hard (soft) interactions

per hadron-hadron collision is estimated using Poisson distribution

Pn(b, s) =
〈n(b, s)〉n

n!
e−〈n(b,s)〉. (6.23)

It is reasonable to assume that the average number of scatters 〈n(b, s)〉 depends on the impact

parameter b of hadron-hadron collision because there is larger chance that more scatters occur

during the head on collision than during the peripheral collision with large impact parameter b.

In order to quantify the hadronic matter overlap in pp collision, one assumes symmetric spatial

distribution of the matter inside hadrons, ρ(~x)d~x = ρ(r)d~x. In Pythia, ρ(r) is approximated

by a (double) Gaussian, exponential distributions or some distributions interpolating between

these, where as Herwig++ uses electromagnetic form factors [87]. The time integrated overlap

function between the matter distributions of the colliding hadrons is given by

A(b) ∝
∫

dt
∫

d3~xρ(x, y, z)ρ(x+ b, y, z + t). (6.24)

The relation between the mean value of scatters and overlap function has simply linear form

〈n(b, s)〉 = f(s)A(b), where f(s) is proportional to parton-parton cross section.
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It should be noted that, in order to obtain finite total cross sections, Pythia model requires

that each event contains at least one semi-hard interaction, while Herwig does not. There are

further slight differences between the models in Pythia and Herwig. It is worth to mention

that Pythia implements the possibility of perturbative rescattering which takes place during

partonic showering of the multiple semi-hard scattering products. This leads to slight increase in

the mean pT of the partonic final states, but more dramatic signatures have not been identified

yet.

Minimum bias in Pythia8 and Herwig++ is simulated in similar way. As already men-

tioned, the total cross section is computed using Donnachie-Landshoff model [11]. The particles

are produced according to QCD 2→ 2 in semi-hard processes with pT > pmin
T for Pythia8 while

Herwig++ uses special matrix element dedicated for minimum bias simulation which enhances

the production of soft pT final states. Both generators have special treatment of soft particle

production i.e. below pmin
T . The minimum bias model in Pythia contains diffractive production

which is not included in Herwig++ yet.

6.6 Modeling of Inclusive Diffraction in MC Generators

The current MC generators use models based on the triple pomeron approach introduced in

Section 4.2. The models mainly differ in the t dependence, the parameterization of pomeron

trajectory αIP(t) = αIP(0) + α′
IP
t, and modeling of high pT production. In Pythia, cross section

is by default parameterized by Schuler and Sjöstrand model in which αIP(0) = 1 and exponential

t dependence exp(−B(ξX , ξy)t). There are three other alternatives available. The Bruni and

Ingelman [88] is similar to Schuler and Sjöstrand [89], except that its t dependence is given by

the sum of two exponentials. In the Berger and Streng [90,91] and Donnachie and Landshoff [92]

models the default pomeron trajectory is αIP(t) = 1.085 + 0.25t, consistent with results from

fits to total and elastic hadronic cross section data [11]. Whilst the model attributed to Berger

and Streng has an exponential t dependence, the Donnachie and Landshoff version is based on

a dipole model of the proton elastic form factor. For all flux parameterizations in Pythia,

additional factors are applied to modify the distributions in kinematic regions in which a triple-

pomeron approach is known to be inappropriate. Their main effects are to enhance the low

mass components of the dissociation spectra, to suppress the production of very large masses

and, in the DD case, to reduce the probability of the systems X and Y overlapping in rapidity

space. The treatment of particle production in Pythia6 depends on the diffractive massM . For

M ≤ 1GeV, the system is allowed to decay isotropically into a two-body system. In the case of

larger masses, the system is treated as a string with quantum number of the original proton. This

leads to production of final state hadrons distributed in a longitudinal phase-space with limited

transverse momenta. Pythia8 uses similar mechanism for particle production with diffractive

masses below 10GeV. However, for larger masses there is a smooth transition to perturbative
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description based on the Ingelman-Schlein model. The model consider pomeron to be composite

object whose content is described by the diffractive PDF as it was discussed in Section 4.3. This

approach yields a significantly harder final state particle transverse momentum spectrum in SD

and DD processes in Pythia8 compared with Pythia6.

Cross section at
√
s = 7TeV

Process Pythia6 Pythia8 Phojet

σND (mb) 48.5 50.9 61.6

σSD (mb) 13.7 12.4 10.7

σDD (mb) 9.2 8.1 3.9

σCD (mb) 0.0 0.0 1.3

Default fND (%) 67.9 71.3 79.4

Default fSD (%) 19.2 17.3 13.8

Default fDD (%) 12.9 11.4 5.1

Default fCD (%) 0.0 0.0 1.7

Tuned fND (%) 70.0 70.2 70.2

Tuned fSD (%) 20.7 20.6 16.1

Tuned fDD (%) 9.3 9.2 11.2

Tuned fCD (%) 0.0 0.0 2.5

Table 6.1: Cross sections and relative fractions predicted by the MC generators for collisions
√
s = 7TeV and used in ATLAS AMBT1 tune for Pythia6. Tuned overall diffractive fraction

used in 4C and AMBT2B tunes which has been measured at the ATLAS [3] with total inelastic

cross section fixed.

The Phojet model uses the two component dual parton model [93] to combine features of

Regge phenomenology with AGK cutting rules [94] and leading order QCD. Diffractive disso-

ciation is described in a two-channel eikonal model, combining a triple Regge approach to soft

processes with the lowest order QCD for processes with parton scattering transverse momenta

above 3GeV. The pomeron intercept is taken to be αIP(0) = 1.08 and for hard diffraction, the

diffractive parton densities are taken from [95,96]. Hadronisation follows the Lund String model,

as for Pythia. Phojet is the only generator that implements central diffractive production

contributing by 1.7% into the total inelastic cross section. The version used for rapidity gap

analysis is Phojet1.12.1.35, with fragmentation and hadronisation as in Pythia6.1.15.

The specific versions used in rapidity gap analysis are Pythia6.4.21 (with the AMBT1 tune

performed by ATLAS) and Pythia8.145 (with the 4C tune). Updated versions, Pythia8.150 and

Pythia6.4.25 (using the 4C and AMBT2B tunes, respectively), are used for comparisons with

the corrected data, see Table 6.1. The 4C tune of Pythia8 takes into account the measurement
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of the diffractive fraction fD of the inelastic cross section in [3], whilst keeping the total cross

section fixed, resulting in a somewhat smaller diffractive cross section than in Pythia6. The

measurement of diffractive fraction in total inelastic cross section will be discussed in detail in

Chapter 10.



Chapter 7

Forward Processes in Herwig++

Herwig++ generator has been extended for some of the forward physics processes which are

particularly interesting for LHC measurement. These are diffractive production of ’hard’ objects,

QCD exclusive production and two photon initiated processes. Some of the processes with

large yields have been already studied using rapidity gap methods at the LHC but for the

rare processes, in which a new physics can be probed, the very forward detectors for proton

tagging need to be used for pile-up and background separation. ATLAS experiment recently

approved a project ATLAS Forward Physics (AFP) [97] aiming to install proton taggers at 220m

from the interaction point. The silicon tracking detectors together with fast timing detectors

placed in movable beam pipe allowing to approach the detectors very close to the beam will

provide measurement of high mass exclusive and diffractive objects even at high instantaneous

luminosities.

Herwig++ is a new C++ MC generator providing vast number of processes both in LO and

NLO accuracy. Herwig++ is based on ThePEG (the Toolkit for High Energy Physics Event

Generation) [98] framework for implementing MC event generators. ThePEG provides an code

infrastructure as a collection of modular building blocks that is independent of physics models.

Herwig++ implements a specific physics models on the top of the framework. The framework

enables an easy extension for various models and new processes but also comfortable user setup

interface. Hard diffraction, QED and QCD exclusive production have been implemented to

Herwig++ as a part of the work for this thesis. The hard diffraction and two photon initiated

processes were added to Herwig++ release v2.5 [84]. This chapter is devoted to detailed

description of the processes which have been implemented so far and to outlook for further

developments. First, the implementation of photon initiated processes is discussed, then details

of hard diffractive model are reviewed. Finally, the QCD central exclusive production framework

in Herwig++ with the already added processes is summarized.

56
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7.1 Photon Initiated Processes

As it was already mentioned, QED exclusive production mechanism schematically illustrated in

Figure 4.9 is described by Equivalent Photon Approximation (EPA) first invented by Weizsäcker-

Williams [99, 100] for description of low virtuality photon emission by electron. Later the ap-

proximation was extended by Budnev [41] for photon radiation from hadrons. We use EPA to

describe a probability f(x,Q2) that almost real photon with virtuality [Q2, Q2 +dQ2] is emitted

off proton and carries proton momentum fraction [x, x+ dx] given by

f(x,Q2) =
α

π

dx
x

dQ2

Q2

[
(1− x)

(
1− Q2

min
Q2

)
FE +

x2

2
FM

]
, (7.1)

where Q2
min = m2

px
2/(1−x) is the minimum photon virtuality allowed by kinematics in whichmp

is proton mass. The electric and magnetic form factors FE and FM are rapidly falling functions

of the form

FM = G2
M (7.2)

FE = (4m2
pG

2
E +Q2G2

M)/(4m2
p +Q2) (7.3)

G2
E = G2

M/µ
2
p = (1 +Q2/Q2

0)−4, (7.4)

with proton magnetic moment µp = 7.78 and fitted scale Q2
0 = 0.71GeV2. Herwig++ treats the

f(x,Q2) as a parton distribution function allowing to combine with different PDF to generate

processes such as photoproduction or photon-pomeron interactions. The processes currently

available for two photon initiated processes are two lepton production, di-jet production and

WW in SM.

pT [GeV] Herwig++ [pb] FPMC [pb] LPAIR [pb]

3 47.24 49.42 47.66

5 13.18 13.54 13.24

10 2.203 2.223 2.182

30 1.094 ×10−1 1.097×10−1 1.110 ×10−1

50 2.486×10−2 2.494×10−2 2.466×10−2

Table 7.1: Cross sections for di-muon production in two photon initiated processes in collisions

with
√
s = 14TeV. All generators predictions are in good agreement.

The Herwig++ implementation was tested with di-muon production pp→ p⊕ µµ⊕ p and

comparison was made with FPMC and LPAIR generators at
√
s = 14TeV. A good agreement

is achieved in cross sections for different cuts on transverse momentum of produced µ between

the MCs. This can be seen from Table 7.1. Relevant distributions are compared in Figure 7.1. A

disagreement between FPMC and Herwig++ and also LPAIR is seen in the outgoing proton
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transverse momentum distribution which is proportional to photon virtuality, pprotonT ∼ −Q.

The discrepancy can be explained by the fact that the spin correlation between leptons and

protons is taken into account in LPAIR and Herwig++ but not in FPMC [101]. Lepton

rapidity distribution exhibit small disagreement between Herwig++ and LPAIR with FPMC

for large rapidities |y| > 4. This deviation is attributed to implementation details of particular

MC generators. Particularly, kinematical cuts can be applied in different frames (laboratory

frame or center-of-mass of hard process) what is responsible for slight discrepancy at the very

beginning of lepton pT distribution in Figure 7.1. In the other distributions, the MCs are in

good agreement.
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Figure 7.1: Comparison of exclusive muon production at
√
s = 14TeV in Herwig++, LPAIR

and FPMC. The figure presents distributions of proton momentum fraction loss, transverse mo-

mentum of outgoing photon, rapidity of outgoing muons and transverse momentum of outgoing

muons.

7.2 Hard Diffractive Processes

For description of diffractive processes in which a high mass object is produced Herwig++

contains Ingelman-Schlein [20] model introduced in Section 4.3. The cross section in pp collision
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is described by convolution of diffractive PDF (DPDF) and a cross section of a hard process

(4.30). The DPDF can be further factorized (4.30) into pomeron flux which is motivated by Regge

theory (4.32) and pomeron distribution function measured at HERA. Herwig++ offers three

NLO DPDF provided by H1 collaboration in year 2006 [102] (fits A and B) and 2007 [21]. The

DPDF fits determine all free parameters in pomeron flux and Herwig++ sets them as default

allowing a user to change it. The reggeon contribution which is small for high mass production

can also be included or generated separately. In case of reggeon contribution no reggeon PDF

exists but it is a custom practice to use a pion distribution functions which successfully describe

H1 data. Thus Herwig++ provides class which is only an interface to LHAPDF library [103].

In order to treat the pomeron or reggeon remnant correctly their parton content needs to be set.

Since both experiment and theory suggest that the pomeron is composed of gluons Herwig++

uses this as default option. Gluonic content of the pomeron leads to larger particle production

with respect to the option where pomeron is composed of qq̄. Reggeon is treated as qq̄ pair

only, in order to be consistent with pion PDF. As it was already discussed in Section 4.3, the

factorization (4.30) is broken down in pp collisions and the cross section needs to be scaled by the

corresponding survival probability factor. This suppression factor is not included in Herwig++

therefore the resulted cross section has to be scaled by corresponding factor by user.

Single diffractive and double pomeron exchange production of many SM processes as well

as some MSSM processes are available in Herwig++. Moreover, few NLO processes with

POWHEG mechanism [104] for merging NLO hard process with parton shower listed in can be

used. Diffractive production in Herwig++ was validated against Pomwig which is actually

pT [GeV]
Pomwig Herwig++ Herwig++ Herwig++

2006A [µb] 2006A [µb] 2006B [µb] 2007 [µb]

10 95.63 96.33 98.69 92.51

30 1.546 1.554 1.435 1.357

50 1.886×10−1 1.901×10−1 1.659×10−1 1.537×10−1

Table 7.2: Cross sections for di-jet production in DPE at
√
s = 14TeV for various DPDF fits.

the most frequently used generator for hard inclusive diffraction and contains the same model

as Herwig++. The cross sections for DPE di-jet at
√
s = 14TeV production for different pT

cuts are summarized in Table 7.2. All the three diffractive PDF fits 2006A, 2006B and 2007

in Herwig++ are compared with 2006A in Pomwig. The cross sections well agrees between

Pomwig and Herwig++ for the same fit 2006A. The choice of the PDF fit has effect of ∼ 5%.

