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Abstract

This thesis deals with the study of interactions of antihadrons (H̄) with atomic nu-

clei. Nuclei are described within the framework of the Relativistic Mean-Field model

and the antihadron�nucleus interactions are represented either by a phenomenologi-

cal complex optical potential or by an optical potential constructed from microscopic

models of antihadron�nucleon interactions. We explored the possibility of the exis-

tence of H̄-nuclear quasi-bound states. We performed self-consistent calculations of

the antiproton p̄, antikaon K−, and antihyperons Λ̄, Σ̄, Ξ̄ bound states in selected

nuclei. We found that all antihadrons feel a fairly attractive potential inside a nu-

cleus. In the case of p̄ and K−, we took into account their strong absorption in the

nuclear medium as well. We considered all possible e�ects which could lead to rela-

tively long p̄ and K− lifetimes in the medium, including energy dependence of the

optical potential and phase space suppression for the decay products. However, our

self-consistent calculations revealed that the p̄- and K−-nuclear quasi-bound states,

if they ever exist, have sizable widths, comparable with or larger than their binding

energies. This �nding disproves the conjectures about the existence of narrow p̄ and

K− bound states in many-body nuclear systems and disfavors their experimental

observation.





Abstrakt

Táto práca sa zaoberá ²túdiom interakcií antihadrónov (H̄) s atómovými jadrami.

Jadrá popisujeme v rámci relativistickej teórie stredných polí a antihadrón�jadrové

interakcie sú sprostredkované bu¤ prostredníctvom fenomenologického optického po-

tenciálu alebo optickým potenciálom kon²truovaným z mikroskopických modelov

antihadrón�nukleónových interakcií. Skúmali sme hlavne moºnos´ existencie kvazi-

vazaných stavov H̄ v jadrách. Previedli sme selfkonzistentné výpo£ty viazaných

stavov antiprotónu p̄, antikaónu K−, a antihyperónov Λ̄, Σ̄, Ξ̄ vo vybraných ató-

mových jadrách. Behom na²ich výpo£tov sme zistili, ºe v²etky uvaºované anti-

hadróny cítia vo vnútri jadra zna£ne prí´aºlivý potenciál. V prípade p̄ a K− sme

zahrnuli aj ich silnú absorpciu v jadrovom prostredí. Vzali sme do úvahy v²etky

moºné efekty, ktoré by mohli vies´ k relatívne dlhej dobe ºivota p̄ a K− v jadrovom

prostredí, ako je energetická závislos´ optického potenciálu a potla£enie fázového

priestoru pre rozpadové produkty. Av²ak na²e selfkonzistentné výpo£ty odhalili,

ºe p̄ a K− kvazivazané stavy v jadrách, pokia© vôbec existujú, majú zna£né ²írky,

ktoré sú porovnate©né alebo vä£²ie ako ich väzbové enegie. Toto zistenie vyvracia

domnienky o moºnej existencii úzkych viazaných stavoch p̄ a K− v jadrových mno-

ho£asticových systémoch a je tak nepriaznivé pre ich pozorovanie v experimentoch.
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Preface

This thesis is devoted to the study of interactions of antihadrons, namely the

antiproton p̄, antihyperons Λ̄, Σ̄, Ξ̄, and the antikaon K−, with atomic nuclei. It

is a topical issue which provides us with information about the behavior of the

antihadron H̄ in the nuclear medium, such as its absorption and in-medium mod-

i�cations. It may serve as a test of models of (anti)hadron�hadron interactions

as well as models for nuclear structure calculations. Moreover, it may give us

information about symmetries in nature, e.g., spin symmetry, G-parity (p̄), chi-

ral symmetry (K−), and charge symmetry (hyperons in nuclei). Interactions be-

tween (anti)hadrons and nucleon(s) have been object of increased interest in recent

years. Many scienti�c papers have been written about this issue and numerous in-

ternational conferences have been held (e.g., HYP2015, LEAP2016, MESON2016,

HADRON2017, EXA2017).

The thesis is organized as follows: In Chapter 1, an introduction to the topic

is given, including physical motivation and an overview of the current status of

the theoretical and experimental research in this �eld of physics. Chapter 2 con-

tains a detailed description of the methodology used in this work: the Relativistic

Mean-Field model for nuclear structure calculations and the applied H̄N interaction

models. The values of parameters for various RMF models used in our calculations

are given in Appendix A. A selection of the most important results of the study is

presented in Chapter 3. First, we focus on the antibaryon (antihyperons and antipro-

ton) behavior inside a nucleus without considering its absorption in the medium.

We explore the dynamical response of the nuclear core to the extra antibaryon and

discuss model dependence of the calculations. Then, we present results of the study

of the antiproton�nucleus quasi-bound states in various nuclei using a phenomeno-

logical as well as microscopic optical potential, including the p̄ annihilation in the

nuclear medium. We consider all possible in-medium e�ects which could modify the

p̄ lifetime in nuclei. We evaluate the corresponding p̄ widths self-consistently. Fi-

nally, we study the antikaon�nucleus quasi-bound states using an optical potential

19



CONTENTS

derived from state-of-the-art meson�baryon interaction models. We compare the

predictions for K− binding energies and widths in all models considered and evalu-

ate the e�ect of K− multinucleon interactions on calculated observables. The results

presented in this chapter represent highlights of our study; more results including

detailed discussion can be found in our publications which are attached in Appendix

B for completeness. A summary of the main �ndings and accomplishments of this

work is given in Chapter 4, followed by an outlook on further advancement and

future research.

20



Chapter 1

Introduction

The study of interactions of (anti)hadrons with nucleons and the nuclear medium

at low and intermediate energies plays an important role in contemporary physics

since it extends our knowledge of the basic laws and symmetries in nature. It allows,

in principle, to establish connection between phenomena observed in (anti)hadronic

reactions and underlying dynamics of QCD, the fundamental theory of strong in-

teractions. The study of (anti)hadron interactions with the medium has not only

implications for hadron and nuclear physics (including heavy-ion collisions) but also

for astrophysics. In this chapter, we give a brief overview of the physics of antipro-

tons, antikaons and antihyperons, and their interactions with the nuclear medium

at low energies.

1.1 Antiproton

The antiproton, the antiparticle of the proton, was discovered by Segré and

Chamberlain at the Bevatron accelerator at Berkeley in 1955 [1] (see Fig. 1.1).

Its observation supported the famous Dirac theory about existence of antiparti-

cles. Since then the p̄�nucleon and p̄�nucleus interactions have been widely studied

in many experiments. In the 1960's, the p̄ annihilation was explored by stopping

antiprotons in hydrogen- and deuterium-�lled bubble chambers at Brookhaven Na-

tional Laboratory (BNL) and CERN [2]. With the advent of the LEAR facility

at CERN, which provided a high quality antiproton beam in the 80's, many ded-

icated experiments with p̄ beams were performed [3]. The p̄ elastic and inelastic

scattering o� nuclei and proton knock-out reactions were analyzed in order to get

more information about the p̄�nucleus potential. The measurements of the di�er-

ential cross-section for the 48.6 MeV antiprotons scattered elastically o� 12C in the
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INTRODUCTION

Figure 1.1: Antiproton discovery at Berkeley National Laboratory. Figure adapted
from Ref. [5].

PS184 experiment [4] were in favor of an optical potential Vopt with a shallow attrac-

tive ReVopt with the depth ≤ 70 MeV and an absorptive part ImVopt ≥ 2ReVopt [6].

Valuable information about the p̄�nucleus optical potential has been provided by an-

tiprotonic atoms [7, 8]. The antiprotonic atom is a kind of an exotic atom which is

created whenever an electron in an atomic orbit is replaced by a negatively charged

(anti)hadron. As the (anti)hadron (e.g. p̄, π−,Σ−, K−) is much heavier than the

electron it gets considerably closer to the nucleus. Consequently, it interacts with

the atomic nucleus not only electromagnetically but also by strong interaction. The

strong interaction causes energy shifts (ε) and widths (Γ) of atomic levels, which are

measured by experiment. In the analysis of Ref. [9], 107 data points of X-ray and

radiochemical data were �tted by an optical potential in a `tρ' form with various

shapes of the nuclear density distribution. The global �ts led to a potential, the

imaginary part of which outweighs the attractive real part. Unfortunately, the p̄ op-

tical potential could be determined reliably only at radii where the nuclear density

reaches just a few per cent of the central nuclear density [7, 8]. When extrapolated

into the nuclear interior the potential has attractive real part about 110 MeV deep

and the absorptive imaginary part about 160 MeV deep [9]. On the other hand, the

p̄ production in proton�nucleus and nucleus�nucleus collisions probes the p̄ interac-

tion (under di�erent kinematical conditions) deep inside the medium and the data

can be well described by ReVopt ∼ − (100 - 200) MeV [10�12].

