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Abstrakt:

Při  nejvyšších  možných  dosažitelných  energiích  v  jádro-jaderných  srážkách  na  LHC 
vzniká velké množství párů výtrysků částic, které deponují čtyřhybnost do expandujícího 
média. Pomocí trojrozměrné relativistické hydrodynamické simulace se ukazuje, že tato 
skutečnost vede k měřitelnému příspěvku k anizotropii v expanzi v příčném směru. Tvrdé 
partony vytvářejí  proudy v  plazmatu,  které  se  slévají,  pokud tečou blízko  sebe.  Tento 
mechanismus  koreluje  příspěvek  k  anizotropii  s  geometrií  fireballu  a  zvyšuje  hodnotu 
anisotropického toku v necentrálních srážkách.

Abstract:

In  nuclear  collisions  at  highest  accessible  LHC  energies,  a  lot  of  dijet  pairs  deposit 
momentum into  the  deconfined  expanding  medium.  This  thesis  uses  3+1-dimensional 
relativistic hydrodynamic simulation to show that this leads to measurable contribution to 
the  anisotropy  of  collective  transverse  expansion.   Hard  partons  generate  streams in 
plasma which merge if  they come close to each other.  This mechanism correlates the 
resulting contribution to flow anisotropy with the fireball geometry and causes an increase 
of the anisotropic flow in non-central collisions. 
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Chapter 1

Introduction

Relativistic heavy-ion collisions provide the opportunity to recreate and study under lab-
oratory conditions a form of matter, which is believed to have existed in the early phase
of the Universe, the Quark-Gluon Plasma (QGP). The Large Hadron Collider (LHC) is
the worlds largest and most powerful particle accelerator at CERN located in Switzerland
near Geneva. The QGP does not exist at ordinary temperatures and energy densities.
However, in the ultrarelativistic high energy collisions of heavy ions, currently performed
at BNL’s Relativistic Heavy Ion Collider (RHIC) and CERN’s Large Hadron Collider
(LHC), sufficiently large temperatures and energy densities required for QGP formation
can be achieved [1]. Even at the highest collision energies, the time scale for which highly
energetic and dense matter is formed in heavy-ion collisions is short, about 10 fm/c. The
system thermalizes locally, expands and breaks up and only final state particles remain as
remnants of the collision. Only these particles and their decay products can be measured
by a detector. Models or simulations are needed to provide a connection to the early
phases of the collision which are of highest interest.

The thesis is organized as follows. Firstly, the theoretical relativistic heavy ion colli-
sions background is given, including QGP, QCD phase transitions and some QGP signa-
tures. In Chapter 3, the main goals and motivation of the thesis are presented. Chapter 4
deals with the theory of hydrodynamics and its application since ideal three-dimensional
hydrodynamics was used in this thesis including description of freeze-out process. Chapter
5 provides the details about numerical implementation of solving hydrodynamic equations
which are developed. Chapter 6 describes the types of initial conditions used in heavy
ion physics and points out those used in this thesis. The implemented source terms for
hydrodynamics and jet quenching models are presented in Chapter 7. Chapter 8 provides
the details concerning the methods for extracting anisotropic flow. Our results for both
static and expanding medium are presented in Chapter 9. The most important results
are summarized in concluding Chapter. Throughout this thesis, we will use natural units,
i.e. c = kB = ~ = 1.
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Chapter 2

Heavy-ion collisions

This chapter focuses on the QGP as described by the theory of strongly interacting matter,
Quantum Chromodynamics (QCD). QGP is the state of matter consisting of deconfined
quarks and gluons, mutually interacting dominantly via the strong nuclear force. The
experimental signatures of the deconfined matter are reviewed, as well.

2.1 QGP and Quantum Chromodynamics

Quantum Chromodynamics is a part of the Standard Model, the state-of-the-art theory
of particle physics, describing the strong interaction between quarks and gluons. Gluons
are bosons which carry the strong interaction between quarks. There are six known types
of quarks: up, down, strange, charm, bottom and top. Quarks carry the SU(3) charge
which due to its analogy with addition of colours is often referred to as colour with states
described as red, green, and blue. Antiquarks then carry the complementary colours to
these. The interaction in QCD is invariant under the SU(3) transformation in colour
space. Combination of a colour and anticolour is assigned to each gluon. There are nine
of such combinations. They are divided into a singlet and an octet state according to the
properties of the SU(3) group symmetry. Experimental results show that gluons belong
to the octet state. In fact all known hadrons are colour-neutral, and it seems that Nature
avoids free colour charge. This is known as colour confinement. While potential energy of
the gravity and the electromagnetic interaction between two charges has an upper limit,
potential energy of two quarks is rising linearly. This is known as colour confinement.
This means that two quarks moving away from each other will increase the energy in
the colour field between them, until at some point the stored energy is converted into a
new quark-antiquark pair, thus the original quarks are confined in two new hadrons, each
with one of the newly created quarks. In the opposite limit, in case of large momentum
transfers, the coupling becomes weak and therefore the fundamental degrees of freedom,
quarks and gluons, are quasifree. Effectively, this means that at some distance, where
two quarks are very close to each other, they will not interact via the strong force at all,
they are free quarks. This is known as asymptotic freedom, and is of great importance in
the field of heavy ion physics [2].
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Strongly interacting matter can occur in various phases. A phase describes a state
of system in thermal equilibrium which is characterized by a certain set of macroscopic
observables. Phase transitions are characterized by the change of the relevant thermody-
namic variable(s) and are commonly classified into phase transitions of first order, second
order and cross-over. Generally, there is an nth order phase transition if the (n–1)th
derivative of a thermodynamic variable (like the energy density or the number density) is
discontinuous. While first-order transition always implies the existence of a mixed phase,
second order transition does not exhibit a mixed phase. If the characteristic observables
change rapidly, but without any discontinuity, the transition is called a cross-over and the
actual transition between the phases cannot be exactly specified.

The QCD phase diagram (see Fig. 2.1) is obtained by plotting the relevant degrees of
freedom for strongly interacting matter. Commonly, these degrees of freedom are studied
as a function of temperature T and quark chemical potential µ which is associated with
baryon number. Thus, for vanishing quark chemical potential, an equal number of quarks
and antiquarks is present in the system. A positive quark chemical potential implies an
excess of quarks over antiquarks. For low temperatures and small values of the quark
chemical potential, strongly interacting matter forms hadron gas. At sufficiently high
temperature and/or chemical potential, hadrons strongly overlap, creating an extended
region of deconfined quark-gluon matter, the QGP [3, 4, 5]. Lattice-QCD calculations
have shown that the transition between the hadronic and quark-gluon plasma phases of
quantum chromodynamics (QCD) at vanishing baryon chemical potential µB and around
T ≈ 170 MeV is a crossover transition [6]. For higher values of quark chemical potential
there is a first-order phase transition which ends in a critical end point of second order.
Several attempts have been made to locate the critical point, i.e. the endpoint of the first-
order transition line, in lattice simulations [7, 8, 9], but its location is still in doubt [10].
The inconclusive theoretical results have motivated plans for a systematic exploration of
the properties of hot QCD matter as a function of the net baryon density by means of a
collision energy scan at the Relativistic Heavy Ion Collider (RHIC) [11, 12]. The search
for the QCD critical point also forms part of the motivation for the NA61 experiment [13]
at the CERN-SPS and for a new facility dedicated to the study of compressed baryonic
matter at the Facility for Antiproton and Ion Research (FAIR) in Germany as well as
the NICA facility in JINR Dubna. For cold and dense quark matter another phase
transition is proposed. Due to the attractive interaction between quarks in some channels
the formation of Cooper pairs is expected. This phase is commonly referred to as color-
superconducting [14, 15] and seems to contain a variety of additional phases [16]. At
high temperatures, the nature of the QGP is not yet fully explored. At medium-high
temperatures, the QGP is most probably not an ideal gas of non-interacting quarks and
gluons [17], but behaves like a strongly coupled plasma (strongly coupled QGP, sQGP)
corresponding to an ideal fluid.

One feasible method to probe the phase diagram of QCD is to study the collisions of
heavy nuclei at ultra-relativistic energies which offer the possibility to artificially create
matter under extreme conditions. Different collision energies enable us to test various re-
gions of the phase diagram. While the high-energy runs (at RHIC and LHC) explore the
region around µ ≈ 0, the lower-energy runs at RHIC and GSI (FAIR) are dedicated to the
search for the critical end point. As RHIC launched beam energy scan program to inves-
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Figure 2.1: A schematic QCD phase diagram in the (T, net baryon density)-plane. Figure
taken from [18].

tigate this phase diagram, it is mentioned in both cases. Furthermore, the experimentally
collected data allow to draw conclusions about the properties of matter.

Though it is conjectured that already the collision of two nuclei at the center-of-mass
energy larger than

√
sNN ≈ 8 GeV leads to such a strong heating of matter that colour

charges are deconfined, the experimental proof that such a QGP is really created in a
heavy-ion collision is extremely challenging since the deconfined phase is supposed to
exist only for a very short time of roughly ∆t ≤ 10 fm/c, depending on the collision
energy. The description of such a collision is based on the assumption that ions are
composed of nucleons. Due to the fact that these ions are accelerated to ultra-relativistic
velocities, they are Lorentz-contracted, approaching each other along the beam axis (which
is normally taken to be the z-axis, see Fig. 2.2) with perpendicular distance between the
projectile and the target that is called the impact parameter b. The impact parameter
and the direction of the beam axis determine the so-called reaction plane. For b ≥ 0 fm,
some of the nucleons do not participate in the collision. They are called spectators and
leave the reaction zone immediately, in contrast to the participants of the reaction. Series
of snapshots of the subsequent collision (which is here assumed to be central, i.e., b = 0
fm) is shown in Fig. 2.3.

After the impact, in the early phase of the collision, the matter is in a pre-equilibrium
state. When compression is completed, a phase with extremely high temperatures and
densities is created. The system rapidly equilibrates, developing a fireball which expands
and cools rapidly. As soon as the temperature drops below the phase transition to the
deconfined phase, hadrons are created again. Subsequent interactions of those hadrons (in
the hadronic phase) will be both elastic and inelastic until chemical freeze-out is reached
where inelastic collisions terminate. Chemical freeze-out fixes the abundance ratios of the
hadronic species into an equilibrium distribution.

12



Figure 2.2: Geometry of a heavy-ion collision. The two nuclei move along the beam axis
(z-axis) with an impact parameter b, determining the reaction plane. The corresponding
definitions of in-plane and out-of-plane are also displayed. Figure taken from [19].

Figure 2.3: Sequence of a heavy-ion collision. The incoming nuclei are Lorentz-contracted
since they are accelerated to ultra-relativistic velocities. At the beginning of the collision,
a non-equilibrated phase (pre-equilibrium) is created that develops into a thermalized and
expanding fireball. During the expansion fireball is cooling until hadrons are formed again
(hadronization) which interact unless the system is too dilute. Figure taken from [20].
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The expanding system becomes more and more dilute so that finally, at the kinetic
freeze-out, all further interactions have ceased. The created hadrons and/or their daughter
particles will finally reach the detectors. Hadrons are always created in a heavy-ion
collision, independent of QGP formation. Thus, the only way to prove the existence of
a QGP experimentally, via a heavy-ion collision, is to analyze the particle distributions
at the end of the collision and to compare them to theoretical predictions assuming the
creation of a deconfined phase. Therefore, it is extremely important to identify robust
critera to distinguish QGP from a hot and dense hadron gas.

2.2 Experimental observables and signatures for the

QGP

One of the main challenges of heavy-ion collision experiments is the identification and
examining properties of the QGP. Since the QGP can not be studied directly, theoretical
models have to predict which properties of the final state of the interactions could provide
information about the QGP formation. That is, they have to predict which properties
are expected to be different in colliding systems where the QGP is or is not produced.
These properties have then to be experimentally investigated (signature of the QGP).
Depending on the phase of the collision when they are produced, these signatures can
be classified as hard probes or soft probes. Hard probes are signals produced in the
first stages of the collision by the interaction of high momentum partons (production
of heavy flavour quarks and their bound states, jet quenching). Soft probes correspond
to signals produced in the later stages of the collision (spectra of hadrons, anisotropy,
fluctuations, femtoscopy, thermal photons and dileptons). Even if they are produced
during the hadronization stage, they keep indirect information on the properties of the
phase transition and on the QGP formation. Some of the mentioned signatures will be
reviewed.

2.2.1 Charged-particle multiplicity density

The first step in characterizing the system produced in A-A collisions is the measurement
of the charged particle pseudorapidity density. It constrains the dominant particle produc-
tion mechanisms and is essential to estimate the initial energy density. The dependence of
the charged-particle multiplicity density on energy and system size reflects the interplay
between parton-parton scattering processes and soft processes for particle production and
may provide information on the partonic structure of the projectiles. Figure 2.4 shows
the charged particle multiplicity at mid-rapidity as a function of energy for pp and A+A
collisions. For A+A systems it is divided by the number of participant pairs in order to
be able to compare between different collision systems including pp. The observed trend
from lower energies fits with the LHC data, and generally there is higher multiplicity in
A+A collisions than in pp. The charged particle multiplicity per participant pair has
doubled in going from RHIC to LHC.
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Figure 2.4: Charged particle multiplicity at mid-rapidity scaled to the number of partici-
pant pairs at different energies and for different collision systems. The LHC data fit into
the trend from lower energies well [21].

2.2.2 Jets and high pT suppression

A jet is a shower of highly correlated hadrons produced by the hadronization of a hard
quark or gluon. Due to momentum conservation, jets are always produced back-to-back,
i.e., separated by an angle of π in the azimuthal plane. When the parton pair is created
close to the medium surface, one parton can leave the expanding fireball without any
further interaction while its partner parton traverses the medium depositing energy and
momentum. It was calculated that the energy loss of partons in QGP is much higher than
that in hadronic matter [22]. In the most general case, the total energy loss of a highly
energetic parton traversing a medium is the sum of collisional and radiative terms: ∆E =
∆Ecoll + ∆Erad. Depending on the kinematic region, a (colour) charge can lose energy
in a medium with temperature T mainly by two mechanisms, one of them is collisional
energy loss through elastic scatterings with the medium constituents. It dominates at low
particle momentum. The second one is radiative energy loss through inelastic scatterings
within the medium, it dominates at higher momenta. This phenomenon leads to the
jet quenching [23, 24], which is defined as the suppression of high-pT hadron yields in
nucleus-nucleus (e.g. Au-Au or Pb-Pb) collisions relative to that in pp collisions scaled
by the number of elementary nucleon-nucleon collisions. The observable used to measure
such an effect is called the nuclear modification factor (RAA) and is defined as

RAA =
d2NAA/(dpTdy)

TAAdσNN/(dpTdy)
, (2.2.1)

where TAA = 〈Ncoll〉 /σNN is the nuclear overlap function and σNN is the nucleon-nucleon
cross section.

Figure 2.5 shows the nuclear modification factor RAA of charged hadrons for central
Pb-Pb collisions at ALICE compared to that from the PHENIX and STAR experiments
at RHIC. In central collisions at the LHC, RAA exhibits very strong suppression, reaching
a minimum of ≈0.14 at pt = 6-7 GeV. Despite the much flatter pt spectrum in pp collisions
at the LHC, the nuclear modification factor at pT= 6-7 GeV is smaller than at RHIC. This
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Figure 2.5: Comparison of RAA for charged hadrons in central Pb–Pb collisions at the LHC
to measurements at

√
sNN = 200 GeV by the PHENIX [25] and STAR [26] experiments

at RHIC. Error bars of the ALICE data indicate the statistical uncertainties. The boxes
contain the systematic errors in the data and the pT dependent systematic errors on the
pp reference, added in quadrature. The statistical and systematic errors of the PHENIX
data are shown as error bars and boxes, respectively. The statistical and systematic errors
of the STAR data are combined and shown as boxes. The vertical bars around RAA = 1
indicate the pT independent scaling errors on RAA. Figure taken from [27].

suggests an enhanced energy loss at LHC and therefore a denser medium. A significant
rise by about a factor of two is observed for 7 < pT < 20 GeV. This pattern is very
intriguing, because it suggests that very high momentum partons may lose only a small
fraction of their energy in the medium and, thus, be sensitive probes of its properties.

In order to investigate potential cold nuclear effects in the initial state, p-Pb or d+Au
collisions are measured. The LHC p-Pb results can provide valuable information on the
elastic, inelastic and coherent multiple parton scattering processes inside a large nucleus.
Data from p–Pb are important also to provide constraints to different theoretical models.
The measurement of the nuclear modification factor RpPb for charged particles at |ηCMS| <
0.3, is shown in Fig. 2.6. It compares measurement of the nuclear modification factor in
p–Pb [28] to that in central (0–5 % centrality) and peripheral (70–80 % centrality) Pb–Pb
collisions at

√
sNN=2.76 TeV [33]. The uncertainties of the p–Pb and pp spectra are added

in quadrature, separately for the statistical and systematic uncertainties. Modification
factor RpPb corresponds to unity for pT > 2 GeV, it shows that the strong suppression
observed in central Pb-Pb collisions at LHC [27] is not due to initial state, but rather an
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Figure 2.6: The nuclear modification factor of charged particles as a function of transverse
momentum in non-single-diffractive p–Pb collisions at

√
sNN= 5.02 TeV. The data for

|ηcms| < 0.3 are compared to measurements [33] in central (0–5% centrality) and peripheral
(70–80%) Pb–Pb collisions at

√
sNN=2.76 TeV. The statistical errors are represented by

vertical bars, the systematic errors by (filled) boxes around data points. The relative
systematic uncertainties on the normalization are shown as boxes around unity near pT=0
for p–Pb (left box), peripheral Pb–Pb (middle box) and central Pb-Pb (right box). Figure
taken from [28].

evidence of the hot matter created in collisions of heavy ions. The so-called Cronin effect
[29], namely a nuclear modification factor above unity at intermediate pT , was observed at
lower energies in proton–nucleus collisions. In d–Au collisions at

√
sNN=200 GeV, RdAu

reached values of about 1.4 for charged hadrons in the pT range from 3 to 5 GeV/c [30].
The present measurement clearly indicates a smaller magnitude of the Cronin effect at the
LHC, the data are even consistent with no enhancement within systematic uncertainties.
For directly emitted photons we observe no suppression, it indicates that suppression is
in fact a QCD phenomenon, and not electromagnetic in origin [31].

Figure 2.7 compares the ALICE jet measurement [32] to the nuclear modification
factor for charged hadrons measured by ALICE [33] and CMS [34] and to the calorimetric
jet measurements by ATLAS [35]. Comparing the RCP of jets to charged particles in
Fig. 2.7, one would expect the suppression for jets to be smaller than for hadrons, since
jet reconstruction collects multiple jet fragments into the jet cone, thus recovering some
of the medium-induced fragmentation. However, it can be seen that the RCP for jets is
similar to that observed for single hadrons over a broad momentum range. This indicates
that the momentum is redistributed to angles larger than R=0.3 by interactions with the
medium. Such a strong redistribution of momentum might also be expected to lead to
a significant broadening of the energy profile within the larger cone radius R =0.3. The
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Figure 2.7: Nuclear modification factor of central collisions compared to peripheral ones,
for charged jets, fully reconstructed jets and charged hadrons, versus the corresponding
transverse momentum of the jet or hadron. Figure taken from [32].

results presented in Fig. 2.8, however, show that the ratio of yields for jets with R =0.2
and R =0.3 is similar in PYTHIA [36] pp simulation and Pb–Pb collisions, indicating
that the energy profile of the found jets is not significantly modified. Also the comparison
of the measured ratio to the ratio obtained with PYTHIA simulations shows that the
transverse jet shape in central and peripheral Pb–Pb collisions are consistent with jet
shapes in vacuum. No sign of a modified jet structure is observed between radii of 0.2
and 0.3 within uncertainties.

Figure 2.8: Ratio of spectra of charged jets defined with reconstruction parameter R =0.2
and R=0.3, versus charged jet transverse momentum. Figure taken from [32].
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2.2.3 Quarkonium suppression

Heavy quarkonia are cc̄ (charmonium) or bb̄ (bottomonium) bound states. As c and b
quarks are not present in the initial flavour content of the colliding nuclei, they must all
be produced in pairs at the moment of the fireball creation. Due to their large mass,
only in the initial phase of the collision the energy density is high enough to produce
those partons abundantly. In the QGP, the distance at which the partons feel interaction
with each other, becomes very small due to Debye screening; and the two heavy quarks
do not form a bound state. Since the amount of heavy quarks in the fireball is small,
the probabilities for the two partons to meet another heavy quark to combine with at
the hadronization are small also, so that they will finally build up two hadrons each of
them with only one heavy quark. These hadrons are called open-charm and open-beauty
hadrons. This means that the quarkonium states will be suppressed in heavy ion collisions,
with respect to pp collisions, if a QGP is formed.

Figure 2.9 shows the J/Ψ nuclear modification factor measured at ALICE for Pb-Pb
collisions at

√
sNN = 2.76 TeV [37] compared to PHENIX results in Au-Au collisions

at
√
sNN = 200 GeV [38]. A rather small J/Ψ suppression of about 0.5 was observed,

practically independent of centrality: this is a smaller suppression than that observed at
RHIC. The above results hint at J/Ψ regeneration in hot matter at the LHC energies, but
it is worth noting that the J/Ψ production can be modified by the initial state effect which
could modify the medium. For 〈Npart〉 larger than 70, corresponding to the 50% most
central Pb–Pb collisions, the J/ΨRAA is consistent with a constant within uncertainties.
Such behavior was not observed in heavy ion collisions at lower energies (SPS, RHIC)
where RAA is continuously decreasing as a function of centrality.

Figure 2.9: Inclusive RAA of J/Ψ as a function of the number of participant nucleons
measured in Pb-Pb collisions at

√
sNN = 2.76 TeV [37], compared to the PHENIX mea-

surement in Au-Au collisions at
√
sNN = 200 GeV [38]. Figure taken from [37].

At LHC, measurement of upsilons is also feasible thanks to more energy available.
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Figure 2.10: Nuclear modification factor RAA for bottomonium states versus centrality.
Figure taken from [40].

The nuclear modification factor RAA of upsilons as a function of centrality (number of
participating nucleons) is shown in Fig. 2.10. A strong suppression, increasing with
centrality, is seen, in particular for the relatively less less bound 2S state. Such a behaviour
is consistent with the observation of the sequential suppression of the quarkonium states
according to their binding energy [39]. One should note that a significant fraction of
measured Υ(1S) states comes from the decay of higher mass bottomonium resonances
so that a large fraction of the observed 1S suppression is connected to such feed-down
effects. The contribution of regeneration effects is expected to be much smaller in the
bottomonium sector, due to the lower bb̄ yields compared to charm. Hence, upsilons are
more suppressed than J/Ψ particles.

2.2.4 Anisotropic flow

Study of anisotropic flow of particles produced in relativistic heavy-ion collisions [41] has
emerged as an important tool to probe the early history, especially the thermalization of
the dense fireball produced in these collisions. “Flow” is caused by anisotropic expansion
of the fireball. Anisotropic flow means that the azimuthal distribution of particles is not
flat. In general, these anisotropies are studied in terms of Fourier decomposition [42]

E
d3N

dp
=

1

2π

d2N

ptdptdy

(
1 + 2

+∞∑
n=1

vn cos[n(φ−Ψr)]

)
, (2.2.2)

where E is the energy of the particle, p the momentum, pt the transverse momentum, φ
the azimuthal angle, y the rapidity, and Ψr the n-th harmonics reaction plane angle.
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The Fourier coefficients are pt and y dependent and are given by

vn(pt, y) = 〈cos[n(φ−Ψr)]〉, (2.2.3)

where the angular brackets denote an average over the particles, in the (pt, y) bin un-
der study. In this Fourier decomposition, the coefficients v1, v2, v3 and v4 are known as
directed, elliptic, triangular and quadrangular flow, respectively. The origin of the tri-
angular flow and higher odd harmonics is fluctuation of initial conditions [43]. However,
this work aims to consider different source of fluctuations. In particular, v3 vanishes, if
the system starts in non-central collisions with a smooth almond-shaped initial state [43].
But if we take into account initial state fluctuations, the odd harmonics do not vanish
for single event. If particle distributions are summed up over a large number of events
odd harmonics again vanish. Investigation of the relation between initial geometry and
higher harmonics has been also carried out in [44, 45, 46, 47]. Due to fluctuations in the
initial state densities, the exact shape of the interaction region in a heavy-ion collision
varies event-by-event. The consequence would be that for any centrality, in addition to
ellipticity, the shape would also have higher order deviations producing higher harmon-
ics in the decomposition of the azimuthal asymmetry. For more quantitative analyses,
however, contributions of final state interactions should be evaluated. The experimental
methods for determination of the reaction plane and anisotropic flow coefficients is given
in Chapter 8.