The relevant distributions on the parton level for DPE di-jet production with pcut
T = 10GeV

can be seen in Figure 7.2. Again, Herwig++ and Pomwig, with the same 2006A fit, well

agree for all distributions. Some small discrepancies can be seen at the beginning of the pT and

mass distributions and at the tails of rapidity distribution of the outgoing partons. These are
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Figure 7.2: Comparison of DPE di-jet production at
√
s = 14TeV between Pomwig and

Herwig++. Herwig++ is presented for its three PDF fits 2006A, 2006B, 2007. Figure

shows momentum fraction loss of proton and pomeron, mass of the produced system including

and without pomeron remnants, rapidity and transverse momentum of partons produced in

hard process. A small differences on parton level between Pomwig and Herwig++ with the

same PDF 2006A are caused by implementation details of the hard processes and PDF. Larger

discrepancy can be seen on the level of stable hadrons which is caused by different Herwig++

hadronisation tune.
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Figure 7.3: Comparison of DPE di-jet production at
√
s = 14TeV between Pomwig and

Herwig++. Herwig++ is presented for its three PDF fits 2006A, 2006B, 2007. Larger

discrepancy can be seen on the level of stable hadrons which is caused by different Herwig++

hadronisation tune.

attributed to implementation details such as frame at which the parton masses and momenta

are generated. Larger differences are apparent for the distributions of hadrons at generator

level which are shown in Figure 7.3. Herwig++ produces particles with smaller transverse

momentum than Herwig. The rapidity distribution of final hadrons is also different even when

the same PDF is used. This difference is due to tuning of Herwig++ hadronisation model to

LEP data.

7.3 QCD Exclusive Processes

Implementation of QCD exclusive processes is based on the Durham model [30] which has been

successful in description of these phenomena at Tevatron. So far the following set of one and two

particle final states has been implemented: Higgs production, di-jet production, and di-photon

production. The final goal is supplement these processes by three particle final state production

which can have higher yields than two particle production due to Jz = 0 selection rule. For

example, qq̄g can create larger background to Higgs production than qq̄ production.

The complexity of the phase-space integration grows exponentially with increasing number of

final states. Thus a high performance automatic sampler is necessary to integrate the complicated

phase-space of three particle production. This is one of the reasons why those processes have

not been implemented in any other MC generator yet.

7.3.1 Durham Model in Herwig++

The Feynman diagram for the Higgs production in Durham model is displayed in Figure 4.8. In

this model, differential cross section is factorized into luminosity of radiated gluons L and the
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hard matrix element of desired process σ̂(gg → X)

M2
X

∂σ(pp→ pXp)

∂M2
X∂y∂t1∂t2

= Seb(t1+t2) ∂2 L
∂M2

X∂y
σ̂(gg → X), (7.5)

where MX is invariant mass of produced object X, y denotes its rapidity, t1 = (p1 − p′1)2,

t2 = (p2 − p′2)2 are momenta transferred squared for both protons, b = 4GeV−2, and constant

factor S stands for gap survival probability. The derivation of the differential luminosity starts

of the amplitude and we shall make use of the Cutkosky rules to do that – the relevant cut is indicated
by the vertical dotted line in Figure 1. There is of course a second relevant diagram corresponding to
the Higgs being emitted from the left-hand gluon. We shall assume that the real part of the amplitude
is negligible, as it will be in the limit of asymptotically high centre-of-mass energy when the quarks are
scattered through small angles and the Higgs is produced centrally.

Fig. 1: The relevant Feynman graph for qq → q + H + q.

The calculation can be further simplified by making use of the eikonal approximation for those
vertices which couple the gluons to the external quarks. The gluons are very soft and so, modulo correc-
tions which are suppressed by the inverse of the beam energy, we can approximate the qqg vertices by
2gτa

ijq1,2δλ,λ′ , where τa is a Gell-Mann matrix, g is the QCD coupling and the Kronecker delta tells us
that the quark does not change its helicity. The calculation of the amplitude is now pretty straightforward:

ImAik
jl =

1

2
× 2

∫
d(PS)2 δ((q1 − Q)2)δ((q2 + Q)2)

2gqα
1 2gq2α

Q2

2gqµ
1

k2
1

2gqν
2

k2
2

V ab
µν τ

c
imτ

c
jnτ

a
mkτ

b
nl . (1)

The factor of 1/2 is from the cutting rules and the factor of 2 takes into account that there are two
diagrams. The phase-space factor is

d(PS)2 =
s

2

∫
d2QT

(2π)2
dαdβ (2)

where we have introduced the Sudakov variables via Q = αq1 + βq2 + QT . The delta functions fix the
cut quark lines to be on-shell, which means that α ≈ −β ≈ QT

2/s $ 1 and Q2 ≈ Q2
T ≡ −QT

2.
As always, we are neglecting terms which are energy suppressed such as the product αβ. For the Higgs
production vertex we take the Standard Model result:

V ab
µν = δab

(
gµν − k2µk1ν

k1 · k2

)
V (3)

where V = m2
Hαs/(4πv)F (m2

H/m2
t ) and F ≈ 2/3 provided the Higgs is not too heavy. The Durham

group also include a NLO K-factor correction to this vertex. After averaging over colours we have

τ c
imτ

c
jnτ

a
mkτ

b
nl → δab

4N2
c

.

Figure 7.4: Feynman diagram for qq → q +H + q. Figure taken from reference [105].

from the amplitude where the protons are replaced by quarks. The corresponding diagram is

shown in Figure 7.4, where Q is four momentum of screening gluon and k2, k1 are corresponding

four momenta of fusing gluons. The imaginary part of the amplitude is computed using the

Cutowsky rule. Approximating Q ≈ QT and considering the forward scattering limit in which

the outgoing quarks carry no transverse momentum QT = −k1T = k2T, the cross section for

qq → q +X + q takes a form

σ(qq → q +X + q) =
4

s

∫
dQ2

T
Q4

T

(N2
C − 1)

N2
C

α2
S(QT)σ̂(gg → X). (7.6)

In diagonal limit where momentum fractions carried by screening and fusing gluons are equivalent

i.e. x = x′, and kT = 0, the proton-gluon coupling is obtained by replacement of quark-gluon

coupling αSCF/π by unintegrated gluon distribution function (3.29), see Figure 7.4. The Durham

group corrects for the off-diagonality by factor Rg which takes a form

Rg(x,Q
2
T) =

[
1 +

∂ ln g(x,Q2
T)

∂x

(
0.82 + 0.56

∂ ln g(x,Q2
T)

∂x

)]
. (7.7)

In case of Higgs production at
√
s = 14TeV it can be approximated by constant Rg = 1.2 with

high accuracy. The unintegrated gluon distribution functions are provided by LHAPDF [103] and

the derivative is performed numerically in Herwig++. The cross section of exclusive production
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Fig. 2: The recipe for replacing the quark line (left) by a proton line (right).

and this result is obtained assuming a simple power-law behaviour of the gluon density, i.e. G(x,Q) ∼
x−λ. For the production of a 120 GeV Higgs boson at the LHC, K ∼ 1.2 × e−bk2

T /2. In the cross-
section, the off-diagonality therefore provides an enhancement of (1.2)4 ≈ 2. Clearly the current lack
of knowledge of the off-diagonal gluon is one source of uncertainty in the calculation. We also do not
really know what to take for the slope parameter b. It should perhaps have some dependence upon QT

and for QT ∼ 1.5 GeV, which it will turn out is typical for a 120 GeV scalar Higgs, one might anticipate
the same kT -dependence as for diffractive J/ψ production which is well measured, i.e. b ≈ 4 GeV−2.

Thus, after integrating over the transverse momenta of the scattered protons we have

dσ

dy
≈ 1

256πb2

αsGF
√

2

9

[∫
d2QT

QT
4 f(x1, QT )f(x2, QT )

]2

(8)

where f(x,Q) ≡ ∂G(x,Q)/∂ ln Q2 and we have neglected the exchanged transverse momentum in the
integrand. Notice that in determining the total rate we have introduced uncertainty in the normalisation
arising from our lack of knowledge of b. This uncertainty, as we shall soon see, is somewhat diminished
as the result of a similar b-dependence in the gap survival factor.

We should about the fact that our integral diverges in the infra-red. Fortunately we have missed
some crucial physics. The lowest order diagram is not enough, virtual graphs possess logarithms in the
ratio QT/mH which are very important as QT → 0; these logarithms need to be summed to all orders.
This is Sudakov physics: thinking in terms of real emissions we must be sure to forbid real emissions
into the final state. Let’s worry about real gluon emission off the two gluons which fuse to make the
Higgs. The emission probability for a single gluon is (assuming for the moment a fixed coupling αs)

CAαs

π

∫ m2
H/4

Q2
T

dp2
T

p2
T

∫ mH/2

pT

dE

E
∼ CAαs

4π
ln2

(
m2

H

Q2
T

)
.

The integration limits are kinematic except for the lower limit on the pT integral. The fact that emissions
below QT are forbidden arises because the gluon not involved in producing the Higgs completely screens
the colour charge of the fusing gluons if the wavelength of the emitted radiation is long enough, i.e. if
pT < QT . Now we see how this helps us solve our infra-red problem: as QT → 0 so the screening
gluon fails to screen and real emission off the fusing gluons cannot be suppressed. To see this argument
through to its conclusion we realise that multiple real emissions exponentiate and so we can write the
non-emission probability as

e−S = exp

(
−CAαs

π

∫ m2
H/4

Q2
T

dp2
T

p2
T

∫ mH/2

pT

dE

E

)
. (9)

As QT → 0 the exponent diverges and the non-emission probability vanishes faster than any power of
QT . In this way our integral over QT becomes (its value is finite):

∫
dQ2

T

Q4
T

f(x1, QT )f(x2, QT ) e−S . (10)

Figure 7.5: The recipe for replacing the quark line (left) by a proton line (right). Figure taken

from reference [105].

has to be supplemented by Sudakov Form Factor

T (QT, µ) = exp

[
−
∫ (µ/2)2

Q2
T

dp2
T

p2
T

αS(pT)

2π

∫ 1−∆

0
dz(nfPqg(z) + zPgg(z))

]
, (7.8)

where ∆ = kT
µ+kT

and nf is number of active flavours. The Sudakov Form Factor ensures that

gluons attached to the centrally produced system X do not radiate further partons between

scales µ/2 and QT. By default, Herwig++ sets µ =
√
s according to a new calculation of

T. Coughlin [106] which corrects original KMR value µ = 0.64
√
s. In addition, the rapid fall of

the Sudakov Form Factor T (QT, µ) makes infrared limit QT → 0 of equation (7.6) finite. One of

the free choices of the model is the form of the running coupling αS(Q). Herwig++ uses the

same as in the ExHuME and freezes the αS(Q) at some low scale Qfreeze

αS(Q) =





3
11 ln Q

ΛQCD
, Q ≥ Qfreeze

3
11 ln Qfreeze

ΛQCD
, Q < Qfreeze

, (7.9)

where Qfreeze = ΛQCD = 80MeV is used by default in Herwig++.

Finally, the differential luminosity can be written in form

M2
X

∂2L
∂M2

X∂y
=

[
π

8b

∫
dQ2

T
Q4

T
fg(x1, Q

2
T)fg(x2, Q

2
T)

]2

, (7.10)

where fg(x,Q2
T) are the off-diagonal gluon densities which are implemented in Herwig++ as

fg(x,Q
2
T) ' Rg(x,QT)

∂[
√
T (x,QT)xg(x,QT)]

∂ lnQ2
T

. (7.11)

The integral (7.10) is computed using Gaussian quadratures. In order to numerically integrate

QT → ∞ the integral has to be split at some point Qmid
T and the transformation QT → 1/QT

needs to be performed. The integrand of (7.10) is plotted in Figure 7.6 from which can be seen

that the function has sharp peak about QT ≈ 1.1GeV and then falls to 0 while going to infinity.

Thus it is reasonable to choose Qmid
T ≈ 4GeV and compute the first interval with high precision.



64 CHAPTER 7. FORWARD PROCESSES IN HERWIG++

 [GeV]
t

Q

1 1.5 2 2.5 3 3.5 4 4.5 5

]
­4

 [
G

e
V

t4
)/

Q
t

(x
, 
Q

g2 f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1Herwig++
2Herwig++

ExHuME

 = 14 TeVs

 = 50 GeVs = xXM

MRST2002 ­ NLO

 [GeV]XM

10 20 30 40 50 60

(y
=

0
)

2 X
 M

∂
 y

 
∂

 L
2

∂
 

2 X
M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
1Herwig++
2Herwig++

ExHuME

 = 14 TeVs

MRST2002 ­ NLO

Figure 7.6: Comparison of Herwig++ luminosity with ExHuME. Version Herwig++ 1 uses

precise derivation of Sudakov Form Factor while Herwig++ 2 uses the same approximation as

ExHuME.

The evaluation of luminosity is CPU demanding and thus on-the-fly event generation would

be slow. Therefore, Herwig++ generates a table with differential luminosity (7.10) which is

interpolated during MC generation. Herwig++ provides default set of tables with luminosity

for LHC and Tevatron energies but user can easily generate any other table to meet his specific

requirements.
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Figure 7.7: Comparison between analytic derivative of Sudakov Form Factor (7.12) (Full for-

mula), approximation at small QT (7.13) (Low QT approx.), and formula (7.14) used in Ex-

HuME (ExHuME approx.).