The antiproton annihilation was widely studied in experiments at the LEAR
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INTRODUCTION

facility and at KEK (see [13] and references therein). The Crystal Barrel experiment

explored p̄p and p̄d annihilation at rest and in �ight [14]. The Obelix experiment

focused on p̄ and n̄ interactions at rest and very low momenta. Experiments at KEK

aimed to measure frequencies of p̄ annihilation into two narrow mesons [15,16].

The indications of relatively deep p̄ potential in the medium led to conjectures

about the possibility of the existence of antiproton�nucleon or p̄�nucleus bound

states [17, 18]. Signals for narrow p̄ bound states were searched for in experiments

at the LEAR facility [6] and at KEK [19�21]. However, no convincing evidence for

such states was obtained [22].

Theoretical considerations about the p̄�nucleus potential are based on symme-

tries between NN and N̄N interactions. In the framework of the meson-exchange

theory, the long- and medium-range NN and N̄N potentials are related to each

other by the G-parity transformation [23]. The p̄�nucleus potential derived using

the G-parity transformation is strongly attractive and has no repulsive core [24],

which suggests that the antiproton should be bound deeply in the nucleus [25].

However, the p̄ annihilation plays a crucial role in the p̄N and p̄�nucleus interac-

tions. It has a major contribution in the short-range part of the interaction and has

to be taken into account thoroughly.

The above considerations about a deep p̄�nucleus potential based on G-parity

have stimulated many theoretical calculations [26�38]. In Refs. [26,27], the G-parity

transformed p̄ coupling constants scaled by factor ξ ∈ (0, 1〉 were used to construct

the p̄�nucleus potential within phenomenological Relativistic Mean-Field (RMF)

approach. The potential was then applied in calculations of p̄ bound states in 16O

and 208Pb, including the polarization of the nuclear core due to p̄. They revealed

large compression of a nucleus caused by the p̄ with central density reaching values

about 2 - 4 times the saturation density. The p̄ binding energy reached up to

∼ 1000 MeV for the strongly attractive p̄ potential constructed using the G-parity

transformation. Nuclear systems with several antiprotons were studied as well. The

authors of Ref. [27] also studied the p̄ annihilation in the nuclear medium. The p̄

absorption in a dense environment should be a prompt process, however, when the

antiproton is deeply bound in a nucleus, the phase space available for annihilation

products could be considerably reduced. Consequently, many annihilation channels

are suppressed or simply closed in the medium. Based on these assumptions the p̄

lifetime in the medium was estimated to 2 - 20 fm/c [27].

The RMF model was employed to study the spin symmetry of antinucleon spec-

tra in nuclei as well [32�34]. It was found that the spin symmetry is perfectly
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INTRODUCTION

conserved when the real part of the antinucleon potential derived using the G-parity

transformation is adopted in the calculations.

Since the p̄ causes signi�cant polarization of the nuclear core, the possibility

of cold nuclear compression due to p̄ has been explored [26, 28, 31]. The Giessen

Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model [39] was used to calculate

the time required for the formation of a compressed p̄�nucleus system. The time

needed to reach a compressed nucleus with the central density of order (2 - 3)ρ0 was

found to be about 4 - 10 fm, which is comparable with the estimated lifetime of p̄

in a nucleus [27]. It was also demonstrated, that the p̄ annihilation could lead to

multifragmentation of the nucleus which might serve as a signature of the formation

of a p̄�nucleus bound state.

The GiBUU model was also applied to study the dynamics of the p̄�nucleus

interaction in a wide range of p̄ momenta [29, 31]. It was used to �t the KEK

data [40] on p̄ absorption cross sections at plab = 470 - 880 MeV/c in order to �x

the value of the scaling factor ξ for p̄ coupling constants. The analysis yielded value

ξ = 0.22 which corresponds to ReVopt ' −150 MeV at saturation density. Fits to

the antiproton atom data gave a similar value of the scaling factor ξ = 0.2 - 0.3 [9].

The value of the scaling factor ξ represents a signi�cant departure from G-parity,

which could be attributed to various many-body e�ects in the medium and p̄ absorp-

tion. However, it was argued recently by Gaitanos et al. [36,37] that this deviation

is due to missing momentum dependence of the mean �elds in the standard RMF

approach. They developed a non-linear derivative (NLD) model which accounts for

the momentum and density dependence of the nuclear mean �elds. They showed

that the momentum dependence reduces the G-parity motivated p̄ optical potential

and yields its depth in agreement with available experimental data [35]. It was also

demonstrated that the standard RMF approach with p̄�meson couplings scaled by

factor ξ = 0.2 - 0.3 reproduces the NLD results in average [38].

Though much e�ort has been devoted to the study of the p̄�nucleus interaction

within the RMF model, fully self-consistent calculations (including p̄ absorption) of p̄

bound states in various nuclei with a p̄ optical potential consistent with experimental

data have been missing.

Besides purely phenomenological approaches to the p̄N and p̄�nucleus interac-

tion, there exist microscopic models of the N̄N interaction as well. There are N̄N

potential models based on boson exchange, such as the Paris N̄N potential [41],

Bonn N̄N potential [42] or Zhou-Timmermans model [43]. Moreover, N̄N inter-

action models based on e�ective �eld theory (EFT) are being developed [44, 45].
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Recently, the 2009 version of the Paris N̄N potential [41] was confronted by Fried-

man et al. with the p̄-atom data and antinucleon interactions with nuclei up to

400 MeV/c, including elastic scattering and annihilation cross sections [46]. The

analysis showed that higher partial waves have to be considered in order to describe

the antiproton atom data well. It is to be noted that none of the microscopic models

has been employed in the calculations of p̄-nuclear bound states so far. Such calcu-

lations would supplement the phenomenological approaches used before and help to

improve our knowledge of in-medium p̄ interactions.

The research in p̄ physics has gained renewed interest in the last decades. Re-

cently, the data on p̄ annihilation on 4He from the Obelix spectrometer at CERN

were analyzed [47, 48] in order to explore p̄ annihilation with two and more nu-

cleons [49, 50]. The possibility of formation of cold quark-gluon plasma or highly

excited hadronic gas in such reaction was studied. Next, the BESIII experiment

detected a near-threshold enhancement in the p̄p mass spectrum in the J/Ψ decay

events. The data supports the existence of either a p̄p molecule-like state or a bound

state [51]. It is to be noted that one of the observed resonant states in the BESIII

experiment, X(1835), was described by the 2009 version of the Paris N̄N potential,

assuming that it originates from a p̄p bound state [41,51].

New experimental facilities with p̄ beams are being built. Currently, the FAIR

facility in Darmstadt is under construction [52]. Here, physicists plan to collide

antiproton beams of momenta 1 - 15 GeV/c with nuclei in order to study the hadron

structure and their propagation in the nuclear medium [53]. These experiments are

expected to provide us with new information about the p̄�nucleus potential and p̄

annihilation in the nuclear medium. Another experiments are planned in Japan at

J-PARC facility where antiprotons from a secondary beam will be used in nuclear

and particle physics experiments [54].

1.2 Antikaon

The detection of kaons and hyperons in cosmic rays in 1947 [55] started a new era

in particle physics. The study of their lifetime led to the introduction of a new degree

of freedom denoted by quantum number `strangeness' which is not conserved in weak

interactions. Further investigations of weak decays of kaons resulted in the discovery

of CP violation in neutral kaon oscillations [56]. The attempts to �nd relations

between baryons and mesons according to their charge and strangeness led to the

idea that all (anti)hadrons are in fact composed of more elementary constituents,
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Figure 1.2: The kinetic energy spectra of K+/K− in Ni+Ni collisions. The dotted
histogram denotes the result without kaon medium e�ect and the solid histogram
accounts for medium e�ects. The experimental data are from the KaoS Collabora-
tion [57].

quarks. Throughout the following years the theory of strong interactions, quantum

chromodynamics (QCD), has been developed. At present, the interaction of the

kaon with nucleons and its properties in the medium are connected with one of

the basic symmetries in the nature � chiral symmetry of QCD. The kaon has

been identi�ed as a pseudo-Nambu-Goldstone bosons of spontaneously broken chiral

SU(3)R× SU(3)L symmetry [58].