The measurement of v3, combined with other harmonics can give a constraint on the
η/s ratio which is a quantity of highest interest. Appropriate models implicitly assume
that the equilibration time is below 1 fm/c [48, 49].

The observation of scaling of the elliptic flow per constituent quark versus the trans-
verse kinetic energy per constituent quark (elliptic flow per quark) at RHIC [50, 51] is
another experimental fact thought to point to a collective pre-hadronization stage of the
evolution of the heavy-ion collision. The main idea is that when the deconfined medium is
thermalised, the flow of all constituent partons should be the same. Then, if a significantly
large portion of the final state hadrons is produced through the mechanism of parton co-
alescence [52, 53] the flow per quark would scale with the momentum per constituent
quark. This simple coalescence picture does not account for the mass dependence of flow
due to the radial expansion of the medium. The transverse kinetic energy per quark is
proposed as a scaling variable instead of to account for this [50].

The scaling property of v2, i.e. v2/nq is plotted as a function of pT/nq in Fig. 2.11
for various particle species and centrality intervals for ALICE [54]. In the so-called in-
termediate transverse momentum region (i.e. 2 − 3 < pT < 5 − 6 GeV or for pT/nq > 1
GeV), where the coalescence mechanism is argued to be dominant, the experimental data
indicate that the scaling is only approximate in contrast to RHIC. The magnitude of the
observed deviations seems to be similar for all centrality intervals.

2.2.5 Flow fluctuations and non-flow correlations

The effects known as flow fluctuations and non-flow correlations bias the measured flow
values. That is why we have to take them into account. There are several sources of
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Figure 2.11: The pT/nq dependence of v2/nq for π
±, K, p+ p̄, φ,Λ+Λ̄,Ξ−+Ξ̄+ and Ω+Ω̄+

for Pb-Pb collisions in various centrality intervals at
√
sNN = 2.76TeV [54].

flow fluctuations. One of them is if the centrality binning is too coarse. In this case,
events with different flow are analysed together and when averaged to extract the actual
value there may be influences due to the centrality dependence of flow. Another cause are
fluctuations of the initial geometry, such as those that create the odd flow harmonics [55].
Different flow analysis methods respond differently to fluctuations. In general two particle
correlation measurements overestimate the flow when the fluctuations are present. On
the other hand, multi-particle correlations underestimate the flow when the fluctuations
are present [56].

“Non-flow correlations” is the name for azimuthal correlations which look like flow but
are caused by diferent mechanisms. There are several sources of non-flow contribution.
One source of non-flow are resonance decays such as ∆ → pπ or ρ → ππ. In these cases
the decay products are highly correlated due to momentum conservation. The Hanbury-
Brown-Twiss effect is also known to cause correlations which can contribute to elliptic
flow measurements. Finally, jets create many particles that are highly correlated in a
back-to-back structure.
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Chapter 3

Goals and motivation

As mentioned before, fluctuations in initial conditions introduce higher order flow coef-
ficients that have been observed in RHIC and LHC experiments. Fluctuations in initial
energy density distribution are of quantum origin. This is in addition to any geometrical
anisotropies which are due to non-zero impact parameter in the collision.

In non-central collisions, pressure gradients within the excited matter are larger in the
direction of the impact parameter, which is usually called the in-plane direction. The
other transverse direction is denoted as out of plane. The anisotropic pressure gradients
lead to different accelerations of the collective flow in the different directions. The fireball
then finally expands faster in the in-plane direction. Therefore, more hadrons are emitted
in this direction and their transverse momentum spectra are flatter than in the out-of-
plane direction. The evolution from such an initial state is reasonably well described by
hydrodynamic models. This is the point where the Equation of State (EoS) and transport
coefficients enter simulations. The resulting freeze-out state depends on EoS and transport
properties. Thus by calculating hadronic spectra and their anisotropy one hopes to be
able to tune parameters in hydrodynamic simulations until an agreement with data is
reached. However, initial conditions can only be determined in framework of various
models. Unfortunately, the resulting anisotropies of the hadron distributions are strongly
model-dependent [57]. Thus, without the exact knowledge of the initial conditions the
extraction of transport coefficients seems difficult. Recent calculations suggest that final
fluctuations depend linearly on fluctuations in initial conditions [45].

Furthermore, usually, it is assumed that there is no contribution to fluctuations dur-
ing the hydrodynamic evolution. However, it can be wrong assumption. Hydrodynamic
simulations with the fluid energy and momentum density coupled to dynamically fluctu-
ating order parameter field show fluctuations in the evolving energy density which can
well cause flow anisotropies observable in data [58].

More precise quantitative impact of such a mechanism remains to be studied. The
aim of this thesis is to introduce another mechanism that can induce flow anisotropies
during the hydrodynamic evolution, simulate this scenario by means of three-dimensional
hydrodynamics and estimate its contribution to anisotropic flow.

Hard partons from initial scatterings do not thermalise immediately as they are pro-
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duced, but interact with the hot and dense quark-gluon plasma. There, they are mostly
fully quenched so that their momentum is transferred into the fluid. Momentum must be
conserved and thus the momentum of the hard parton must be transformed into momen-
tum of a stream of matter within the wake behind the parton. This will show up in the
flow pattern. What would be the result of many such streams, if they all are initiated in
the fireball? The energy in a collision at the LHC is so large that there may be pairs of
hard partons which are close in rapidity and are directed so that they might come close to
each other during the evolution of the collision. Some of the streams which they induce
could merge and either cancel or flow in a new direction so that energy and momentum
are conserved, see Fig. 3.1. Original hard partons are produced with no preferred trans-
verse direction. The first expectation would be that the large number of fluid streams
they initiate cancel out in some way and in the end there remains just thermalized matter
with some energy density and no macroscopic flow. However, in non-central collisions
the argument might not be so straightforward. The streams have random directions, but

Figure 3.1: Transverse cross-section through the fireball with two dijet pairs produced.
Reaction plane is horizontal. Left: two dijets both emitted in the direction of the reaction
plane both contribute positively to the elliptic flow, which is dominant in the same direc-
tion. Right: if hard partons are produced off the reaction plane, some of their streams
can come together and merge.

their spatial distribution is not isotropic, since it is given by the initial collision geome-
try. In the out-of-plane direction the fireball is narrower. Thus, there is a good chance
that two streams having finite width and flowing in the out-of-plane direction will meet.
On the other hand, streams could more easily pass each other without interacting when
produced in the in-plane direction. Thus, streams perpendicular to the reaction plane
are more likely to cancel each other, while those flowing in directions parallel to the reac-
tion plane survive. Moreover, if hard partons are even fully quenched before they could
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actually meet, their momentum has been shown to be further carried by the generated
streams in the fluid [59].

As a result, the anisotropy of the flow of bulk matter receives some feeding from
hard partons and this feeding exhibits signs of positive elliptic flow. The novelty of
this proposal consists in accounting for the possibility of interactions between streams
generated in the bulk. The proper way to do so is the use of a hydrodynamic simulation
with included energy and momentum deposition from hard partons into the bulk. The way
of implementation and results of hydrodynamic simulations will be described in following
Chapters.
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Chapter 4

Hydrodynamics and its application

Relativistic hydrodynamics is helpful tool because of its simplicity and generality. It is
simple because the information about the system is described in terms of its thermody-
namic properties, e.g., its Equation of State (hereinafter EoS). This is the point where
hydrodynamics is connected with lattice QCD calculations which provide the EoS. Hydro-
dynamics relies on only one assumption, unfortunately a very strong one: local thermody-
namic equilibrium. How does it happen is not known yet. No other assumption is made
concerning the nature of the particles and fields, their interactions, the classical/quantum
nature of the phenomena involved.

Hydrodynamics is applicable when the mean free path of the particles is much smaller
than the typical scale of the fireball on which its properties are changing; and allows for
a description of the system in terms of macroscopic quantities.

The present understanding of heavy-ion collisions strongly suggests that a multi-
module modeling is indispensable for the description of the entire history of heavy-ion
collisions. Knowledge of dominant physics at each stage has been accumulated, but a
comprehensive model is still missing. For the construction of such a multi-module model,
hydrodynamic models are a promising starting point, because at present they are con-
sidered as one of the most reliable and successful dynamical models for understanding of
experimental data at RHIC and LHC comprehensively, especially for the description of
the QGP phase. At the same time, it is easy to implement the latest developments in
the physics of heavy-ion collisions such as fluctuating initial conditions, the lattice QCD
inspired equation of state, recombination mechanism for hadronization, and final state
interactions in freeze-out processes into a hydrodynamic model.

4.1 Ideal relativistic hydrodynamics

Any system can be described by symmetric energy-momentum tensor T µν which describes
not only the distribution of energy and momentum in the system. It also provides in-
formation about the flow of these quantities. In a given reference frame the time-time
component T tt is the energy density, the time-space component T it = T ti is the i’th com-
ponent of the momentum density, and the space-space component T ik is the flux of i’th
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component of the momentum across the surface perpendicular to xk. Tensor of energy
and momentum of ideal relativistic fluid (i.e. without dissipation) takes the form

T µν = (ε+ p)uµuν − pgµν = εuµuν − p∆µν , (4.1.1)

where ε and p are energy density and pressure in the local rest frame of the fluid and

∆µν = gµν − uµuν (4.1.2)

is the projection operator on the space orthogonal to the fluid velocity. It has the prop-
erties ∆µνuµ = ∆µνuν = 0 and ∆µν∆α

µ = ∆να. If there are no external forces, the
energy-momentum tensor is conserved

∂µT
µν = 0 (4.1.3)

and so is the local charge
∂µN

µ = ∂µnu
µ = 0, (4.1.4)

where n is charge density in the local rest frame of the fluid, uµ = γ(1, ~v) is the fluid four-

velocity (γ = (1 − ~v2)−
1
2 , ~v is the fluid three-velocity), and gµν =diag(+1,−1,−1,−1) is

the metric tensor. If the source current term describing deposition (extraction) of energy
and/or momentum Jν is present then conservation of energy and momentum is expressed
as

∂µT
µν = Jν . (4.1.5)

The equation (4.1.5) can be rewritten in the useful way:

∂tT
tt + ∂xT

xt + ∂yT
yt + ∂zT

zt = J t, (4.1.6)

∂tT
tx + ∂xT

xx + ∂yT
yx + ∂zT

zx = Jx, (4.1.7)

∂tT
ty + ∂xT

xy + ∂yT
yy + ∂zT

zy = Jy, (4.1.8)

∂tT
tz + ∂xT

xz + ∂yT
yz + ∂zT

zz = Jz. (4.1.9)

There are 5 unknown quantities: p, ε and three-velocity but we have only four equations.
These equations of ideal fluid-dynamics are closed by specifying the EoS. Equation of State
connects pressure with energy and charge density in the form p = p(ε, n). For heavy-ion
collisions, the conserved charge is for example (net) baryon number. There is an equation
of the type (4.1.4) for every conserved charge.

The equations of ideal (relativistic) hydrodynamics emerge from the conservation equa-
tions (4.1.4) and (4.1.5). It is very useful to project these equations in the direction paral-
lell (uν∂µT

µν) and perpendicular (∆α
ν∂µT

µν) to the fluid velocity. For the first projection,
one finds

uν∂µT
µν = uµ∂µε+ ε(uνu

µ) + εuνu
µ∂µu

ν − puν∂µ∆
µν

= (ε+ p)∂µu
µ + uµ∂µε = uµJ

µ. (4.1.10)

For the other projection one finds

∆α
ν∂µT

µν = εuµ∆α
µ∂µu

ν −∆µα(∂µp) + puµ∆α
µ∂µu

ν

= (ε+ p)uµ∂µu
α −∆µα∂µp = ∆α

µJ
µ. (4.1.11)
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Introducing the shorthand notations

D ≡ uµ∂µ, (4.1.12)

∇α ≡ ∆α
µ∂

µ (4.1.13)

for the projection of derivatives parallel and perpendicular to uµ, equations (4.1.10) and
(4.1.11) can be simplified to

Dε+ (ε+ p)∂µu
µ = uµJ

µ, (4.1.14)

(ε+ p)Duα −∇αp = ∆α
µJ

µ. (4.1.15)

For the numerical implementation of relativistic ideal hydrodynamics it is convenient to
consider the energy density in the calculational frame

E ≡ T tt = (ε+ p~u2)γ2, (4.1.16)

the momentum density
M i ≡ T ti = (ε+ p)γ2vi, (4.1.17)

and the charge density
R ≡ N t = γn. (4.1.18)

Using them, the equations of motion (4.1.4), (4.1.5) then take the form

∂tE +∇ · (E~v) +∇ · (p~v) = J t, (4.1.19)

∂t ~M +∇ · ( ~M~v) +∇p = ~J, (4.1.20)

∂tR +∇ · (R~v) = 0. (4.1.21)

The proper energy density ε is calculated from the relation ε = E −Mv, where v is the
magnitude of velocity three-vector and M is the magnitude of momentum density three-
vector. The pressure p is inferred from the EoS employed. The four-velocity uµ = γ(1, ~v)
can be computed from three-velocity components. Detailed description of this process is
given in Chapter 4.3.

Although the ideal relativistic hydrodynamics was used throughout this work, rela-
tivistic viscous hydrodynamics introduced in the next section is presented for summary
purposes as state-of-the-art.

4.2 Relativistic viscous hydrodynamics

One of the main exciting discoveries at RHIC was the fact that the medium created
during a heavy-ion collision behaves like a “nearly perfect fluid” [60, 61, 62, 63, 64].
This implies that dissipative effects have to be small, but we do not know exactly how
“small” they are. This issue cannot be answered using ideal hydrodynamics. Therefore,
dissipative quantities have to be included into the description of heavy-ion collisions in
order to obtain the correct qualitative understanding. It is necessary to apply viscous
hydrodynamics for various realistic initial conditions (which are unfortunately not known
explicitly for a heavy-ion collision) to confirm the smallness of the dissipative quantities.
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Nowadays, we have so detailed measurements of anisotropic flow, that ideal hydrody-
namics does not suffice to reproduce all of these data. In current understanding, the most
realistic hydrodynamic model should have the following features: viscosity effects, (3+1)-
dimensional space-time expansion, event-by-event fluctuating initial conditions, lattice
QCD inspired EoS, and freeze-out process which is described by hadron-based cascade
models [65].

Relativistic viscous hydrodynamics describes non-equilibrium processes of the system
as corrections to ideal hydrodynamics. When one starts to include the effects of dissipa-
tion into relativistic hydrodynamics, one is confronted with rather complicated situation.
One of the difficulties is that a naive introduction of viscosities, a first-order theory (i.e.,
first order in gradients) suffers from acausality. Heat conduction equation allows instan-
taneous propagation of heat because of its parabolicity. The acausality of first-order
hydrodynamics stems from the same reason. In order to avoid this problem, second order
terms in gradients of velocities and energy density have to be included in the expression
for the entropy [66, 67, 68, 69, 70, 71, 72] but the systematic treatment of these second
order terms has not been established yet. Although there is remarkable progress towards
the construction of a fully consistent relativistic viscous hydrodynamic theory, there are
still ongoing discussions about the formulation of the equations of motion and about
the numerical procedures to solve them [73]. The equations of hydrodynamics are then
generalized to include dissipative, or viscous, effects.

The basic quantities characterizing dissipative fluids are the net charge current Nµ

and the energy-momentum tensor T µν . These can be decomposed with respect to the
fluid four-velocity uµ as [74, 75, 76, 77]:

T µν = T µν
ideal + δT µν = euµuν − (p + Π)∆µν + W µuν + W νuµ + πµν , (4.2.1)

Nµ = Nµ
ideal + δNµ = nuµ + V µ, (4.2.2)

where n = Nµuµ is the net charge density and e = uµT
µνuν is the energy density in the

Landau local rest frame, i.e., where uµ = (1, 0, 0, 0). The charge diffusion current δNµ =
V µ = Nν∆

µν . The energy-momentum flow orthogonal to uµ is given by W µ = ∆µαTαβu
β.

This quantity can be written asW µ = qµ+(e+p)V µ/n, where qµ is the heat flow. The local
isotropic pressure is denoted by p + Π = −1

3
∆µνT

µν , where p is the equilibrium pressure
and Π is the bulk viscous pressure measuring the deviation from the local equilibrium
pressure. The shear stress tensor is defined as πµν =

[
1
2
(∆µ

α∆
ν
β +∆µ

β∆
ν
α)− 1

3
∆µν∆αβ

]
Tαβ.

This representation is completely general, valid in any coordinate system, and independent
of the definition of the flow velocity.

When all dissipative quantities are zero, V µ = W µ = 0,Π = 0, πµν = 0, the de-
compositions (4.2.1) and (4.2.2) reduce to perfect fluid form, Nµ = Nµ

eq = nuµ and
T µν = T µν

eq = εuµuν − p(ε, n)∆µν . The local rest frame energy and charge densities are
always fixed to their equilibrium values by the Landau matching conditions, i.e., n = neq ,
and ε = εeq . Then, the equilibrium pressure is given by the EoS p = p(ε, n) = −1

3
∆µνT

µν
eq .

The non-equilibrium entropy current can be written as

Sµ = Sµ
eq + δSµ = suµ + Φµ, (4.2.3)
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where the entropy flux relative to uµ is Φµ = Sν∆
µν . The local rest frame entropy density

is s = Sµuµ. The phenomenological extension of the entropy four-current by Israel and
Stewart (IS) can be written without heat conductivity as [67, 69, 78, 79]

Sµ = suµ = sequ
µ − (β0Π

2 + β2π
αβπαβ)

uµ

2T
, (4.2.4)

where the coefficients β0 and β2 are functions of ε and n. Their exact value can be
determined explicitly from kinetic theory. The requirement of non-decreasing entropy
leads to relaxation equations for the bulk pressure and shear stress tensor. Here are
also included the vorticity terms which follow from the kinetic theory derivation, but we
neglect the coupling between bulk and shear viscosity. Then, the IS equations [69, 80]
can be written as

DΠ =
1

τΠ
(ΠNS − Π)− I0, (4.2.5)

Dπµν =
1

τπ
(πµν

NS − πµν)− Iµν1 − Iµν2 − Iµν,3 , (4.2.6)

where D = uµ∂µ is the covariant convective time derivative, τΠ = ζβ0 denotes the relax-
ation time of the bulk viscous pressure and τπ = 2ηβ2 is the relaxation time of the shear
stress tensor. The relativistic Navier-Stokes values are given by [74, 81]

ΠNS = −ζθ, (4.2.7)

πµν
NS = 2ησµν , (4.2.8)

where ζ is the bulk viscosity coefficient and η is the shear viscosity coefficient. The
abbreviations are defined as

I0 =
1

2
Π(∇λu

λ +D ln
β0

T
), (4.2.9)

Iµν1 = (πλµuν + πλνuµ)Duλ, (4.2.10)

Iµν2 =
1

2
πµν(∇λu

λ+D ln
β2
T ), (4.2.11)

Iµν3 = πµλων
λ + πνλωµ

λ , (4.2.12)

θ = ∂µu
µ + Γµ

αµu
α, (4.2.13)

σµν =
1

2
(∂µuν − uµuα∂αu

ν + ∂νuµ − uνuα∂αu
µ)+

+
1

2
(∆µαuβΓν

αβ +∆ναuβΓµ
αβ)−

θ

3
∆µν , (4.2.14)

ωµ
ν =

1

2
(∂νu

µ − ∂µuν − uµuα∂αuν − uνu
α∂αu

µ),

(4.2.15)

σµνuν = 0, (4.2.16)

ωµνuν = 0. (4.2.17)

If we use non flat space-time metrics, there will rise non-zero Christoffel symbols defined
as follows

Γµ
αβ =

1

2
gγµ(

∂gαγ
∂xβ

+
∂gβγ
∂xα

− ∂gαβ
∂xγ

). (4.2.18)
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The explicit expressions for the dissipative terms are not unique but depend on con-
sidered equations. This ambiguity comes from the choice of local rest frames of the
fluid. As stated before we chose the Landau frame which is tied to the energy flow where
W µ = qµ + (e+ p)V µ/n = 0:

uµ =
T µ
ν u

ν√
uαT β

αTβγuγ

. (4.2.19)

In addition, there is another choice used to define the flow velocity besides the Landau
frame. It is tied to the net charge flow when diffusion current vanishes V µ = 0 (Eckart
frame)

uµ =
Nµ

i√
NiNi

. (4.2.20)

Without conserved charges only Landau’s definition of the flow velocity is appropriate.
In this case the heat flow is qµ = −(e+ p)V µ/n. For net charge-free matter, qµ is not well
defined, but also irrelevant, so it is set to zero, qµ = V µ = 0.

4.3 Transformation between the Laboratory Frame

and the Local Rest Frame

During the numerical solving of the hydrodynamic equations it is necessary to perform
transformation from the laboratory frame to the local rest frame to extract the values of
velocity v and energy density ε. It is essential to perform this transformation to be able
to proceed to the next step in hydrodynamic computation. The approach is the following:
from the EoS follows p = p(ε, n). The local rest frame variables ε, n and the velocity vi

have to be determined from the calculational frame variables E,M i, N . This requires in
general an inversion of the five equations

E = (ε+ p)γ2 − p, (4.3.1)

M i = (ε+ p)γ2vi, (4.3.2)

N = nγ. (4.3.3)

Nevertheless, it is not necessary to perform a five-dimensional root search in ideal hydro-

dynamics. Note that M i and vi point into the same direction. Let M =
√∑3

i=1 TτiT τi

and v = |v|.
Now the relation M = (E + p)v holds in ideal hydrodynamics and also

ε = E −Mv, (4.3.4)

n = N(1− v2)1/2. (4.3.5)

Hence,

|v| = M

E + p(E −Mv, (1− v2)1/2N)
. (4.3.6)

For given calculational frame quantities E, T τi, N this is a simple fixed-point equation for
|v| and can be solved iteratively. Once v is known, ε and n can be inferred from (4.3.4)

31



and (4.3.5) and p from the EoS. The different components of v can be obtained from the
collinearity of M and v. For a simple EoS, one might even find an analytical solution for
v [82].

Much more difficult task is to perform previous calculation in 2nd order viscous hydro-
dynamics. We can introduce a simplified notation which mimics the perfect fluid relations
[83], N = nγ,E = T ττ − πττ ,Mi = T τi − πτi, where M = |M| = (M2

x + M2
y + M2

z )
1/2.

Hence M is parallel to the velocity v, similarly as in the perfect fluid case. These quanti-
ties have to obey the physical constraint M ≤ E, in order to obtain meaningful solutions.
Therefore, we can express the local rest frame charge density, energy density, the absolute
magnitude of the velocity, and the velocity components as

n = N(1− v2)1/2 (4.3.7)

ε = E − vM (4.3.8)

v = M/[E + p+Π] (4.3.9)

vi = vMi/M. (4.3.10)

This set of equations can be solved by using a one-dimensional root search. However, in
case of dissipative fluids, ideal fluid computation may not always be possible. This is due
to the fact that the vectors T τµ and πτµ are not parallel to each other. Hence choosing
other shear stress tensor components as independent variables, or in cases which take into
account the heat flow, it is required to carry out a multidimensional root search to find
the velocity [83, 84, 85, 86]. This procedure is obligatory in both the Cartesian as Milne
coordinates described below.