The implementation of the luminosity in Herwig++ has been validated against well tested

ExHuME. The main difference between the implementation is in the evaluation of derivative of
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Sudakov Form Factor. The analytic derivative of Sudakov Form Factor (7.8) has the form

∂
√
T (Q2

T, µ)

∂ lnQ2
T

= −
√
T (Q2

T, µ)
αS(QT)

4π

× 6

[
−(1−∆)2 +

(1−∆)3

3
− (1−∆)4

4
− ln ∆

]

+ nf

[
[(1−∆)− (1−∆)2]

2
+

(1−∆)3

3

]
(7.12)

and is used in Herwig++. Since the integrand of the differential luminosity (7.10) dominates

at small QT the (7.12), neglecting ∆ in polynomial terms and fixing nf = 3 does not cause large

error. Thus formula

∂
√
T (Q2

T, µ)

∂ lnQ2
T

≈ −
√
T (Q2

T, µ)
3αS(QT)

2π
ln

(
2QT

µ+QT

)
(7.13)

approximates well (7.12) at small QT as can be seen from Figure 7.7. However, ExHuME uses

formula [107]

∂
√
T (Q2

T, µ)

∂ lnQ2
T

≈ −
√
T (Q2

T, µ)
3αS(QT)

2π
ln

(
QT

3(µ+QT)

)
. (7.14)

with factor 1
3 instead of 2 inside the logarithm. This has approximately double magnitude at

small QT as shown in Figure 7.7. The discrepancy is currently discussed with ExHuME and

Durham model authors.

The effect on the luminosity is presented in Figure 7.6, where two versions of Herwig++

are compared with ExHuME. The Herwig++1 uses precise analytic Sudakov derivative (7.12)

while Herwig++2 contains exactly the same formula as in ExHuME, (7.14), in order to make

sure that the rest of the implementation agrees between these two generators. The difference in

the luminosity and thus in the final cross section is around 50%.

Process Herwig++1 Herwig++2 ExHuME

Higgs 0.889 fb 2.78 fb 2.75 fb

qq̄ 0.0718 nb 0.171 nb 0.18 nb

gg 69.9 nb 177 nb 96.5 nb

γγ 7.79 fb 19.3 fb 20.8 fb

Table 7.3: Cross section for central exclusive production at
√
s = 14TeV of Higgs boson of mass

120GeV, qq̄, gg, and γγ pairs with pcut
T = 10GeV, 20 < M < 120GeV and | cos θ| < 0.95 where

M is invariant mass of the pair and θ is polar angle of the scattered particle in center-of-mass of

gg collision. Cross sections are compared between Herwig++1, Herwig++2 with (7.14) and

ExHuME.
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Figure 7.8: Feynman diagram for Higgs decay amplitude H → gg.

7.3.2 SM Higgs Production

Cross section for Standard Model Higgs production for colour singlet gluons with Jz = 0 is

calculated using

σ̂(gg → H) =
2π2KΓ0(H → gg)

M
λ(M), (7.15)

where factor the K = 1 + αS(M/2)
π (π2 + 11/2) ' 1.5 is a NLO correction, M is Higgs boson

off-shell mass, Γ0(H → gg) is partial Higgs decay width and λ(M) is Breit-Wigner distribution

or lineshape defined in [108] in order to generate Higgs mass off-shellnessM . Partial decay width

Γ0(H → gg) is given by [109]

Γ0(H → gg) =
α2

S(M/2)g2M3
H

128π3m2
W

∣∣∣∣∣
∑

q

τi[1 + (1− τq)f(τq)]

∣∣∣∣∣

2

(7.16)

f(τ) =





sin−2(1/
√
τ), τ ≥ 1

−1
4 ln

[
1+
√

1+τ
1−√1+τ

− iπ
]
, τ < 1

, (7.17)

where g is electroweak coupling,mW is mass of theW boson. The sum runs over quark flavours, q,

contributing into the loop in the Feynman diagram displayed in Figure 7.8. Since τq = 4m2
q/M

2
H

can be neglected for mq � MH Herwig++ implements only contribution from t and b quark

giving the dominant contribution.

The cross section for SM Higgs production at
√
s = 14TeV is calculated using Herwig++ 1

and Herwig++ 2 and compared with ExHuME and Durham theoretical prediction ∼ 3 fb for

Higgs with mass of 120GeV [30]. Both the cross section and individual distribution exhibit nice

agreement between Herwig++ 2 and ExHuME. The suppression of Herwig++ 1 cross section

reflects the suppression in luminosity due to precise formula for derivative of Sudakov Form Factor

(7.12) discussed previously. Apart from the cross section, Herwig++ 1 slightly differs also at

large ξ and therefore large rapidities. It should be noted that there is a large uncertainty in the

choice of the PDF which influence the final cross section up to factor 3 therefore the value 3 fb

can be easily achieved with Herwig++ 1 and µ =
√
s instead of µ = 0.64

√
s.
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Figure 7.9: Comparison of ξ, transverse momenta of proton, Higgs mass and rapidity distribu-

tions in central exclusive production of Higgs boson of mass 120GeV at
√
s = 14TeV between

Herwig++1, Herwig++2 with (7.14) and ExHuME.

7.3.3 Di-Jet Production

Two particle final state cross sections are integrated over cos θ, where θ is an polar angle of one

of the outgoing particles in the center-of-mass frame of colliding gluons. The differential cross

section for di-jet production is separated into qq̄ and gg production where the cross section of

the subprocesses is constrained by Jz = 0 and colour singlet rules [30]

dσ̂qq̄

d cos θ
=

4

3

πα2
S(M2)

M2 sin4 θ

m2
q

M2

(
1−

4m2
q

M2

) 3
2

, (7.18)

dσ̂gg

d cos θ
= 18

πα2
S(M2)

M2 sin4 θ
. (7.19)

The equations show that qq̄ production is suppressed with respect to gg by factor m2
q

M2 which

prefers production of heavy quarks as was already mentioned. Since both cross sections diverge

when θ → 0, a cut | cos θmax| has to be applied.

The cross section for qq̄ production well agrees between Herwig++ 2 and ExHuME while

cross section for gg is smaller by factor two in ExHuME, see Table 7.3. In ExHuME the factor

1/2 is used for gg but not in qq̄. This factor is supposed to come from substitution t → cos θ

in the integration. The discrepancy is under discussion with ExHuME authors. The relevant

distribution exhibits exact match between Herwig++2 and ExHuME, as can be seen from
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Figure 7.10. The default version Herwig++1 slightly disagrees at large ξ and rapidities of the

outgoing partons.
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Figure 7.10: Distributions of ξ, proton pT, gluon pT and rapidity in central exclusive production

of gg with pcut
T = 10GeV, 20 < M < 120GeV and | cos θ| < 0.95, where M is invariant mass

of the gluon system, θ is polar angle of the outgoing gluon in center-of-mass of gg collision.

Herwig++1, Herwig++2 with (7.14) and ExHuME are compared.
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Figure 7.11: Feynman diagram for amplitude gg → γγ

7.3.4 Di-Photon Production

Two photons can be produced in SM via fermion loop similarly as in the case of the Higgs

production thus an investigation of this process is important. The differential cross section

is derived from reference [110] which provides helicity amplitudes for two photon scattering
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γγ → γγ. The amplitudes are related to helicity amplitudes gg → γγ as

Mggγγ
λ1λ2λ3λ4

=
αS

2αQ2NC
Mggγγ

λ1λ2λ3λ4
, (7.20)

where λ1,2,λ2,3 are helicities of incoming and outgoing bosons, Q2 is quark fractional charge of

units e in the fermion loop and NC = 3 is number of colours. This relation is obtained by

exchange of outgoing photon fermion vertices for gluon quark vertices. The amplitude for Jz = 0

rule has then the following form

M2
Jz=0 = 2(M++++ +M−−++)2 + 2(M++−+ +M−−+−)2

∝ 2

[
−1

4
(1 + cos θ)

(
ln

(
1− cos θ

1 + cos θ

)
+ π2

)
− cos θ ln

(
1− cos θ

1 + cos θ

)]2

+ 8

≡M2
Jz=0

(7.21)

and the differential cross section is written as

dσ̂γγ

d cos θ
=

34

81

αS(M2)α

4π2M2
M2
Jz=0. (7.22)

Comparison of the cross section and relevant distributions can be seen in Table 7.3 and Fig-

ure 7.12. As in previous processes Herwig++ 2 well agrees with ExHuME but Herwig++
1 gives smaller cross section and slightly different distributions due to changed derivative of

Sudakov Form Factor (7.12).

7.4 Summary

Models for hard diffraction and exclusive production in two photon initiated processes were added

into Herwig++ release 2.5 [84] as a part of this work. The Herwig++ provides many matrix

elements that can be used for single diffractive, double pomeron exchange or QED exclusive

productions. The framework with several matrix elements for exclusive QCD production of

Higgs, di-jets and γγ is prepared to be submitted into Herwig++ release after clarification of

the mentioned discrepancies with ExHuME. The outlook is addition of qq̄g and Wq̄q processes

which are important backgrounds for Higgs production and γγ →WW measurements.
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Figure 7.12: Distributions of ξ, protons pT, photons pT and rapidity in central exclusive pro-

duction of γγ with pcut
T = 10GeV, 20 < M < 120GeV and | cos θ| < 0.95, where M is invariant

mass of γγ system, θ is polar angle of the outgoing photon in center-of-mass of gg collision.

Herwig++1, Herwig++2 with (7.14) and ExHuME are compared.



Chapter 8

Experimental Definition of Rapidity

Gaps

The experimental signature of diffractive events is production of large rapidity gaps, i.e. regions in

rapidity devoid of particle activity. However, the rapidity gaps are also created in non-diffractive

processes due to fluctuation in hadronisation process, although they are exponentially suppressed

with size [111] of the gap, contrary to diffractive events. A precise experimental determination

of rapidity gaps is required either to separate diffractive and non-diffractive events or to measure

a cross section as a function of rapidity gaps.

This chapter is devoted to an experimental definition of rapidity gap using the ATLAS

detector. In fact, pseudorapidity gap instead of rapidity gap is measured. As was already

mentioned, this does not introduce large difference. Moreover, pseudorapidity is experimentally

well measurable observable. In the following text, the rapidity gap means a pseudorapidity region

without particle activity.

The rapidity gap is determined using the ATLAS calorimeter system in combination with In-

ner Detector. The algorithms for experimental gap reconstruction are discussed in the following.

Two different definitions of rapidity gaps are used in the following analysis:

• Forward rapidity gap ∆ηF : is the larger of the two empty pseudorapidity regions ex-

panding between the edges of the detector of the acceptance η = 4.9 or η = −4.9 and the

nearest particle.

• Floating rapidity gap ∆η: is the largest empty pseudorapidity region between two

nearest particles in η, inside the detector acceptance η ∈ [−4.9, 4.9]. The gap is fully

determined by its position, defined as position of its edge having the larger absolute value

of pseudo-rapidity, denoted as |ηstart|.

The former definition is used for measurement of the rapidity gap cross section of inelastic pro-

cesses in Chapter 11. Since the ∆ηF is one dimensional observable, both experimental corrections

71
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and the result interpretation from the theoretical and experimental point of view is simple. The

later definition provides the 2-dimensional information about size and position of the gap that

improves separation between SD and DD topologies. Therefore, the 2-dimensional definition was

used for estimation of diffractive fractions in Chapter 10.

8.1 Rapidity Gaps in the Calorimeter

The ATLAS calorimeter system is used for measurement of rapidity gaps because of its large

coverage |η| < 4.9. To correctly reconstruct rapidity gaps, the lowest possible deposits of energy

in the calorimeter have to be evaluated, however in such a way as not to be directly sensitive

to detector noise. The calorimeter noise is controlled on the level of calorimeter cells which

are the basic read-out units in ATLAS. The cell noise is in general well described by Gaussian

distribution (except the Tile calorimeter see below) with standard deviation σnoise. Therefore,

significance variable S defined as

S =
E

σnoise
, (8.1)

where E is energy deposited in the cell, is convenient for noise discrimination, as was proposed

in ref. [101]. A requirement that cell exceeds a significance threshold, Sth, thus determines a

probability

Pcell(Sth) =
1√
2π

∫ ∞

Sth

dS exp

(
−S

2

2

)
. (8.2)

that energy deposit in given cell is noise fluctuation. In order to reconstruct particle energy, signal

from several neighbouring cells along the particle trajectory needs to be read out. ATLAS uses

topological clustering algorithm [112] which combines energy deposits in individual calorimeter

cells. The algorithm looks for the cluster seed cell which significance fulfills condition |S| > 4.

The seed cell is joined to the cluster with all surrounding cells satisfying |S| > 2. Finally, all the

nearest neighbours to the already clustered cells are added. It should be noted that the absolute

value in the significance conditions allows to cancel out the noise contribution either inside the

individual clusters or in jets reconstructed from several clusters. Cluster n-th moments of a

variable x defined as

〈xn〉 =
1

Eclust

∑

cell,Ecell>0

Eix
n
i (8.3)

describe position, size and shape of the cluster. These cluster properties are used for particle

identification which allow to scale the energy response appropriately e.g. energy response is

scaled differently for hadrons, electrons, photons. Topological clustering is good algorithm for

estimation of real particle energy. However, it tends to pick up calorimeter noise. There are

on average twelve reconstructed clusters in the whole calorimeter due to noise fluctuation. The

default threshold Sth = 4 would spoil large rapidity gaps therefore it needs to be properly

optimized to suppress the noise to acceptable level.
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The clusters with the new optimized requirements for noise suppressions will be used for

forward rapidity gap definition. The floating rapidity gaps used in the 2-dimensional algorithm

are reconstructed at the cell level only i.e. cells above optimized significance threshold determine

particle activity in given η region. The information about real particle energy is not required in

the case of the 2-dimensional algorithm because it is used for estimation of diffractive fractions

where the crucial point is to have different floating gap patterns for ND, SD, and DD topologies.

8.1.1 MC Simulation of Cell Noise

In order to compare gap distributions between MC and data, it is crucial to have a good de-

scription of the calorimeter noise in MC. The cell noise distributions and their parameterizations

included in MC simulation is measured from the data. The noise was studied in more detail

using the May ATLAS reprocessing of the data and MC. The level of understanding of the

calorimeter noise is illustrated in Figures 8.1, 8.2. Figure 8.1 shows cell energy distributions

for the whole calorimeter and for each of its sub-systems: EM, HEC, FCal, and Tile calorime-

ters. Cells which were flagged as bad by the offline shifters were all removed. There are three

distributions: Minimum Bias MC generated with Pythia6, physics data from Minimum Bias

Stream and data from Random Trigger Stream. For the physics data and Pythia6 prediction,

the trigger L1_MBTS_1 was required to fire. On the other hand, events from Random Trigger

Stream require the L1_RDO_EMPTY trigger, selecting events with no bunches present in AT-

LAS. In addition, the cell significance S is plotted in Figure 8.2. In the long positive tails the

physics signal is clearly visible. Random Trigger data show the shape of the noise distribution

in cells with minimum contamination from physics signal. It is symmetric around zero and the

negative side exactly matches the negative part of the distributions in physics stream which is

not contaminated by the physics signal.