In the 80's, Kaplan and Nelson [59, 60] proposed the existence of kaon conden-

sate in dense nuclear matter. Since then, the kaon properties in the medium have

been widely studied, see e.g. [61�63]. Of special interest is the subthreshold kaon

production in heavy-ion collisions which is sensitive to kaon properties in nuclear

matter. The KaoS data showed that the measuredK+ toK− ratio is consistent with

unity, which is the indication of kaon in-medium modi�cations [57] (see Fig. 1.2).

The knowledge of the kaon properties in the medium has consequences also in as-

trophysics. According to some scenarios, kaons are likely to appear in the inner core

of a neutron star [64] (see also Fig. 1.3).

The study of interactions of (anti)kaons with nucleons and the nuclear medium
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INTRODUCTION

represents an important issue in current hadron physics. The starting point is the

knowledge of (anti)kaon�nucleon interaction (for a comprehensive review see [65]).

It is known that the K+�nucleon as well as the K+�nucleus interaction is weakly re-

pulsive, see e.g. [8]. The situation with the K−�nucleon interaction is di�erent. The

real part of the free K−p scattering amplitude at and above threshold is repulsive

based on the low-energy scattering and reaction data [66] and SIDDHARTA data on

K− hydrogen [67]. However, the K̄N interaction in the I = 0 channel is strongly at-

tractive below threshold. The experimental information about the attractive nature

of the subthreshold K−N interaction comes from analyses of K− atom data [7, 8],

the existence of the resonance Λ(1405), considered an I = 0 K̄N quasi-bound state

embedded in the resonant πΣ continuum [68, 69], and enhanced K− production in

heavy-ion collisions in the KaoS experiment at GSI [70�72].

The K− atoms represent a unique probe of the K−�nucleus potential at low

energies and densities. The data consist of 65 energy-level shift, widths and tran-

sition yields, covering wide range of nuclei from kaonic hydrogen up to uranium.

Global �ts to the data using a phenomenological optical potential in a `tρ' form [7]

or potentials derived within the RMF approach yield real part of the K−�nucleus

potential fairly deep, about ∼ 100 - 200 MeV when extrapolated to the satura-

tion density [73�75]. The absorptive part of these phenomenological potentials

ImVK−(ρ0) ∼ −(60 - 80) MeV.

The existence of the resonance Λ(1405), which lies 27 MeV below the K̄N thresh-

old, was �rst predicted by Dalitz et al. [76, 77] within a phenomenological study of

K̄N -πΣ coupled channels. Later, the attractive nature of the K̄N interaction in

this region was con�rmed by Jülich meson�exchange model [78]. The precise de-

termination of the structure of Λ(1405) is closely related to the K̄N interaction

below threshold. At present, there are still several theoretical explanations of its

inner structure. Currently, the most accepted models view the Λ(1405) as a meson�

baryon molecule [68,69]. In this picture, the K̄N channel couples strongly to the πΣ

channel and strong K− absorption in nuclear matter can thus be expected. Other

models consider Λ(1405) as a standard baryon with three quarks [79] or even a

pentaquark [80].

The state-of-the-art theoretical framework for meson�baryon interactions is closely

related to chiral perturbation theory (χPT) which was successfully applied to the

description of the pion�nucleon interaction in the SU(2) sector (see e.g. Ref. [81]

for a comprehensive overview). The existence of the Λ(1405) resonance near thresh-

old indicates strong nonperturbative dynamics of the K̄N interaction, which does
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not allow direct application of χPT. Therefore, the K̄N interaction near thresh-

old is described within the chiral SU(3) nonperturbative coupled-channel approach

where resummation techniques based on the Lippmann�Schwinger [82,83] or Bethe�

Salpeter equation [84�89] are used. Within these chirally-motivated coupled-channel

models, the Λ(1405) is generated dynamically as a two-pole structure assigned to

the K̄N and πΣ channels [90, 91]. Parameters of these models are �tted to avail-

able low-energy K−N observables, such as the K−p branching ratios [92, 93], K−p

scattering and reaction cross sections [66, 94, 95] and the 1s energy shift and width

from kaonic hydrogen from SIDDHARTA experiment [67]. These models yield in-

medium K− potential shallower than phenomenological approaches, ReVK−(ρ0) ∼
−(50 - 100) MeV [96�99].

The fact that the K−N interaction is attractive in the subthreshold region has

stimulated recently theoretical and experimental searches for K− bound states in

few-body systems as well as possible bound states of K− in heavier nuclei. The

relatively deeply bound K− states in few-body systems, bound by ≈ 100 MeV,

were suggested by Akaishi and Yamazaki [100]. For such deeply bound K− the

decay mode K−N → πΣ would be kinematically forbidden which could lead to the

existence of narrowK− bound states. Since then, many theoretical calculations have

been devoted to calculations of K− bound states in the lightest nuclear systems,

K̄NN [100�104] and K̄NNN [105, 106]. The theoretical calculations are based

on various methods, such as Fadeev equations with coupled channels [102�104] or

variational methods [105, 107], in which phenomenological or chiral K− potentials

are used. All the theoretical calculations agree that the K−pp bound state exists,

however, they di�er in predictions of its binding energy and width.

The experimental situation regarding K− bound states is unsettled as well: sev-

eral candidates for the K−pp bound state were reported by the FINUDA collab-

oration (Frascati) [108] or in analyses of the experiments OBELIX (CERN) [109]

and DISTO (Saclay) [110]. All experimental results di�er from each other and,

moreover, the measured K− binding energies and widths are far from all theoretical

predictions. Therefore, new experiments are being planned and performed by the

HADES [111] and LEPS [112] collaborations, and in the J-PARC E15 [113] and E27

experiments [114].

The possibility of K− quasi-bound states in many-body nuclear systems was

studied extensively as well. It is still not resolved if such K− quasi-bound states

could be directly observed in experiment. The calculations ofK− bound in 12C up to
208Pb were performed within the RMF approach [115�120] including K− absorption
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via a phenomenological imaginary potential in a tρ form �tted to K− atom data.

The authors of Refs. [117�119] took into account the polarization of the nuclear core

due to K−, phase space suppression for annihilation products and, moreover, they

took into account the K− absorption on two nucleons by adding a phenomenological

ρ2 term. Their calculations yieldedK− binding energies BK− ≥ 100 MeV and widths

ΓK− ≈ 50 - 100 MeV. The core polarization due to K− was found negligible. Nuclei

containing several antikaons were calculated within the RMF model [117�119,121] as

well as chiral approach [122�124] in order to study the onset of kaon condensation in

a dense environment. The results suggest that the nuclear density reaches (2 - 3)ρ0

where ρ0 is the nuclear matter density and the K− binding energy saturates with

increasing number of K− below 200 MeV. It is thus unlikely that kaon condensation

occurs in strong-interaction self-bound strange hadronic matter [117�119].

Calculations based on chiral meson�baryon interaction models predict much shal-

lower K−�nucleus potential, about 50 - 100 MeV deep at ρ0 [125�128]. In these cal-

culations, the medium modi�cation of K−N amplitudes and self-consistent scheme

for treating energy dependence of the amplitudes were taken into account. The

chiral models yield considerably smaller K− widths (up to ∼ 40 MeV) than the phe-

nomenological approach [115,116]. It is due to the fact that the chiral models include

only the K−N → πΣ conversion mode which becomes substantially suppressed in

the medium. However, it is necessary to include K−NN → Y N (Y = Σ,Λ) con-

version modes which become important in the medium. In Refs. [126�128], a phe-

nomenological term representing K− absorption on two nucleons was added to the

chiral K− single-nucleon potential. It was found that the two nucleon absorption

contributes signi�cantly to the K− widths which then become comparable with the

corresponding binding energies. However, these studies were performed only with

one particular meson�baryon interaction model. Moreover, the K− multinucleon

processes should be taken into account more thoroughly, namely they contribute to

the real part of theK− optical potential as well. Recently, Sekihara et al. [129] evalu-

ated the ratio of mesonic to nonmesonic K− absorption within the chiral approach,

however, it is not compatible with the K− absorption data [130�132]. A proper

chiral model for K− interactions including multinucleon processes is still missing.