4.4 Milne coordinates

In this section we move from Cartesian coordinate system to coordinate system preferable
for expanding system, e.g. Milne coordinates. Milne coordinates are advantegeous for hy-
drodynamic description of expanding fireball since they are used to treat the predominant
expansion in longitudinal (beam) direction effectively so they are the choice for hydrody-
namic simulations related to the physics of ultrarelativistic heavy ion collisions. The new
coordinates for the t− z plane in spacetime (z being the collision axis) are expressed via
coordinate transformation from Minkowski coordinates t, x, y, z as

xµ = (t, x, y, z) → x̄m = (τ, x, y, η), (4.4.1)

τ =
√
t2 − z2 η = artanh(z/t) =

1

2
ln

(
t+ z

t− z

)
. (4.4.2)

The inverse transformations are defined as

t = τ cosh η z = τ sinh η, (4.4.3)

while the definitions of x and y coordinates are unchanged. Here η denotes the longitudinal
space-time rapidity and τ the proper time. The metric in Milne coordinates follows from
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the invariant line element in this coordinate system ds2 = gµνdx
µdxν = dτ 2− dx2− dy2−

τ 2dη2 to be
gµν = diag(1,−1,−1,−τ 2). (4.4.4)

The only non-vanishing Christoffel symbols in this metric are

Γη
ητ =

1

τ
,Γη

τη =
1

τ
,Γτ

ηη = τ. (4.4.5)

The equation of energy-momentum conservation in this metric is thus in form of

∂µT
µν + Γµ

µαT
αν + Γν

µαT
µα = Jν . (4.4.6)

Equations of motion in this metric take the form

∂τT
ττ + ∂xT

τx + ∂yT
τy + ∂ηT

τη +
1

τ
T ττ + τT ηη = Jτ

∂τT
τx + ∂xT

xx + ∂yT
yx + ∂ηT

ηx +
1

τ
T τx = Jx

∂τT
τy + ∂xT

xy + ∂yT
yy + ∂ηT

ηy +
1

τ
T τy = Jy

∂τT
τη + ∂xT

xη + ∂yT
yη + ∂ηT

ηη +
3

τ
T τη = Jη. (4.4.7)

For charged currents the equation of motion is following

∂τn+ ∂x(nvx) + ∂y(nvy) + ∂η(nvη) +
1

τ
n+

1

τ
nvη + τnvη = 0. (4.4.8)

Again it is necessary to specify EoS to close this set of equations. In Milne coordinates,
T µν and N ν keep the same structure.

The accurate numerical solution would eventually require to apply a higher order
numerical time integration scheme. This can be circumvented by redefining the variables
in Milne coordinates as [87]:

T µν = T̃ µν , µ, ν 6= η, (4.4.9)

T µη = T̃ µη/τ, µ 6= η, (4.4.10)

T ηη = T̃ ηη/τ 2, (4.4.11)

Nη = Ñη/τ. (4.4.12)

Rewriting the equations for τ T̃ µν :

∂̃ν(τ T̃
τν) +

1

τ
(τ T̃ ηη) = 0,

∂̃ν(τ T̃
xν) = 0,

∂̃ν(τ T̃
yν) = 0, (4.4.13)

∂̃ν(τ T̃
ην) +

1

τ
(τ T̃ ητ ) = 0,

∂̃ν(τÑ
ν) = 0,
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with
∂̃ν ≡ {∂/∂τ, ∂/∂x, ∂/∂y, (1/τ)∂/∂η}, (4.4.14)

all the components of T̃ µν have the same units as well as ∂̃ν [1/length]. The actual
conserved variables are then τ T̃ µτ , and fluxes τ T̃ ij, so that T̃ ηη = (ε+ p)ũηũη + p, where
ũη = τuη. Then equations (4.4.14) provide the explicit form of the energy-momentum
and charge conservation equations which are solved numerically. The above equations
were exploited for numerical solving of expanding bulk matter.

4.5 Equation of state

One of the advantages of hydrodynamic models over phenomenological models is their
direct relation with the equation of state of QCD. Using the hydrodynamic models one
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Figure 4.1: The speed of sound as a function of the temperature for different parametriza-
tions used in hydrodynamic models. The solid black line corresponds to state-of-the-art
EoS [88].

can find directly the consequence of the phase transition in experimental observables.
Historically, the EoS with a first order phase transition based on the bag model was
widely used because of its simplicity. In recent hydrodynamic calculations, lattice-inspired
EoS has been widely employed, because of the development of thermodynamical analyses
based on the first principle calculation, lattice QCD simulation. The EoS of QCD for 2+1
flavors and also EoS including charm quark by means of lattice simulations were reported
by [88] or [89].
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To be able to numerically solve hydrodynamic equations we must provide EoS as
mentioned earlier by relation p(ε, n) which relates the local thermodynamic quantities. For
our simulations we have used a modeled state-of-the-art EoS by Huovinen and Petreczky
[88], which combines hadron resonance gas at low temperatures with lattice QCD at high
temperatures. For comparison, some calculations were done with Laine’s EoS [90] which
is derived from hadron resonance gas at low temperatures, a high-order weak-coupling
perturbative QCD calculation at high temperatures, and an analytic crossover regime
interpolating between the high and low temperature regime. Results obtained with the
two EoS were compared. The differences in results between these Equations of State are
very small.

The brief description of the employed EoS [88] will be given below. Available lat-
tice data provide an EoS which is not easy to use in hydrodynamic models because
different thermodynamic quantities are suppressed in the low temperature region due
to discretization errors. In lattice QCD, the calculation of the pressure, energy den-
sity and entropy density usually proceeds through the calculation of the trace anomaly
Θ(T ) = ε(T ) − 3p(T ). Thermodynamic trace anomaly is simply the difference between
the considered EoS and the EoS in ultrarelativistic limit (ε = 3p), i.e. (ε − 3p). Using
the thermodynamic identity, the pressure difference at temperatures T and Tlow can be
expressed as the integral of the trace anomaly

p(T )

T 4
− p(Tlow)

T 4
low

=

∫ T

Tlow

dT ′

T ′5Θ(T ′). (4.5.1)

By appropriate choosing of the lower integration limit Tlow sufficiently small, p(Tlow) can
be neglected due to the power law suppression. Region below Tlow uses the assumption
that thermodynamics there is well described by a gas of non-interacting hadrons and
resonances. Then the energy density ε(T ) = Θ(T ) + 3p(T ) and the entropy density
s(T ) = (ε+ p)/T can be calculated. This procedure is known as the integral method [91].
Finite temperature lattice calculations are usually performed at fixed temporal extent
Nτ and the temperature is varied by varying the lattice spacing a, T = 1/(Nτa). Thus,
calculations at low temperatures are performed on coarse lattices, while the lattice spacing
gets smaller as the temperature is increased. Consequently the trace anomaly can be
accurately calculated in the high temperature region, while in the low temperature region
it is affected by possibly large discretization effects. Therefore, to construct realistic EoS
authors [88] use the lattice data for the trace anomaly in the high temperature region,
T >250 MeV, and use hadron resonance gas model in the low temperature region T /
180 MeV. The hadron resonance gas model with modified masses appears to describe
the lattice data quite well up to temperatures of about < 180 MeV. In the intermediate
temperature region 180 MeV/ T < 250 MeV the hadron resonance gas model is no
longer reliable, whereas discretiztion effects in lattice calculations could be large. The
trace anomaly in the intermediate region is constrained only by the value of the entropy
density at high temperatures. So the guidance from existing lattice QCD calculations is
used which require that the entropy density is below the ideal gas limit by either 5% or
10%, when parametrizing the trace anomaly.

At high temperature the trace anomaly can be well parametrized by the inverse poly-
nomial form [92]. Therefore the parametrization used in [88] employs the following Ansatz
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for the high temperature region

(e− 3p)/T 4 = d2/T
2 + d4/T

4 + c1/T
n1 + c2/T

n2 , (4.5.2)

with d2=0.2660 GeV2, d4 = 2.403× 10−3, c1 = −2.809× 10−7 GeV10, c2 = 6.073× 10−23

GeV30, n1=10 and n2=30. This form does not have the right asymptotic behavior in the
high temperature region, where we expect (ε − 3p)/T 4 ∼ g4(T )1/ ln2(T/ΛQCD), (where
g is the gauge coupling parameter and ΛQCD denotes QCD scale) but works well in the
temperature range of interest. Furthermore, it is flexible enough to do the matching to
the hadron resonance gas result in low temperature region. It is matched to the hadron
resonance gas model at temperature T0 by requiring that the trace anomaly as well as its
first and second derivatives are continuous. The hadron resonance gas result for the trace
anomaly can also be parametrized by the simple form

ε− 3p

T 4
= a1T + a2T

3 + a3T
4 + a4T

10, (4.5.3)

with a1 =4.654 GeV−1, a2 = −879 GeV−3, a3=8081 GeV−4, a4 = −7039000 GeV−10 and
T0=183.8 MeV.

4.6 Freeze-out

At some stage in the evolution of the matter produced in a heavy-ion collision, the system
will become too dilute for hydrodynamic description to be applicable. This “freeze-out”
process is most probably happening gradually, but difficult to model realistically. A
widely used approximation is therefore to assume instantaneous freeze-out whenever a
certain fluid cell cools below a certain predefined temperature or energy density. The
standard prescription for this freeze-out process is the Cooper-Frye formula [93], which
allows conversion of the hydrodynamic variables (energy density, fluid velocity,...) into
particle distributions. Specifically, in the case of isothermal freeze-out at a temperature
Tf , the conversion from hydrodynamic to particle degrees of freedom will have to take
place on a three-dimensional freeze-out hypersurface Σ, which can be characterized by
its normal four-vector, and parametrized by three space-time variables [94, 95]. The
single-particle spectrum for species with degeneracy g is then given by

E
d3N

d3p
=

g

(2π)3

∫
Σ

pµdΣ
µf(xµ, pµ), (4.6.1)

where dΣµ is the normal vector on the hypersurface Σ and f is the distribution function.
The number of hadrons being produced on the freeze-out hypersurface Σµ is expressed by
the following integral

N = g

∫
d3p

(2π)3E

∫
dΣµ(x)p

µf(xµ, pµ), (4.6.2)

where the phase-space distribution function of the particles (the stable ones and reso-
nances) can be written for ideal hydrodynamics as

f(xµ, pµ) =

{
exp

[
pµu

µ − (BµB + I3µI3 + SµS + CµC)

T

]
± 1

}−1

. (4.6.3)
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Physical meaning of the introduced variables is following: T is temperature, µB is baryon
chemical potential, µI3 is isospin chemical potential, µS is strange chemical potential, µC

is charmed chemical potential, B is baryon number, I3 is 3rd component of isospin, S is
strangeness and C is charm. Normal vector dΣµ may be calculated with the help of the
formula from differential geometry [96],

dΣµ = εµαβγ
∂xα

∂α

∂xβ

∂β

∂xγ

∂γ
dαdβdγ, (4.6.4)

where εµαβγ is the Levi-Civita tensor (ε0123 = +1) and the variables α, β, and γ are
used to parametrize the three-dimensional Minkowski space. The quantity dΣµ may be
interpreted as the four-vector normal to the hypersurface with the norm equal to the
volume of the hypersurface element. Explicitly,

dΣ0 =

∣∣∣∣∣∣∣
∂x
∂α

∂x
∂β

∂x
∂γ

∂y
∂α

∂y
∂β

∂y
∂γ

∂z
∂α

∂z
∂β

∂z
∂γ

∣∣∣∣∣∣∣ dαdβdγ, (4.6.5)

while the remaining components are obtained via cyclic permutations of t, x, y, and z.
The formulas are directly used to generate the hadrons with the Monte-Carlo method
implemented in THERMINATOR2 package [97]. THERMINATOR2 package was used to
convert thermodynamic variables obtained from hydrodynamic simulations into observ-
able particles. Description of THERMINATOR2 is given in Section 4.8.

Originally, the Cooper-Frye prescription was derived for systems in thermal equi-
librium, where f is built out of a Bose-Einstein or Fermi-Dirac distribution, function
f0(u

µpµ) = (exp[uµpµ − µi] ± 1)−1 depending on the statistics of the particle under con-
sideration. In order to generalize it to systems out of equilibrium, one customarily relies
on the ansatz used in the derivation of viscous hydrodynamics from kinetic theory [98].

In the early days of hydrodynamics only kinetic freeze-out was implemented. Indeed,
at lower collision energies such as at SIS and AGS, the separation between the chemical
freeze-out and kinetic freeze-out points is not large on the T−µ plane. At RHIC and LHC
there may be a significant difference between kinetic freezeout temperatures from hydro-
inspired models and the chemical freeze-out from the statistical model [99]. Nevertheless,
there is a Cracow single freeze-out model which assumes that chemical and thermal freeze-
out occur simultaneously [100, 101]. It turns out that some experimental data are still
not understood in a satisfactory way even with the two separate freeze-outs. For example,
mean transverse momentum pT as a function of particle mass does deviate from the linear
scaling law, which suggests significant final state interactions in the hadronic phase [102].

To explain these effects, and to account for the apparently large viscosities in the
hadronic phase, as discussed before, hydro+cascade hybrid models were introduced. They
use hydrodynamic computation of the expansion and cooling of hot QCD bulk matter,
and then couple the output consistently to a hadron-based transport model in order to
take an account of the final state interactions. A pioneering work on hydro+cascade
hybrid models was done by Bass et al. [103] using UrQMD.

The Cooper-Frye recipe [93] has been extensively used in hydrodynamic calculations,
however it is not free of problems either. It gives negative contribution to the particle
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spectrum in some kinematic regions in which the normal vector to the freeze-out hypersur-
face is time-like, pµn

µ
σ < 0. This negative contribution corresponds to frozen out particles

returning to the hydro phase (see Fig. 4.2). Cut off of this negative contribution drives
us to the violation of the energy conservation. To get rid of this negative spectrum, there
was a proposal of the Cooper-Frye recipe modification based on a cut Jüttner distribution
[104, 105, 106, 107]. Jüttner distribution could be described as relativistic Boltzmann
distribution that means that in limit where c → ∞ Jüttner distribution becomes identical
to Boltzmann’s. In this distribution the part of the Jüttner distribution that gave the
negative spectrum is simply cut off. To ensure the energy conservation, the rest of Jüttner
distribution is renormalized, effectively resulting in a new temperature and chemical po-
tential (so called ”freeze-out shock”). In fact, this cut-Jüttner recipe has no physical
justification, except for practical utility. Moreover the cut-Jüttner recipe is not supported
by schematic kinetic treatment [108] of the transition region from hydro regime to that of
dilute gas. There was proposal of a new freeze-out recipe, a canceling-Jüttner distribution
[109], which complies with the results of schematic kinetic treatment [108]. The region,
where the transition from highly collisional dynamics to the collisionless one occurs, is
highly difficult for the kinetic treatment and hardly allows any justified simplifications.

4.7 Brief overview of statistical models

Statistical models have proved to be very useful in the description of soft physics in rela-
tivistic heavy-ion collisions [110]. In particular, with a few phyical input parameters, such
as the temperature, chemical potentials, and velocity of the collective flow, the models
reproduce the observed particle abundances [111, 112, 113, 114, 115, 116], the transverse-
momentum spectra [100], the balance functions [117], the elliptic flow coefficient [118],
and femtoscopic observables [119, 120]. The key element of the approach is the inclusion
of the complete list of hadronic resonances, whose number grows rapidly as a function of
their mass according to the Hagedorn hypothesis [121, 122, 123, 124, 125]. Their two- and
three-body decays, taken from the tables, proceed in cascades, ultimately producing the
stable particles observed in detectors. There are several codes to compute the abundances
of particles such as SHARE [126] or THERMUS [127]. It is a simple task, since the abun-
dances are insensitive to the geometry of the fireball and its expansion. The calculation
of the transverse-momentum spectra of particles is much more complicated due to the
sensitivity to these phenomena. THERMINATOR2 [97], described in the next section,
deals with this issue, offering the full information on space-time positions and momenta
of the produced particles. As a result, the program allows to compute very efficiently
the transverse-momentum spectra of identified particles and examine implications of the
assumed expansion model. In the next paragraph we start with statistical approach with
grand canonical formalism.

The basic quantity required to compute the thermal composition of particle yields
measured in heavy ion collisions is the partition function Z(T, V ). In the Grand Canonical
(GC) ensemble, it can be written as

ZGC(T, V, µq) = Tr[exp(−β(H −
∑
i

µQi
Qi))], (4.7.1)
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Figure 4.2: Decay of the fluid into the gas of free particles on the concave freeze-out
hypersurface ABCDEFG. Trajectories of the particles are indicated by the lines with
arrows. Dashed line represents the detector’s world line. Line AD denotes light cone.
For given particle velocity v = px/p0 the integration limits in coordinate space, points
E and G, are found from the condition pρdσ

ρ = 0. In this case, however, one has to
take into account the particles feeding back to fluid on the part ABC of the freeze-out
hypersurface. These particles were emitted earlier and do not appear from rescattering.
The latter is forbidden by the assumption that particle spectra are ”frozen” once they
belong to the gas of free particles. Hence, particle trajectories, like the one shown by the
dotted line, are not allowed in the freeze-out picture because those particles appear from
nothing [104].

where H is the Hamiltonian of the system, β = 1/T is the inverse temperature, Qi are the
conserved charges and µQi

are the chemical potentials that guarantee that the charges Qi

are conserved on the average in the whole system. The Hamiltonian is usually the one
describing hadron resonance gas. The main motivation of using the Hamiltonian of hadron
resonance gas in the partition function is that it contains all relevant degrees of freedom
of the confined, strongly interacting medium. Second one is that this model is consistent
with the EoS obtained from the lattice gauge theory below the critical temperature [128].
In a strongly interacting medium, one includes the conservation of electric charge, baryon
number and strangeness. The GC partition function of a hadron resonance gas can then
be written as a sum of partition functions lnZi of all hadrons and resonances

lnZ(T, V, ~µ) =
∑
i

lnZi(T, V, ~µ), (4.7.2)

where ~µ = (µB, µS, µQ) are the chemical potentials related to baryon number, strangeness
and electric charge, respectively. Thus, for particle i of strangeness Si, baryon number
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Bi, electric charge Qi, degeneracy factor gi, and energy εi =
√

p2 +m2
i , it is

lnZi(T, V, ~µ) =
V gi
2π2

∫ +∞

0

±p2dp ln[1± λi exp (−βεi)], (4.7.3)

where + stands for fermions, – for bosons and the fugacity λi(T, ~µ) is defined as

λi(T, ~µ) = exp

(
BiµB + SiµS +QiµQ

T

)
. (4.7.4)

Expanding the logarithm and performing the integration over momentum, we obtain

lnZi(T, V, ~µ) =
V Tgi
2π2

∞∑
k=1

(±1)k+1

k2
λk
im

2
iK2

(
kmi

T

)
, (4.7.5)

where K2 is the modified Bessel function and the upper sign is for bosons and lower for
fermions. The density of particle i is then

ni(T, ~µ) =
〈Ni〉
V

=
Tgi
2π2

∞∑
k=1

(±1)k+1

k
λk
im

2
iK2

(
kmi

T

)
. (4.7.6)

In view of importance of accounting for resonances and their decay into lighter particles
we can rewrite the particle average number 〈N〉 of species i in volume V and temperaure
T , that carries strangeness Si, baryon number Bi, and electric charge Qi, using Eq. (4.7.1)
as

〈Ni〉(T, ~µ) = 〈Ni〉th(T, ~µ) +
∑
j

Γj→i〈Nj〉th,R(T, ~µ), (4.7.7)

where the first term describes the thermal average number of particles of species i. The
second term is taken as a sum of all resonances that decay into particle species i. The
Γj→i is the corresponding decay branching ratio of j → i. The corresponding multiplici-
ties in Eq. (4.7.7) are obtained from Eq. (4.7.6). This is important at high temperature
or density since the overall multiplicity of light hadrons is dominated by resonance de-
cays. If T and/or µb is large, the repulsive interactions of hadrons should be included in
the partition function Eq. (4.7.1). To incorporate the repulsion at short distances one
usually uses a hard core description by implementing excluded volume corrections [129].
In a thermodynamically consistent approach [130] these corrections lead to a shift of the
baryo–chemical potential. The repulsive interactions are important when discussing ob-
servables of density type. However, particle density ratios, are only weakly affected [131]
by the repulsive corrections.

The partition function (4.7.1) depends generally on five parameters. However, only
three of them are independent, since the isospin symmetry in the initial state fixes the
charge chemical potential and the strangeness neutrality condition eliminates the strange
chemical potential. Thus, on the level of particle multiplicity ratios, we are only left with
temperature T and baryonic chemical potential µB as independent parameters. More
details concerning practical application and results can be found in [110].
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4.8 THERMINATOR2 description

When hydrodynamic evolution ends, i.e. the energy density in fireball descends below
some value εfreeze−out, the freeze-out hypersurface is recorded. In our simulations, this
hypersurface is input for THERMINATOR2 [97], a Monte Carlo event generator dedicated
to studies of the statistical production of particles in relativistic heavy-ion collisions. The
code has an important feature: it allows the input of any shape of the freeze-out hy-
persurface and the expansion velocity field, including the 3+1 dimensional profiles, in
particular those generated externally with various hydrodynamic codes. In our simula-
tions, freeze-out in THERMINATOR2 is handled by the Cooper-Frye prescription [93],
on the hypersurface given by T = 150 MeV.

THERMINATOR2 is updated and largely extended version of THERMINATOR [132],
the THERMal heavy IoN generATOR, created to carry out the statistical hadronization
in relativistic heavy-ion collisions. Numerous successful analyses have been performed by
means of this code [133, 134, 135, 136]. As THERMINATOR2 is a Monte Carlo event
generator written in the object-oriented C++ language in the ROOT [137] environment
it can be straightforwardly used in data analysis, detector modeling, or estimates for
relativistic heavy-ion colliders, such as RHIC and LHC.

Figure 4.3 describes the system of coordinates used to parametrize the freeze-out
hypersurface obtained from the 3+1 dimensional hydrodynamic code. One axis denotes
distance in transverse plane ρ =

√
x2 + y2, second axis denotes proper time past from

initial proper time for hydrodynamics, third axis denotes space-time rapidity scaled with
parameter Λ to get correct dimension, ζ denotes angle in ρ − τ plane, θ describes angle
between Ys-axis and the direction determined by the origin and the point on the freeze-
out hypersurface. Finally, d is the distance from the origin to the point on the freeze-out
hypersurface. Minkowski coordinates are obtained as [138],

t = (τi + d(ζ, φ, θ) sin θ sin ζ) cosh
d(ζ, φ, θ)

Λ
, (4.8.1)

x = d(ζ, φ, θ) sin θ cos ζ cosφ, (4.8.2)

y = d(ζ, φ, θ) sin θ cos ζ cosφ, (4.8.3)

z = (τi + d(ζ, φ, θ) sin θ sin ζ) sinh
d(ζ, φ, θ)

Λ
. (4.8.4)

The parameter Λ is a scale used to change the dimensionless space-time rapidity Ys into
a dimensional quantity, namely

Ys = Ys(ζ, φ, θ) =
d(ζ, φ, θ)

Λ
,

τ = τ(ζ, φ, θ) = τi + d(ζ, φ, θ) sin θ sin ζ. (4.8.5)

In addition, the particle four-momentum and the fluid four-velocity can be expressed in
terms of particle rapidity Y = 1

2
ln E+pz

E−pz
and fluid rapidity Yf = 1

2
ln 1+vz

1−vz
, respectively,

which leads to the expression

pµu
µ =

√
1 + u2

x + u2
y[mt cosh(Yf − Y )− pt(ux cosφp + uy sinφp)]. (4.8.6)
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Figure 4.3: The system of coordinates used to parametrize the freeze-out hypersurfaces
obtained from the 3+1 hydrodynamic codes. Figure taken from [97].