In general, the noise distribution is described very well over seven orders of magnitude. Some

discrepancy is observed between data and MC for negative energies in Figure 8.1, in HEC in

particular. Presumably the same discrepancy is present at positive energies, but it is hidden

in the physics signal. The effect of those discrepancies on the analysis are however not large

because the observable which we use to reconstruct gaps is based on the cell significance Sth for

which the disagreement is much less pronounced, i.e. these discrepancies are mapped to much

higher significance. Moreover, the threshold cut is applied at positive energy values so that the

small Data/MC disagreement at negative energies is irrelevant. It should be emphasized that

the noise distributions included in MC model match those in data up to very high values of the

significance so that cuts up to S ≈ 6 can be safely applied to separate the physics signal from

the noise.

Cell noise mean and RMS was also cross-checked for each cell individually using the Random

Trigger sample with empty bunches in the run which was used for rapidity gap analysis. In
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Figure 8.1: Cell energy distribution for cells in the whole calorimeter and for each calorimeter

sub-detector: EM, FCal, HEC, Tile in physics and empty events.
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addition the rate of a cell passing high Sth = 5σnoise noise was checked. 41 cells exhibiting

slightly larger noise tails were identified and removed. This clean up has no effect on final

results.

Shape of cell noise distribution in ATLAS calorimeter is well described by a Gaussian dis-

tribution with the exception of the Tile calorimeter which has a slightly longer tails. Double

Gaussian distribution has to be used to describe the data satisfactory. Since the latter would

create complications in constructing an algorithm based on simple Gaussian probabilities cells

in the Tile calorimeter were ignored in the optimized cluster requirements. This exclusion does

not deteriorate the gap resolution since the neutral hadrons are mostly π0 which immediately

decays two photons π0 → γγ and therefore they are detected in EM. Furthermore, those charged

particles which do not leave enough signal in EM are detected in the Inner Detector with high

efficiency.

8.1.2 Calorimeter Noise Separation

As it was already discussed, the identification of rapidity gap signatures relies crucially on

the suppression of calorimeter noise contributions. To reduce the calorimeter noise, clusters

of calorimeter energy deposits are considered only if they contain at least one cell outside the

Tile calorimeter with an energy significance above an η-dependent threshold, Sth(η).

Calorimeter region [−4.9, 4.9] is divided into slices in η. The significance threshold Sth(η)

is set in such a way that a probability Pslice(Sth(η)) = Nslice(η) · Pcell(Sth(η)), where Nslice(η)

is number of cells in given slice, that slice contains cell passing cut S > Sth(η) due to noise

fluctuation is the same for each slice i.e. the probability is uniform in whole calorimeter range,

Pslice(Sth(η)) = P .

In the default configuration of the algorithm, detector range |η| < 4.9 is divided into 98

slices. The probability P and significance threshold Sth(η) are fixed by pseudo-slice containing

Nnorm = 500 cells to value

Pslice(Sth(η)) = Nnorm · Pcell(Snorm) = P = 1.4× 10−4, (8.4)

where Snorm = 5.5. The number of cells in the calorimeter Nslice(η) and the default significance

threshold Sth(η) as a function of η are shown in left and right plot of Figure 8.3, respectively.

The threshold is small, Sth(η) ∼ 5.0, in the forward region, where the cell density is low, and

high, Sth(η) ∼ 5.8, in the high density central region. The choice of the Snorm = 5.5 has been

determined from the resolution of the rapidity gap reconstruction algorithm i.e. root mean

square of correlation between rapidity gaps on MC truth and detector level. The resolutions

for different thresholds Sth(η) in which Snorm varies from 4.1 to 6.5 are presented in Figure 8.4.

The small threshold values, Snorm, have good performance for small gaps but large gaps are very

often spoiled by the calorimeter noise. On the other hand, large thresholds remove also physics
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Figure 8.2: Cell energy significance for cells in the whole calorimeter and for each calorimeter

sub-detector: EM, FCal, HEC, Tile physics and empty events.
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Figure 8.3: Number of cells in calorimeter, Nslice(η), as a function of η (left) and cell threshold

in terms of significance, Sth(η), as a function of η (right).

signal and thus the algorithm makes the gap size larger. The threshold Snorm = 5.5 was chosen

due to the best performance over the gap range from 0 to 8, which is the range used in our

measurements. It should be noted that the nearest threshold 5.0 and 6.0 have similar behavior

of the gap resolution and thus the result is not affected by small variation of the threshold Sth(η).

Finally it is worth to mention that, many other algorithms were studied. For example, one

can admit more cells above smaller significance threshold. This could lead to smaller effective

cut on the particle energy with the same or better noise suppression, what is desired. It is also

possible to think of many cuts on the cluster moments defined by (8.3). Such algorithms were

studied and their performance was compared on minimum bias and empty events data samples.

Data samples with empty events provide information about noise suppression performance while

the minimum bias physics samples show how much physics signal is lost due to noise suppression

requirements. The conclusion from these studies [113] is that the algorithm with simple signifi-

cance cut presented above provides the best balance between the noise and signal suppression,

from the set of the proposed algorithms, with a benefit of great simplicity.

8.2 Lowest Energy Detection Limit

The η-dependent significance cut established in order to remove calorimeter noise also remove

non-negligible quantity of physics signal. In measurements of the rapidity gap distributions

corrections for detector effects to level of stable final particles are required in order to compare

the experimental results with the theory. If the probability of particle detection is low, large

model dependent corrections are introduced to the experimental result. Therefore a particle

level definition, ideally simple, theoretically unambiguous, which matches as closely as possible

the detector level definition is required. On the other hand, the probability that energy deposited

by a particle passing the calorimeter exceeds the threshold Sth(η) is a function of many particle
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Figure 8.4: Gap resolution for ring noise probabilities observed in Pythia8: from left to right

Pnoise(4.1, 4.5, 5, 5.5).
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properties as momentum, charge, mass etc. and therefore an exact match between detector and

generator level is difficult.

At the end, a fixed pT cut of 200MeV was chosen. The cut was applied to all stable particles

at the generator level. A stable generator particle is defined by its decay length in the lab frame,

cτ > 10mm. Under this definition, π0 are not stable and are decayed (primarily to photons) by

the generator. The choice of the cut on the transverse momentum was determined from several

methods.

Figure 8.5 shows the Gaussian cell noise width averaged over cells in given η-slice scaled

by the threshold cut Sth(η) for each slice. In other words, it is an averaged minimum energy

deposition in single calorimeter cell required for particle detection. The dashed lines maps

transverse momentum pT onto energy using the relation cos θ = tanh η. First, it can be seen

that it is better to perform a cut rather on the transverse momentum, which follows the average

cell energy threshold, than cut on the particle energy. Second, since a particle traversing the

calorimeter deposits only a fraction of its energy in a single cell its pT has to be significantly

above the averaged cell energy threshold over whole η range. Thus the lowest possible pT which

can be detected is around 200MeV.
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Figure 8.5: Average minimum energy deposition required in a single calorimeter cell to detect a

particle as a function of |η|. The dashed lines show the minimum energy of a particle for different

generator level pT cuts. The chosen cut should be above the minimum energy to account for

energy loss in the detector medium and energy deposition in multiple calorimeter cells.

Another approach to match the transverse momentum cut pcut
T on generator level is a com-

parison of detector and generator level correlations matrices of forward rapidity gaps ∆ηF with

different generator level pcut
T . The correlation matrices for pcut

T = 0, 100, 200, 300, 400, 500MeV
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are presented in Figure 8.6. The smallest migrations between detector and generator level and

the best diagonality is achieved for cuts pcut
T = 100, 200, 300MeV. For smaller thresholds, the

reconstruction of large gaps fails while at higher pcut
T small gaps are incorrectly reconstructed.

The method based on the correlation plots purely relies on the MC simulation. A data driven

method which uses a tracks reconstructed in Inner Detector to estimate efficiency of detection

in the calorimeter was used as well. The tracks needs to be extrapolated through solenoidal

magnetic field in order to find their impact position in calorimeter. This method can estimate

an efficiency only in central region in the Inner Detector coverage. The turn up of efficiency

curves as function of particle momentum are very slow and it is difficult to choose a concrete

cut. The probability to detect charged particle with pT > 200MeV is between 40% (η ∼ 0) and

80% (η ∼ 2.5). It should be noted that by adding the tracker into our gap finding algorithm

the detection probability rapidly increases in the central region as it will be seen in next section.

From the above studies, we conclude that the choice of pcut
T = 200MeV on stable particles at the

generator level provides a reasonable match to the detector acceptance.

8.3 Adding Inner Detector Information

Merging an information about particle activity from the calorimeter and Inner Detector signifi-

cantly improves the gap resolution. Since we chose cut on the transverse momentum of particles

on generator level to be 200MeV it is necessary to consider only tracks above this threshold.

Additional requirements are applied in order to select tracks with a good reconstruction quality:

• kinematic cut: pT > 200MeV and |η| < 2.5;

• number of pixel hits nPix ≥ 1 and a B-Layer hit if hit expected from the track extrapolation;

• nSCT ≥ 4 if pT > 200MeV, nSCT ≥ 6 if pT > 300MeV;

• track algorithms: Inside Out or Low Pt [114];

• if vertex found: |d0| < 1.5mm, |z0| sin(θ) < 1.5mm with respect to primary vertex, else

|d0| < 1.8mm with respect to beam spot,

where nPix, nSCT are number of hits in Pixel and SCT detectors, d0 and z0 are transverse

and longitudinal distance of the closest approach with respect to primary vertex or beam-spot

position. These are the ATLAS standard cuts used already for measurement of charged particle

multiplicities [1, 85]. Figure 8.7 shows the benefit of the addition Inner Detector into the gap

finding algorithm. Left plots show the correlation between ∆η at detector and particle level

while the right plots show the same correlation for ∆ηF observable. The addition of the Inner

detector makes the matrices more diagonal and improves the gap resolution.
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Figure 8.6: Plots show correlation of forward gaps on the detector and truth level. The error in

the profile histograms represent detector resolution of forward rapidity gap reconstruction. Plots

are made for various pT on particle at truth level. For measurement of ∆ηF < 7 the cut in range

of 100 − 300MeV cuts seems to be optimal.
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Figure 8.7: Correlation of the rapidity gap size between hadron and detector level using calorime-

ter only (top) and inner detector included (bottom). Correlation matrices are displayed for the

largest floating gap found anywhere in the detector (left) and for the forward rapidity gap that is

required to start at the edge of the detector ηstart = ±4.9. Black markers and error bars denote

the mean and RMS spread of the generator level gap as a function of the reconstructed gap size.

One could also consider adding information from the MBTS which has inner disc with cov-

erage 2.09 < |η| < 2.82 and outer disc 2.82 < |η| < 3.84. However, the discs coverage would

require a large bins in the distributions but more importantly the sensitivity of the MBTS is very

different from the calorimeter and cannot be scaled to match the lowest calorimeter acceptance

pcut
T = 200MeV as in the case of Inner Detector. This would cause a non-uniformity in the

correlation matrices in Figure 8.7 leading to failure of unfolding algorithms that corrects for the

detector effects.

8.4 Summary of the Gap Finding Algorithms

The algorithm for reconstruction of rapidity gaps in the ATLAS detector is summarized here.

An inclusive forward rapidity gap finding algorithm proceeds as follows for every event:
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• The pseudorapidities of all good tracks with pT > 200MeV are recorded.

• The pseudorapidities of the center of gravity of clusters satisfying pT > 200MeV are also

recorded if the cluster contains one or more cell(s) above significance threshold Sth(η). The

cells in the Tile calorimeter are ignored.

• Forward gap size, ∆ηF , is calculated from each side of the detector starting at η = ±4.9

and finishing at the first object which meets either of the above requirements. The size of

the larger of the two gaps is ∆ηF .

The algorithm for reconstruction of 2-dimensional floating gap does not use calorimeter clusters

and works with cells only. This algorithm was used for estimation of diffractive fraction by fitting

MC templates to data as it will be discussed in the next chapter. There is no need to match

detector level with particle generator level, therefore information about real particle energy is

not required. The 2-dimensional floating gaps are reconstructed as follows:

• The pseudorapidity of all good tracks with pT > 200MeV are recorded.

• The pseudorapidity of the cells above significance threshold Sth(η) are also recorded. The

cells in the Tile calorimeter are ignored.

• A given η-slice is deemed to contain particle activity if it contains object which meets either

of the above requirement.

• The largest consecutive sequence of η-slices containing no particle activity is identified as

floating rapidity gap, ∆η.



Chapter 9

Description of Minimum Bias Data in

MC Generators

The measurements presented in the next chapters rely on the used MC generators. In order to

determine diffractive fractions, MC templates of rapidity gaps distributions are fitted to data.

The result of the fit strongly depends on the MC model. Furthermore, for rapidity gap cross

section, the result has to be corrected for detector effects in order to be useful for community

outside the ATLAS collaboration. These corrections are also made using the MC generators

and introduce some model dependence into the final result. Therefore, description of various

observables related to rapidity gaps in different regimes by Pythia6, Pythia8 and Phojet

was tested. The purpose of these tests is selection of the generator with the best description of

the data that will be used for the data corrections. The rest MCs provide estimation of model

uncertainty if they do not exhibit any essential failure in the data description.

9.1 Cluster and Track Distributions

Several inclusive distributions were tested in measurement of charged particle multiplicities [1,85].