Recently, Friedman and Gal [133] confronted all available meson�baryon interaction

models with kaonic atom data and K− single-nucleon absorption fractions from bub-

ble chamber experiments. Moreover, the single-nucleon K− potential derived from

a chirally-motivated model was supplemented by a phenomenological term repre-

senting the K− multinucleon processes. The parameters of the phenomenological
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potential were �tted for each of the chiral model separately. Calculations of K−

bound states in many-body systems within all available chiral models including the

K− multinucleon interactions of Ref. [133] have been in high demand.

1.3 Antihyperons

Hyperons and antihyperons are (anti)baryons with non-zero strangeness. A hy-

peron (Λ, Σ, Ξ) embedded in a nucleus represents a suitable tool to probe the

nuclear interior since it is not restricted by the Pauli principle. Hypernuclei (nuclei

containing one or more hyperons) have been widely studied since the 80's by several

experimental facilities, e.g., CERN, BNL, KEK or FINUDA (Italy). At present,

there are still ongoing experiments at J-PARC (Japan), MAMI and GSI (Germany)

or in J-LAB (USA). They provide valuable information about baryon�baryon inter-

actions in the nuclear medium, nuclear structure, as well as weak interaction [134].

The knowledge of hyperon�nucleon and hyperon�hyperon interactions has impli-

cations for astrophysics. In a neutron star, the occurrence of hyperons emerges

quite naturally at nuclear densities larger than about twice the nuclear density (see

Fig. 1.3). However, the hyperonic equation of state (EOS) is expected to be very

soft to explain recent observations of massive neutron stars with about twice the

solar mass [135, 136]. This inconsistency is referred to as the `hyperon puzzle'.

Currently, many authors present hyperonic EOS's including repulsive three baryon

forces which are then su�ciently sti� to stabilize two solar mass neutron star (see

e.g. Refs. [137�140]). It seems that our incomplete understanding of the underlying

baryon�baryon and even more subtle multi-body interactions in baryonic systems is

the most probable reason for the hyperon puzzle [141�143].

There is rather limited amount of data on the hyperon�nucleon interaction �

there are only ∼ 600 low-momentum ΛN and ΣN scattering events, and almost no

data on ΞN scattering [144]. The interaction of Λ and Ξ hyperons with nucleon(s)

is attractive enough to support their binding in nuclei. The range of experimentally

observed Λ hypernuclei is quite broad. So far, about 30 species have been observed,

starting from the lightest hypernuclear system 3
ΛH up to the heavy hypernuclei 208

Λ Pb

and 209
Λ Bi. Moreover, three nuclear systems with two Λ hyperons have been observed:

6
ΛΛHe [145], 10

ΛΛBe [146] and 13
ΛΛB [147], which provided us with unique information

about the ΛΛ interaction. Recently, the existence of the Ξ hypernucleus 14
Ξ N has been

con�rmed [148]. The Σ�nucleus optical potential is repulsive in the nuclear interior

which does not support Σ-hypernuclear bound states, except the light hypernucleus
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Figure 1.3: Conjectures about inner structure of a neutron star. Figure adapted
from Ref. [150].

4
ΣHe [149].

Hyperon�antihyperon pairs are produced in p̄p, p̄�nucleus or nucleus�nucleus

collisions. In general, the production of strangeness in nuclear collisions serves as

a signal for the formation of quark-gluon plasma and represents an excellent tool

to study QCD in the con�nement regime [151, 152]. Moreover, quite recently the

formation of antihypernuclei 3
Λ̄
H̄ and 4

Λ̄
H̄e was detected in heavy-ion collisions at

RHIC (STAR) [153] and CERN (ALICE) [154]. The comparison of measured masses

and lifetimes of antihypernuclei with those of hypernuclei is important for testing

CPT symmetry in nature and may provide information about baryon�antibaryon

asymmetry in the universe.

The antihyperon�nucleon (Ȳ N) interaction is much less known due to lack of

experimental data. Few theoretical conjectures about the Ȳ N interaction have ap-

peared [155,156], however, a proper microscopic model is missing. As in the p̄ case,

theoretical predictions based on the G-parity transformation can be made for the

antihyperon�nucleus potential. In Ref. [27], the Λ̄�nucleus potential was constructed

within the RMF using the G-parity transformation of the Λ�nucleus potential. The

calculations of Λ̄ bound states in selected nuclei were performed. It was found that

Λ̄ is deeply bound (∼ 600 MeV) inside a nucleus. The polarization of the nuclear

core due to Λ̄ was found to be less pronounced than in the case of p̄ but still signi�-

cant. The lifetime of Λ̄ in the nuclear medium was discussed as well. Since the kaon

which is present in the lowest mass Λ̄N annihilation channel is much heavier than
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the pion, the phase space suppression for the annihilation products is expected to

be more pronounced than in the case of p̄ [27].

The authors of Ref. [157] applied the RMF approach with Λ̄ coupling constants

scaled by factor ξ = 0.3 to construct the Λ̄�nucleus potential. Subsequently, they

performed calculations of Λ̄ bound states in various nuclei without considering the

Λ̄ absorption and found that spin symmetry is conserved in the Λ̄ spectra.

It is desirable to study also Σ̄� and Ξ̄�nucleus interactions, either within the

RMF model using properly scaled G-parity transformed hyperon�meson couplings

or within microscopic models of Ȳ N interaction. The antihyperon absorption in the

nuclear medium should be taken into account as well.

In the forthcoming experiments at the FAIR facility, hyperon�antihyperon pairs

will be produced in p̄�nucleus interactions [52]. The measurement of transverse mo-

mentum asymmetry is expected to yield information about the depth of in-medium

antihyperon potentials [158]. This would enable construction of more sophisticated

Ȳ �nucleus interaction models.

The above overview demonstrates that despite considerable progress in this �eld

of physics, there are still problems which remain unsolved. The present thesis is

devoted to the study of selected issues in this area, aiming to contribute, at least

partly, to their solution.
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Methodology

Our work is concerned with the study of interactions of antihadrons (H̄ =

p̄, Λ̄, Σ̄, Ξ̄ and K−) with nuclear many-body systems in which the mean-�eld concept

is applicable. For the description of the nuclear density distribution ρ and the nu-

clear core itself we employ the Relativistic Mean-Field approach which has proved

to be successful in calculations of nuclear structure as well as nuclear dynamics. The

H̄�nucleus interaction is described by a complex optical potential constructed either

within the RMF phenomenology or using microscopic models.

First, we derive the real part of an H̄�nucleus potential within the RMF ap-

proach using the G-parity motivated coupling constants. The imaginary part of

the potential which covers the H̄ absorption inside a nucleus is adopted from a

phenomenological optical potential �tted to available experimental data.

Next, the H̄ optical potential is constructed using scattering amplitudes derived

from microscopic models of H̄N interactions, such as chiral and meson-exchange

models. The equations of motion, namely the Dirac equation for N, p̄, Λ̄, Σ̄ and Ξ̄

and the Klein�Gordon equation for K− and boson-exchange �elds, are solved self-

consistently. Modi�cations of the nuclear core due to the presence of H̄ are taken

into account as well.

We start this chapter with a brief introduction to the RMF model and deriva-

tion of relevant equations of motion. Then, we extend the RMF model to include

antihadrons. Further, we present detailed description of the construction of an H̄�

nucleus optical potential within phenomenological and microscopic approaches and

introduce a self-consistent scheme for treating its energy and density dependence.
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2.1 Relativistic Mean-Field Model for Nucleus

In the RMF model [159�161], the nucleons are described as Dirac �elds interact-

ing strongly via the exchange of the following boson �elds � the isoscalar-scalar �eld

σ which is responsible for medium- and long-range attraction, the isoscalar-vector

�eld ω which mediates short-range repulsion, the isovector-vector �eld ρ describing

the isospin dependence of nuclear force, and the photon �eld Aµ which accounts for

the electromagnetic interaction. The π and η meson �elds with unnatural parity are

not considered since we are dealing with nuclear states of well-de�ned parity.