The calculation of the integration measure in the Cooper-Frye formula gives

dΣµp
µ =

d sin θ

Λ
dτ
[∂d
∂ζ

cos ζ
(
−mt cos ζ cosh(Y − Ys)+

pt sin ζ cos(φ− φp)
)
+ cos ζ sin θ(d sin θ − ∂d

∂θ
cos θ)×(

mt sin ζ cosh(Y − Ys) + pt cos ζ cos(φ− φp)
)
+

∂d

∂φ
pt sin(φ− φp)+

Λ

τ
(d cos θ +

∂d

∂θ
sin θ) sin θ sinh(Y − Ys)

]
. (4.8.7)

The generation of particle distributions proceeds in three main steps, two of which
are performed only once per given parameter set. In order to generate particles through
a Monte Carlo method, the maximum value of the distributions for different species in
right hand side of Eq. (4.6.1) must be known. It is found through a simple numerical
procedure. A sample of particles is generated and the values of the distributions are
calculated for each of them. The maximum value obtained is taken as the maximum of
the requested distribution for the considered particle type. The maximum value depends,
in principle, on the particle type and values of parameters, but does not change from event
to event. Therefore the value is calculated once for each particle type and stored. Hence,
subsequent generations of events with the same parameters do not require the regeneration
of the maximum values. This saves computation time. In order to generate events, a
multiplicity of each particle type must be known. The average multiplicity per event
can be calculated in a straightforward manner by numerically integrating the distribution
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functions in the given integration ranges (determined by the model parameters). This
procedure must also be done only once per parameter set. The average multiplicity of
each particle is then stored. The multiplicities are then read in by subsequent generations,
saving the time of calculation.

In the next step the program proceeds to its ultimate goal of generating events, i.e.,
the data sets containing full information about produced particles, the history of their
evolution, resonance decays, etc. Each event is generated separately. First, the multiplici-
ties of each particle type are generated as random numbers from a Poissonian distribution,
with the mean being the average particle multiplicity determined earlier.

Then the program proceeds to generate particles, sequentially from the heaviest to the
lightest particle type depending on the selected model. The event generation procedure
is a standard von Neumann method of rejection/acceptance of the given set of numbers
based on the randomly generated test value distributed uniformly between 0 and fmax,
where fmax is the maximum value of the distribution determined earlier. The procedure
ends when the determined number of particles of each particle type is generated. All the
primordial particles, stable and resonances, have been generated and stored in the event.

In subsequent procedure the decays of resonances proceed sequentially from the heav-
iest to the lightest particle. The decay daughters are immediately added to the set of
particles in the current event, hence they may decay in the subsequent steps. Most
particles have several decay channels. In each decay one of them is selected randomly
with appropriate probability corresponding to the branching ratio. Details concerning
the implementation of two-body and three-body decays can be found in [97].
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Chapter 5

Numerical methods for solving
hydrodynamic equations

In this chapter we present detailed description of the numerical alorithm used to solve
the equations of relativistic fluid dynamics in (3+1) dimensional geometries starting
from (1+1) dimensional geometry. Detailed implementation follows the state-of-the-art
SHASTA algorithm approach presented in [139]. No suitable hydrodynamic code was
available at the time of implementation, so for our simulations it was necessary to imple-
ment this approach from the very beginning.

In solving the equations of hydrodynamics numerically, we should be able to resolve all
relevant time and length scales in the problem. In practice this means that the grid spacing
∆x and time step ∆t should be smaller than any of these scales. In perfect fluid dynamics
all scales are macroscopic, i.e., they are inversely proportional to the gradients of the fluid-
dynamical variables like flow field and densities. Thus it is sufficient to have a numerical
resolution that correctly resolves the macroscopic structures. However, shocks introduce
scales below this spacing. Therefore shock-wave capturing schemes play an important role
to deal with discontinuities in the event-by-event fluctuating initial conditions. A lot of
shock-wave capturing schemes have been proposed and developed.

In relativistic heavy-ion collisions, SHASTA [140], rHLLE [141], and KT (Kurganov
and Tadmor) [142] algorithms are mainly used. The work of [139] compares between the
different shock-wave capturing schemes, SHASTA, KT, and NT (Nessyahu and Tadmor)
[143] schemes were made and it was found that all the algorithms reproduce the analytic
solution of shock propagation with nearly the same accuracy and numerical artifacts. In
particular, SHASTA-based algorithms [140], are widely used in the study of relativistic
heavy-ion collisions. SHASTA-based algorithms are known as the versions of Flux Cor-
rected Transport (FCT) algorithm. The SHASTA algorithm was used here because it can
handle numerical diffusion and oscillations originating from hydrodynamic computations
with steep gradients very well.
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5.1 SHASTA

SHASTA (SHarp And Smooth Transport Algorithm) [140] is a flux-corrected transport
algorithm for solving generalized continuity equations. It can be used for non-relativistic
calculations as well as for relativistic calculations. In the phenomena occuring in heavy
ion physics, convection is often not a simple flow, but rather it has shock waves, where the
profile of fluid properties has strong discontinuity or steep gradients. Therefore, we need
numerical algorithm which can handle these discontinuities. The important properties
of Flux-Corrected Transport (FCT) are that it is a high-order, monotone, conservative,
positivity preserving algorithm. This means that the algorithm is accurate and resolves
steep gradients, allowing grid scale numerical resolution. When a convected quantity
such as an energy density is initially positive, it remains positive and no new maxima
or minima are introduced due to numerical errors in the convection process. These are
the properties that are extremely important for most problems of practical interest. Due
to its simplicity, accuracy, and easy implementation we choose the SHASTA [140] which
was one of the first versions of Flux Corrected Transport algorithms in the 1970’s. Ever
since, the FCT method has been extensively tested and refined for various studies, for
example, the ETBFCT version by Boris [144], which also forms the basis for the LCPFCT
algorithm [145], and the YDFCT algorithm by Toth and Odstrcil [146].

The SHASTA algorithm is an example for an algorithm that uses a stable but diffusive
difference scheme. Numerical diffusion is of conservative form and arises as a consequence
of the physical requirements that the profiles being convected remain stable while re-
maining positive. Numerical diffusion is an inherent problem in Eulerian convection, and
unless controlled, it can invalidate numerical calculations using linear algorithms unless
they have very fine computational meshes. The basic idea of the flux-corrected transport
method is to increase the stability of a differencing scheme by introducing a corrective
nonlinear diffusion step. In the succeeding antidiffusion step this diffussion is removed
partially by flux limiter to avoid spurious oscillations while retaining sharp profiles in
cases of discontinuities or steep gradients.

5.2 One-dimensional application of SHASTA algo-

rithm

How one can solve hydrodynamic equations numerically using SHASTA? To solve hydro-
dynamic equations numerically, the original partial differential equations are replaced by
an approximate algebraic difference equations and the values of U, v, and J are given at
discrete grid points, where U = U(t, x) is conserved quantity, vx is the flow velocity in
x direction and J = J(t, x) is the source term. For example U(t, x) can correspond to
charge density N , energy density E or momentum density M i in laboratory frame. The
conservative, or primary, variable U(t, x) is replaced by its average Un

i over the cell i at
coordinate point xi , and at the discrete time step tn. In (1+1)-dimensional systems the
equations of charge and energy-momentum conservation are of conservation type and can
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be generally written as
∂tU + ∂x(vxU) = J(t, x). (5.2.1)

If we consider for example equation (4.1.19) then the conserved quantity U corresponds
to E and the source term J corresponds to J t − ∂x(pvx). The transported and diffused,
uncorrected solution Ũ in the explicit SHASTA method [140] is given by

Ũi =
1

2
(Q2

+∆i −Q2
−∆i−1) + (Q+ −Q−)U

n
i +∆tJi. (5.2.2)

Here, we defined

∆i = Un
i+1 − Un

i , (5.2.3)

Q± =
1/(2λ)± vni

1/λ± (vni±1 − vni )
, (5.2.4)

where λ = ∆t/∆x is the Courant number which in SHASTA is restricted to values λ ≤ 1/2
to assure causality. The final time-advanced quantities are calculated by subtracting so-
called antidiffusion fluxes, Ã, from the transported and diffused solution

Un+1
i = Ũi − Ãi + Ãi−1, (5.2.5)

where the flux-corrected antidiffusion flux is

Ãi = σimax(0,min(σi∆̃i+1, |Ai|, σi∆̃i−1)). (5.2.6)

The difference of primary variables in adjacent cells is denoted by ∆̃i = Ũi+1 − Ũi, while
the explicit antidiffusion flux is

Ai = Aad∆̃i/8, (5.2.7)

σi = sgn(Ai). (5.2.8)

In SHASTA, Aad = 1 is the default value of the so-called mask coefficient [147]. This
is a multiplicative constant which can be set to lower values to reduce the amount of
antidiffusion. Second-order accuracy in time is obtained by applying SHASTA twice.
First we calculate the velocity and source terms at time step n+1/2. In the second step,
these half-step velocity and source terms are used to calculate the final time-advanced
quantity Un+1

i . In a given cell, this can be summarized in formulas as

Un+1/2 = Un(Un, vn, Jn,∆t/2,∆x), (5.2.9)

Un+1 = Un(Un, vn+1/2, Jn+1/2,∆t,∆x). (5.2.10)

5.2.1 Three-dimensional application of SHASTA algorithm

Provided that we want to calculate with realistic hydrodynamic model we need to extend
one-dimensional SHASTA algorithm into three dimensions. Thus (3+1)-dimensional con-
servation equations can be written as

∂tU + ∂x(vxU) + ∂y(vyU) + ∂z(vzU) = J(t, x, y, z). (5.2.11)

46



The cell-averaged conserved variable U(t, x, y, z) is denoted by Un
i,j,k. A standard ap-

proach to solve such equations is to apply the dimensional or operator splitting method,
which splits the original multidimensional equation into a sequence of (1+1)–dimensional
problems [148]. A slightly different but more efficient approach [139] is used in this work.
The low-order transport solution is calculated separately in the x, y and z directions by
using the (1+1)–dimensional SHASTA without the source term. Thus, the x-transported
quantity Ũx

i,j,k is given as

Ũx
i,j,k =

1

2
[(Qx

+)
2∆x

i,j,k − (Qx
−)

2∆x
i−1,j,k] + (Qx

−)U
n
i,j,k, (5.2.12)

Qx
± =

1/(2λx)∓ (vx)
n
i,j,k

1/λx ± [(vx)ni±1,j,k − (vx)ni,j,k]
, (5.2.13)

where ∆x
i,j,k = Un

i+1,j,k − Un
i,j,k and λx = ∆x/∆t ≤ 1/2 is the Courant number in the x-

direction. A similar formula, with vx replaced by vy or vz and all cell differences taken in y-
or z-direction, holds for the y- or z-transported quantity Ũy

i,j,k or Ũ z
i,j,k . The transported

and diffused solution is then

Ũi,j,k = Ũx
i,j,k + Ũy

i,j,k + Ũ z
i,j,k − 2Un

i,j,k +∆tJi,j,k. (5.2.14)

The advantage of this method is that it keeps the symmetry between any two directions
of the system without the need to permute the directions in which the grid is updated. In
this case it is also possible to implement a multidimensional flux correction in the FCT
algorithm which avoids some numerical problems and leads to slightly smoother results
compared to the dimensional splitting method for the same mask coefficient. To obtain
second order accuracy, the method by DeVore [149] is used. The full solution is given by

Un+1
i,j,k = Ũi,j,k − Âx

i,j,k − Ây
i,j,k − Âz

i,j,k + Âx
i−1,j,k + Ây

i,j−1,k + Âz
i,j,k−1, (5.2.15)

where the Â’s are the limited antidiffusion fluxes given in Equations (5.2.29, 5.2.30) and
(5.2.31) below. In our implementation, the updates are computed in such a way that the
conserved quantity U does not depend on order of directional updates. (Directional up-
dates are computed separately and finally added together.) As in the (1+1)–dimensional
case the antidiffusion fluxes in x, y and z directions are given by

Ax
i,j,k = Ax

ad∆̃
x
i,j,k/8,

Ay
i,j,k = Ay

ad∆̃
y
i,j,k/8,

Az
i,j,k = Az

ad∆̃
z
i,j,k/8, (5.2.16)

whereAx
ad, A

y
ad, A

z
ad are the antidiffusive mask coefficients, similarly to the (1+1)-dimensional

case. Furthermore,

∆̃x
i,j,k = Ũi+1,j,k − Ũi,j,k, (5.2.17)

∆̃y
i,j,k = Ũi,j+1,k − Ũi,j,k, (5.2.18)

∆̃z
i,j,k = Ũi,j,k+1 − Ũi,j,k. (5.2.19)
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In the DeVore scheme, the antidiffusion fluxes in x, y and z directions are first limited as
in the (1+1)–dimensional case,

Ãx
i,j,k = σx

i,j,k max[0,min(σx
i,j,k∆̃

x
i+1,j,k, |Ax

i,j,k|, σx
i,j,k∆̃

x
i−1,j,k)], (5.2.20)

Ãy
i,j,k = σy

i,j,k max[0,min(σy
i,j,k∆̃

y
i,j+1,k, |A

y
i,j,k|, σ

y
i,j,k∆̃

y
i,j−1,k)], (5.2.21)

Ãz
i,j,k = σz

i,j,k max[0,min(σz
i,j,k∆̃

z
i,j,k+1, |Az

i,j,k|, σz
i,j,k∆̃

z
i,j,k−1)], (5.2.22)

where σx
i,j,k = sgn(Ax

i,j,k), σ
y
i,j,k = sgn(Ay

i,j,k) and σz
i,j,k = sgn(Az

i,j,k). The allowed values

for Un+1
i,j,k after the antidiffusion stage are between

Ũmin
i,j,k = min(Ũi−1,j,k, Ũi,j−1,k, Ũi,j,k−1, Ũi,j,k,

Ũi+1,j,k, Ũi,j+1,k, Ũi,j,k+1), (5.2.23)

Ũmax
i,j,k = max(Ũi−1,j,k, Ũi,j−1,k, Ũi,j,k−1, Ũi,j,k,

Ũi+1,j,k, Ũi,j+1,k, Ũi,j,k+1). (5.2.24)

The total incoming and outgoing antidiffusive fluxes in cell (i, j, k) are calculated as

Ain
i,j,k = max(0, Ãx

i−1,j,k)−min(0, Ãx
i,j,k) + max(0, Ãy

i,j−1,k)−
min(0, Ãy

i,j,k) + max(0, Ãz
i,j,k−1)−min(0, Ãz

i,j,k), (5.2.25)

Aout
i,j,k = max(0, Ãx

i,j,k)−min(0, Ãx
i−1,j,k) + max(0, Ãy

i,j,k)−
min(0, Ãy

i,j−1,k) + max(0, Ãz
i,j,k)−min(0, Ãz

i,j,k−1). (5.2.26)

This information is then used to determine the fractions of the incoming and outgoing
fluxes,

F in
i,j,k = (Ũmax

i,j,k − Ũi,j,k)/A
in
i,j,k, (5.2.27)

F out
i,j,k = (Ũi,j,k − Ũmin

i,j,k )/A
out
i,j,k, (5.2.28)

which is subsequently limited so that it creates no undershoot or overshoot in the cell,
from which it is leaving or which is entering. Thus, the new antidiffusive fluxes are given
as

Âx
i,j,k = Ãx

i,j,k ×
{

min(1, F in
i+1,j,k, F

out
i,j,k) if Ãx

i,j,k ≥ 0,

min(1, F in
i,j,k, F

out
i+1,j,k) if Ãx

i,j,k < 0,
(5.2.29)

Ây
i,j,k = Ãy

i,j,k ×
{

min(1, F in
i,j+1,k, F

out
i,j,k) if Ãy

i,j,k ≥ 0,

min(1, F in
i,j,k, F

out
i,j+1,k) if Ãy

i,j,k < 0,
(5.2.30)

and

Âz
i,j,k = Ãz

i,j,k ×
{

min(1, F in
i,j,k+1, F

out
i,j,k) if Ãz

i,j,k ≥ 0,

min(1, F in
i,j,k, F

out
i,j,k+1) if Ãz

i,j,k < 0.
(5.2.31)

5.3 Numerical tests of implemented algorithm

In the previous section we have built the theory how to solve numerically hydrodynamic
equations. In 3 + 1 dimensions, given arbitrary initial conditions and a general EoS, the
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only way to solve the equations of relativistic fluid dynamics is by means of numerical
methods. Any numerical method requires an algorithm that has to be tested in order to
asses its validity for solving the underlying equations. Therefore, we implemented 3+1
dimensional SHASTA algorithm described previously and made various tests. The tests
consist of two parts. One part concerns easier tests for static medium, the second one
expanding medium. The second part will be presented in Subsection 6.3 because we need
to introduce initial conditions needed to do the tests.

5.3.1 Static tests

Testing algorithms to solve relativistic dissipative fluid dynamics is made difficult by the
fact that there is only a rather limited number of test cases with analytical solutions. One
of them is the expansion of baryon-free matter into vacuum. That means that equation
(4.1.4) was not taken into account. Such a test was used also in [150]. The following
initial conditions at t = 0 were employed:

ε(x, 0) =

{
ε0 x ≤ 0
0 x > 0,

(5.3.1)

v(x, 0) =

{
0 x ≤ 0
c x > 0,

(5.3.2)

The choice v = c in the vacuum is purely conventional, but it guarantees a continuous
hydrodynamic solution at the boundary to the vacuum, since in the limit of infinite
dilution the velocity of matter approaches unity. In multi-dimensional applications due
to the isotropy of the vacuum it is not possible to assign to it a directed, finite velocity.
The only possible choice is then v = 0 [150].

This setup describes so called Riemann problem which is defined as the initial value
problem when the initial data consists of two constant states separated by a membrane
and jump discontinuity at x = 0. The matter is initially at rest. At t = 0 the membrane
is removed and left and right states are connected with a rarefaction wave. For such a
case an analytic solution exists. This analytic solution was compared with the results
from hydrodynamic numeric code. Considering a simple EoS

p(ε) = c2sε, c2s = const., (5.3.3)

the analytic solution for the energy density can be written as [150]:

ε(x, t) = ε0 ·

{
[1−cs
1+cs

1−x/t
1+x/t

]
1+c2s
2cs −cs < x/t ≤ 1,

1 −1 ≤ x/t ≤ −cs,
(5.3.4)

where cs is the speed of sound in the medium, for ideal ultrarelativistic gas (ε = 3p) it is

equal to cs =
√

1
3
. The velocity profile as a function of energy density can be expressed

as

v(ε) = tanh

[
− cs
1 + c2s

ln(ε/ε0)

]
=

1− (ε/ε0)
2cs/(1+c2s)

1 + (ε/ε0)2cs/(1+c2s)
. (5.3.5)
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The pressure can be inferred from the EoS and using thermodynamic relation dp = sdT =
(ε+ p)dT/T and the EoS we get the temperature T/T0 = (ε/ε0)

c2s/(1+c2s).

Our results are compared to the analytic solution of the energy density in one dimen-
sion at the time t =5 fm/c for one-dimensional algorithm in Fig. 5.1. It is not surprising
that the finer grids lead to a result closer to analytic than coarse ones. We also investigate
Riemann problem in two or three dimensions in the next figures.

To confirm that there is no dependence of the simulations on the grid direction (rota-
tional invariance), we rotate the initial discontinuity by 45 degrees in the x− y plane and
consider the same rarefaction wave profile propagating in diagonal direction. The results
are presented in the Fig. 5.2 together with analytic result and the one-dimensional one.

In a simulation, Courant-Friedrichs-Lewy condition is a necessary condition for the
convergence of numerical solution while solving certain partial differential equations. For
one-dimensional case it has the following form:

C =
u∆t

∆x
≤ Cmax, (5.3.6)

where the dimensionless number C is called the Courant number and u is the magnitude
of the velocity, usually it is the maximum possible velocity, i.e. speed of light in our case.
The value of Cmax changes with method used to solve discretised equation. In case of
SHASTA the Courant number must be less than Cmax = 1/2 to guarantee reasonable
results. The comparison of the influence of various Courant numbers onto the result is
shown in Fig. 5.3. It can be seen that the more Courant number approaches Courant-
Friedrichs-Lewy condition the more accurate the solution will be.

Finally, analytic and numeric velocity profiles are shown in Fig. 5.4 for the relativistic
Riemann problem on a one-dimensional grid.
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Figure 5.1: Solution of the relativistic Riemann problem on a 1D-grid. Energy density
profile at the time t =5 fm/c. Blue squares correspond to analytic solution. Black stars
correspond to numerical solution with SHASTA algorithm for 1D-grid with Nx = 200 cells
with ∆x = 0.1 after Nt = 125 time steps. Red line corresponds to numerical solution with
SHASTA algorithm for 1D-grid with Nx = 2000 cells with ∆x = 0.01 after Nt = 1250
time steps.
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Figure 5.2: Solution of the relativistic Riemann problem on various grids. Energy den-
sity profile at the time t =5 fm/c. This figure compares solutions for various space
orienations of the Riemann problem. Blue squares correspond to analytic solution.
Red line corresponds to numerical solution with SHASTA algorithm for 2D-grid with
Nx = 200×Ny = 200 cells with ∆x = 0.1 after Nt = 125 time steps. The original shock
front orientation was rotated by 45 degrees. Black stars correspond to numerical solution
with SHASTA algorithm for 1D-grid with Nx = 200 cells with ∆x = 0.1 after Nt = 125
time steps.
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Figure 5.3: Solution of the relativistic Riemann problem on various grids. Energy den-
sity profile at the time t =5 fm/c. Comparison of various ∆t/∆x ratios. Blue squares
correspond to analytic solution. Black stars corresponds to numerical solution with one-
dimensional SHASTA algorithm with Nx = 200 cells with ∆x = 0.1 after Nt = 125 time
steps, ∆t/∆x = 1

5
. Red line correspond to numerical solution with SHASTA algorithm

for 3D-grid with ∆x = 0.1 after Nt = 125 time steps ∆t/∆x = 2
5
. Green circles, same

parameters as black line but calculation was done for 3D-grid.
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Figure 5.4: Solution of the relativistic Riemann problem on a 1D-grid with Nx = 200 cells
with ∆x = 0.1. Velocity profile at the time t = 10 fm/c after Nt = 250 time steps. Blue
squares correspond to analytic solution. Red line corresponds to numerical solution with
SHASTA algorithm. Courant number used in simulation was set to 0.4.
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Chapter 6

Initial conditions for hydrodynamics

Hydrodynamic simulations describe the evolution of strongly interacting system given
by initial conditions for the energy-momentum tensor. The hydrodynamic equations
of motion require inputs of initial conditions for all their dynamic variables, which are
then evolved forward in time. These initial conditions are outside of the framework of
hydrodynamic models and have to be determined by other means. Physically, they are
determined by the processes during the initial collision of the nuclei and the succeeding
stage that makes the system approach to local equilibrium, which is eventually reached at
the time τ0. The equilibration time is a parameter here, since the equilibration mechanisms
are still under debate and the first principle determination of the initial conditions of the
equilibrated plasma phase has not been achieved [151]. The accurate determination of
the initial state of a heavy ion collision is crucial for the determination of bulk properties
from a comparison with experimental data.