Similar distributions were measured in events in which diffractive contribution was enhanced by

requirement of single sided hit in the MBTS i.e. only one arm of MBTS detector fired and veto

was required in the opposite arm. An important conclusion from the measurement was obser-

vation that high pT and high multiplicity particle production in Pythia6 are underestimated.

This is a consequence of the missing model for high mass MX (and MY ) diffractive production

which is included in both Pythia8 and Phojet.

In this section, the multiplicities and transverse momentum distributions of tracks and

calorimeter clusters are studied in events with various size of the gap which controls the ra-

tio of diffractive to non-diffractive component. Distributions were made for gap sizes in the

following intervals: 0 < ∆ηF < 2, 2 < ∆ηF < 4, 4 < ∆ηF < 6, 6 < ∆ηF < 8. According the MC

84
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predictions, sample with the smallest gaps, 0 < ∆ηF < 2, is dominated by the ND contribution

while 4 < ∆ηF < 6, 6 < ∆ηF < 8 are created almost exclusively by SD and those DD in which

hadronic system Y does not reach the calorimeter.

Multiplicities of calorimeter clusters satisfying the noise suppression requirement are shown

in left plots of Figure 9.1. The data are almost always bracketed between Pythia6 and Pythia8

with Phojet in each rapidity gap interval. All MCs exhibit large disagreement at low multi-

plicities. Overall, Pythia6 underestimates the multiplicity in data while slight overestimation

is seen in both Pythia8 and Phojet.

Transverse momentum of the clusters exhibit good agreement with data for all MC. The

worst description is obtained by Pythia6 which does not agree with data at large rapidity gaps.

Pythia8 and Phojet have similar behavior and overestimate data in 2 < ∆ηF < 4 where

Pythia6 approximates the data well.

MC description of track multiplicities and transverse momenta reveal exactly the same be-

havior as in the case of clusters. The distributions are shown in Figure 9.2. In general, Pythia8

models the data best and the Pythia6 has worst description especially for large gaps.

Many more observables were investigated in the documents [115, 116]. The multiplicities of

tracks and clusters were studied at the gap edge which probes the correctness of hadronisation

models and test the detector simulation. None of the MC models describes correctly all the

observables and each of them agrees or fails in different regimes.

9.2 Forward Energy Flow

An observable which effectively discriminates between diffractive and non-diffractive component

is a sum over the energy plus (minus) longitudinal momentum of all particles,
∑

(E ± pz). In

SD events, this sum approximately corresponds to twice the Pomeron energy: plus (minus) sign

corresponds to proton emitting the pomeron in the positive (negative) z direction.

The
∑

(E + pz) resp.
∑

(E − pz) were reconstructed from the default calorimeter clusters.

Only cluster from the A resp. C side of the FCal calorimeter were used in order to enhance the

diffractive contribution at small
∑

(E+pz). The
∑

(E+pz) distributions are shown in Figure 9.3

for data, Pythia6, Pythia8, and Phojet. The region of small
∑

(E+pz) is quite well modeled

by all MCs. Phojet slightly underestimates the data due to high non-diffractive fraction. On

the other hand, both Pythia8 and Pythia6 are above the data. All MCs fail to describe large
∑

(E + pz) > 20GeV where they exhibit larger bump then present in the data. This suggests

that MC models have too large energy flow in forward direction.
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9.3 Summary

The multiplicities and transverse momentum of tracks and topological clusters were studied in

Pythia6, Pythia8, and Phojet and compared to data. None of the MC does describe cor-

rectly all the observables. Usually the data lies between the Pythia6, which underestimates the

multiplicity and large transverse momentum in events with large rapidity gaps, and Pythia8

with Phojet which exhibit similar behavior. The
∑

(E ± pz) distributions suggest that the

normalizations of non-diffractive events is overestimated in Phojet. Furthermore, the forward

energy flow is slightly overestimated in all MCs. From all the tests which can be found in

references [115, 116] we choose Pythia8 as nominal MC used for unfolding due to slightly bet-

ter performance compared to Phojet. Despite of the missing hard component of Pythia6

diffractive model, Pythia6 cannot be excluded because it bounds data from the other side than

Pythia8 and Phojet. Thus both Pythia6 and Phojet are used for evaluation of MC model

systematics uncertainty.
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Figure 9.1: Multiplicity of clusters which passed the selection requirements defined in Section 8.4

(left) and transverse momentum of all clusters (right) in events with gap size: 0 < ∆ηF < 2,

2 < ∆ηF < 4, 4 < ∆ηF < 6, 6 < ∆ηF < 8.
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Figure 9.2: Multiplicity (left) and transverse momentum (right) of tracks which passed the

selection requirements defined in Section 8.4 in events with gap size: 0 < ∆ηF < 2, 2 < ∆ηF < 4,

4 < ∆ηF < 6, 6 < ∆ηF < 8.
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Figure 9.3:
∑

(E + pz) distribution computed from calorimeter clusters in the FCal at η > 3.1.

Data are compared with Pythia6, Pythia8, and Phojet predictions. Relative contribution of

ND, SD and DD components are shown for each MC.



Chapter 10

Diffractive Fractions in Total Inelastic

Cross Section

The diffractive processes contribute significantly to the total inelastic cross section at LHC ener-

gies. The MC models predict that diffractive component constitutes about 20 - 30% of the total

inelastic cross section at
√
s = 7TeV, see Table 6.1.

ATLAS measured this fraction using the MBTS detector. The diffractive sample was en-

hanced by the requirement that only one arm of the MBTS trigger is hit and the other does

not detect any particle activity. The measured ratio of these single sided events to all events

triggered by MBTS_1 was Rss = 10.02±0.03(stat.)+0.1
−0.4(syst.)%. The Rss as a function of diffrac-

tive fraction fD was evaluated using different MC models shown in Figure 10.1. The diffractive

contribution corresponding to the measured Rss is about fD ∼ 27% according to MC models.

The value obtained by the default Donnachie-Lanshoff model of αIP(t) = 1.085t + 0.25GeV2 in

Pythia8 for events inside kinematic range of detector acceptance corresponding to ξX > 5×10−6

is fD = 26.9+2.5
−1.0%.

In this chapter, a novel method to estimate diffractive fractions based on the floating gap

distribution is introduced. An advantage of the method is a possibility of separation of SD and

DD events. This is motivated by the fact that SD events should create gaps starting from the

edge of the detector while large fraction of DD produce gaps in central region. Moreover, wider

rapidity coverage of the calorimeter should make the measurement less model dependent.

The estimation of the ND, SD and DD contributions is done by a fit of floating gap templates

generated by Pythia6, Pythia8, and Phojet to data. The templates produced by Pythia8

are displayed in Figure 10.2. ND processes produce small gaps randomly distributed in the

detector, SD events produce large gaps starting from the edge of the detector η = ±4.9 and DD

produce large gaps everywhere inside the detector.

Due to completely different shape of templates, the diffractive to non-diffractive ratio can be

well estimated by the fit. As it will be shown later, the result has small dependency on the MC

90
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Figure 10.1: The ratio of the single-sided to inclusive event sample, Rss as a function of the frac-

tional contribution of diffractive events to the inelastic cross-section fD predicted by different MC

models. The data value for Rss is shown as the horizontal line with its systematic uncertainties

(grey band). Figure is taken from ref. [3].

model and it is compatible with measurement of single sided events using the MBTS detector [3].

However, the estimation of SD to DD ratio is more complicated. Due to small pseudorapidity

coverage of the detector a large fraction of DD events mimics the SD event topology and their

corresponding templates differ only sligthly. The DD template contains large fraction of events

having gap starting from the η = ±4.9. Thus, in order to obtain stable fit result, these two

templates need to be redefined. The obtained ratio of these redefined templates strongly depends

on the MC model therefore the result is interpreted as tuning of fractions in the MC generators.

The results of this chapter has been published in the ATLAS public document [117]. However,

due to the already mentioned complications systematic uncertainties were not finnalized into the

form of the rapidity gaps inelastic cross section presented in Chapter 11.

10.1 Event Selection

Data used in this analysis were collected during the first LHC run 152166 at
√
s = 7TeV in April

2010. Only events in which the calorimeter systems and the Inner Detector tracker were fully

functional were used. MBTS_1 trigger was used to collect events from colliding proton bunches.

The recorded data sample corresponds to integrated luminosity of 7339mb−1 at
√
s = 7TeV and

the number of events collected by the MBTS_1 trigger was 436687.

In order to reduce the electronic noise from MBTS which is well modeled by a Gaussian with

0.02 pC [118], the events are further required to have at least two hits in the MBTS after offline

reconstruction above threshold of 0.15 pC.
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Figure 10.2: Detector level correlation in Pythia8 between start position |ηstart| and size ∆η for

SD, DD, ND constributions. The bin (|ηstart|, ∆η)=(0, 10) contains events with no gap found.

Different MBTS response in data and MC was fixed applying different thresholds in the MC.

The outer counters require a threshold of 0.28 pC (0.26 pC) on the A (C) side, while 0.32 pC and

0.38 pC are used in the inner counters for A and C side respectively [118].

10.2 Estimation of Beam Induced Background

Interactions of the beam particle with the residual beam gas inside the detector or outside the

beam cavern (beam halo) influence the rapidity gap distribution distributions in data. These

effects are not simulated in the MC samples and needs to be removed from the data. Introducing

the cuts on the number of tracks or vertices would bias the distributions towards smaller gap

sizes therefore the rapidity gap distribution created by induced beam background needs to be

extracted from data and statistically subtracted from signal distributions.

Pure beam background sample of floating rapidity gap distribution is obtained from the events

of unpaired bunches using the MBTS offline selection of at least two hits above the thresholds.

This sample needs to be properly normalized to data sample obtained from colliding bunches

with the same MBTS selection. The normalization factor is determined from a comparison of
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Figure 10.3: Number of unassociated hits in the Pixel detector observed in the sample selected

with MBTS_1 in events with colliding bunches and with unpaired bunches. The background

distribution was normalized to signal by number of events with more than 103 unassociated hits.

unassociated hits in the Pixel detector between events from colliding and unpaired bunches. The

beam gas events typically produce charged particle boosted into very forward direction what

makes the tracks less likely to be found and leaves high number of unassociated hits in the Pixel

detector. Thus the normalization factor is obtained from match of the tails of unassociated hits

distributions as it is illustrated in Figure 10.3.

Floating gap distribution for normalized beam background sample and data sample before

background subtraction are presented in Figure 10.4. The contamination of beam background

events in the data sample was estimated to 0.22% using this method. The beam backgound con-

tamination with requirement of at least two offline hits is about a factor of 10 smaller compared

to the sample selected with at least one offline MBTS hit.

The above procedure does not correct for events in which the physics signal was in coincidence

with the beam background that modifies the rapidity gap distribution but does not fire the

MBTS. The probability that there will be some activity when beam passes without the MBTS

requirement is conservatively smaller than < 10−4, hence this background is neglected.

10.3 Reorganization of MC Templates

It is difficult to distinguish DD events at small ξY 1from SD events because for ξY ≤ 10−6 the Y

system is produced entirely outside the acceptance of the calorimeter |η| > 4.9. Thus DD mimics

1The notation ξX > ξY introduced in Section 4.2 is used.
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Figure 10.4: Background distributions used for background subtraction (left) and the signal dis-

tribution before subtraction (right) as a function of floating gaps ∆η vs. |ηstart|. The background
distributions are scaled by a factor of 1.17.

√
s = 7TeV

Contribution Pythia 6 Pythia 8 Phojet

SD-Like 28.8% 29.4% 17.0%

DD-Like 3.3% 2.7% 1.9%

ND 67.9% 67.9% 80.8%

SD-Like in DD 74.2% 79.3% 63.4%

DD-Like in DD 25.8% 20.7% 36.6%

Table 10.1: Predicted fractions for Pythia6, Pythia8 and Phojet for SD-like defined at hadron

level with ξY < 10−6 and DD-like fractions defined as ξY > 10−6. For convenience, also the SD-

like fraction in DD template are given.

the SD topology where the largest gap extends to the limits of the calorimeter acceptance. The

fraction of DD events for which both diffractive masses MX and MY are sufficiently large and

tend to produce large rapidity gaps in the central region of the detector, bounded by activity

at both edges of the acceptance, is predicted by MC generators to be small, about 20-37%. It

is therefore convenient to reclassify the DD channel, based on the size of the smaller diffractive

system ξY . DD events with both ξX ≥ 10−6 and ξY ≥ 10−6, which typically leave a central

pseudorapidity gap within the detector acceptance are reclassified as ’DD-like’. DD events with

ξX ≥ 10−6 and ξY ≤ 10−6 are reclassified for the purpose of fitting as ’SD-like’ and are combined

with the SD template. The effect of this reclassification is illustrated in Figure 10.5, which

shows the correlation between the size of the two diffractive systems in Pythia8 DD events.

Numerically, the default fractions of the inelastic cross section in Pythia (Phojet) are 29%

(24%) categorized as SD-like and 3% (2%) as DD-like, see Table 10.1.
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Figure 10.5: Kinematic plane of log10 (ξX) vs. log10 (ξY ) for double diffractive events according

to Pythia 8. Events with ξY < 10−6 are re-classified as single-diffractive-like events for the

fitting procedure.

10.4 Fit Procedure

The three MC templates for ND, SD-like, DD-like processes normalized to unity are illustrated in

Figure 10.7. The template for data after statistical subtraction of beam background contribution

is presented in the same figure. To determine fractions of ND, SD-Like, DD-Like in inelastic cross

section, the MC templates are fitted to data. More exactly, the normalizations fND, fSD-like,

fDD-like of ND, SD-like, and DD-like templates TND(xi,j), TSD-like(xi,j), TDD-like(xi,j)

TMC(xi,j) = fNDTND(xi,j) + fSD-likeTSD-like(xi,j) + fDD-likeTDD-like(xi,j) (10.1)

1 = fND + fSD-like + fDD-like (10.2)

are obtained from a fit of TMC(xi,j) to data TData(xi,j). Indices i, j run over (|ηstart|, ∆η) bins.