The starting point of the model is the Lagrangian density containing nucleonic

and e�ective mesonic degrees of freedom:

L =ψ̄[iγµ∂µ−mN−gσσ−gωγµωµ−gργµ~τ · ~ρµ−eγµ
1

2
(1 + τ3)Aµ]ψ

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

2
(
1

2
ΩµνΩ

µν −m2
ωωµω

µ)

− 1

2
(
1

2
~Rµν · ~Rµν −m2

ρ~ρµ · ~ρµ)− 1

4
FµνF

µν

− 1

3
g2σ

3 − 1

4
g3σ

4 +
1

4
d(ωµω

µ)2 ,

(2.1)

where mN is the nucleon mass; mσ, mω, mρ are the masses of the σ-, ω- and ρ-

meson; gσ, gω, gρ and e are the coupling constants of the meson and photon �elds

to nucleons, respectively. The g2, g3 and d couplings represent the strengths of the

σ and ω self-interactions [162, 163]. The arrow denotes an isovector quantity and ~τ

is the triplet of Pauli matrices. The �eld tensors are de�ned as follows:

Ωµν = ∂µων − ∂νωµ ,
~Rµν = ∂µ~ρν − ∂ν~ρµ ,
Fµν = ∂µAν − ∂νAµ .

(2.2)

The nucleon is described by the isodoublet wave function

ψ =


ψp
ψn


 . (2.3)

The parameters of the model, i.e., the meson masses and meson�nucleon cou-

pling constants, are obtained by �tting properties of nuclear matter and selected

34



METHODOLOGY

�nite nuclei. Sets of these parameters de�ne a speci�c RMF parametrization. In

this thesis, we adopt the NL-SH [164] model and TM1(2) [163] models for heavy

(light) nuclei. The values of the parameters of these models are listed in Table A.1.

The equations of motion for respective �elds qi = ψ, ψ̄, σ, ωµ, ~ρµ, Aµ are obtained

using the principle of stationary action

δ

∫
L (qi(x), ∂qi(x), t) d4(x) = 0 (2.4)

which yields Euler�Lagrange equations

∂

∂xµ

[
∂L

∂(∂qi/∂xµ)

]
− ∂L

∂qi
= 0 . (2.5)

The Lagrangian density (2.1) leads to nonlinear quantum �eld equations which are

very complicated to be solved directly. Moreover, the coupling constants to the

meson �elds are expected to be large, perturbative approaches are thus not applica-

ble. Therefore, reasonable approximations need to be involved in order to simplify

the equations of motion: First, we replace all quantum �elds by their expectation

values which are classical �elds. This is the so called mean-�eld approximation and

it becomes more and more valid as the nuclear density increases:

σ(x)→ 〈σ(x)〉 = σ0(r) ,

ωµ(x)→ 〈ωµ(x)〉 = ω0(r) , (2.6)

ρiµ(x)→ 〈ρiµ(x)〉 = ρ3
0(r) ,

Aµ(x)→ 〈Aµ(x)〉 = A0(r).

As a result of the mean-�eld approximation, nucleons are moving as independent

particles in the corresponding mean �elds. Furthermore, we work in the no-sea

approximation which neglects all contributions from antiparticles (Dirac sea)1. The

nucleon wave function can then be expanded in terms of single-particle states n

ψ =
A∑

n=1

ψn(x)an , (2.7)

1One could argue that contribution from the Dirac sea should be taken into account since it
may lead to the non-negligible contribution in the equations of motion. However, the RMF model
is a phenomenological model with parameters �tted to the data. It means that the Dirac sea is to
some extent absorbed in the coupling constants [165,166].
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where a denotes the nucleon annihilation operator and the summation runs only

through A occupied positive-energy states in a nucleus. Moreover, we search for a

solution of ground-state properties of magic nuclei which are spherical. Therefore,

we assume time-reversal and rotational invariance, which implies that all space-like

components of the vector �elds and currents vanish and the �elds will depend only on

the radial coordinate r. Charge conservation implies that only the third component

of the ρ �eld survives. We work in the static limit, i.e., all time derivatives of the

�elds vanish as well.

With the above assumptions the Lagrangian density from Eq. (2.1) acquires the

form

LRMF =ψ̄n(iγµ∂
µ −mN − gσσ − gωγ0ω0 − gργ0τ3ρ

3
0 − eγ0

1 + τ3

2
A0)ψn

− 1

3
g2σ

3 − 1

4
g3σ

4 +
1

4
dω4

0 −
1

2
[(∇iσ)2 +m2

σσ
2]

+
1

2
[(∇iω0)2 +m2

ωω
2
0] +

1

2
[(∇iρ0)2 +m2

ρρ
2
0] +

1

2
(∇iA0)2 .

(2.8)

The Euler�Lagrange equations (2.5) lead to a set of coupled equations: the Dirac

equation for nucleons

[−iα · ∇+ β(mN + S) + V ]ψn = εnψn , (2.9)

where εn = i∂tψn denotes nucleon single-particle energy, and the Klein�Gordon

equations for scalar, vector and photon �elds, respectively:

(−4+m2
σ + g2σ + g3σ

2)σ = −gσρS ,
(−4+m2

ω + dω2
0)ω0 = gωρV ,

(−4+m2
ρ)ρ

3
0 = gρρI ,

−4A0 = eρC .

(2.10)

The scalar S and vector V potentials entering the Dirac equation (2.9) are of the

following form:

S = gσσ, V = gωω0 + gρτ3ρ
3
0 + e

1 + τ3

2
A0 .

The source terms on the r.h.s of Eq. (2.10) are scalar, vector, isovector and charge
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densities, respectively, de�ned as

ρS = 〈0| : ψ̄ψ : |0〉 =
A∑

n=1

ψ̄nψn ,

ρV = 〈0| : ψ†ψ : |0〉 =
A∑

n=1

ψ†nψn , (2.11)

ρI = 〈0| : ψ†τ3ψ : |0〉 =
A∑

n=1

ψ†nτ3ψn ,

ρC = 〈0| : ψ† 1+τ3
2
ψ : |0〉 =

A∑

n=1

ψ†n
1 + τ3

2
ψn .

Here, the symbol 〈: · · · :〉 denotes the normal order product with respect to the

nuclear ground state |0〉. The densities are normalized to yield a proper number of

nucleons A, protons Z and neutrons N :

∫
dx3ρV = A ,

∫
dx3ρI = Z −N , (2.12)

∫
dx3ρC = Z .

The system of coupled equations (2.9) and (2.10) can now be solved numerically by

iterative procedure. Once the nucleon and boson �elds are determined, the total

energy of the system can be calculated as

E =

∫
d3xH =

∫
d3x

∂LRMF

∂q̇i
q̇i −LRMF

=
A∑

n=1

∫
d3x ψ†n[−iα · ∇+ β(mN + S) + V ]ψn

+

∫
d3x

1

2
[(∇σ)2 +m2

σσ
2]− 1

2
[(∇ω0)2 +m2

ωω
2
0]− 1

2
(∇A0)2 − 1

2
[(∇ρ0)2 +m2

ρρ
2
0]

+

∫
d3x

1

3
g2σ

3 +
1

4
g3σ

4 − 1

4
dω4

0 .

(2.13)

The meson �elds decay exponentially at large distances, which allows us to perform
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partial integration, e.g., for the σ �eld

∫
d3x

1

2
[(∇σ)2 +m2

σσ
2] =

1

2

∫
d3x[σ(−∇2 +m2

σ)σ]

=
1

2

∫
d3x(−gσρSσ − g2σ

3 − g3σ
4) ,

(2.14)

and similarly for other �elds. The part of Eq. (2.13) involving nucleon �elds can be

evaluated using the Dirac equation (2.9) and the following expression for the energy

of the system is obtained

E =
A∑

n=1

εn −
1

2

∫
d3x (gσ σρS + gω ω0ρV + gρ ρ

3
0ρI + eA0ρC)

− 1

2

∫
d3x (1

3
g2 σ

3 + 1
2
g3 σ

4 − 1
2
dω4) .

(2.15)

The total binding energy of a nucleus is then

EB = E + ECMS − AmN

=
∑A

n=1 (εn −mN)

− 1

2

∫
d3x (gσ σρS + gω ω0ρV + gρ ρ

3
0ρI + eA0ρC)

− 1

2

∫
d3x (1

3
g2 σ

3 + 1
2
g3 σ

4 − 1
2
dω4)

− 30.75 A−1/3[MeV] ,

(2.16)

where ECMS = −30.75 A−1/3 is the center-of-mass correction to the total energy

adopted from the harmonic oscillator shell model [167].