The initial geometry of the interaction region and its fluctuations strongly affect the
generation of flow and the values of all vn. It is therefore crucial to have a reliable
theoretical model for them. Important constraints on the initial-state model can be
obtained by comparing all computed vn coefficients to experimental data simultaneously
and studying the event-by-event fluctuations of the flow harmonics.

Different models exist that can generate initial conditions for hydrodynamic simula-
tions. One of the most commonly used models is the Glauber Monte-Carlo model [152].
In this approach the spatial make-up of the nucleus, or its density profile, is modelled by
a discrete distribution of nucleons sampled randomly from the charge density distribution
function. Two nuclei generated in this way can be separated by a random impact param-
eter b and the interaction probabilities between the constituent nucleons can be evaluated
using the inelastic nucleon cross-section. Nuclear collision in the Glauber Monte-Carlo
approach provides in this way not only the size, i.e. the numbers of the participating
nucleons and the total number of interactions (each participating nucleon is allowed to
interact more than once), but also the shape of the interaction region as the coordinates
of the participants are known.

Colour-glass-condensate-inspired initial conditions are becoming increasingly popular.
They feature larger eccentricities of the initial energy density profile than Glauber-based
models, which has significant implications on elliptic flow [153]. In these models addi-
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tional dissipation during the early quark-gluon plasma stage is needed in order to achieve
agreement with experiments [153, 154].

This effective theory approximates the description of the fast partons in the wavefunc-
tion of a hadron by exploiting the fact that their dynamics is slowed down by Lorentz time
dilation, and provides a way to track the evolution of energy of the multigluon states that
are relevant in the dense regime. This framework has been applied to a range of reactions
at high energy: deep inelastic scattering, proton-nucleus collisions and nucleus-nucleus
collisions. At leading order, these calculations correspond to a classical field description
of the system. In nucleus-nucleus collisions, this classical field remains coherent for a brief
amount of time after the collision, forming a state known as the Glasma. Central question
in heavy ion collisions is to understand how these classical fields lose their coherence in
order to form a plasma of quarks and gluons in local thermal equilibrium [155].

One of the commonly used colour-glass condensate framework initial state model is
the MC-KLN (Monte-Carlo Kharzeev-Levin-Nardi) model [156, 157]. Within this frame-
work, one takes into account the feature of QCD that at small Bjorken-x, a novel regime
governed by large gluon densities and non-linear coherence phenomena takes over [158].
The MC-KLN model computes the initial energy-density distributions of the two collid-
ing nuclei, after sampling nucleon positions in a way similar to the MC Glauber model,
it needs additional negative binomial fluctuations of multiplicities for a given number of
participants in order to be able to describe the measured multiplicity distributions [159].

Other colour-glass condensate models include the string rope model [160] and the
pQCD + saturation model [161]. In the latter, the initial time τ0 is given by the inverse
of the saturation scale, which is very small, i.e., τ = 0.18 (0.10) fm/c at RHIC (LHC).
Recently, there is a push to implement effects of event-by-event fluctuations in the initial
conditions. In the NEXSPHERIO hydro model each event is created by the event gener-
ator NeXuS [162]. First, they found that the existence of fluctuations in initial conditions
improves the behavior of the elliptic flow as a function of the rapidity in hydrodynamic
calculations [163]. They showed that two artificial bumps in the elliptic flow as a function
of the rapidity [164] disappear if they take into account initial fluctuations.

Nowadays, most successful initial conditions model is the Colour-Glass-Condensate
framework with the impact parameter dependent saturation model combined with the
classical Yang-Mills description of initial Glasma fields [165]. The IP-Glasma model is
impact parameter dependent saturation model describing transition state between initial
quantum state and QGP.

Apart from MC-Glauber and CGC based frameworks, there are several parton- and
hadron-cascade models that are being used to determine fluctuating initial conditions.
These are for example UrQMD [166] and EPOS [167] all using Monte-Carlo techniques to
compute initial particle production and then converting the soft part of the spectrum into
the bulk energy density distribution used in hydrodynamic simulations. They also provide
initial flow and in principle the full stress-energy tensor including viscous corrections.

In our simulations we have decided to implement simple initial conditions, i.e. smooth
optical Glauber model [152] described in the next section. These smooth initial conditions
can be advantageous for easy recognition of influence of added fluctuations induced by
source terms during the hydrodynamic evolution.
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6.1 Optical Glauber model for heavy-ion collisions

In the optical Glauber model it is assumed that at sufficiently high energies, the nucleons
will carry sufficient momentum so that they will be undeflected as the nuclei pass through
each other. Furthermore, it assumes that the nucleons move independently in the nucleus
and also that the size of the nucleus is large compared to the nucleon-nucleon force. The
optical form of the Glauber theory does not locate nucleons at specific spatial coordi-
nates. It is based on continuous nucleon density distributions. Before the collision, the
density distribution of the two nuclei with mass number A is described by a Woods-Saxon
parametrization

ρA(r) =
ρ0

exp( r−RA

ζ
) + 1

, (6.1.1)

with RA = (1.12A1/3−0.86A−1/3) fm. In the following we focus on Pb+Pb collisions with
A = 208 and ζ = 0.546 fm for the surface diffuseness [168]. The normalization factor
ρ0 is set to give

∫
d3rρA(r) = A. With these parameters we have ρ0 = 0.17 fm−3. The

relevant quantity for the following considerations is the nuclear thickness function, which
integrates the nuclear density over the longitudinal coordinate z:

TA(x, y) =

∫ +∞

−∞
dzρA(x, y, z). (6.1.2)

The opacity of the nucleus is obtained simply by multiplying the thickness function with
the total inelastic cross-section σ0 of a nucleon-nucleon collision. At

√
sNN = 2.76 TeV we

use σ0 = 62 mb [169]. Participants are nucleons that interact at least once in the collision.

Figure 6.1: Schematic representation of the Optical Glauber Model geometry, with trans-
verse (a) and longitudinal (b) views [152].

Wounded nucleons are those nucleons that interact inelastically. At high energies total
cross-section is almost inelastic so number of participants is roughly equal to number of
wounded nucleons. Wounded nucleons number is of special interest, as they are thought
to be responsible for the bulk of soft particle production and energy deposition in nuclear
collisions.

Experiments at SPS found that the number of final state particles scales with the
number of wounded nucleons. Deviations from the scaling are observed at RHIC and LHC.
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The particle production per wounded nucleon is a function increasing with centrality. This
is attributed to a significant contribution from hard processes, scaling with the number
of binary collisions. Statistical considerations allow to express the density of wounded
nucleons in the transverse plane in terms of the nuclear thickness function of one nucleus
multiplied with a combinatorial factor involving the nuclear thickness function of its
collision partner. This factor gives the probability that the nucleon interacts at least
once [170]. For noncentral collisions of nuclei with mass numbers A and B at impact
parameter b, the mean number of wounded nucleons per transverse area is given by [171]

nWN(x, y, b) = TA

(
x+

b

2
, y

)1−(1− σ0TB(x− b
2
, y)

B

)B
+

+TB

(
x− b

2
, y

)1−(1− σ0TA(x+ b
2
, y)

A

)A
 . (6.1.3)

Integrating the above expression over the transverse plane yields the total number of
wounded nucleons (participants) as a function of the impact parameter. In reality fluc-
tuations occur, collisions at a certain impact parameter sometimes produce more and
sometimes less wounded nucleons as a result of quantum fluctuations - each NN collision
ends up differently [172]. In this sense the numbers evaluated in this Glauber formulation
[173, 174] can be seen as average numbers of wounded nucleons at fixed impact parameter.

At high energies the density of binary collisions becomes of interest. After suffering
their first collision, the partons travel on through the nuclear medium and are eligible for
further (hard) collisions with other partons. This leads to the idea that one has to count
the binary collisions. The density of their occurence in the transverse plane is simply
expressed by the product of the thickness function of one nucleus with the encountered
opacity of the other nucleus, leading to

nBC(x, y, b) = σ0TA(x+ b/2, y)TB(x− b/2, y). (6.1.4)

The total number of binary collisions shows a stronger dependence on the impact param-
eter than does the number of wounded nucleons.

6.2 LHC inspired initial conditions

We assume that the initial state of matter in the transverse plane is governed entirely by
the physics of ‘soft’ and ‘hard’ processes represented in terms of the densities of wounded
nucleons and binary collisions, respectively. Shadowing effects by the spectators do not
play a role at LHC energies because the spectators leave the transverse plane at z = 0 on
a timescale of less than 1 fm/c. We parametrize the shape of the initial energy density
distribution in the transverse plane as

W (x, y, b) = (1− α)nWN(x, y, b) + αnBC(x, y, b), (6.2.1)

where α determines the fraction of the contribution from binary collisions. The α pa-
rameter in our simulations was set to 0.16 for LHC. By choosing a smooth transverse
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profile with no event-by-event fluctuations we can later be sure that any anisotropic flow
in addition to the event-averaged one is due to the contribution of hard partons. We can
thus better estimate their contribution. For the longitudinal profile the prescription used
in [102, 175, 176, 177, 178, 179, 180] was employed. It is composed of two parts, a flat
region around ηs = 0 and half a Gaussian in the forward and backward direction:

H(ηs) = exp

[
−(|ηs| − ηflat/2)

2

2σ2
η

θ(|ηs| − ηflat/2)

]
. (6.2.2)

We chose ηflat = 10 [181] and ση =0.5. The full energy density distribution is then given
by:

ε(x, y, ηs, b) = ε0H(ηs)W (x, y, b)/W (0, 0, 0). (6.2.3)

The energy density in the center was chosen as ε0 = 60 GeV/fm3 and the initial longitu-
dinal proper time τ = 0.55 fm/c. These parameters and equations suffice only to generate
initial conditions for smooth fireball.

This paragraph will describe how hard partons are initiated in our hydrodynamic
model. The differential cross-section for gluon production in one nucleon–nucleon collision
σNN was parametrized [182] as

E
dσNN

dp3
=

1

2π

1

pt

dσNN

dptdy
=

B

(1 + pt/p0)n
, (6.2.4)

where p0, B and n are parameters, σNN is cross-section corresponding to one nucleon-
nucleon collision. The parametrization works fine in the pt interval from 2.5 to 12 GeV/c.
Calculated spectra deviate from this parametrization for higher pt. Note, however, that
production of jets at such high pt is rare and thus does not contribute much to the
total yield and can be assumed to have small effect on the bulk when the large number of
collisions is analysed. For a simulation at LHC energies we choose B = 14.7 mbarn/GeV2,
p0 = 6 GeV, and n = 9.5 [182]. The cross-section in a non-central symmetric collision of
two nuclei with mass numbers A at the impact parameter b (b = |b|) for the production of
the leading particle with pt larger than pm is then obtained by integrating equation Eq.
(6.2.4)

σ(pm) =

∫ ∞

pm

∫ ymax

ymin

dσNN

dptdy
dptdy. (6.2.5)

The mean total number of leading particles with pt > pm is then

Nj(pm, b) =
A2TAA(b)σ(pm)

1− (1− TAA(b)σ(pm))A
2 . (6.2.6)

For central collisions of Pb-Pb at 5.5 TeV in center of mass system the mean number
of hard partons in simulations was 10. In the last equation we introduced the overlap
function

TAA(b) =

∫
overlap

TA(~r)TA(~r −~b)d2r, TA(~r) = 2ρ0

√
R2

A − r2, (6.2.7)

where the nuclear thickness function TA(x) is defined in simpler way than in Eq. (6.1.2).
The radius of the nucleus is RA and for the sake of our estimates we have assumed a very
simple profile with a constant nuclear density ρ0.
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Jets are produced in pairs which are back to back in the transverse plane (but not
longitudinally) so that the total transverse momentum vanishes. The transverse posi-
tions at which the jets start moving are distributed according to the density of binary
nucleon–nucleon collisions:

ρb(~r) = TA(~r)Tb(~r −~b). (6.2.8)

Thus, it is more likely to produce a leading parton at the center of the overlapping zone
than at its edges. For the presented results only dijet pairs with pt above 3 GeV were
generated.

6.3 Tests for expanding medium

Section 5.3.1 summarized the tests for static medium. This section summarizes tests of
our code for expanding medium. In contrast to static case, expanding medium equations
were solved in Milne coordinates, Eq. (4.4.14). In all presented cases baryon-free matter is
considered. The initial conditions employed were smooth and calculated with the optical
Glauber model with LHC-inspired energy density, without any added fluctuations, for
details see Chapter 6.2. Unfortunately, for expanding medium with this energy density
profile, there is no test case which has an analytic solution. Therefore all existing tests
are only numerical. The executed tests follow code verification suggestions in [183] and
[184]. Although, the obtained results are EoS dependent, this dependence is weak for
state-of-the-art ones because there are little diferences among the results.

The first test examines energy density time evolution of fireball for peripheral collision
with impact parameter b = 7 fm. Figures 6.2 and 6.3 show energy density profiles in η = 0
slices for various timesteps. The initial energy density profile in η− x plane in y = 0 slice
together with profile after 4 fm/c of hydrodynamic evolution is shown in Fig. 6.4. For
both cases as time follows the energy density in central region is decreasing because the
fireball is expanding. The place with the highest energy density is always in the center of
the fireball.

In Fig. 6.5 we plot the space-time evolution of isothermal hypersurfaces in x − τ
space for three different temperatures (T = 120, 150, 164 MeV) for peripheral collision
with impact parameter b = 7 fm. As fireball expands, it gradually cools down as plotted.
The time evolution of the radial velocity vt calculated as an average over the transverse
plane with the Lorentz contracted energy density γtε as weight function is ploted in Fig.
6.6. It can be seen that at later times, the rise of radial velocity slows down. The
time evolution of momentum and spatial anisotropies for peripheral event with impact
parameter b =7 fm is shown in Fig. 6.7 and Fig. 6.8. The momentum anisotropy εp, as
defined in Eq.(6.4.3), measures the anisotropy of the transverse momentum density due
to anisotropies in the collective flow pattern. The effects of pressure gradient anisotropies
are reflected in the initial growth rate of the flow-induced momentum anisotropy εp. At
later times the buildup of momentum eccentricity slows down. Spatial anisotropy εx as
defined in Eq.(6.4.1) is calculated by averaging over the transverse plane with the energy
density ε as weight function. If εx > 0, the energy density drops more quickly in the
x-direction than in the y-direction because the overlap region is shaped elliptically. Using
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Figure 6.2: Hydrodynamic evolution of event with impact parameter b = 7 fm. Energy
density transverse slices are shown for rapidity η = 0. First profile is taken after time
t = 0.55 fm/c. Each other profile is taken after time ∆t = 2 fm/c from previous profile.
Initial conditions were calculated using optical Glauber model with rapidity density given
by Eq.(6.2.2). Initial energy density ε was set to ε(0, 0, 0)=60.0 GeV/fm3. Note that
colour scales are different in each time step. Also note that Figure hydrodynamic evolution
continues in Fig. 6.3.

an EoS p = p(ε), this implies that the mean pressure gradients are unequal, ∂xp > ∂yp,
and according to the hydrodynamic equations one expects a larger fluid velocity to build
up in the x-direction than in the y-direction. At later times the change of decrease of
spatial anisotropy εx slows down. The spatial anisotropy even becomes negative as in
scenario presented in [185].

Figure 6.9 shows deviation from the Bjorken scaling [186] (2+1-dimensional boost-
invariant hydrodynamics) for our numerical code. Due to the transverse expansion, cal-
culated energy density (red crosses) falls faster than Bjorken scaling solution (blue line).
For comparison we show also the energy density evolution at the fireball periphery (black
squares). It can be concluded that all of our results testing hydrodynamic evolution are
not in contradiction with numerical results presented in [183] and [184].

Finally, we discuss our results for measurable observables after freeze-out process.
Figure 6.10 shows pT spectra for various charged particles for LHC inspired IC at impact
parameter b=0 fm. Similarly, Figure 6.11 shows pseudorapidity distribution of various
charged species for LHC inspired IC at impact parameter b=0 fm. The number of charged
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Figure 6.3: Continuation of previous Figure 6.2.

particles can be varied by changing the value of ε0. Higher ε0 gives higher charged particle
multiplicity and vice versa. By tuning of hydrodynamic simulation parameters, one can
achieve multiplicities and pT spectra similar to those at LHC and compare results of
anisotropic flow obtained with tuned parameters. However, we do not compare our results
with LHC results since our goal is only to illustrate that our scenario works and can
significantly contribute to the anisotropic flow. Since LHC results are also influenced by
fluctuations and dissipation, disentangling the exact effect of our model would not be
possible.

6.4 Initial fluctuation characterization

The physics of the initial stages of a heavy-ion collision is currently one of the biggest open
questions, and is one of the largest contributions of uncertainty for many observables.
The fundamental question is how the initial state of two ultrarelativistic nuclei before
the collision evolves into a system that can eventually be described by hydrodynamics.
Reliable first-principles calculations from non-equilibrium quantum chromodynamics are
not yet possible, so the current state-of-the-art is to construct models, based on what we
know about the relevant physics, and constrained by agreement with data after subsequent
fluid / transport evolution. For many years, most of hydrodynamic calculations used
smooth and symmetric initial density profiles to simulate an average collision. In reality,
there are quantum fluctuations in the earliest stages of the collision, that come from
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Figure 6.4: Energy density slices for ultracentral event are shown in η−x plane under the
condition y = 0. First profile is taken after time t = 0.55 fm/c. Second profile is taken
after time ∆t = 4 fm/c from previous profile. Initial conditions were calculated using
optical Glauber model. Initial energy density ε was set to ε(0, 0, 0)=60.0 GeV/fm3.
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collision with impact parameter b = 7 fm.
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with impact parameter b = 7 fm.
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(r = 6 fm). Blue line corresponds to Bjorken scaling solution for the center of the fireball.
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sources as nucleonic structure of the nucleus. This causes the energy density at early
times to be lumpy and asymmetric, and to fluctuate from one collision event to the next,
even for nuclei colliding at a fixed impact parameter.

In peripheral collisions the overlap region in the plane transverse to the beam direc-
tion has an ellipsoidal shape. This spatial anisotropy can be quantified by the spatial
eccentricity [187]

εx =
{y2 − x2}
{y2 + x2}

, (6.4.1)

where curly brackets indicate an average over the energy density ε of the system at an
early stage of the collision

{...} =

∫
d3xε(x)...∫
d3xε(x)

. (6.4.2)

Momentum anisotropy of the system is defined as

εp =
〈T xx − T yy〉
〈T xx + T yy〉

, (6.4.3)

where T xx and T yy are the diagonal transverse components of the energy-momentum
tensor and the averaging is over the transverse plane. This initial coordinate anisotropy
is converted to a final state momentum space anisotropy, if large enough collective pressure
gradients drive the evolution of the system.

In 2005, collisions of smaller nuclei Cu+Cu were carried out at RHIC. Using the
standard definitions given above for the elliptic flow and the eccentricity, the ratio of
v2/ε2 was surprisingly much higher than previously observed in Au+Au collisions, and the
elliptic flow did not appear to vanish as the collisions became more central. The resolution
of this puzzle was that fluctuations in the initial state geometry are important, and are
naturally more pronounced in smaller systems such as the Cu+Cu collision system and for
central collisions, where the average standard eccentricity is small. Further, the relevant
spatial eccentricity that drives elliptic flow is not the standard eccentricity above, which is
defined with respect to the impact parameter of the incoming nuclei, but an eccentricity
with respect to a plane defined by the participating nucleons (the “participant plane”),
which can be rotated in a different direction. By using a new generalized definition of the
participant eccentricity given by the expression

εpart =

√
({y2} − {x2})2 + 4{xy}2

{y2}+ {x2}
, (6.4.4)

defined with respect to a coordinate system where {x} = {y} = 0, it became clear that
the elliptic flow results in Cu+Cu collisions were completely consistent with the previous
larger systems in a hydrodynamic picture [188]. This was the first piece of direct evidence
of initial state fluctuations.

Nowadays, it is common to characterize initial transverse density profiles with gener-
alizations of the participant eccentricity (6.4.4), with strength εn and orientation Φn that
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can be compactly written as the magnitude and phase of a complex number:

εne
inΦn ≡ −{rneinΦ}

{rn}
;n ≥ 2 (6.4.5)

ε1e
iΦ1 ≡ −{r3eiΦ}

{r3}
, n = 1, (6.4.6)

where r and Φ are the polar coordinates in the transverse plane and the curly brackets
average over the initial transverse energy density.

Figure 6.12: Scaled distributions of v2, v3 and v4 from hydrodynamic simulations using
IP-Glasma model [65] initial conditions as well as ε2, ε3 and ε4 from the IP-Glasma model
[65] compared to experimental data from the ATLAS collaboration [189, 190]. There were
750 (0-5%) and 1300 (20-25%) events in theoretical simulation. Bands are systematic
experimental errors. Figure taken from [65].

It is known that the event-averaged v2 and the eccentricity of the averaged initial
state, ε2 are approximately linearly related. Similar relation has been found for ε3 and
the average v3 but not for ε4 and v4 [191] and [192]. In addition, we can study similar
relations event-by-event by evaluating the linear correlation between the harmonics vn
and εn. It reveals that the second and third Fourier coefficients have a strong linear
correlation to the initial geometry of the collision. While the event-averaged Fourier
coefficients, 〈vn〉ev , n = 2, 3, and 4, are sensitive to the details of the fluid-dynamical
evolution, their relative fluctuations, δvn = (vn − 〈vn〉ev), are determined solely by the
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Figure 6.13: 2D histogram of event-by-event values of v2 and ε2, showing strong correlation
between the two quantities, which increases with viscosity (taken from [45]).

fluctuations of the corresponding initial state anisotropy coefficients, with basically no
sensitivity to the viscosity of the fluid. This makes the distribution of δvn, a direct probe
of the initial condition of a heavy-ion collision, providing a direct and clean measurement
of the distribution of the relative fluctuations of the initial anisotropy,

P (δvn) ≈ P (δεn), n = 2, 3, 4. (6.4.7)

This relation is true even for the relative fluctuations of v4, even though v4 itself is not
linearly correlated to ε4 [45]. Figure 6.13 shows 2D histogram of event-by-event values of
v2 and ε2 in the 0-5 % centrality class from hydrodynamic simulations [45].

At the least, the study of ultra-central collisions can constrain the possible fluctuations
implemented in different models by comparison to experimental data. A way to constrain
initial state models with fluctuations is the study of event-by-event distributions of flow
harmonics vn, which have recently been determined experimentally [190]. It was found
[45] that these distributions are almost independent of the details of the hydrodynamic
evolution, like the shear viscosity to entropy density ratio. In fact, the distributions
of initial eccentricities provide already an excellent approximation of the measured vn
distributions when scaled by the mean value. This allows for an almost model independent
determination of the initial state and the transport properties of the evolving system.
As shown in Fig. 6.12 the IP-Glasma model provides a very good description of these
probability distributions [65] and differences between the εn and vn distributions are only
visible in the tail where nonlinear effects in the hydrodynamic evolution are potentially
more important. They also found that < vn > scales with participant eccentricity strength
< εn > and even that this scaling is valid for whole distributions of < vn > and < εn >.

In comparison to the results in the literature, the simulations presented in this thesis
show that the anisotropy can rise during the hydrodynamic evolution, thus our mechanism
can break this linear correlation.

Despite the large effort that is made in understanding the initial conditions in terms
of parametrizations and dynamical models, it is important to concentrate on the goal to
quantify the amount of initial state fluctuations that is associated with the early stage
non-equilibrium QCD evolution of two colliding nuclei. Even though the hydrodynamic
description of the hot and dense stage of heavy ion collisions seems to work very well,
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one of the big open questions in the field is how the system thermalizes rapidly. What-
ever the process for thermalization actually is, it is likely that it will have an impact on
initial state fluctuations. Initial non-trivial flow velocity fields have not yet been stud-
ied in a comprehensive fashion. There are certainly non-zero initial angular momentum
and vorticity in the system, but how they should be treated and what impact they have
on observables is not obvious. The intrinsic relationship between space and momentum
in quantum physics through the uncertainty principle has potential implications for mo-
mentum anisotropy in heavy-ion collisions. Using a harmonic oscillator potential the
calculated elliptic anisotropy was found to be sizeable compared to elliptic flow measure-
ments in nuclear collisions [139]. These results question the validity of the completely
hydrodynamic interpretation of anisotropic flow data, and highlight the importance of in-
cluding quantum physics in hydrodynamic calculations which has largely been neglected
so far.