The MC templates include MBTS offline selection and each of them is normalized by the number

of events on the hadron level. Since our statistics in generated MC samples is comparable to

data, both MC and data statistical errors need to be taken into account. The fitting procedure

proceeds in two steps. First the χ2 =
∑

i,j(TData(xi,j)− TMC(xi,j))
2/σ2

i,j is minimized to obtain

fraction seeds. σi,j denote the statistical error in particular bins for both MC templates and data

summed in squares. In the next step, the fractions are obtained using Logarithm-Likelihood

(LL) fit. The two step procedure helps the LL to avoid local minima and makes the fit quicker
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Figure 10.6: MBTS_1 and NMBTS
counter > 2 selection efficiency as a function of gap size ∆η and

start of the gap |ηstart| estimated from Pythia8.

as it already starts from a point close to an functional extreme. For the LL, the function

lnL(fND, fSD-like) =
∑

i,j

TData(xi,j) lnTMC(xi,j)− TMC(xi,j) +
∑

i,j

∑

k=1,2

ai,j,k lnAi,j,k −Ai,j,k

(10.3)

is maximized. The additive term
∑

i,j

∑
k=1,2 ai,j,k lnAi,j,k −Ai,j,k stands for statistical error in

MC with predicted Ai,j,k and generated ai,j,k number of events in bin (i, j) of template Tk (k = 2:

TND − TDD-like, and TSD-like). Such method is implemented in the TFractionFitter package in

ROOT which is used here. More detailed information can be found in [119].

For both data and MC, only the gaps satisfying −|ηstart| + ∆η ≤ 2 that do not span over

the MBTS acceptances are considered in the fit. In principle, larger gaps are in contradiction

with the gap definition since MBTS had to fire to register the event implying large corrections

in bins which stretch over the MBTS acceptance. Observation of these large gaps can happen

as the calorimeter energy thresholds are not zero and MBTS information is not included in the

gap searching algorithm. The MBTS selection efficiency as a function of rapidity gap size ∆η

and start of the rapidity gap |ηstart| is presented in Figure 10.6.

√
s = 7TeV

Process Pythia6 Pythia8 Phojet

ND 99.9% 100.0% 100.0%

SD-Like 71.6% 72.9% 77.5%

DD-Like 94.9% 95.0% 96.7%

Table 10.2: MBTS offline selection L_1_MBTS_1 & NMBTS
counter ≥ 2 efficiency for Pythia6,

Pythia8, and Phojet.

The fitted fractions are then corrected for the overall MBTS selection efficiency obtained

from MC for ND, SD-like, and DD-like contributions in the (|ηstart|, ∆η) bins used in the fit.

They are summarized in Table 10.2 for different MC generators. The overall MBTS selection

efficiencies εND, εSD-Like, εDD-Like for ND, SD-like and DD-like events respectively were applied
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Figure 10.7: Reorganized SD-Like, DD-Like and ND templates predicted in Pythia8 and the

template observed in data. The bin (|ηstart|, ∆η)=(0, 10) contains events with no gap found.

as the normalization factors:

N = fND/εND + fSD-like/εSD-like + fDD-like/εDD-like, (10.4)

f corrND = fND/(N × εND), (10.5)

f corrSD-like = fSD-like/(N × εSD-like), (10.6)

f corrDD-like = fDD-like/(N × εDD-like). (10.7)

The fitting procedure of the different contributions of the inelastic cross section on MC has

been tested on pseudo-data samples. In particular, Pythia8 has been treated as pseudo-data

and fitted using different generators. When Pythia8 templates are used, the fitted fractions

correspond exactly to the default ones in the MC. Using other generators, the obtained ND

fractions are consistent with a reasonable accuracy, but the SD-like and DD-like contributions

depend largely on the input fractions in the MC generators used in the template. The conclusion

from the closure tests is that only the overall fraction of diffractive events fD is reliably deter-

mined and considered as an independent measurement, while the SD-like and DD-like fraction

are considered only as Monte Carlo models tunes.
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Logarithm likelihood

Corrected Pythia6 Pythia8 Phojet

ND (%) 72.0± 0.3 69.8± 0.3 70.3± 0.4

SD-Like (%) 25.2± 0.2 21.3± 0.2 23.5± 0.2

DD-Like (%) 2.9± 0.1 8.9± 0.2 6.2± 0.1

χ2/NDof 28.9 134.4 74.9

Table 10.3: Fit of Pythia6, Pythia8 and Phojet templates to data. The result is corrected

for the offline MBTS selection.

10.5 Fit Results

Results of the fit of ND, SD-like and DD-like templates to data for Pythia6, Pythia8 and

Phojet are summarized in Table 10.3. Measured fractions of non-diffractive component of the

inelastic cross sections are 72.0±0.3% for Pythia6, 69.8±0.3% for Pythia8, and 70.3±0.4% for

Phojet. Fit of the Pythia6 templates gives the best agreement with data with χ2/NDof = 30

while the fits of Pythia8 and Phojet templates give χ2/NDof = 135 and χ2/NDof = 75,

respectively. Moreover, fitted SD-like and DD-like by Pythia6 are in better agreement with

its predicted fractions than Pythia8 and Phojet. All generators give similar results for ND

fractions within 3% but the ratio of SD-like to DD-like fractions varies from 8.3, obtained by

Pythia6, to 2.3, obtained by Pythia8.

Error included in Table 10.3 contains only statistical contribution. The following systematics

uncertainties were included into the final error:

• Threshold: The uncertainty reflects the sensitivity of the result on the choice of signifi-

cance threshold applied on the calorimeter cells. Significance Sth(η) was varied by 10% in

both data and MC samples. The effect on final result in the diffractive fraction is < 0.3%.

This small sensitivity justifies the noise suppression treatment.

• Energy scale: A ±25% scale uncertainty is considered for all cell energy measurements.

This large value reflects the limited knowledge of the calorimeter response and linearity

at small energy values to which the rapidity gap thresholds correspond. Moreover, it

contains uncertainty on amount of material budget in front of the calorimeter, especially

in the forward region. Uncertainty of ±25% has been estimated as conservative value

for the case of preliminary result on diffractive fraction. Better constrain of energy scale

uncertainty was estimated by combination of Z → e+e− data [120] and π0 → γγ decays

measurement [121] which provide estimate of electromagnetic energy scale. The hadronic

energy scale was determined from calorimeter tests beams. Obtained values were used for

measurement of inelastic differential cross section as a function of rapidity gap size and they
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MC Pythia6 Pythia8 Phojet

Uncertainty (%) down var. up var. down var. up var. down var. up var.

Statistical -0.3 +0.3 -0.3 +0.3 -0.4 +0.4

Threshold ±10 % -0.1 + 0.1 -0.1 +0.1 -0.2 +0.2

Energy scale ±25% -3.8 + 3.8 -3.8 +3.8 -3.8 +3.8

MC difference -2.2 + 0.0 -0.0 +2.2 -0.5 +1.7

Total -4.5 +3.8 -3.8 +4.5 -3.8 +4.2

Table 10.4: Systematic uncertainty of non-diffractive fraction for different MC models.

will be discussed in the next chapter. Furthermore, the variation of energy scale requires to

vary signal from particle energy deposits but leave the cell noise unchanged. This technical

complication requires redoing the detector simulation of the MC samples. Thus it was

approximated in the preliminary results by the following approach. Both calorimeter noise

and cell response on physics was decreased in the offline analysis by 25% and the obtained

MC templates were fitted to data. The obtained uncertainty for down variation of energy

scale was symmetrized with respect to the nominal value to approximate up variation of

energy scale. The symmetrization was done in order to avoid a large overestimation of

energy scale due to reaching the noise peak i.e. if the noise is increased by 25% the cut

Sth(η) is too low to remove the noise this cannot happend in the correct energy scale

treatment where the noise remains the same and only the response on the physics is varied.

This would complitely remove events with large gaps from the rapidity gap spectrum.

The systematic uncertainty is dominated by energy scale uncertainty. All the systematic uncer-

tainties on the measurement of non-diffractive fraction are summarized in Table 10.4.

10.6 Summary

Diffractive to non-diffractive ratio has been obtained by means of a Log-Likelihood fit of ND,

SD-like, and DD-like templates to data. The diffractive fraction in the data has been measured

fD = 1 − fND = 30.2 ± 0.3 (stat.) −3.8
+4.5 (syst.)% using Pythia8. The systematic uncertainty

includes all considered systematics added in quadrature. They are summarized in Table 10.4.

The obtained diffractive fraction fD is in good agreement with the ATLAS result obtained in the

analysis with enhanced diffractive contribution using MBTS veto where the measured central

values and corrected using various three models are 28.0% for Pythia6, 30.2% for Pythia8,

and 29.7% for Phojet [3]. However, the dependency on the MC model was not improved with

respect to the MBTS measurement as it was originaly expected.

The SD-like/DD-like ratio is poorly constrained due to the limited detector η coverage, MC

model and energy scale uncertainty. Even though, the energy scale uncertainty could be reduced,
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using the method introduced in Section 11.3.1, the result strongly depends on the MC generator.

The determined fractions are therefore tightly linked to the generator and can be considered for

tuning of the MC only.

From the above reasons the obtain result was not pubished by the ATLAS collaboration.

It was presented at conferences [117] only as preliminary result. Consequently, the systematic

uncertainties are only preliminary and with further work they could be redone according to

Section 11.3.



Chapter 11

Forward Rapidity Gap Production

Phenomenological models used for description of inclusive diffraction requires more data, es-

pecially from hadron-hadron scattering experiments, in order to be more tightly constrained.

Ideally, this could be done by direct measurement of diffractive cross section as a function of ξ

and t variables what is possible only with proton taggers. These detectors can measure position

of intact diffractive protons in the beam pipe but they were not available during the first years

of the LHC run. Moreover, the ξ cannot be reconstructed from the mass of dissociated systems

due to small ATLAS detector coverage. As was already discussed in Section 9.2, it is possible to

constrain the diffractive models by measurement of
∑

(E + pz) observable which is sensitive to

ξ. This was done by CMS collaboration [122,123].

An alternative is a measurement of inelastic cross section as a function of rapidity gap size

which is strongly correlated with the variables ξX and ξY . In case of SD, the relation takes

form (4.23) and it is valid up to the hadronisation effects as illustrated in Figure 11.1. The

figure shows correlation between proton momentum fraction loss ξX and the pseudorapidity of

the most forward particle, ηforward particle, in diffractive system X. Furthermore, it is visible that

the rapidity gap measurement at the ATLAS detector with coverage |η| < 4.9 probes the ξX
from 10−6 up to 10−2.

Rapidity gaps can be created also in non-diffractive production due to fluctuations in hadro-

nisation. These rapidity gaps are exponentially suppressed with increasing gap size [111]. The

measurement of small rapidity gaps can test the hadronisation and underlaying event models.

This chapter presents the ATLAS measurement of inelastic differential cross section as a

function of forward rapidity gap size, ∆ηF , for particles with pT >200, 400, 600, 800MeV defined

in Section 8.4. The distributions are corrected for detector effects to level of stable hadrons. The

analysis can be found in ATLAS publication [124].

101
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Figure 11.1: Correlation between ξX of the diffractive system X in SD reaction p→ pX and the

pseudorapidity of leading particle in the event in Pythia8. Events with initial protons coming

from negative z are plotted only. Black markers and error bars denote the mean and RMS spread

of the generator level gap as a function of the reconstructed gap size.

11.1 Data Selection and Detector Distribution

The measurement of forward rapidity gap distributions were done with the first LHC run 152166

at
√
s = 7TeV. The data were selected with exactly the same requirements as for the measure-

ment of diffractive fractions thus reader is reffered to Section 10.1.

The uncorrected data distribution as a function of forward rapidity gap size, ∆ηF , is compared

with predictions of the Pythia and Phojet generators in Figure 11.2. All important features of

rapidity gap distribution can be read directly from the uncorrected distribution. An exponentially

falling spectrum, typical for non-diffractive events, is visible at small gaps, ∆ηF < 2. This is

followed by a plateau which spans from ∆ηF = 3 to ∆ηF = 8 which is expected for diffractive

production. The decrease in the spectrum for ∆ηF > 8 is due to low MBTS selection efficiency.

The MC models reasonably describe the data. Pythia6 and Pythia8 have better agreement at

small gaps while Phojet models better large gaps.

11.2 Corrections for Experimental Effects

The following section presents set of corrections applied to the measured forward rapidity gap

distribution in order to obtain the differential cross section as a function of forward rapidity gaps
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Figure 11.2: Forward rapidity gap distribution for pcut
T = 200MeV. The final bin at ∆ηF = 10

corresponds to cases where no reconstructed particles have pT > pcut
T .

at the level of stable hadrons. The differential cross section at the detector level1 is given by

dσ(∆ηF )

d∆ηF
=

1

Bin Size
N(∆ηF )−NBG(∆ηF )

ε(∆ηF )× L , (11.1)

where N(∆ηF ) is the number of events in the particular forward gap size bin ∆ηF , NBG(∆ηF )

is the number of background events, ε(∆ηF ) is the MBTS offline selection efficiency and L is the

collected luminosity.

The beam background is statistically subtracted from each bin in data. Its distribution

is extracted from the unpaired bunches2 and appropriately scaled to data using the number

of unassociated hits as described in Section 10.2. The ∆ηF distribution of beam background,

normalized with respect to data, can be seen in Figure 11.3.

The distribution is then corrected for event selection requiring that MBTS_1 fired and at

least 2 offline hits in the MBTS detector, see Section 10.1. Efficiencies of the selection as a

function of ∆ηF are taken from the MCs Pythia6, Pythia8 and Phojet for cuts pT > 200,

400, 600, 800MeV. Their distributions are presented in Figure 11.4. For pcut
T = 200MeV, the

efficiency starts to rapidly drop at ∆ηF = 7 which corresponds to the end of acceptance of MBTS

trigger. Therefore, the results of the measurement are presented only in the range 0 < ∆ηF < 8

in which the trigger efficiency is greater than 50%.

The luminosity L = 7.1µb−1 has been measured using the Van-der-Meer beam scanning

technique [125].