2.1.1 RMF Model with Density-Dependent Coupling

Constants

Besides standard RMF models with constant couplings there exist also versions

with density-dependent (DD) meson�nucleon couplings. The RMF model with the

DD couplings represents a natural alternative which follows the Dirac-Bruckner

(DB) theory of nuclear matter [168�170]. The DD model is as good as the nonlinear

models with constant couplings in the description of properties of ordinary nuclear

matter and �nite nuclei. In addition, it yields equation of state for nuclear matter

beyond the saturation point in agreement with the DB calculations [171]. The
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speci�c form of density-dependence of the meson�nucleon couplings was introduced

by Typel and Wolter [171] as follows:

gi(ρV) = gi(ρ0)fi(x) , i = σ, ω , (2.17)

where

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
, (2.18)

and the argument x = ρV/ρ0 with ρ0 denoting the saturation density of nuclear

matter. The coupling for the ρ meson has an exponential character

gρ(ρV) = gρ(ρ0) exp[−aρ(x− 1)] . (2.19)

The parameters ai, bi, ci, di and aρ are not independent and their values are obtained

by �tting properties of nuclear matter and �nite nuclei.

The DD RMF model starts from the same Lagrangian density (2.1), only the

couplings are functions of the baryon density and the meson self-interaction terms

are omitted, i.e., c2, c3 and d are set to zero. The Dirac equation for nucleons contains

extra rearrangement term ΣR stemming from the density-dependence of the scalar

and vector potentials

[−iα · ∇+ β(mN + S) + V + ΣR]ψn = εnψn . (2.20)

The rearrangement term ΣR is of the following form

ΣR =
∂gω(ρV)

∂ρV
ρVω0 +

∂gρ(ρV)

∂ρV
ρIρ

3
0 −

∂gσ(ρV)

∂ρV
ρSσ . (2.21)

The equations for boson �elds maintain their form (2.10) with the couplings replaced

by the density-dependent ones. The rearrangement term ΣR will appear in the

expression for the total binding energy of a nucleus as well

EB = EDD + ECMS − AmN

=
∑A

n=1 (εn −mN)

− 1

2

∫
d3x (gσ(ρV)σρS + gω(ρV)ω0ρV + gρ(ρV) ρ3

0ρI + eA0ρC + 2ρVΣR)

− 30.75 A−1/3[MeV] .

(2.22)
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2.2 Antihadron�Nucleus Interactions within

Phenomenological Approach

The RMF formalism presented in Section 2.1 can be extended in a rather straight-

forward way to incorporate antihadrons (H̄ = p̄, Λ̄, Σ̄, Ξ̄, K−) by introducing addi-

tional �elds describing these antihadrons and their interactions with boson �elds.

The nuclear Lagrangian density is then supplemented by an appropriate Lagrangian

density LH̄ . Moreover, in order to describe nuclear systems with more strange par-

ticles, `hidden strangeness' scalar σ∗ and vector φ meson �elds that mediate the

interaction exclusively between strange particles are introduced. However, since we

are concerned with nuclei containing one strange antihadron at most, we do not con-

sider these additional �elds in this work. The RMF formalism extended in this way

has been successfully applied in the description of Λ,Σ and Ξ hypernuclei [172�174],

as well as p̄ [26, 27, 175] and K− [115�119] nuclei.

The H̄�nucleus interaction is described by a complex optical potential, real part

of which is constructed within the RMF model using the G-parity transformation

of hadron�meson coupling constants. The absorption of H̄ inside the nucleus is

accounted for by means of the imaginary part of a purely phenomenological optical

potential.

2.2.1 RMF Model for Nucleus with Antihadron

The Lagrangian density LRMF for the nucleonic sector (2.8) is extended by the

Lagrangian density LH̄ describing the interaction of one antihadron with the nuclear

medium, LN+H̄ = LRMF + LH̄ .

The interaction of an antibaryon B̄ (p̄ or antihyperon) with a nucleus is described

by the following Lagrangian density:

LN+B̄ =
∑

j=N,B̄

ψ̄jn(iγµ∂
µ −mj − gσjσ − gωjγ0ω0 − gρjγ0I3ρ

3
0 − eγ0(I3 +

1

2
Y )A0)ψjn

− 1

3
g2σ

3 − 1

4
g3σ

4 +
1

4
dω4

0 −
1

2
[(∇iσ)2 +m2

σσ
2]

+
1

2
[(∇iω0)2 +m2

ωω
2
0] +

1

2
[(∇iρ

3
0)2 +m2

ρ(ρ
3
0)2] +

1

2
(∇iA0)2 ,

(2.23)

where I3 denotes the third component of isospin, Y stands for hypercharge, and

gσB̄, gωB̄ and gρB̄ denote the antibaryon�meson coupling constants.

40



METHODOLOGY

The interaction of K− with a nucleus is described by the Lagrangian density

LN+K− which acquires the following form:

LN+K− = ψ̄n(iγµ∂
µ −mN − gσσ − gωγ0ω0 − gργ0τ3ρ

3
0 − eγ0

1 + τ3

2
A0)ψn

− 1

3
g2σ

3 − 1

4
g3σ

4 +
1

4
dω4

0 −
1

2
[(∇iσ)2 +m2

σσ
2]

+
1

2
[(∇iω0)2 +m2

ωω
2
0] +

1

2
[(∇iρ

3
0)2 +m2

ρ(ρ
3
0)2] +

1

2
(∇iA0)2

− [(∇iK
−)(∇iK

+) +m2
KK

−K+]− gσKmKσK
−K+

+ (εK− + gωKω0 + gρKρ
3
0 + eA0)2K−K+ ,

(2.24)

where εK− = i∂tK
− is the K− single-particle energy, K+(−) denotes the (anti)kaon

wave function, mK is the kaon mass, and gσK , gωK and gρK denote (anti)kaon�meson

coupling constants. The Lagrangian density (2.23) or (2.24) is a starting point for

the derivation of the relevant equations of motion by techniques described in the

previous section. Since the K−�nucleus interaction has been extensively studied

within the RMF model by Gazda et al. [117�119] we will further concentrate only

to the description of antibaryon interactions with the nuclear medium.

The variational principle (2.4) leads to the following system of coupled equations:

the Dirac equation for nucleons (2.9) and antibaryon

[−iα · ∇+ β(mB̄ + SB̄) + VB̄]ψB̄ = εB̄ψB̄, (2.25)

where

SB̄ = gσB̄σ, VB̄ = gωB̄ω0 + gρB̄ρ
3
0I3 + e(I3 +

1

2
Y )A0 ,

and the equations of motion for boson �elds which contain additional source terms

on the r.h.s due to the presence of B̄

(−4+mσ2 + g2σ + g3σ
2)σ = −gσNρS − gσB̄ρSB̄ ,

(−4+mω2 + dω2
0)ω0 = gωNρV + gωB̄ρVB̄ ,

(−4+mρ2)ρ
3
0 = gρNρI + gρB̄ρIB̄ ,

−4A0 = eρC + eρCB̄ .

(2.26)

Here, ρSB̄, ρVB̄, ρVB̄ and ρCB̄ are antibaryon scalar, vector, isovector and charge

densities, respectively, normalized to unity.
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The expression for the total binding energy of the system of A nucleons plus one

antibaryon is then of the following form

EB = E + ECMS − AmN −mB̄

=
∑A

n=1 (εn −mN) + (εB̄ −mB̄)

− 1

2

∫
d3x (gσN σρS + gωN ω0ρV + gρN ρ

3
0ρI + eA0ρC)

− 1

2

∫
d3x (1

3
g2 σ

3 + 1
2
g3 σ

4 − 1
2
dω4)

− 1

2

∫
d3x (gσB̄ σρSB̄ + gωB̄ ω0ρV B̄ + gρB̄ ρ

3
0ρIB̄ + eA0ρCB̄)

− 30.75 (A+ 1)−1/3[MeV] .

(2.27)

The presence of B̄ in a nucleus modi�es the equations of motion for boson �elds.

This leads to polarization of the nuclear core, i.e., the nucleon single-particle energies

and density distribution change. It was demonstrated by Mishustin et al. [27] that

the insertion of p̄ into a nucleus causes signi�cant modi�cation of the nuclear core,

the central nuclear density reaches 2 - 3 times the saturation density. However,

the standard nonlinear RMF models, TM1(2) [163] or NL-SH [164], do not have to

describe correctly the behavior of a nucleus when extrapolated to such high nuclear

densities. Therefore, we explored the antibaryon�nucleus interaction using the DD

RMF model TW99 [171] as well.