6.5 State-of-the-art initial conditions

Although not included in our simulations, for broader overview this section is dedicated
to the two most used state-of-the-art approaches in generating initial conditions. The
first part concerns often used Glauber Monte Carlo approach. The second part includes
a description of the fluctuating glasma initial conditions which is the newest approach.

6.5.1 Glauber Monte Carlo approach

The advantages of the Monte Carlo approach for the calculation of geometry related quan-
tities like 〈Npart〉 and 〈Ncoll〉 are: its simplicity and ability to include various fluctuations
and correlations. Moreover, it is possible to simulate experimentally observable quanti-
ties like the charged particle multiplicity and to apply similar centrality cuts as in the
analysis of real data. In the Monte Carlo ansatz the two colliding nuclei are assembled in
the computer by distributing the A nucleons of nucleus A and B nucleons of nucleus B
in three-dimensional coordinate system according to the respective nuclear density distri-
bution. A random impact parameter b is then drawn from the distribution dσ/db ∼ 2πb.
A nucleus-nucleus collision is in simplest approach treated as a sequence of independent
binary nucleon-nucleon collisions, i.e., the nucleons travel on straight-line trajectories and
the inelastic nucleon-nucleon cross-section is assumed to be independent of the number
of collisions a nucleon underwent before [152]. In the simplest version of the Monte Carlo
approach a nucleon-nucleon collision takes place if their distance d in the plane orthogonal
to the beam axis satisfies

d ≤
√

σNN
inel/π, (6.5.1)

where σNN
inel is the total inelastic nucleon-nucleon cross-section at a given collision energy.

Instead of the hard-sphere method, one may use a smooth Gaussian function to de-
termine the probability distribution of wounded nucleons or a binary collision.
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6.5.2 Fluctuating glasma initial conditions

A more recent improved colour-glass-condensate based approach is the IP-Glasma model
[193, 194], which combines the IP-Sat (Impact Parameter dependent Saturation Model)
model [195, 196] of high energy nucleon (and nuclear) wavefunctions with the classical
Yang-Mills (CYM) dynamics of the glasma fields produced in a heavy-ion collision [197,
198, 199, 200, 201, 202]. After fixing the free parameters of the IP-Sat model by fits to
small x HERA deeply inelastic scattering (DIS) data of protons and fixed target nuclear
DIS data [203, 204], the IP-Sat model provides an excellent description of these data.
The IP-Glasma model includes fluctuations of nucleon positions as well as sub-nucleonic
fluctuations of colour charges, a feature missing in most other initial state models. Another
advantage is that the model does not rely on kT -factorization, which is strictly valid only
when at least one of the sources is dilute (as in p + p and p + A collisions). Furthermore,
IP-Glasma includes non-linear pre-equilibrium evolution of the initial gluon fields. This
leads to the build-up of initial flow and an independence from the exact time when one
switches to hydrodynamics [65].

The early stage dynamics is however not fully included. Instabilities triggered by
quantum fluctuations, and subsequent strong scattering of over-occupied fields, may lead
to rapid isotropization and quenching of viscous stress tensor Πµν to reasonable values
justifying the use of viscous hydrodynamics already at early times. This unstable dynam-
ics requires a full 3+1 dimensional simulation including realistic description of quantum
fluctuations, which has not yet been fully achieved. However, significant progress is being
made [206, 207, 208, 209] and the IP-Glasma model can be extended to include these
important effects. Matching of the full stress-energy tensor, including viscous corrections
and flow, to the hydrodynamic simulation will then be possible.

In Fig. 6.14 there is a comparison of initial energy densities from an MC-Glauber,
the MC-KLN and the IP-Glasma model using the same distribution of nucleons in the
incoming nuclei. In the MC-Glauber model every wounded nucleon was assigned a two-
dimensional Gaussian energy density with a width of σ0=0.4 fm. The MC-KLN result
was obtained using the publicly available code MCKLN-3.52 [211]. IP-Glasma results are
shown for two different times, τ = 0.01 fm/c and τ = 0.2 fm/c after Yang-Mills evolution.
The evolution smoothens the initially very distinct structures noticeably. Because of the
additional subnucleonic fluctuations, the IP-Glasma model produces the finest granularity,
typically leading to larger fluctuation driven odd eccentricities [193, 194]. Simulations
using the IP-Glasma initial state model have been particularly successful in describing
both the pT dependent and integrated vn at both RHIC and LHC energies [65]. The
agreement with experimental results from the LHC shown in Figures 6.15, 6.16 and 6.17
is particularly striking. This agreement indicates that initial state fluctuations in the
deposited energy density, translated by hydrodynamic evolution into anisotropies in the
particle production, are the main ingredient to explain the measured flow coefficients.
This is also indicated by correlation of initial state anisotropy with anisotropy of hadron
distribution. However, our mechanism can generate anisotropies during hydrodynamic
evolution. This implies that we would need different initial conditions to explain measured
flow coefficients.
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Figure 6.14: Comparison of the initial energy density profiles (arbitrary units) produced
by the MC-Glauber, MC-KLN and IP-Glasma models. All events have the same config-
uration of nucleons and impact parameter b = 4 fm to emphasize how different model
descriptions affect the structure of the energy density. The spikiest structure is obtained
in the IP-Glasma model, which includes subnucleonic colour charge fluctuations. Yang-
Mills evolution to τ = 0.2 fm/c smoothens this structure before it enters a hydrodynamic
simulation [193, 205]. Still it is interesting that IP-Glasma yields the spikiest profile even
after this time. Energy density is in arbitrary units.

Figure 6.15: Root-mean-square anisotropic flow coefficients < v2n >1/2 as functions of
transverse momentum, compared to experimental data by the ATLAS collaboration using
the event plane (EP) method [210] (points). Bands indicate statistical errors. Experi-
mental error bars are smaller than the size of the points. Lines represent results from
hydrodynamic simulations with IP-glasma initial conditions [65]. Figure taken from [65].
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Figure 6.16: Comparison of vn(pt) using constant η/s = 0.2 and a temperature dependent
η/s(T ) as parametrized in [212]. Experimental data by the ATLAS collaboration using
the event-plane (EP) method [210] (points). Bands indicate statistical errors. Lines
represent results from hydrodynamic simulations with IP-glasma initial conditions [65].
Figure taken from [65].

Figure 6.17: Root-mean-square anisotropic flow coefficients < v2n >1/2, computed as a
function of centrality, compared to experimental data of vn{2}, n ∈ {2, 3, 4}, by the AL-
ICE collaboration [213] (points). Lines represent results from hydrodynamic simulations
with IP-glasma initial conditions [65]. Hydrodynamic results are calculated with 200
events per centrality, with bands indicating statistical errors [65]. Figure taken from [65].
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Chapter 7

Jet energy loss

A fast moving hard parton interacts with the medium while moving through the plasma
and loses energy. Generally, the mechanism by which this energy is lost as well as the
amount of energy deposited depends on the particle and matter properties. This provides
fundamental information about the medium itself. Therefore such jet-medium interactions
are significant for the study of a parton moving through plasma, the evolution of jets
and its impact on the measured particle distributions. The crucial part for the study
of the evolution of jets in heavy-ion collisions is the source term describing the energy
and momentum lost by the hard partons which thermalize in the medium. A lot of
interesting experimental results which suggest the existence of very large jet energy loss
are reported [214, 215]. To explain these results interaction between jets and medium
needs to be understood. The leading particle emits a significant number of partons which
promptly evolve via multiple branching and thus degrade into a myriad of soft gluons,
with energies of the order of the medium temperature T . Via elastic collisions with the
medium constituents, these soft gluons relax to local thermal equilibrium with the plasma
over a time scale which is considerably shorter than the typical lifetime of a mini-jet. The
thermalized gluons form a tail which lags behind the hard components of the jet. Together
with the background QGP, they behave hydrodynamically [216].

Four major phenomenological approaches have been developed to connect the QCD
energy loss calculations with the experimental observables. Important is the fact that
they examine the evolution of the jet, not plasma, which is crucial for us. These are
based on perturbative QCD approaches: the higher twist (HT) formalism [217], the AMY
(Arnold-Moore-Yaffe ) formalism [218], the GLV (Gyulassy-Levai-Vitev) formalism [219]
and BDMPS (Baier-Dokshitzer-Mueller-Peigne-Schiff) formalism [220] / ASW (Armesto-
Salgado-Wiedemann) formalism [221]. Despite the large amount of effort put into the
development of perturbative description of the hadron production in heavy-ion collisions,
there are uncertainties remaining about the exact nature of jet-medium interactions in the
kinematic and temperature regimes relevant at RHIC or LHC. As a whole, the above four
approaches describe RHIC data well, but they offer very different quantitative conclusions
about the quenching strength. This does not come as a big surprise since the approaches
differ in some of their basic assumptions, and there are large uncertainties in modeling hard
probes beyond the calculation of the energy loss rate for a quark or gluon. The nuclear
modification factor RAA measured at the Large Hadron Collider (LHC) [34, 33] indicates
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that the jet-medium coupling is reduced as compared to fixed-coupling extrapolations
[222] based on the data from RHIC [223]. Thus, those models constrained to RHIC
data [222] tend to overquench at LHC energies, leading to a larger jet suppression than
measured.

Recently, attempts to reformulate parton energy loss as a medium modification of the
perturbative evolution of the fragmentation functions have been implemented in Monte
Carlo models [224, 225]. Such MC approaches allow one to address more detailed exper-
imental observables such as the particle and the energy flows within a jet. The following
section describes basic introduction to QCD based approaches mentioned in the previous
paragraph. The next section concerns the implementation of the energy loss in three-
dimensional relativistic hydrodynamics.

7.1 Basics of perturbative QCD based approaches

The use of fast partons as calibrated tomographic probes of hot and dense QCD matter
in heavy-ion collisions relies on the possibility to compute theoretically their perturbative
production cross sections and their modifications suffered while propagating through a
strongly interacting medium. The energy loss formalisms discussed above can be roughly
divided into two groups: those calculating the radiated gluon spectrum, i.e. the energy
lost by the initial parton (GLV and BDMPS/ASW) and those determining directly the
change in the final distribution of the traversing partons (HT and AMY).

All schemes utilize a factorized approach where the final cross section σ to produce a
hadron h with transverse momentum pt (within rapidity y and y + dy) may be expressed
as a convolution of initial nuclear structure functions to produce partons with momen-
tum fractions xa, xb, (G

A
a (xa), G

B
b (xb)), a hard partonic cross section to produce a high

transverse momentum parton c with a transverse momentum p̂ and a medium modified
fragmentation function for the final hadron (D̄h

c (z)),

d2σh

dyd2pt
=

1

π

∫
dxa

∫
dxbG

A
a (xa)G

B
b (xb)×

dσab→cX

dt̂

D̄h
c (z)

z
. (7.1.1)

In the vicinity of midrapidity applies z = pt/p̂ and t̂ = (p̂−xaP )2, where P is the average
incoming momentum of a nucleon in nucleus A.

The origin of the higher twist approximation scheme lies in the calculations of medium
enhanced higher twist corrections to the total cross section in Deep-Inelastic Scattering
off large nuclei [226]. One re-sums power corrections to the leading twist cross sections,
which, though suppressed by powers of the hard scale Q2, are enhanced by the length
of the medium. This technology of identifying and isolating power corrections is used to
compute the n-hadron inclusive cross-section. One assumes a hierarchy of scales E �
Q � µ, where µ is momentum scale of the medium, and applies this to the computation
of multiple Feynman diagrams. A disadvantage of this approach is the negligence of the
quark structure function in the medium: as a result, collisions with the medium may
not change the flavor of the jet parton. Another disadvantage is the restriction to single
scattering followed by single radiation in the medium, which makes this formalism more
appropriate to thin media.
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In finite temperature field theory formalism, often referred to as the AMY approach,
the energy loss of hard jets is considered in an extended medium in equilibrium at asymp-
totically high temperature T → ∞. Owing to asymptotic freedom the coupling constant
g → 0 at such high tempeatures, and a power counting scheme emerges from the ability
to identify a hierarchy of parametrically separated scales T � gT � g2T.... In this limit,
it then becomes possible to construct an effective field theory of soft modes, p ∼ gT ,
by summing contributions from hard loops with p ∼ T , into effective propagators and
vertices [227].

In the ASW/BDMPS approach, one incorporates the effect of multiple scattering of
the incoming and outgoing partons in terms of a path integral over a path ordered Wilson
line [228]. This formalism assumes a model for the medium as an assembly of Debye
screened heavy scattering centers which are well separated in the sense that the mean free
path of a jet λ � 1/µ, the colour screening length of the medium [229]. The opacity of the
medium ñ quantifies the number of scattering centers seen by a jet as it passes through the
medium, i.e. ñ = L/λ, where L is the thickness of the medium. The inclusion of the zero
opacity term makes this the only formalism, to date, which includes interference between
vacuum radiation and radiation induced by multiple soft scatterings in the medium. It
suffers from the disadvantage of having approximated the medium in terms of heavy
static scattering centers. As a result, elastic energy loss is vanishing in this scheme. As
the formalism is setup to calculate the energy loss probability of the leading hard parton,
estimation of the change in the distribution of final associated (sub-leading) hadrons or
partons is not straightforward.

GLV scheme inorporates reaction operator approach to the opacity expansion [219].
It considers the limit of a thin quark-gluon plasma consisting of heavy static scattering
centers with Yukawa-like potentials where the number of rescatterings of the jet and
gluons is small.

All four schemes have independently made successful comparisons to the available
data [230, 231]. The quantitative consistency of the different schemes has been investi-
gated within a 3-dimensional hydrodynamics approach [231] linking the various medium
properties via thermodynamical relations and using the same space–time evolution.

7.2 Implemented jet energy loss

Apart of technically difficult QCD-based schemes in our work we focus on simpler ap-
proach mainly because those schemes do not examine the evolution of plasma.

Energetic back-to-back partons produced in the early stages of a heavy-ion collision
can travel through the medium and deposit energy and momentum along their path in
a way that depends on the physics behind the interaction between the parton and the
underlying medium. In the case where one of the partons is produced near the surface
(trigger jet), the other supersonic away-side parton moves through the medium and excites
a Mach wave as well as a diffusion wake. In general, a fast moving parton will lose a
certain amount of its energy and momentum along its path through the medium and
thus decelerate. It acts as a source to the medium. Therefore, depending on its energy
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the parton will either punch through the medium and fragment in the vacuum or it will
be severely quenched until it cannot be distinguished from the other thermal partons
in the plasma. We assume that the energy lost by the parton thermalizes locally and
gives rise to a source term Jν in the energy–momentum conservation equations (4.1.5). It
parametrises the deposition of energy and momentum into the medium. With the same
term one can describe extraction of energy and momentum from the medium, but this
case will not be elaborated here. The form of source term which describes the interaction
of the jet with QGP is not known yet exactly, though some groups made progress on this
topic [232, 233, 234, 235, 236, 237].

We first consider simple scenario with hard partons moving through the medium with
an initial velocity v0 = 0.9999, which corresponds to initial rapidity y0=4.95. The source
term in covariant notation is given by [59, 238, 239]

Jν(x) =
∑
i

∫ τf,i

τi,i

dτ
dP ν

i

dτ
δ4(xµ − xµ

jet,i), (7.2.1)

where τf,i − τi,i denotes the proper time interval associated with the evolution of the i-th
hard parton, ~xjet,i describes its position, and dP ν

i /dτ is its energy-momentum loss rate
along its trajectory xµ

jet,i(τ) = xµ
0,i + uµ

jet,iτ . If dP ν
i /dτ would be the change of parton’s

energy it would have a negative sign, but we take dP ν
i /dτ as the change of QGP’s energy

so it has positive sign. Summation runs over all hard partons in the system. In numerical
simulation we assume that the jet deposits its energy and momentum over some region
characterized by a three-dimensional Gaussian profile. Then, in non-covariant notation,
the source term that we use is [59]

Jν(x) =
∑
i

1

(
√
2πσ)3

exp

(
− [~x− ~xjet,i(t)]

2

2σ2

)(
dEi

dt
,
d ~Pi

dt

)
, (7.2.2)

where it is chosen that σ = 0.3 fm. Partons are assumed to have the mass of 0.3 GeV when
momentum loss is determined from the energy loss. Energy deposition and momentum
deposition in the direction of the moving jet are denoted dE/dt and dP/dt, respectively.
Parton energy loss depends on the density of the medium. The exact form of this depen-
dence is not known, yet [236, 240]. Here we assume that it scales with entropy density s
[241]. The scaling relation is thus

dE

dx
=

dE

dx

∣∣∣∣
0

s

s0
(7.2.3)

with s0 corresponding to energy density 20.0 GeV/fm3 (T = 324 MeV and s = 78.2 fm−3).
We have run our simulations with dE/dx|0 set to 4 GeV/fm and 7 GeV/fm. They will
be discussed in Chapter 9.

In case of static medium only, the energy loss was modelled according to simplified
Bethe-Bloch prescription [59] with an explosive burst of energy and momentum (Bragg
peak) at the end of parton trajectory. Due to its interaction with the plasma, the parton
will decelerate and its energy and momentum loss will change. The hard partons deposit
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energy and also momentum in the direction of their motion. The momentum loss is given
as

dP

dx
=

1

vparton

dE

dx
= a

1

v2parton
, (7.2.4)

where vparton = artanh yparton is the parton velocity and a determines the absolute scale of
the parton stopping. This equation shows that when the parton decelerates the energy-
momentum deposition increases and has a peak for vparton → 0. In order to determine
the actual velocity of the parton one can introduce parton rapidity

yparton =
1

2
ln

1 + vparton
1− vparton

, (7.2.5)

and then use the ansatz (7.2.4) and the identity dP/dyparton = m cosh yparton, to derive
the dependence of the time on parton rapidity [59]

t(yparton) =
m

a

[
sinh yparton − sinh y0 − arccos

1

cosh yparton
+ arccos

1

cosh y0

]
, (7.2.6)

where y0 is the initial rapidity of the parton. The initial energy loss rate was set to
a = −4.148 GeV/fm. This value is driven by the requirement that in our simulations
parton stops exactly after ∆τ = 5.0 fm/c. The dependence of the time on the parton
rapidity is plotted in the Fig. 7.1. The main difference between the ansatz described here
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Figure 7.1: Graph of function t(yparton) according to Eq.(7.2.6).

and the Bethe-Bloch equation is that the momentum deposition is longitudinal rather
than transverse. Results of simulations which use this ansatz are presented in chapter
9.1.
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Chapter 8

Anisotropic flow analysis methods

Now we describe the methods which are used experimentally to extract anisotropic flow
coefficients from data. There are several often used flow analysis methods. Most of them
are based either on the reaction plane reconstruction (the event plane method) [242]
or on two-particle azimuthal correlations [243]. They rely on the assumption that the
only correlations are those stemming from the existence of the reaction plane. Nonflow
correlations, such as small-angle correlations due to final state interactions and quantum
statistical effects [244], correlations due to resonance decays [245] and mini-jet production
[246] are neglected.

In recent years, several alternative techniques were introduced, in which nonflow cor-
relations can be disentangled. The cumulant method is based on a cumulant expansion
of multiparticle (typically four-particle) correlations [247], which eliminates most nonflow
correlations. It has been applied at ultrarelativistic energies at the LHC [248]. More re-
cently, a new method based on an analogy with the Lee–Yang theory of phase transitions
[249], where flow is extracted directly from the genuine correlation between a large num-
ber of particles, has been proposed [250, 251, 252]. This method is expected to provide
the cleanest separation between flow and nonflow effects. Section 8.1 presents the event
plane method. Section 8.2 is dedicated to particle cumulants method.

8.1 The event plane method

This is the most intuitive and the easiest method to implement. The problem is that the
n-th harmonics reaction plane angle Ψr from Eq. (2.2.2) is not known experimentally. It
is necessary to estimate it in some way. The event plane can be determined by [253]

Ψn =
1

n
tan−1

(∑
iwi sin(nφi)∑
iwi cos(nφi)

)
, (8.1.1)

where n is the Fourier order, the summation is over all particles in an event and wi

is a particle weight, like pt or rapidity. Each type of anisotropy can be defined with
its own symmetry plane, the so-called participant plane Ψn. Therefore the complete
anisotropic flow analysis requires in the most general case the measurement of both vn
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and its symmetry plane Ψn. Then, the observed vn can be easily calculated from Eq.
(2.2.3). To take care of the fact that the event plane does not exactly match the reaction
plane, a correction factor known as the event plane resolution is applied. The event plane
resolution is 〈cos[n(Ψn −Ψr)]〉, which again introduces the unknown reaction plane angle
Ψr. Fortunately, this can be calculated for example by dividing the event into three
sub-events a, b and c. In this case it is given by

〈cos[n(Ψa
n −Ψr)]〉 =

√
〈cos[n(Ψa

n −Ψb
n)]〉〈cos[n(Ψa

n −Ψc
n)]〉

〈cos[n(Ψb
n −Ψc

n)]〉
. (8.1.2)

The n’th moment is then:

vn =
〈cos[n(φ−Ψn)]〉
〈cos[n(Ψa

n −Ψr)]〉
. (8.1.3)

With that it is in principle possible to measure any flow moment [254]. Originally it was
believed that the event plane did not have to be measured for the same Fourier moment
as the flow moment of interest. But with the discovery of the significance of higher odd
moments (v3 and v5), and their couplings to flow fluctuations it is now necessary to be
more careful. In the case of even moments, there is still no problem as they are all usually
correlated to the same event plane. But since the odd moments arise from fluctuations in
the initial medium, the event planes found with these techniques do not align with those
from even moments.

8.2 Particle cumulants

In our work we implemented the two-particle cumulant method. Specifically the approach
developed by Ante Bilandzic [56] is used here. As input data we employed particles
generated by THERMINATOR2 package [97].

This widely used method for measuring flow makes use of particle cumulants or multi-
particle azimuthal correlations. The cumulants methods have two advantages; it is not
required to know the event plane and it can be extended to multiparticle correlations.
Multiparticle correlations have the advantage that non-flow does not affect them. Al-
though cumulant methods do not need the event plane, they need a different kind of
reference, which is called reference flow. The approach is to calculate flow over a large
part of phase space, and then use that as a reference for the differential flow measure-
ment of interest in the analysis. For anisotropic flow analysis it is customary to compute
even number particle correlations. In practice only the two- and four-particle cumulants
are computed, but in principle one could also compute six-particle cumulants or more.
However, it is not believed that there is reason to do so, as the six-particle cumulant
should give the same result as the four-particle cumulant, only requiring more statistics.
Following subsections give details about the way of calculation in our implementation.
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8.2.1 Reference flow

As mentioned before, the first step in calculation is to compute so-called reference flow.
The flow is measured over a large part of phace space, however, it does not have to be the
same in the entire region of phase space. The two- and four-particle azimuthal correlation
functions are defined as:

〈2〉 ≡ 〈exp(in(φ1 − φ2))〉 =
1(

M
2

)
2!