The detector level distribution is unfolded to hadron level using a Bayesian unfolding proce-

1Detector level denotes the cross section which is not corrected to level of stable hadrons using the unfolding

procedure.
2Unpaired bunches denote events where only a single bunch crossed the interaction point.
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Figure 11.4: MBTS selection efficiencies estimated by Pythia6, Pythia8 and Phojet for cuts

pT > 200, 400, 600, 800MeV.
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dure [126] to level of stable hadrons with cτ < 10mm

dσ(∆ηF )

d∆ηF
unfolding−−−−−→ dσ(∆ηFtruth)

d∆ηFtruth

. (11.2)

The unfolding corrects for the migration in the rapidity gap size between detector and hadron

level. The migration matrices used for the unfolding were obtained using MC. Pythia8 was

chosen as the nominal generator on the bases of the results from Chapter 9 and Pythia6 and

Phojet were used for evaluation of the MC model uncertainty. The migration matrices for

pcut
T = 200, 400, 600, 800MeV obtained by Pythia8 are shown in Figure 11.5.

In migration matrices with pcut
T ≥ 600MeV anti-diagonal correlations are present. The reason

is following, only few particles are usually produced above pcut
T = 600MeV therefore if some of

them are not detected in calorimeter or tracker the side of the detector from which the rapidity

gap is reconstructed can be different at the hadron level and truth level. This effect caused

unphysical bump around ∆ηF ∼ 5 in the unfolded cross section. To remove this unphysical

behavior, we define the side from which the rapidity gap for pcut
T = 400, 600, 800MeV is recon-

structed to be the same side as for pcut
T = 200MeV. This definition removes the effect from the

final rapidity gap distribution even though the reduced anti-diagonal correlation still persists3 in

the unfolding matrices.

In the Bayesian method, several iterations are usually ran to obtain a result independent of

the prior i.e. truth spectrum provided by a MC generator. The result from a given iterations is

used as a prior in the next iteration. The iterative method should usually quickly converge into

a stable result. However in practice, after several iterations results exhibits a fluctuation due to

detector effects and further iterations do not provide any improvement. The number of iteration

has been determined from the closure tests where different MC was used for the prior and the

pseudo-data. It was observed that the agreement between the truth value and the unfolded

distribution does not improve after the first iteration. The fluctuations due to detector effects

appear already in the second iteration thus only one iteration was used to correct the data.

The results obtained by Bayesian unfolding were compared with Singular Value Decomposi-

tion [127] and Bin-by-Bin unfolding. The difference between results obtained by the unfolding

methods was below 10%, what is much smaller than the overall error of the measurement as it

will be shown. The RooUnfold library [128] implementing all these methods was used for the

unfolding. The statistical errors were computed using a covariance matrix from the variation of

the results in toy MC tests, this is recommended RooUnfold procedure for the case of Bayesen

unfolding. It should be noted that the statistical errors are negligible compared to the total error

of the measurement.

3The forward rapidity gap side can differ between detector and truth level also for pcutT = 200MeV but usually

both gaps are so small that the anti-correlation effect is not present. However, after application of a higher pcutT

the anti-diagonal correlation can appear, as apparent from Figure 11.5.
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Figure 11.5: Unfolding matrices obtained by Pythia8 illustrating migrations between detec-

tor level, ∆ηFrec, and hadron level ∆ηFtruth for cuts pT > 200, 400, 600, 800MeV. For pcut
T =

400, 600, 800MeV the side of the detector from which the rapidity gap is reconstructed is de-

fined as the side for pcut
T = 400MeV. The definition reduces anti-diagonal correlation in the

matrices with pcut
T = 600, 800MeV and removes unphysical bump from the final unfolded cross

sections.
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11.3 Systematic Uncertainties

A detailed description of the systematic uncertainties considered in the measurement is presented

in this section. The effect of each systematic uncertainty is illustrated in Figure 11.6. Those

uncertainties which have large effect on the measurement are shown on the left and the rest is

on the right of the figure.

11.3.1 Energy Scale Uncertainty

The electromagnetic scale is derived from studies of π0 → γγ and is compared to previous studies

of Z → ee [121]. For the hadronic scale, a combination of E
p studies and test-beam data are

evaluated. The uncertainty in the upstream material budget is also included in this systematic

through the test-beam analysis. The resulting uncertainties are quoted per region, regions are

influenced more by cell density and material budget than individual sub detectors.

• 5% for |η| < 2.3 (from E/p studies);

• 13% for 2.3 < |η| < 3.6 (12% π0; 4% test-beam hadrons);

• 12% for 3.6 < |η| < 4.9 (9% π0; 8% test-beam hadrons);

• 20% for 1.37 < |η| < 1.52 (Special treatment for Crack region [121]).

A care must be taken when applying the energy scale systematics. The cell/cluster response on

the particle deposits is varied but the noise is kept to be the same. Technically this is achieved

by changing the energy sampling fraction which converts particle energy deposits into digit

counts of the analog-to-digital convertor. The noise digit counts are kept unchanged. The non-

diffractive, single diffractive and double diffractive samples of Pythia8 have been re-digitized

and re-reconstructed, with the nominal energy scale uncertainties described above. The difference

between the nominal and varied rapidity gap distribution is used as the energy scale uncertainty.

It can be seen from Figure 11.6 that the energy scale uncertainty is one of the dominant errors

in the measurement.

11.3.2 Additional Material Uncertainty

Supplementary simulation with an additional 10% extra material in the whole Inner Detector (ex-

cluding sensitive detectors) was performed in Pythia6. So as to not double-count the Pythia6

unfolding uncertainty, the difference of the extra material sample with respect to the nominal

Pythia6 sample is taken as a source of uncertainty. This amounts to up to around 3.5% across

the distribution.
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11.3.3 MBTS Efficiency

The description of the MBTS efficiency in the MC models leads to a potential systematic effect on

the trigger efficiency and the off-line MBTS requirement. The associated uncertainty is evaluated

by increasing the thresholds of all MBTS counters in the simulation to match the maximum

variation in the measured response in data according to studies with particles extrapolated from

the tracker, HEC or FCal [3]. This systematic error is negligible in the regime where the result

is presented, ∆ηF < 8.

11.3.4 Tracking Uncertainty

The influence of tracking efficiency on gap reconstruction was studied. The reconstruction was

defined in the same way as discussed in [129]. The resulted uncertainty has effect smaller than

0.5% on the cross section and therefore it is not included in our results.

11.3.5 MC Unfolding Uncertainty

The full cross section unfolding procedure is carried out using each of the Pythia6, Pythia8

and Phojet models. The deviations of Pythia6 and Phojet from Pythia8 define the model

dependence which is applied symmetrically for the upward and downward uncertainties. When

evaluating this systematic, both the trigger efficiency correction and response matrix are taken

from the model. The model dependence uncertainty is dominant, reaching up to 25% for small

gaps and up to 10% in the diffractive plateau.

11.3.6 Diffractive Mix Uncertainty

While the fraction of diffractive to non-diffractive events for the tuned MCs used to data correc-

tion are taken from the measurement of single sided events in MBTS [3], see tuned fractions in

Table 6.1, the relative fraction of single to double dissociation is less well known and harder to

constrain.

Especially the double diffractive processes, in which the pseudorapidity of system Y overlap

with the detector but it is not detected, are responsible for large migration in the gap spectrum

between detector and particle level. To account for the uncertainty of the relative mix of these

two processes, the analysis is performed with the diffractive fraction constrained by the Tevatron

data [66]. This data were measured in pp̄ interactions at 1.8TeV however similar DD/SD ratio

is expected at LHC energies. The DD data refers to events with a rapidity gap which spans

central rapidity, ∆η > 3 and SD refers to events which satisfy 1.4GeV2 < M2
X < 0.15TeV2.

These acceptance factors are calculated with generator level MC and used to modify the bound

appropriately for each generator. The calculated constraints are listed in Table 11.1 and 11.2, it

should be noted that the default cross sections for both Phojet and Pythia lie outside of the
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calculated bounds. Also, with Phojet the fraction of central diffraction is kept at its default

value. An uncertainty on the CD is discussed in following section.

For the purposes of trigger efficiency correction and forming of the MC unfolding smearing

matrix, MC are combined using the tuned nominal values and varied between the lower bound

and upper bound values for systematic evaluation. This results in 1% uncertainty across the

diffractive plateau.

Pythia Constraint: 29% < DD/SD < 68%

Default Lower Bound Tuned Nominal Upper Bound

fSD 59.4% 77.82% 69.06% 62.08%

fDD 40.6% 22.18% 30.94% 37.92%

Table 11.1: Constraint on DD/SD ratio in Pythia according to Tevatron data [66].

Phojet Constraint: 44% < DD/SD < 94%

Default Lower Bound Tuned Nominal Upper Bound CD Bound

fSD 67.1% 63.69% 54.22% 47.21% 56.99%

fDD 24.6% 28.01% 37.48% 44.49% 37.48%

fCD 8.3% 8.3% 8.3% 8.3% 5.59%

Table 11.2: Constraint on DD/SD ratio and CD/SD in Phojet according to Tevatron data [130].

11.3.7 Central Diffraction Uncertainty

Contribution of central diffraction is another quantity poorly constrained by data. This process

is only modeled in the Phojet generator where it accounts for 8.3% of the diffractive events.

Recent results from the Tevatron [130] measure the ratio of CD/SD = 0.093.

The fractional rate of central production is considered as a source of uncertainty. The Tuned

Nominal value fD and DD fraction in Phojet are fixed, the CD/SD ratio is set according the

Tevatron constrain. This leads to a slight reduction in the amount of CD as can be seen from

Table 11.2. The difference with respect to the nominal Phojet is considered as systematic

uncertainty. The effect is approximately a 1% variation across the diffractive plateau.

11.3.8 Luminosity Uncertainty

Following the 2010 van der Meer scan results [60], the uncertainty on the integrated luminosity

is 3.4%.
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11.3.9 Summary of Systematic Uncertainties

The total systematic error on the cross section is taken as a sum in quadrature of the energy

scale, extra material, MBTS, MC unfolding uncertainties, single to double diffractive mixing,

double pomeron uncertainty and luminosity uncertainty mentioned above.

MC unfolding uncertainty has contribution dominant over most of the distributions, reaching

up to 25% in some regions. The energy scale uncertainty also leads to a significant contribution.

It is comparable with the MC unfolding uncertainty for gaps ∆ηF ∼ 2.5 and for pcut
T = 400MeV

it even exceeds the MC unfolding uncertainty in this region. All other systematic effects are of

the scale of the luminosity error (3.5%) or smaller. All systematic bands are presented for all

pT cuts in Figure 11.6. The statistical error is negligible in comparison to overall systematics

uncertainty.

11.4 Differential Cross Section for Forward Rapidity Gaps

Results of the measurement of the differential cross section as a function of rapidity gaps are

summarized in this section. The differential cross section was measured for particles above the

cut pcut
T = 200, 400, 600, 800MeV. The data cover the range 0 < ∆ηF < 8. In the large gap region

which is populated by diffractive processes, the cross section corresponds to a t-integrated sum

of SD events in which either of the colliding protons dissociates and DD events with ξY . 10−6

(MY . 7GeV). The data span the range ξX & 10−5. Diffractive events with smaller ξX values

are subject to large MBTS trigger inefficiencies and thus lie beyond the kinematic range of the

measurement.

The rapidity gaps measurement allows to constrain the pomeron intercept in the triple

pomeron based models introduced previously. Furthermore, the hadronisation and underlying

event models can be tested using the small rapidity gap regime at small pcut
T or at large pcut

T in

which also the non-diffractive events produce large rapidity gaps.

11.4.1 Differential Cross Section for pcut
T = 200MeV

The results on differential cross section as a function of rapidity gaps for particles with transverse

momenta pT > 200MeV are presented in Figure 11.7. The cut pcut
T = 200MeV corresponds to

the lowest experimentally accessible energy as discussed in Section 8.2. In the top left plot of

Figure 11.7 data are compared with overall predictions of Phojet, Pythia6, and Pythia8.

Remaining plots show relative contributions of ND, SD, DD and CD predicted by the MCs.

All MCs contain the exponential decrease of the cross section with increasing gap size present

in the data at small gaps, ∆ηF . 2. This behavior is typical for ND component which has

dominant contribution according to all MCs in this regions. Only small fraction of events ∼ 10−2

is expected to be diffractive. These are SD or DD events with very large ξX & 10−2 or DD events
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Figure 11.6: Systematics uncertainties presented for four different pT cuts from 200MeV to

800MeV. The left plots show the cluster energy scale, luminosity, unfolding difference between

MC models and variation of single to double diffraction ratio. The right plots show the uncer-

tainty from 10% addition support material in the ID, variation of double pomeron exchange and

variation of offline MBTS threshold.
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Figure 11.7: Inelastic cross section differential in forward gap size ∆ηF for particles with

pT > 200MeV. The shaded bands represent the total uncertainties. The full lines show the

predictions of Phojet and the default versions of Pythia6 and Pythia8 Ṫhe dashed line il-

lustrate contributions of the ND, SD and DD components according to the models. The CD

contribution according to Phojet is also shown in bottom right.

ξY & 10−6. Pythia8 has the best agreement with the data while Phojet overestimates the ND

contribution by a factor of ∼ 1.5.

At large gaps, ∆ηF & 3, the differential cross section exhibits a plateau, which is attributed

mainly to diffractive processes. The differential cross section remains around 1 mb per unit of

rapidity gap size in this regime. Given the close correlation between ∆ηF and − ln ξ, (4.23),

this behavior is expected as a consequence of the dominance of soft diffractive processes. The

plateau is roughly modeled in the all MCs, as can be seen in detail from Figure 11.8. Pythia

MCs overshoots the data almost in the whole regime despite of the tuning of fD according the [3].