In our DD RMF model, the Dirac equation for antibaryon maintains its original

form (2.25), i.e, unlike the Dirac equation for nucleons it does not contain the

additional rearrangement term ΣR. The equations for boson �elds have the same

form as in Eqs. (2.26), only the couplings are replaced by the density-dependent

ones. The total binding energy for a nucleus with one antibaryon expressed within

the DD RMF model is of the form

EB = EDD + ECMS − AmN −mB̄

=
∑A

n=1 (εn −mN) + (εB̄ −mB̄)

− 1

2

∫
d3x (gσN(ρV)σρS + gωN(ρV)ω0ρV + gρN(ρV) ρ0ρI + eA0ρC + 2ρVΣR)

− 1

2

∫
d3x (gσB̄(ρV)σρSB̄ + gωB̄(ρV)ω0ρVB̄ + gρB̄(ρV) ρ0ρIB̄ + eA0ρCB̄)

− 30.75 (A+ 1)−1/3[MeV] .

(2.28)
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2.2.2 Antibaryon�Nucleus Interactions

An important ingredient of the B̄�nucleus interaction model are the antibaryon�

meson coupling constants. On the level of hadronic degrees of freedom the strong

interaction is mediated by the exchange of mesons. One of the basic symmetries

of the strong interaction is G-parity (Ĝ = Ĉ exp (−iπI2) which involves charge

conjugation Ĉ and rotation in isospin space) [23]. The G-parity transformation

is usually applied in the construction of antinucleon�nucleon (N̄N) interactions

from meson-exchange models of nucleon�nucleon interactions. It seems to be quite

natural to apply the G-parity transformation to the derivation of an antibaryon�

nucleus potential within the RMF approach (the K−�nucleus potential has been

constructed in a similar way [115�119]).

The real part of the B̄�nucleus optical potential is obtained by the G-parity

transformation of the corresponding B�nucleus potential

UB̄ =
∑

M

GMUM . (2.29)

Here, UM denotes the potential generated by the exchange of meson M and GM is

the corresponding G-parity eigenvalue. The σ and ρ meson �elds have a positive

G-parity eigenvalue. However, the ω meson has a negative G-parity eigenvalue and

the part of the potential generated by the ω exchange thus converts its sign. When

expressed in terms of coupling constants we have

gσB̄ = gσB, gωB̄ = −gωB, gρB̄ = gρB . (2.30)

The underlying hyperon couplings to the ω and ρ meson �elds are derived using

SU(6) symmetry relations [172,174]. The hyperon couplings to the σ �elds are then

obtained by �tting available experimental data on Λ hypernuclei [172], Σ atoms [173],

and Ξ production in (K+, K−) reaction [176]. As a result, the hyperon�meson

couplings are in the following relation to the nucleon�meson coupling constants:

gσΛ = 0.621gσN , gωΛ = 2/3gωN , gρΛ = 0 ,

gσΣ = 0.5gσN , gωΣ = 2/3gωN , gρΣ = 2/3gρN ,

gσΞ = 0.299gσN , gωΞ = 1/3gωN , gρΞ = gρN .

(2.31)

43



METHODOLOGY

Within the RMF model, the nuclear ground state is well described by an at-

tractive scalar potential S(0) ' −400 MeV and a repulsive vector potential V (0) '
350 MeV. The central potential acting on a nucleon in a nucleus is then S(0)+V (0) '
−50 MeV. Since the vector potential generated by the ω meson changes its sign un-

der the G-parity transformation, the total potential acting on a B̄ becomes strongly

attractive, e.g., the p̄ would feel the total central potential ≈ 750 MeV deep in the

nuclear interior.

G-parity represents a valid concept for the long- and medium-range B̄ potential.

However, the B̄ annihilation plays a crucial role in the B̄�nucleus interactions. It

has a major contribution in the short-range part of the interaction and it is not

clear to what extent it a�ects the elastic part of the potential. Moreover, various

many-body e�ects could cause deviations from the G-parity transformed coupling

constants in the nuclear medium as well [27]. Therefore, G-parity should be regarded

as a mere starting point to determine the B̄�meson coupling constants in standard

RMF models.

The depth of the B̄ potential in the nuclear medium is still quite uncertain. The

experiments with antiprotonic atoms, p̄ scattering o� nuclei and p̄ production in

proton�nucleus and nucleus�nucleus collisions suggest that the real part of the p̄

potential should be in the range of −(100 - 300) MeV at normal nuclear density

[7,9,29]. Therefore, following Refs. [27�31], we introduce a uniform scaling factor ξ

for the B̄�meson coupling constants:

gσB̄ = ξ gσB, gωB̄ = −ξ gωB, gρB̄ = ξ gρB . (2.32)

In our calculations, we adopt the value ξ = 0.2 which provides the real part of the

p̄ potential consistent with p̄ atom data 2. It is to be noted that we assume the

same value of the scaling factor ξ also for antihyperon�meson couplings due to lack

of experimental information on antihyperon potential in the nuclear medium at low

energies.

The equations of motion (2.9), (2.25) and (2.26) for a nucleus with antibaryon

are derived on the Hartree level where each particle moves in mean �elds created by

all particles bound in the nucleus. It means that the (anti)baryon feels in addition

a kind of `attraction' as well as `repulsion' from itself. In ordinary nuclei this self-

interaction has only a minor (1/A) e�ect. However, the potential acting on the

2Recently, the Non-Linear Derivative model [38] was developed which incorporates momentum
dependence of the mean �elds and yields a p̄ potential consistent with available experimental data
while retaining the G-parity symmetry
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antibaryon in a nucleus is much deeper than the potential acting on nucleons and

the role of the B̄ self-interaction could become pronounced. We veri�ed that for the

scaling factor ξ = 0.2 the e�ect of the B̄ self-interaction is small and can be safely

neglected [175].

p̄ Absorption

The antibaryon annihilation in the nuclear medium is an indispensable part of

a realistic model of the B̄�nucleus interaction. In the present work, we take into

account only the p̄ absorption in a nucleus. The antihyperon absorption is not

considered since there are no relevant data on the annihilation of antihyperons in

the nuclear medium.

The p̄ absorption in a nucleus is described by the imaginary part of an optical

potential constructed in a `tρ' form following optical model phenomenology [9]:

2µImVopt(r) = −4π

(
1 +

µ

mN

A− 1

A

)
Imb0ρ(r) , (2.33)

where µ is the p̄�nucleus reduced mass. The nuclear density distribution ρ(r) is

evaluated within the RMF model and the e�ective scattering length Imb0 = 1.9 fm,

value of which was obtained by �tting p̄ atom data [9].3

We assume that the global parameter Imb0 involves annihilation channels which

are listed in Table 2.1 together with the corresponding branching ratios Bc. They

are sorted according the number of mesons in the �nal state. Following Ref. [27],

we include only direct decay channels, i.e., only non-resonant contributions and no

further decay of produced mesons are taken into account. Moreover, we consider

annihilation channels containing kaons.

The parameter Imb0 accounts for the p̄ absorption at or very close to thresh-

old. When considering the annihilation of the deeply-bound antiproton inside the

nucleus, the phase space for annihilation products should be considerably reduced.

We thus take into account the suppression of phase space by introducing suppres-

sion factors fs for considered annihilation channels. The suppression factors fs for

3The value of Imb0 was determined for a �nite-range (FR) interaction, where original densities
were replaced by `folded' densities, while here it was applied to construct a zero-range `tρ' potential.
We checked that the RMF densities yield r.m.s. radii larger than the unfolded densities used in
the p̄ atom analysis and thus e�ectively approximate the FR `folded' densities in Ref. [9].