M∑
i,j=1,
(i6=j)

exp(in(φi − φj)),

〈4〉 ≡ 〈exp(in(φ1 + φ2 − φ3 − φ4))〉 =
1(

M
4

)
4!
×

M∑
i,j,k,l=1,(i6=j 6=k 6=l)

exp(in(φi + φj − φk − φl)), (8.2.1)

where the summations are over all particles, φn is the azimuthal angle of n-th particle
and M is the multiplicity within the chosen window. The four-particle cumulant method
requires a huge amount of computing power. Generally, the four-particle equations are
in general more complicated than two-particles ones, but their form is the same. In the
following text, we omit the description of four-particle correlations because they were
not used in our calculations. The introduction of Qn-vectors saves computing time. The
Qn-vector is defined as:

Qn ≡
M∑
i=1

exp(inφi). (8.2.2)

Two-particle reference flow

For practical computation of reference flow, it is advantageous to express Qn-vector as

QnQ
∗
n = |Qn|2 =

M∑
i,j=1

exp(in(φi − φj)) = M +
M∑

i,j=1,
(i6=j)

exp(in(φi − φj)), (8.2.3)

thus 〈2〉 can be simply expressed as

〈2〉 = |Qn|2 −M

M(M − 1)
. (8.2.4)

The next step is to average 〈2〉 over N events:

〈〈2〉〉 ≡ 〈〈exp(in(φ1 − φ2))〉〉 =
∑N

i=1(W〈2〉)i〈2〉i∑N
i=1(W〈2〉)i

, (8.2.5)

where W〈2〉 is an event weight defined as

W〈2〉 ≡ M(M − 1). (8.2.6)
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The second order cumulant is then

cn{2} = 〈〈2〉〉, (8.2.7)

in case of uniform azimuthal coverage. The n’th flow moment is then [56]

vn{2} =
√
cn{2}. (8.2.8)

8.2.2 Differential flow

The differential flow is calculated for several bins of the observable of interest, in our case
pt. The differential flow calculations with Qn-vectors are a bit more complicated than
those of the reference flow. Particles used for the reference flow calculations are marked
as Reference Particles (RFPs), there is a total of M of these. Particles used for the
differential flow calculations are marked as Particles of Interest (POIs), in total there are
mp particles of interest in an event. It is possible to have an overlap between the RFPs
and the POIs, i.e., a particle can be marked both as POI and RFP. Generally, there are
mq of these particles in an event. The two-particle correlations for differential flow are
then:

〈2′〉 ≡ 〈exp(in(Ψ1 − φ2))〉 =
1

mpM −mq

mp∑
i=1

M∑
j=1

exp(in(Ψi − φj)), (8.2.9)

where Ψi denotes the azimuthal angle of the i’th POI. These calculations can be simplified
by introducing the pn-vector:

pn ≡
mp∑
i=1

exp(inΨi), (8.2.10)

Two-particle differential flow

Using pn- and Qn-vectors it can be shown that [56]

〈2′〉 = pnQ
∗
n

mpM −mq

. (8.2.11)

Again this can be averaged over N events as for the reference flow

〈〈2′〉〉 =
∑N

i=1(w〈2′〉)i〈2′〉i∑N
i=1(w〈2′〉)i

, (8.2.12)

where the event weight w〈2′〉 is defined as:

w〈2′〉 ≡ mpM −mq. (8.2.13)

The second order differential Qn-vector for uniform azimuthal acceptance is then:

dn{2} = 〈〈2′〉〉. (8.2.14)
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Finally, the quantity of interest, the differential flow v′n for using two-particle cumulants
can be expressed as [56]

v′n{2} =
dn{2}√
cn{2}

. (8.2.15)
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Chapter 9

Results

Previous chapters summarized the state-of-the-art and mentioned necessary tools with
which we were able to succesfully address the question of hard partons contribution to
anisotropic flow.

The starting point for this work was the paper [182] which suggested possible con-
tribution of hard partons to the anisotropic flow at the LHC. At the LHC hard partons
are copious and deposit energy and momentum to the medium, where they can induce
and influence collective flow. However, the cited paper lacked hydrodynamic simulation
to confirm this scenario. It used only a toy model to find the contribution of hard par-
tons at a level of a few percent. The influence of one hard parton moving through static
medium was under investigation in 3+1-dimensional relativistic hydrodynamics in [59].
However, the interaction of streams induced by hard partons remained unknown there.
So we started to investigate the interaction of two or more hard partons in static medium
for the first time. Simulation of static medium was done first also due to the fact, that it
is simpler than expanding medium simulation and the results for one hard parton could
be qualitatively checked against [59]. Our results [255] confirmed the scenario that the
assumption about merging of the streams in [182] was reasonable.

The next step of our investigation was to do similar simulations for expanding fireball
with evolving hard partons. Our hydrodynamic model works with the assumption that
momentum and energy are deposited locally in the vicinity of moving hard parton. These
hard partons deposit energy and momentum during their whole existence. The exact
way of implementation was described in Section 7.2. The initial conditions were inspired
by those at the LHC, for details please see Chapter 6.2. Number, directions and total
energy of each hard parton in each event were simulated using the approach presented
in [182]. This approach is new. Although, there are related simulations in the literature,
they either use boost-invariant hydrodynamics [256] or use only one hard parton with
huge energy [257]. Using only one hard parton cannot lead to the alignment of the flow
anisotropy with the geometry because the alignment is caused by merging of the induced
streams. Finally, in [258, 259] the authors only study the influence of hard partons on
radial flow and did not mention flow anisotropies. Simulation in 3+1-dimensions is a
necessity for both static and expanding medium to capture all important effects. Hard
partons moving in expanding medium break boost-invariance and thus 2+1-dimensional
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simulation is inapplicable. Thanks to our full 3+1-dimensional hydrodynamic simulation
with hard partons, we found that inhomogeneities induced by hard partons survive until
the end of hydrodynamic simulation and contribute significantly to anisotropic flow for
each simulated centrality class. This is the most important finding presented in this thesis.

This section is divided into two parts. At first we start with static medium results
which are dealt with in section 9.1. After that, the Section 9.2 describes expanding
medium results in 3+1-dimensional ideal hydrodynamics.

9.1 Static medium results

In this Section we focus on the interaction of streams induced by two hard partons pene-
trating through a static medium in different ways.

First case to investigate was the excitation of QGP by one hard parton moving along
the x-axis. Results of this case can be directly compared to results of paper [59], although
in [59] the situation was simulated for lower energy densities and energy deposition since
the paper was focussed more at RHIC energy region. In [59] the authors used energy-
momentum deposition with dE/dx = 1.5 GeV/fm and static QGP with temperature
T0 = 200 MeV. The difference is also in the implemented equation of state: we use the
lattice QCD inspired parametrisation of [90] instead of the relativistic ideal gas equation
of state of [59].

In our implementation of one parton scenario, hard parton moves from left to the right
at initial speed v = 0.9999 and deposits energy and momentum into static medium with
unperturbed energy density ε0 = 20 GeV/fm3. The velocity of jet is decreasing during the
evolution according to description in Section 7.2. At the end of evolution there is a Bragg
peak in momentum and energy deposition. The value of unperturbed energy density
ε0 = 20 GeV/fm3 was used throughout all our implemented static medium cases. Profiles
of the energy density are shown for various times in Fig. 9.1. The spot with highest
energy density is observed at the position where parton deposits energy. The increase of
the energy density spreads in a Mach-cone-like structure. There is a wake with a drop
in the energy density profile just behind the parton. The energy spreads and streams
flow even after the parton is fully stopped. Same simulation using the ultrarelativistic
equation of state (ε = 3p) leads to no significantly different results. The reason is that
typical energy densities in the simulation are far above the transition from quarks to
hadrons, where the sensitivity to different equation of state is strongest. Especially, the
explosive burst of energy and momentum deposited by the parton immediately before it
is fully quenched does not stop the strong flow behind the parton (the diffusion wake).
This evolution of the parton is in qualitative agreement with results presented in [59] as
one can compare in Fig. 9.2.
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Figure 9.1: Sequence of energy density profiles during hydrodynamic evolution. One hard
parton deposits energy and momentum into static medium. It enters from the left. First
profile is taken after time delay t = 2.5 fm/c. Each of the following profiles is taken
after a time period ∆t = 2.5 fm/c after the previous profile. The energy of the parton is
fully deposited after 5 fm/c. The initial energy loss is dE/dx = −4.148 GeV/fm, initial
velocity of the parton is vparton = 0.9999, and unperturbed static energy density is ε0 = 20
GeV/fm3.
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Figure 9.2: Temperature pattern and flow velocity profile (arrows) after a hydrodynamical
evolution of t = 4.5 fm/c (left panel), t = 6.5 fm/c (middle panel) and t = 8.5 fm/c (right
panel) for a parton which decelerates according to the Bethe–Bloch formula and stops after
∆x = 4.5 fm. The parton’ initial velocity is vparton = 0.999, it corresponds to yparton=3.8.
The momentum loss is related to the energy loss by Eq. (7.2.4). Figure taken from [59].
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We checked that the deposited momentum is almost fully contained in the diffusion
wake. This was done by dividing the space into three regions: region I is the tube with
diameter 1.5 fm around the parton trajectory up to the shock front of the Mach wave,
region II is the rest of the matter behind the cone, and region III is the region ahead of
the shock front in which no energy was deposited. At the moment of parton extinction
region I contains 92% of all parton momentum. After next 2.5 fm/c this value drops just
a little to 87%. The rest of the momentum is diffused into region II. This demonstrates
our claim that deposited momentum shows up in form of the hot medium streams.

Momentum density in the surroundings of a moving parton shows the vortex structures
similar to those in [59]. Close to the position of the depositing parton there is flow velocity
in the direction of the parton and closely beside it flow velocity turns into the other
direction. This is the vortex where matter flows backwards from the Mach cone in to the
wake where the energy density is lower than in the unperturbed medium. Illustration of
this vortex structure can be clearly seen the Fig. 9.3. In ideal hydrodynamics this vortex
structure can be explained via vorticity conservation. If energy-momentum deposition of
the parton into medium is sufficient then vorticity dominated diffusion wake is always
present in the ideal fluid, whether the source of vorticity has been quenched or not [59].
The only way this vorticity can disappear is by means of viscous dissipation.
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Figure 9.3: The vortex structure is created by one moving parton as shown. The direction
and length of arrows correspond to the direction and magnitude of local momentum
density, respectively.

Next, we investigate various scenarios including two hard partons moving in various
directions. Figure 9.4 shows hydrodynamic evolution stimulated by two hard partons
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moving in opposite directions against each other. Both loose the same amount of energy.
All energy is deposited into plasma before the two partons would meet. Hence, only the
diffusion wakes meet and the two streams of plasma hit each other. Both partons stop
after time t = 5 fm/c. At this time their distance is 3 fm. The cone structures from both
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Figure 9.4: Sequence of energy density profiles during hydrodynamic evolution. Two hard
partons deposit energy and momentum into static medium. They enter from the left and
from the right and move against each other. The first profile is taken after time delay
t = 2.5 fm/c. Following profiles are taken with subsequent delays of ∆t = 2.5 fm/c.
Partons are fully stopped after 5 fm/c. Initial energy loss is dE/dx = −4.148 GeV/fm,
initial velocities are vparton = 0.9999, and unperturbed static energy density is ε0 = 20
GeV/fm3.

hard partons evolve like in previous case with just one hard parton. Momentum deposited
from the partons is transferred into the diffusion wake where the matter streams in the
direction of the original parton. The two streams meet and stop.

Deposited momentum for various scenarios with partons aiming in opposite directions
is shown in Fig. 9.5. This figure confirms that the momentum density does not overrun to
the other side even if one parton deposits more momentum than the other (blue dashed
line).

In real situation, parton-induced streams will come together under various angles. In
order to see how they may interact we examine a situation where the two partons move
perpendicularly. In Fig. 9.6 two hard partons, one entering from the left and the other
from the bottom in the same plane, deposit energy and momentum into static medium.
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Partons are fully stopped 1.5 fm/c before they would meet. We can see that the conical
structures of higher energy density look like a superposition of the two Mach cones that
propagate also after the full quenching of the partons. The merging of diffusion wakes is
also demonstrated in Fig. 9.7. Both panels display momentum density in the direction
diagonal to the two partons against the diagonal coordinate for various perpendicular
partons scenarios.

Although the parton source terms vanish before the wakes make contact, the merged
wakes continue to evolve. Momentum density also exhibits double peak structure.
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Figure 9.5: Situation from Fig. 9.4. Momentum density along the trajectory of the partons
in opposite directions. Left panel: momentum density at the moment of extinction. Right
panel: momentum density after another 2.5 fm/c. Red solid line: pair of partons with
equal energy. Blue dashed line: pair of partons where parton on the right has originally
a half of the other parton’s energy. Green double dashed line: pair of partons in opposite
directions, parton on the right is moving along the x-axis in the axial distance of 2 fm
from the other parton’s trajectory; momentum density distribution is taken along the line
in center between the two partons. Black dash and dotted line: same as previous case
but parton entering from right has originally a half of the other parton’s energy.
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Figure 9.6: Sequence of energy density profiles during hydrodynamic evolution. Two
hard partons deposit energy and momentum into static medium. One enters from the
left, one enters from the bottom. First profile is taken after a delay of t = 2.5 fm/c,
the subsequent after time steps ∆t = 2.5 fm/c. Partons are fully quenched after 5 fm/c.
The initial energy loss is dE/dx = −4.148 GeV/fm, initial velocity is vparton = 0.9999,
unperturbed static energy density is ε0 = 20 GeV/fm3.
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Figure 9.7: Situation from Fig. 9.6. Momentum density in diagonal direction during
hydrodynamic evolution as a function of the diagonal coordinate. Partons move perpen-
dicularly to each other and source terms vanish at t = 5 fm/c, which is 1.5 fm/c before
they would meet, unless stated othewise. Left panel: profile at t = 7.5 fm/c, right panel:
t = 10.0 fm/c. Red solid line: perpendicular partons scenario, both partons have equal
energy. Blue dashed line: same scenario as before but the lower side parton has a half
of the other parton’s energy. Green double dashed line: each parton deposits two times
more energy than in the first case. Black dash and dotted line: partons source terms
vanish only 0.5 fm/c before partons would meet.

Behind the merged wakes the momentum density turns negative, it points backwards.
This is a part of the vortices that are built up on the sides around the parton. We observed
that the lower unperturbed energy density or higher energy-momentum deposition induce
higher momentum density on the diagonal when wakes merge, as expected. The peaks
in momentum density corresponding to merging of two wakes with equal and also with
unequal energy seem qualitatively similar.

However, it is very rare that two partons would be aimed so precisely that their wakes
meet exactly as it was assumed so far. Therefore, we examined a situation with velocities
perpendicular to each other but the distance of closest approach of their extrapolated
trajectories is 2 fm. The evolution of the energy density on the plane in the middle
between the two trajectories is shown in Fig. 9.8. We investigate also the plots of velocity
and momentum densities. The evolution of mometum density profile is plotted in Fig. 9.9.
The wake streams and their merging is less visible in such a distance from the original
partons. On the other hand, one better sees the vortices that are built at the two sides
behind the parton which survive after the partons are quenched. Diagonal dependences
of the momentum density look in this case qualitatively similarly as in Fig. 9.7, only the
size of momentum densities is typically lower.

In conclusion, when two streams meet and even are not being stimulated anymore
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Figure 9.8: Sequence of energy density profiles during a hydrodynamic evolution. Two
hard partons deposit energy and momentum into static medium. One enters from the
left, one enters from the bottom. Distance of closest approach of extrapolated trajectories
is 2 fm. Profiles are taken on the plane in the middle of both trajectories. First profile
is taken after t = 2.5 fm/c. All other profiles are taken with subsequent delays ∆t = 2.5
fm/c. Partons are quenched after 5 fm/c, i.e. in the second figure. The initial energy
loss is dE/dx = −4.148 GeV/fm, initial velocity is vparton = 0.9999, unperturbed static
energy density is ε0 = 20 GeV/fm3.

by a hard parton, they merge into one stream which continues until it is suppressed by
diffusion. This model simulation verifies that the streams which are generated in the wakes
indeed carry the deposited momentum. It also confirms the scenario suggested in [182].
That paper concluded that in heavy ion collisions, isotropically produced hard partons
generate interacting wakes which can lead to collective motion that exhibits elliptic flow
correlated with the direction of the reaction plane. However, it remains to be studied,
how big the effect is in realistic simulations reproducing the dynamics of the fireball. This
issue is the subject of next section.
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Figure 9.9: Situation from Fig. 9.8, but the direction and length of arrows correspond to
the direction and magnitude of local momentum density, respectively.
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9.2 Expanding medium results

For simulations with expanding medium we perform hydrodynamic simulations with LHC
inspired conditions, for details on initial conditions see section 6.2. We aim to simulate
Pb+Pb collisions at full LHC energy

√
sNN = 5.5 TeV. Different sets of events in three

centrality classes were simulated to recognize the effect of anisotropic flow caused by hard
partons. The centrality classes employed in simulations were: ultracentral set of events
(impact parameter b = 0), set of central events (centrality class 0-2.5%, impact parameter
b = 0 − 1 fm) and set of peripheral events (centrality class 30-40%, impact parameter
b = 6 − 7 fm). Each set contained 100 different hydrodynamic events. On top of that
we run on each obtained freeze-out hypersurface five times the THERMINATOR2 freeze-
out procedure and thus the number of events in the analysis was quintupled. Resonance
decays were included. The anisotropic flow parameters v1, v2, v3 and v4 were obtained
for charged hadrons by the two-particle cumulant method. As RFPs, pions in rapidity
(-0.9,0.9) and in whole pt range were used in the analysis. POIs for differential flow are all
charged hadrons. The extracted anisotropic flow coefficents were then compared among
different types of scenarios.

First scenario as a benchmark test we simulate events with no hard partons and no
fluctuations, e.g. with only smooth initial conditions. It is easy to distinguish contribution
from hard partons by comparison with this scenario. Second scenario is a simulation with
hot spots where there is energy anisotropy included in the initial conditions and not
released over the finite time interval, no momentum is deposited. These are regions where
the same amount of energy is deposited that a hard parton would carry if it was produced
there. Also their number corresponds to number in simulation with hard partons and
their size corresponds to size of hard partons at the beginning of the hydrodynamic
evolution. Third one is the hot-spots-with-momentum scenario refers to the case where
energy as well as momentum are superimposed onto the initial conditions. Basically,
it is the same scenario as hotspots but the momentum of same amount as energy is
deposited in initial conditions. The last scenario is our proposal, e.g. momentum and
energy is deposited during the hydrodynamic evolution. It is in contrast to the common
hydrodynamic scenarios which take into account only fluctuations in initial energy or
energy and momentum density profiles where all features unique for a given event are
specified in their initial conditions from which hydrodynamics based on energy-momentum
conservation is started.

We start with the investigation of the generated anisotropy of momentum distribution
in ultra-central collisions (b = 0) for various scenarios. Results are shown in Figure 9.10
and Fig. 9.11. Comparison in Fig. 9.10 shows the importance of momentum deposition
during the hydrodynamic evolution. It is shown that the hot-spots simulation does not
produce the same amount of momentum anisotropy as generated by wakes with streams
induced by hard partons. Results for simulations without any fluctuations are consistent
with 0 as expected. In Fig. 9.11 it is somewhat puzzling why there is no difference in
results between the two scenarios which differ in the value of the energy loss. Note that the
total amount of the energy deposited into plasma is the same in both cases. They differ
by how fast this process runs. Hence, it was interesting to investigate the limit case where
dE/dx|0 → ∞. It corresponds to the case where momentum and energy is deposited

95



 0

 0.002

 0.004

 0.006

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 1

pT[GeV/c]

hot spots

 0

 0.002

 0.004

 0.006

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 1

pT[GeV/c]

without jets

 0

 0.002

 0.004

 0.006

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 1

pT[GeV/c]

dE/dx=7.0 GeV/fm

 0

 0.005

 0.01

 0.015

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 2

pT[GeV/c]

hot spots

 0

 0.005

 0.01

 0.015

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 2

pT[GeV/c]

without jets

 0

 0.005

 0.01

 0.015

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 2

pT[GeV/c]

dE/dx=7.0 GeV/fm

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 3

pT[GeV/c]

dE/dx=7.0 GeV/fm

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 3

pT[GeV/c]

hot spots

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 3

pT[GeV/c]

without jets

 0

 0.002

 0.004

 0.006

 0.008

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 4

pT[GeV/c]

without jets

 0

 0.002

 0.004

 0.006

 0.008

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 4

pT[GeV/c]

hot spots

 0

 0.002

 0.004

 0.006

 0.008

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

v 4

pT[GeV/c]

dE/dx=7.0 GeV/fm

Figure 9.10: Parameters vn from collisions at b = 0 for charged hadrons. Different symbols
represent: energy loss of hard parton dE/dx|0 = 7 GeV/fm (black �), scenario with only
hot spots in initial conditions (purple ×), and scenario with smooth initial conditions
(blue *).

in initial conditions. Exploration of this limiting case is important. If it leads to the
same results as the simulations with finite dE/dx, then all inhomogeneities in energy and
momentum density can be put into initial conditions. It can be seen that it is not the case.
Neither fluctuations with momentum deposition in the initial conditions by themselves are
able to generate the same flow anisotropies. The opposite limit dE/dx|0 → 0 represented
by simulations with dE/dx|0 = 0.1 GeV/fm leads to results consistent with 0 for all
anisotropic flow coefficients as expected.

The CMS collaboration has found a strong dependence of pT averaged v2 and v3 on
centrality even for central collisions [260] as shown in Fig. 9.12. The observation consists
in fact that anisotropic flow coefficients v2 and v3 steeply rise as we go from central
collisions to peripheral. Currently no hydrodynamic model can correctly simultaneously
describe centrality dependence of both elliptic and triangular flow for ultracentral CMS
events. The non-zero harmonics for ultracentral collisions are predominantly induced by
fluctuations. All orders of vn saturate around 0.0-0.2 % centrality. Although here we
only want to get an educated estimate on the size of the effect that our mechanism can
generate, it is tempting now to look how our v′ns would change if we go to centrality class
0-2.5%. In Fig. 9.13 we present the integrated v′ns as functions of centrality. We see that
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Figure 9.11: Parameters vn from collisions at b = 0 for charged hadrons. Different symbols
represent: energy loss of hard parton dE/dx|0 = 7 GeV/fm (black �), scenario with hot
spots with momentum deposition in initial conditions (red –), scenario with energy loss
of hard parton dE/dx|0 = 4 GeV/fm (purple ×), and scenario with energy loss of hard
parton dE/dx|0 = 0.1 GeV/fm (blue *).

going from b = 0 fm to 0-2.5% centrality there is no dramatic increase in v′ns. If such
effect is present in data, it must be caused by a different mechanism.

Next, we move further in centrality and simulate sets of events within centrality class
30–40% (b = 6–7 fm). Again here, we investigate whether the effect of energy-momentum
deposition from hard partons can be represented by appropriate choice of the initial
conditions. We show results of simulations with energy and momentum superposition
onto the smooth profile of the initial conditions in Figs. 9.14 and 9.15. Also here, the
amount and distribution of energy and momentum is the same as would be carried by hard
partons if they were integrated into the simulation. We observe that even the inclusion
of hot spots with momentum into the initial state cannot account for the whole effect
on anisotropy which is generated by momentum deposition from hard partons during
the evolution of the hydrodynamic bulk. The results of v2 demonstrate that the flow
anisotropy generated by hard partons is correlated with the reaction plane. If it was not
true, the contribution to anisotropic flow would cancel and we would not see any increase.
This is a consequence of the mechanism where two streams of the fluid in the wakes merge
when they are close. Then they continue flowing in the direction given by momenta of the
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Figure 9.12: CMS anisotropic flow results for (ultra)-central collisions [260].

two streams [182], [255]. With hard partons added, v2 grows by about 50% with respect
to simulation with smooth initial conditions and no hard partons. Of course, v3 vanishes
in the absence of hard partons or hot spots due to the lack of third order anisotropy
within the bulk matter.