This can be associated with large DD contribution in the measured region which exceeds the data

from Tevatron [131]. The underestimation of fD in Phojet is compensated by excess of the total

inelastic cross section, thus it achieves the best agreement with data. In addition, Figure 11.8

shows Donnachie-Landshoff model implemented in Pythia8. It should be emphasized that the
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Figure 11.8: Inelastic cross section differential in forward gap size ∆ηF for particles with

pT > 200MeV and ∆ηF > 2. The error bars indicate the total uncertainties. In top left plot,

the full lines show the predictions of Phojet, the default versions of Pythia6 and Pythia8,

and Pythia8 with the Donnachie-Landshoff pomeron flux. The remaining plots show the contri-

butions of the SD, DD and ND components according to each generator. The CD contribution

according to Phojet is also shown in bottom right.

slope of the data is between the slope of the Donnachie-Landshoff and the rest of the models.

This is due to different pomeron intercept αIP(0) which is 1.085 for Donnachie-Landshoff and 1.0

for the rest of the models.

11.4.2 Estimation of Pomeron Intercept

The strong correlation between the pomeron intercept, αIP(0), and the slope of the differential

cross section at large gap can be used for determination of αIP(0). The data in high purity diffrac-

tive region, ∆ηF > 6, were used to obtain the best estimate of Pomeron intercept to describe

the data. The MC samples with varying pomeron intercept but with the same pomeron slope

α′
IP

= 0.25GeV−2 were generated with Donnachie-Landshoff model implemented in Pythia8.

The SD, DD, and ND contributions were mixed according to the default SD to DD ratio but with
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Figure 11.9: (Left) χ2 minimization of Donnachie-Landshoff (DL) flux model in Pythia8 for

cross section as a function of ∆ηF . The bold dashed line in the middle corresponds to the

minimum of χ2(ε), the two dashed-dotted lines denote statistical error and the two dotted lines

represent overall systematics uncertainty before symetrization of the MC model uncertainty was

applied. (Right) Inelastic cross section as a function of forward rapidity gap of the fitted DL

model in Pythia8 for pcut
T = 200MeV.

the fitted total diffractive fraction fD = 25.6% obtained using the samples with αIP(0) = 1.058.

χ2 was evaluated for each sample in region 6 < ∆ηF < 8, with the cross section integrated

over the fitted region allowed to float as a free parameter. The χ2 data points corresponding to

individual pomeron intercepts were fitted by the parabola, which can be seen in Figure 11.9. The

point where parabola reaches the minimum, χ2
min, is the optimal αIP(0). Statistical errors on the

fitted value of αIP(0) were determined by finding the roots of an equation χ2(αIP(0)) = χ2
min + 1.

This procedure was applied to nominal cross section and to each systematic effect described in

Section 11.3.9. The differences between the fit of nominal distribution and each systematics shifts

were summed in quadratures to obtain total uncertainty on the αIP(0). The systematic uncer-

tainty is dominated by the MC model dependence of the data correction procedure, in particular

the effect of unfolding using Pythia6 in place of Pythia8. This leads to a significantly flatter

dependence of the data on ∆ηF at large gap sizes. Since both Pythia6 and Phojet cause large

downward shifts with respect to nominal value obtained by Pythia8, the MC model uncertainty

is symmetrized with respect to nominal value. The sensitivity on the shift of diffractive frac-

tion, fD, was also investigated but its variation has negligible effect on the resulted αIP(0). The

obtained pomeron intercept for the Donnachie-Landshoff model in Pythia8 is

αIP(0) = 1.058± 0.003(stat.)+0.034
−0.039(syst.). (11.3)

The χ2/NDof at the nominal minimum is 1.5. The distribution corresponding fitted pomeron

intercept can be seen in Figure 11.9. The obtained αIP(0) value is compatible with the default

pomeron intercept αIP(0) = 1.085 in Donnachie-Landshoff model due to large systematic uncer-
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tainty. Finally, it should be mentioned that the measurement of rapidity gap distribution with

single center-of-mass energy is not sensitive to value of the pomeron slope, α′
IP
.

11.4.3 Higher Transverse Momentum Cuts

Increasing the transverse momentum cut on the final particles leads to a production of larger

rapidity gaps. This can be seen from Figure 11.11 showing the differential inelastic cross section

as a function of rapidity gap, ∆ηF measured for following transverse momentum cuts pcut
T =

200, 400, 600, 800MeV. Increasing the pcut
T from 200MeV to 400MeV has only small effect. The

distribution has similar behavior as for pcut
T = 200MeV and the ND component is dominant

only up to ∆ηF ∼ 3 according to all MC models. Relatively large difference is visible between

distribution with pcut
T = 400MeV and pcut

T = 600MeV. Production of particles with such large

transverse momentum is rare also in non-diffractive processes and therefore the difference between

diffractive and non-diffractive component smears out in the rapidity gap distributions. This

behavior is even more significant for distribution with pcut
T = 800MeV where all MCs predicts

that production of very large gaps ∆ηF ∼ 8 in non-diffractive events is almost the same order

of magnitude as in the diffractive case. The agreement between data and both Pythia6 and

Pythia8 is observed to improve at higher pT cuts. Phojet retains a good description at large

gap sizes but continues to overestimate the cross section for gaps with ∆ηF < 5.

11.4.4 Inelastic Distribution in Herwig++

The distribution at small rapidity gaps is sensitive to fluctuations in hadronisation processes

thus it is interesting to compare the data with different hadronisation models than Lund String

model implemented in Pythia and Phojet4, see Section 6.4.2. An alternative is a cluster

hadronisation model, described in Section 6.4.3, which is available in Herwig++. Figure 11.11

shows comparison of Herwig++ minimum bias tune UE7-2 [132] with data. It should be

emphasized that the model of minimum bias production does not contain diffractive processes

and thus only exponential fall-off of the rapidity gap distribution is expected. Even though

not containing an explicit diffractive component, Herwig++ produces large gaps with non-

exponential behavior and bump around ∆ηF = 6 which is presented for all transverse momentum

cuts.

Four variants of the default UE7-2 tune can be seen in Figure 11.11. All the Herwig++

distributions are normalized to inelastic cross section of 81mb predicted by the default UE7-

2 tune. The default UE7-2 model contains colour reconnection (CR) model which leads to

successful description of charged particle multiplicities at LHC and Tevatron. Even though

switching of the colour reconnection model leads to slight suppression of large gaps, the non-

exponential behavior of the distribution persists. As it was discussed in Section 6.5, the model
4In fact Phojet uses the Pythia6 hadronisation code.
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Figure 11.10: Inelastic differential cross section in forward gap size ∆ηF for different pcut
T values.

Comparison between the measured cross sections is in the top left. The full uncertainties are

shown. They are correlated between the different pcut
T choices. The remaining plots show compar-

ison between the data and the MC models for pcut
T = 400, 600 and 800MeV. The non-diffractive

component in each MC model is also shown.
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Figure 11.11: Inelastic differential cross section in forward gap size ∆ηF for pcut
T = 200, 400, 600,

800MeV. The data are compared with the UE7-2 tune of the Herwig++ model. In addition to

the default tune, versions are shown in which the colour reconnection model is switched off and

in which events with zero scatters are excluded (see text for further details).

for multiple interactions admits events were no soft or semi-hard scatterings occurs. This could

eventually lead to production of large gaps between the dissociated protons which would mimics

DD topology. The Herwig++ gap cross section is reduced after removal of these empty semi-

hard or soft events (No Empty Evts.) but the non-exponential tail and large ∆ηF enhancement

persist. The poor description of the forward rapidity gap distribution have been discussed with

the Herwig++ authors but so far none of the model parameters is able to fix the discrepancy.

11.5 Summary

The novel algorithm for reconstruction of rapidity gaps using the ATLAS detector between

particles with momentum transverse pT ≥ 200MeV was introduced. The differential cross section

as a function of forward rapidity gap was measured for particles with transverse momenta above

pcut
T = 200, 400, 600, 800MeV. Measurements were corrected to the level of stable hadrons. An

exponentially falling non-diffractive distribution was observed at small gaps. The distribution

exhibits plateau at large gap sizes which is expected for diffractive processes. This plateau
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amounts to a cross section close to 1mb per unit of gap size and is reasonably well described in

shape by the Monte Carlo models, which are based on a triple Regge approach. Pythia8 and

Pythia6 well model the small rapidity gap region while Phojet provides good description of

large rapidity gaps.

Whilst the data are insensitive to the choice of pomeron slope α′
IP
, there is considerable

sensitivity to the value of pomeron intercept αIP(0). The rise of the cross section at large rapidity

gaps was fitted by the Donnachie-Landshoff model implemented in Pythia8. A pomeron slope

parameter αIP(0) = 1.058± 0.003(stat.)+0.034
−0.039(syst.) provides the best fit to data.

The minimum bias model UE7-2 tune implemented in Herwig++ which uses the alternative

cluster hadronisation model was compared to data. The Herwig++ model produces large gaps

which are not exponentially suppressed with size of the rapidity gaps even though the minimum

bias model does not contain diffractive production explicitly.



Chapter 12

Summary

This thesis is devoted to diffractive physics at Large Hadron Collider. The experimental part

of the work was measurement of rapidity gap production in the minimum bias events with the

ATLAS detector. Slightly different topic was implementation of forward physics processes into

Herwig++ which can be measured at LHC.

The diffractive models are spread among many MC generators. Some of the generators

start to be obsolete and are not further developed or tuned to data. In addition, it is more

comfortable for user to have all models available under one unified interface. Due to these

reasons one part of the PhD work was implementation of diffractive and exclusive models into the

Herwig++ MC generator. Hard diffraction and QED exclusive production have already been

added into Herwig++ release 2.5 [84]. Herwig++ with these processes included is already

used in measurements of diffractive di-jet or di-muon production in the ATLAS. In future, the

implemented models could be used for studies of anomalous coupling between γ and W in two-

photon initiated processes planned to be measured by AFP [97]. Exclusive QCD production

of Higss, di-jet and di-photon final states is prepared to be submitted into the next release.

The outlook is implementation of three final states processes which are important background

for searches in the exclusive channels. These processes have not been implemented in any MC

generator yet due to complicated phase-space which requires high performance algorithm for

automatic sampling.

The experimental section discusses the measurement of the rapidity gap production at
√
s =

7TeV. The rapidity gaps are reconstructed using the ATLAS calorimeter system in combination

with Inner Detector. The crucial issue to define rapidity gaps in the calorimeter is separation

of the electronic noise from the physics signal. The noise is suppressed to acceptable level by a

requirement on the most significant cell in the topological cluster or in given calorimeter region.

Two different definitions of rapidity gaps were introduced:

• Floating rapidity gap ∆η: is the largest empty pseudorapidity region between two

nearest particles in η, inside the detector acceptance.

119
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• Forward rapidity gap ∆ηF : is the larger of the two empty pseudorapidity regions ex-

panding between the edges of the detector of the acceptance η = 4.9 or η = −4.9 and the

nearest particle.

Floating rapidity gap is used to measure diffractive fraction of the total inelastic cross section in

Chapter 10. This 2-dimensional algorithm provides information about size and position of the gap

what improves separation of single diffractive and double diffractive events. The obtained result

for diffractive fraction fD = 30.2 ± 0.3(stat.)−3.8
+4.5 (syst.)% is in good agreement with previous

measurement [3] performed using the MBTS detector. However, the MC model uncertainty

of our measurement is not improved with respect to the one obtained with MBTS as it was

originally expected.

Due to small rapidity coverage of the ATLAS detector large amounts of double diffractive

events mimics the single diffraction. In order to obtain a stable fit result, the SD and DD

templates were redefined into new SD-like and DD-like templates according to mass of the smaller

dissociated system MY . Even though, the redefined templates improves stability of the fit, the

SD-like to DD-like ratio strongly depends on the MC model. The determined fractions are

therefore tightly linked to the generator and can be considered for tuning of the MC only. The

analysis can be found in the ATLAS public document [117] which was presented at the conferences

as preliminary result only. Due to the above issues, further improvements are not considered.

Chapter 11 is devoted to the measurement of the inelastic differential cross section as a

function of forward rapidity gap size. The measurement was published in [124]. The differen-

tial cross section was measured for different cuts on the transverse momenta of final particles

pcut
T = 200, 400, 600, 800MeV, where the lowest cut pcut

T = 200MeV was estimated as the lowest

accessible energy with a good calorimeter acceptance. The measurement is directly sensitive

to variable ξ and thus it allows to constrain diffractive models. In addition, the differential

cross section at small rapidity gaps tests hadronisation and underlying event models in the MC

generators. The exponential decrease at small rapidity gaps which is typical for fluctuation in

hadronisation in non-diffractive processes is reflected by Pythia6, Pythia8 and Phojet. At

large gaps the expected diffractive plateau was observed and reasonably modeled by the MCs.

Whilst the data are insensitive to the choice of the pomeron slope α′
IP
, the pomeron in-

tercept αIP(0) is strongly correlated with the slope of the rapidity gap distribution at large

gaps. The increase in the differential cross section at large rapidity gaps was fitted by the

Donnachie-Landshoff model implemented in the Pythia8. The obtained result αIP(0) = 1.058±
0.003(stat.)+0.034

−0.039(syst.) is compatible with default Donnachie-Landshoff value αIP(0) = 1.085

due to systematic uncertainty which is dominated by MC model selection for unfolding.

By increasing the pcut
T to higher values the larger rapidity gaps are produced also in the non-

diffractive component. The effect is relatively small for transition from 200MeV to 400MeV.

However, at pcut
T = 600MeV very large gaps are produced in the ND events according to all MCs
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thus the difference between diffraction and non-diffraction disappears. In general, modeling of

rapidity gap distribution improves with increasing pcut
T values.

The minimum bias model UE7-2 tune implemented in Herwig++ which uses the alternative

cluster hadronisation model was compared to data. The Herwig++ model exhibits large gap

production without exponential suppression at large gap sizes even though the minimum bias

model does not contain diffractive production. The exact reason for this behavior is still to be

investigated by Herwig++ authors.

The measurement of the cross section as a function of forward rapidity gap has already

had an impact on the community developing models for description of soft interactions and

diffraction physics in pp collsions. One of them is KMR model [133] combining phenomenological

Regge inspired model and QCD BFKL description described in Section 4.2 which is recently

implemented into Sherpa [134]. An alternative model proposed by Gotsman, Levin, Maor [135]

was also tested by our data.
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