Our results show that the momentum deposition during fireball evolution must be
included in a realistic hydrodynamic simulation. As a consequence, the linear relation
between initial state anisotropies εn and vn’s may not be fully justified because in our sug-
gested mechanism the anisotropy can rise during the fireball evolution. This is most clearly
apparent in our results for ultra-central collisions (Fig. 9.10). Initial state anisotropies
of all orders vanish in those simulations. A related question is then posed: can one find
a relevant measure of spatial fireball anisotropy which is then translated into final-state
momentum anisotropy? Perhaps the evolution of anisotropy decomposition into orthog-
onal terms [46, 47] may provide some insights here. Figures 9.14 and 9.15 confirm the
results obtained from ultra-central sets of events, that the interplay of many hard-partons-
induced streams causes significant contribution to the azimuthal anisotropies. This cannot
be replaced by initial-state-generated flow anisotropies.

It remains to explore the influence of viscosity on anisotropic parameters for all pre-
sented scenarios. We try to estimate this effect somehow. In case of viscosity, in viscous
fluid, the deposited momentum is spread to larger volume than in case of ideal fluid. This
is confirmed by simulation of Mach cones in viscous 3+1-dimensional hydrodynamics in
[261]. Thus surprisingly, the viscosity can even strenghten the momentum anisotropy
observed.
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Figure 9.13: Anisotropy parameters vn for charged hadrons integrated over pt for different
centralities. The energy loss of hard partons is given by dE/dx|0 = 4 GeV/fm.
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Chapter 10

Conclusions

Energy and momentum deposition from hard partons into hot deconfined matter and
the response of the matter have been investigated by means of three-dimensional ideal
relativistic hydrodynamics in both static and expanding medium.

The most important fact which was found in this thesis is the finding that jets produce
anisotropy. It confirms the assumption made in [182]; i.e. the wakes generated by hard
partons interact and influence each other. Furthermore, when two streams meet and
are not being stimulated anymore by a hard parton, they merge into one stream which
continues until it is tamed by diffusion. Under such conditions in a heavy-ion collision
isotropically produced hard partons generate interacting wakes which lead to collective
motion that exhibits anisotropic flow correlated with the direction of the reaction plane.

Hydrodynamic simulations for expanding medium were set to resemble the collisions
at the LHC. As the initial condition, optical Glauber model was used because it produces
smooth IC. With optical Glauber model anisotropic flow cannot be explained since there is
no anisotropy in the initial state in central collisions. However, this fact is an advantage in
case of distinguishing the influence of hard partons onto anisotropic flow. All state-of-the-
art hydrodynamic models take into account that the initial energy and momentum density
profile for hydrodynamic simulation changes event-by-event. Thus all features unique for
a given event are specified in the initial conditions from which hydrodynamic simulation
is started. It is in contrast to our model, where energy and momentum is deposited into
the medium during its evolution and not only at the beginning. Our results show that
including only fluctuating initial conditions even with momentum density fluctuations is
not sufficient to have substantial influence on momentum anisotropy. For non-central
collisions the effect is correlated with event geometry therefore we indeed obtain positive
contribution to the elliptic flow as shown before. The influence of hard partons on flow
anisotropies will show itself in various orders of particle production anisotropies. Further-
more, the linear relation between initial state anisotropies εn and vn’s as advocated in
literature may not be fully justified because in our suggested mechanism the anisotropy
can rise during the fireball evolution and the relation is violated. The presented results
clearly demonstrate the necessity to include this mechanism into realistic hydrodynamic
simulations which aim at extracting the properties of quark matter.

In conclusion, we see that we have identified a mechanism which generates anisotropic
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flow and consequently anisotropic particle production in ultrarelativistic nuclear collisions.
More precise studies would require the inclusion of three-dimensional viscous hydrody-
namic model and other sources of fluctuations. Nevertheless, clear distinction of fluctu-
ation sources can be very hard. Furthermore, inclusion of viscosity may even enhance
the influence of this effect. Quantitative details of the added mechanisms remain to be
investigated.
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A. Kolros, The effect of iron cross-section in thermal region on neutron transport
in VVER-1000 mock-up in LR-0 reactor, will be published in Journal of Nuclear
Engineering and Radiation Science.
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14. M. Schulc and B. Tomášik, Rapidity correlations of protons from a fragmented
fireball, Eur. Phys. J. A45 91-97, (2010).

Presentations at international conferences

1. Neutron flux measurements and calculation behind VVER-1000 reactor pressure
vessel simulator placed in LR-0 reactor, Joint International Conference on Mathe-
matics and Computation, Supercomputing in Nuclear Applications and the Monte
Carlo Method, Nashville TN, USA, poster, (2015).

2. Hydrodynamic evolution with energy and momentum feeding during the fireball
expansion, Quark Matter 2014, Darmstadt, Germany, poster, (2014).

3. Stimulation of deconfined medium by multiple hard partons, 13th Zimanyi winter
school on heavy ion physics, Budapest, Hungary, talk, (2013).

4. Response of QGP to two hard partons, Schladming Winter School 2013 - Extreme
QCD in and out of equilibrium, Schladming, Austria, poster, (2013).

5. Response of Quark Gluon Plasma to two hard partons, Quark Matter 2012, Wash-
ington DC, USA, poster (2012).

6. The contribution of hard processes to elliptic flow, 8th Summer school on nuclear
physics, Blagoevgrad, Bulgaria, talk, (2012).

7. Fireball fragmentation and rapidity correlations of protons, Quark Matter 2011,
Annecy, France, poster (2011).

8. Fireball fragmentation and rapidity correlations of protons, 17th Conference of
Czech and Slovak physics, Zilina, Slovakia, talk, proceedings, (2011).

9. Rapidity correlations of protons from fragmented fireball, 10th Zimanyi winter
school on heavy ion physics, Budapest, Hungary, talk (2010).

10. Rapidity correlations of protons from fragmented fireball, TORIC workshop, Vil-
lasimius, Italy, talk, (2010).

104



Bibliography

[1] STAR collaboration, Nuclear Physics A Volume 757, Issues 1-2 , 8 August 2005, Pages
1-27 (BRAHMS), Pages 28-101 (PHOBOS), Pages 102-183 (STAR) and Pages 184-283
(PHENIX).

[2] B.R. Martin and G. Shaw, Particle Physics, Wiley, 2nd edition, 2005.

[3] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[4] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1169 (1977).

[5] E. V. Shuryak, Theory Of Hadronic Plasma, Sov. Phys. JETP 47, 212 (1978).

[6] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature 443, 675 (2006).

[7] Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B568, 73 (2003).

[8] Z. Fodor and S. D. Katz, JHEP 04, 050 (2004).

[9] R. V. Gavai and S. Gupta, Phys. Rev. D71, 114014 (2005).

[10] P. de Forcrand, S. Kim, and O. Philipsen, PoS LAT2007, 178 (2007).

[11] G. S. F. Stephans, J. Phys. G32, S447 (2006).

[12] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007).

[13] A. Laszlo et al., [NA61 Collaboration], arXiv:0709.1867 [nucl-ex], (2007).

[14] D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004).

[15] D. Bailin and A. Love, Phys. Rept. 107, 325 (1984).

[16] S. B. Ruster, V. Werth, M. Buballa, I. A. Shovkovy and D. H. Rischke, Phys. Rev.
D72, 034004 (2005).

[17] D. H. Rischke, M. I. Gorenstein, A. Schafer, H. Stocker and W. Greiner, Phys. Lett.
B278, 19 (1992).

[18] CBM Progress Report, publicly available at http://www.gsi.de/fair/experiments/CBM,
(2009).

[19] http://www.quantumdiaries.org/wp-content/uploads/2011/02/FlowPr.jpg, (2015).

105



[20] http://www.phy.duke.edu/research/NPTheory/QGP/transport/evo.jpg, (2015).

[21] K. Aamodt (ALICE collaboration), Phys. Rev. Lett. vol.105, 252301, (2010).

[22] S. Mrowczynski, Phys. Lett. B 269, 383 (1991).

[23] M. Gyulassy and M. Plumer, Phys. Lett. B 243, 432 (1990).

[24] M. Gyulassy, I. Vitev, and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001).

[25] J. Adams et al., [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003).

[26] R. J. Fries and B. Muller, Eur. Phys. J. C34 S279 (2004).

[27] K. Aamodt et al., (ALICE Collaboration), Phys. Lett. B 696, 30 (2011).

[28] B. Abelev et4 al., (ALICE collaboration), Phys. Rev. Lett. 110 ,082302 (2013).

[29] J. W. Cronin et al., Phys. Rev. D11, 3105 (1975).

[30] S. S. Adler et al., Phys. Rev. Lett. 91, No. 7, 072303, (2003).

[31] S. S. Adler et al., Phys. Rev. Lett., Vol. 94, 232301, (2005).

[32] B. Abelev et4 al., (ALICE collaboration), JHEP 1403 (2014) 013.

[33] B. Abelev et al., [ALICE Collaboration], Phys. Lett. B720, 52-62 (2013).

[34] S. Chatrchyan et al., [CMS Collaboration], Eur. Phys. J. C72, 1945 (2012).

[35] G. Aad et4 al., (ATLAS collaboration), Phys. Lett. B719 220 (2013).

[36] T. Sjostrand, S. Mrenna, and P. Skands, JHEP 05, 026 (2006).

[37] B. Abelev et al, (ALICE collaboration), Phys. Lett. B734, 314–327 (2014).

[38] A. Adare et al., (PHENIX collaboration), Phys. Rev. C84, 054912 (2011).

[39] S. Digal, P. Petreczky and H. Satz, Phys. Rev. D64 094015 (2001).

[40] N. Filipovic, (CMS collaboration), J. Phys. Conf. Series 612 (2015).

[41] W. Reisdorf and H. G. Ritter, Ann. Rev. Nucl. Part. Sci.47, 663 (1997).

[42] S. Voloshin and Y. Zhang Z., Phys. C70, 665 (1996).

[43] L. X. Han, G. L. Ma, Y. G. Ma, X. Z. Cai, J. H. Chen, S. Zhang and C. Zhong,
Phys. Rev. C84, 064907 (2011) .

[44] F. G. Gardim, F. Grassi, M. Luzum and J. Y. Ollitrault, Phys. Rev. C85, 024908
(2012).

[45] H. Niemi, G. S. Denicol, H. Holopainen and P. Huovinen Phys. Rev. C87, 054901
(2013).

106



[46] S. Floerchinger and U. A. Wiedemann, Phys. Rev. C88, 044906 (2013).

[47] S. Floerchinger and U. A. Wiedemann, Phys. Lett. B728, 407-411 (2014).

[48] U. W. Heinz, AIP Conf. Proc. 739, 163 (2005).

[49] Z. Xu, C. Greiner and H. Stocker, J. Phys. G35, 104016 (2008).

[50] A. Adare et al., Phys. Rev. Lett. 98, 162301 (2007).

[51] A. Taranenko, J. Phys. G34, 1069–1072 (2007).

[52] S. A. Voloshin, Nucl.Phys. A715, 379–388 (2003).

[53] D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).

[54] B. Abelev (ALICE collaboration), JHEP 1506 190 (2015).

[55] M. Miller and R. Snellings, 2003, arXiv:nucl-ex/0321008, (2003).

[56] A. Bilandzic, R. Snellings and S. A. Voloshin, Phys.Rev. C83, 044913 (2011) .

[57] M. Luzum and P. Romatschke, Phys. Rev. C78, 034915, (2008).

[58] C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Phys. Rev. C87, 014907, (2013).

[59] B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin and D. H. Rischke, Phys.
Rev. C79, 034902 (2009) .

[60] I. Arsene et al., Nucl. Phys. A757, 1 (2005).

[61] K. Adcox et al., Nucl. Phys. A757, 184 (2005).

[62] B. B. Back et al., Nucl. Phys. A757,28 (2005).

[63] J. Adams et al., Nucl. Phys. A757, 102 (2005).

[64] E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004).

[65] C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 110,
012302 (2013).

[66] I. Muller, Z. Phys. 198, 329 (1967).

[67] W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976).

[68] W. Israel and J. M. Stewart, Phys. Lett. A58, 213 (1976).

[69] W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118 (1979), 341.

[70] M. Grmela and H. C. Ottinger, Phys. Rev. E56 (1997), 6620.

[71] H. C. Ottinger and M. Grmela, Phys. Rev. E56 (1997), 6633.

107



[72] H. C. Ottinger, Phys. Rev. E57 (1998), 1416.

[73] D. A. Teaney, arXiv:0905.2433 [nucl-th], (2009).

[74] C. Eckart, Phys. Rev. 58, 919 (1940).

[75] L. D. Landau and E. M. Lifshitz, Fluid Dynamics, Second Edition, Butterworth-
Heinemann (1987).

[76] S. R. de Groot, W. A. van Leeuwen, Ch. G. van Weert, Relativistic kinetic theory -
Principles and applications (North-Holland, 1980).

[77] L. P. Csernai, Introduction to Relativistic Heavy Ion Collisions, Wiley (1994).

[78] J. M. Stewart, Lecture notes in Physics, 10, Springer-Verlag (1971).

[79] J. M. Stewart, Proc. Roy. Soc. A357, 59 (1977).

[80] P. Huovinen and D. Molnar, Phys. Rev. C79, 014906 (2009).

[81] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Vol.6 of Course of Theoretical
Physics. Butterworth-Heinemann, 2nd ed., Jan., (1987).

[82] V. Schneider et al., J. Comput. Phys. 105, 92 (1993).

[83] U. W. Heinz, H. Song and A. K. Chaudhuri, Phys. Rev. C73, 034904 (2006).

[84] A. K. Chaudhuri, arXiv:0704.0134 [nucl-th], (2007).

[85] A. K. Chaudhuri, arXiv:0801.3180 [nucl-th], (2008).

[86] A. Muronga, Phys. Rev. C76, 014909 (2007).

[87] Comput. Phys. Commun. 185, 3016-3027 (2014).

[88] P. Petreczky, P. Huovinen, Nucl.Phys. A837, 26-53 (2010).

[89] S. Borsanyi et al., J. High Energy Phys. 1011, 077 (2010).

[90] M. Laine, Y Schroder, Phys. Rev. D73, 085009 (2006).

[91] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B.
Petersson, Nucl. Phys. B469, 419 (1996).

[92] A. Bazavov et al., Phys. Rev. D80, 014504 (2009).

[93] F. Cooper and G. Frye, Phys. Rev. D10, 186 (1974).

[94] P. V. Ruuskanen, Acta Phys. Polon. B18, 551 (1987).

[95] D. H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479–512 (1996).

[96] C.W. Misner, K.S. Thorne and J.A. Wheeler, (W.H. Freeman, San Francisco, 1279
p, (1973).

108



[97] M.Chojnacki et al., Comput. Phys. Commun. 183, 746-773, (2012).

[98] S. R. de Groot, W. van Leeuwen, and C. G. van Weert, Relativistic kinetic theory,
Principles and applications. North-Holland, Amsterdam, Jan., (1980).

[99] J. Adams et al., [STAR Collaboration], Phys. Rev. Lett. 92, 112301 (2004).

[100] W. Broniowski and W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001).

[101] V. Begun, W. Florkowski and M. Rybczynski, Phys. Rev. C 90, 014906 (2013).

[102] C. Nonaka and S. A. Bass, Phys. Rev. C75, 014902 (2007).

[103] S. A. Bass and A. Dumitru, Phys. Rev. C61, 064909 (2000).

[104] K. A. Bugaev and M. I. Gorenstein, nucl-th/9903072 (1999).

[105] K. A. Bugaev, Nucl. Phys. A606, 559 (1996).

[106] J.J. Neumann, B. Lavrenchuk, and G. Fai, Heavy Ion Physics 5, 27 (1997).

[107] L. P. Csernai, Z. Lázár, and D. Molnar, Heavy Ion Phys. 5, 467 (1997).

[108] Cs. Anderlik, L. P. Csernai, F. Grassi, Y. Hama, T. Kodama, Zs. Lázár and H.
Stocker, Heavy Ion Phys. 9, 193 (1999).

[109] K. Tamosiunas and L.P. Csernai, Eur. Phys. J. A20, 269 (2004).

[110] P. Braun-Munzinger, K. Redlich and J. Stachel, nucl-th/0304013, (2003), Published
in In Hwa, R.C. (ed.) et al.: Quark gluon plasma 491-599.

[111] W. Florkowski, W. Broniowski and M. Michalec, Acta Phys. Polon. B33 761 (2002).

[112] E. Schnedermann, J. Sollfrank and U.W. Heinz, Phys. Rev. C48, 2462 (1993).

[113] F. Retiere and M.A. Lisa, Phys. Rev. C70, 044907 (2004).

[114] J. Cleymans and K. Redlich, Phys. Rev. C60, 054908 (1999).

[115] F. Becattini et al., Phys. Rev. C64, 024901 (2001).

[116] P. Braun-Munzinger et al., Phys. Lett. B518, 41 (2001).

[117] W. Florkowski, W. Broniowski and P. Bozek, J. Phys. G30, S1321 (2004).

[118] W. Broniowski, A. Baran and W. Florkowski, AIP Conf. Proc. 660, 185 (2003).

[119] A. Kisiel, W. Florkowski and W. Broniowski, Phys. Rev. C73, 064902 (2006).

[120] W. Broniowski et al., Phys. Rev. Lett. 101, 022301 (2008).

[121] R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965).

[122] R. Hagedorn and J. Ranft, Nuovo Cim. Suppl. 6, 169 (1968).

109



[123] R. Hagedorn, Invited talk at NATO Advanced Study Workshop on Hot Hadronic
Matter: Theory and Experiment, Divonne-les-Bains, France, 27 June - 1 July 1994.

[124] W. Broniowski and W. Florkowski, Phys. Lett. B490, 223 (2000).

[125] W. Broniowski, W. Florkowski and L.Y. Glozman, Phys. Rev. D70, 117503 (2004).

[126] M. Petran, J. Letessier, J. Rafelski, G. Torrieri, Comput. Phys. Commun. 185,
2056-2079 (2014).

[127] S. Wheaton and J. Cleymans, Comput. Phys. Commun. 180, 84-106 (2009).

[128] Karsch, F. et al. Eur. Phys. J. C29, (2003).

[129] J. Cleymans and H. Satz, Z. Phys. C57, 135 (1993).

[130] E. Suhonen and S. Sohlo, J. Phys. G13, 1487 (1987); D. H. Rischke, M. I. Gorenstein,
H. Stocker and W. Greiner, Z. Phys. C51, 4 85 (1991).

[131] P. Braun-Munzinger, I. Heppe and J. Stachel, Phys. Lett. B465, 15 (1999).

[132] A. Kisiel, T Taluc, W. Broniowski, W. Florkowski, Comput. Phys. Commun. 174,
669-687 (2006).

[133] B. Tomasik, Comput. Phys. Commun. 180, 1642 (2009) .

[134] X.F. Luo et al., J. Phys. G37, 094061 (2010).

[135] P. Bozek and I. Wyskiel, Phys. Rev. C81, 054902 (2010).

[136] M. M. Aggarwal et al., (STAR collaboration), Phys. Rev. Lett. 105, 022302 (2010).

[137] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A389, 81 (1997),
(http://root.cern.ch).

[138] P. Bozek and I. Wyskiel, Phys. Rev. C79, 044916 (2009).

[139] E. Molnar, H. Niemi, D.H. Rischke, Eur. Phys. J. C65, 615-635 (2010).

[140] J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).

[141] Schneider, V., Katscher, V., Rischke, D.H., Waldhauser, B., Marhun, J.A., and
Munz, C.-D.,J. Comput. Phys. 105, 92–107 (1993).

[142] A. Kurganov, E. Tadmor, Journal of Computational Physics 160, 241-282 (2000).

[143] Nessyahu, H. and E. Tadmor, J. Comp. Phys. 87, 408–463 (1990).

[144] J. P. Boris, Naval Research Laboratory, NRL Memorandum Report 3237 (1976).

[145] J. P. Boris, A. M. Landsberg, E. S. Oran, J. H. Gardner, Naval Research Laboratory,
(1993).

110



[146] G. Toth and D. Odstrcil, J. Comput. Phys. 128, 82 (1996).

[147] D. L. Book, C. Li, G. Patnaik and F. F. Grinstein, J. Sci. Comput. 6, 323 (1991).

[148] D. L. Book, J. P. Boris and K. Hain, J. Comput. Phys. 18, 248 (1975).

[149] C. R. DeVore, J. Comput. Phys. 92, 142 (1991).

[150] D.H. Rischke, S. Bernard, J.A. Maruhn, Nucl. Phys. A595, 346 (1995).

[151] R. Baier, A. H. Mueller, D. Schiff and D. T. Son, Phys. Lett. B502, 51 (2001).

[152] M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part. Sci.
57, 205-243 (2007).

[153] T. Hirano and Y. NaraF, Nucl. Phys. A743, 305 (2004).

[154] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Phys. Lett. B636, 299
(2006).

[155] F. Gelis, Int.J.Mod.Phys. A28, 1330001 (2013).

[156] H. J. Drescher, A. Dumitru, A. Hayashigaki, Y. Nara, Phys. Rev. C74,044905 (2006).

[157] H. J. Drescher, Y. Nara, Phys. Rev. C76, 041903 (2007).

[158] E. Iancu, R. Venugopalan, arXiv:hep-ph/0303204, (2003).

[159] A. Dumitru, Y. Nara, Phys. Rev. C85, 034907, (2012).

[160] L. P. Csernai, Y. Cheng, S. Horvat, V. Magas, D. Strottman and M. Zetenyi, J.
Phys. G36, 064032 (2009).

[161] K. J. Eskola, H. Honkanen, H. Niemi, P. V. Ruuskanen and S. S. Rasanen, Phys.
Rev. C72, 044904 (2005).

[162] Y. Hama, T. Kodama and O. J. Socolowski, Braz. J. Phys. 35, 24 (2005).

[163] R. P. G. Andrade, F. Grassi, Y. Hama, T. Kodama and W. L. Qian, Phys. Rev.
Lett. 101, 112301 (2008).

[164] T. Hirano and K. Tsuda, Phys. Rev. C66, 054905 (2002) .

[165] B. Schenke, S. Jeon and C. Gale, Phys. Rev. C85, 024901 (2011).

[166] H. Petersen, G.-Y. Qin, S. A. Bass and B. Muller, Phys. Rev. C82, 041901 (2010).

[167] K. Werner, I. Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, Phys.
Rev. C85, 064907 (2012).

[168] A. Bohr and B. R. Mottelson, ”Nuclear structure”, (Benjamin, New York, 1969).

[169] P.Petrov for the ALICE collaboration, Acta Phys. Polon. Supp. 5, 263-270 (2012).

111



[170] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111, 461 (1976).

[171] P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola and K. Tuominen, Nucl. Phys.
A696, 197 (2001).

[172] D. Kharzeev and N. Nardi, Phys. Lett. B507, 121 (2001).

[173] R. J. Glauber, in ”Lectures on theoretical physics”, Vol.1, W.E. Brittin, L.G. Dun-
ham eds., Interscience, NY, 1959.

[174] C. Y. Wong, ”Introduction to high-energy heavy-ion collisions”, World Scientific,
Singapore, 1994.

[175] T.Hirano, Phys. Rev., C65, 011901 .

[176] T. Hirano and K. Tsuda, Phys. Rev. C66, 054905 (2002).

[177] T. Hirano, K. Morita, S. Muroya, and C. Nonaka, Phys. Rev. C65, 061902 (2002).

[178] T. Ishii and S. Muroya, Phys. Rev. D46, 5156 (1992).

[179] K. Morita, S. Muroya, H. Nakamura, and C. Nonaka, Phys. Rev., C61, 034904
(2000).

[180] K. Morita, S. Muroya, C. Nonaka, and T. Hirano, Phys. Rev., C66, 054904 (2002).

[181] B. Schenke, S. Jeon and C. Gale, Phys.Lett. B702 59 (2011).
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