45



METHODOLOGY

two-body decay channels were evaluated with the help of the formula [177]:

fs =
M2

s

√
[s− (m1 +m2)2][s− (m1 −m2)2]

[M2 − (m1 +m2)2][M2 − (m1 −m2)2]
Θ(
√
s−m1 −m2) , (2.34)

where m1, m2 are the masses of the annihilation products, M = 2mN and s is the

Mandelstam variable. The energy available for the annihilation products at vacuum

at rest is
√
s = 2mN . In the nuclear medium this energy is reduced due to the

binding of the antiproton and nucleon, and non-zero momenta of the annihilating

partners. In the case of channels containing more than 2 particles in the �nal state

the suppression factors fs were calculated using the Monte Carlo simulation tool

PLUTO [178]. They were evaluated as a ratio of Dalitz plot area for reduced
√
s

and vacuum
√
s = 2mN . For channels containing more than 4 particles in the �nal

Table 2.1: The p̄N annihilation channels. Here, nf is the number of decay products
and Bc denotes the vacuum branching ratio of a particular decay channel† at rest.
Table adapted from author's publication [175].

nf channel Bc [%] nf channel Bc [%]

2 2π0 0.07 π+π−π0 1.8
π+π− 0.31 π0KSKL 6.7·10−4

π0ρ0 1.7 π±K∓KS 2.7·10−3

π±ρ∓ 0.9 ωK+K− 2.3·10−3

π0ω 0.6 4 4π0 0.5
ρ0ω 2.3 π+π−2π0 7.8
ωη 1.5 2π+2π− 4.2
2ω 3.0 5 5π0 0.5
K+K− 1.0 ·10−3 π+π−3π0 20.1
KSKL 7.9·10−4 2π+2π−π0 10.4

3 2π0η 0.7 6 π+π−4π0 1.9
π+π−η 1.3 2π+2π−2π0 13.3
2π0ω 2.6 3π+3π− 2.0
π+π−ω 6.6 7 3π+3π−π0 1.9
π+π−ρ0 3.6 2π+2π−3π0 4.0

†The non-strange annihilation channels and their branching
ratios are taken from Ref. [27] (see also referencies therein).
Branching ratios for channels containing kaons are taken from
Ref. [14]
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Figure 2.1: The phase space suppression factors fs as a function of the c.m. energy√
s. The range of

√
s relevant for p̄-nuclear states is denoted by gray area. Figure

adapted from author's publication [175].

state we expressed the decay products in terms of two or three e�ective particles,

i.e., we decomposed the n-body phase space φn into smaller subspaces for two or

three e�ective particles according the formula [177]:

dφn(P ; p1, . . . , pn)=dφj(q; p1, . . . , pj)×dφn−j+1(P ; q, pj+1, . . . , pn)(2π)3dq2 . (2.35)

Here, q2 = (
∑j

i=1Ei)
2 − |∑j

i=1 ~pi|2 with j = 2 or 3, P is the 4-momentum of the

annihilating pair and pi are the 4-momenta of the annihilation products.

The calculated suppression factors fs for considered annihilations channels as a

function of c.m. energy
√
s are presented in Fig. 2.1. As the energy

√
s decreases

many channels become considerably suppressed or even closed. The shaded area

denotes the energy region relevant for p̄-nuclear state calculations.

The overall absorptive p̄ potential, which is added to the real p̄ potential con-

structed within the RMF model, acquires the form

ImVp̄(r,
√
s, ρ) =

∑

channel

Bcfs(
√
s)ImVopt(r) . (2.36)
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2.3 Antihadron�Nucleus Interactions within

Microscopical Approach

In this section, we present the construction of an H̄�nucleus optical potential

(H̄ = p̄, K−) based on H̄N scattering amplitudes derived from microscopic models

of H̄N interactions. In principle, one should construct the full many-body H̄�

nucleus amplitude from the two-body H̄N scattering amplitudes. However, this

is an extremely di�cult (or even unfeasible) task in the mass region considered in

this work. Instead, we construct the H̄�nucleus optical potential in a `tρ' form

following the multiple scattering theory [179]. The complicated many-body H̄�

nucleus amplitude is thus expressed as a sum of the H̄N amplitudes on each nucleon

of the nuclear core.

The p̄�nucleus optical potential is constructed using p̄N scattering amplitudes

derived from the latest version of the Paris N̄N potential. This potential contains

long- and medium-range meson-exchange interactions and a short-range phenomeno-

logical part describing the N̄N annihilation.

The theoretical description of the K−N interaction is provided by chirally-

motivated meson�baryon interaction models. We employ six di�erent state-of-the-

art meson�baryon interaction models and explore the model dependence of our cal-

culations. Moreover, we consider K− multinucleon interactions, which were found

to be crucial to account for K− atom data [133], in terms of a phenomenological

optical potential.

2.3.1 Optical Potential

The optical potential describing the the S-wave H̄�nucleus interaction is con-

structed in a `tρ' form as follows:

2EH̄Vopt(r) = −4π

(
F0

1

2
ρp(r) + F1

(
1

2
ρp(r) + ρn(r)

))
, (2.37)

where EH̄ = mH̄−BH̄ with BH̄ > 0 being the antihadron binding energy, F0 and F1

are isospin 0 and 1 in-medium amplitudes, and ρp(r) [ρn(r)] is the proton (neutron)

density distribution calculated within the RMF NL-SH model [164]. The in-medium

amplitudes F0 and F1 entering Eq. (2.37) are constructed from the free-space H̄N

amplitudes using the multiple scattering approach of Wass et al. [180] (WRW) in
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order to account for Pauli correlations in the nuclear medium

F1 =

√
s

mN
fS
H̄n

(
√
s)

1+ 1
4
ξk
√
s

mN
fS
H̄n

(
√
s)ρ(r)

, F0 =

√
s

mN
[2fS

H̄p
(
√
s)−fS

H̄n
(
√
s)]

1+ 1
4
ξk
√
s

mN
[2fS

H̄p
(
√
s)−fS

H̄n
(
√
s)]ρ(r)

. (2.38)

Here, fS
H̄n

(fS
H̄p
) denotes the free-space c.m. H̄n (H̄p) S-wave scattering amplitude

derived from the corresponding H̄N interaction model and ρ(r) = ρp(r)+ρn(r). The

factor
√
s/mN transforms the amplitudes from the two-body frame to the H̄�nucleus

frame. The Pauli correlation factor ξk is de�ned as follows

ξk =
9π

k2
F

(
4

∫ ∞

0

dr

r
exp(ikr)j2

1(kFr)

)
, (2.39)

where j1(kFr) is the spherical Bessel function, kF is the Fermi momentum, the

antihadron momentum k =
√

(εH̄ −mH̄)2 −m2
H̄
, εH̄ = −BH̄− iΓH̄/2 (BH̄ > 0), and

ΓH̄ is the antihadron width. The integral in Eq.(2.39) can be solved analytically.

The resulting expression is of the form

ξk =
9π

k2
F

[
1− q2

6
+
q2

4

(
2 +

q2

6

)
ln

(
1 +

4

q2

)
− 4

3
q
(π

2
− arctan

(q
2

))]
, (2.40)

where q = −ik/kF. Since the p̄ and K− have both I = 1/2 the isospin structure of

the in-medium amplitudes F0 and F1 (2.38) is the same in both cases.

Dirac Equation with Optical Potential

The binding energies Bp̄ and widths Γp̄ of p̄ quasi-bound states in a nucleus

are obtained by solving self-consistently the Dirac equation with the corresponding

optical potential

[−iα · ∇+ βmp̄ + Vopt(r)]ψp̄ = εp̄ψp̄, (2.41)

where mp̄ is the mass of the antiproton and εp̄ = −Bp̄− iΓp̄/2. The optical potential

Vopt enters the Dirac equation as the time component of a 4-vector. In order to test

our computational code and verify numerical stability of our results obtained by solv-

ing the Dirac equation with a complex optical potential we performed comparable

calculations using the Schrödinger equation as well. We set the same input for both

equations and checked that they yield the same results. In Table 2.2, we present the

1s p̄ binding energy and width in 16O, calculated using the Dirac equation (2.41)

and Schrödinger equation. The agreement of both equations is satisfactory.
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Table 2.2: 1s p̄ binding energy Bp̄ and corresponding width Γp̄ in 16O (in MeV),
calculated using the Dirac and Schrödinger equations.

16O+p̄ Dirac eq. Schrödinger eq.
Bp̄ 175.9 175.2
Γp̄ 263.7 263.4

Klein�Gordon Equation with Optical Potential

The calculations of K−�nuclear quasi-bound states are based on solving the

Klein�Gordon equation

[
−∇2 − ω̃2

K− +m2
K− + ΠK−(ωK− , ρ(r))

]
φK− = 0 , (2.42)

which yields antikaon binding energies BK− and widths ΓK− . Here, φK− denotes the

K− wave function, ω̃K− = mK− −BK− − iΓK−/2− VC = ωK− − VC , mK− is the K−

mass, ΠK− = 2Re(ωK−)Vopt(r) is the K−�nucleus optical potential and ρ(r) is the

nuclear density distribution calculated within the RMF NL-SH model [164]. The

Coulomb potential VC introduced via the minimal substitution [181] was calculated

within the RMF model as well.

2.3.2 Paris N̄N Potential

In this thesis, we adopt the 2009 version of the Paris N̄N potential model [41]

in the description of the p̄�nucleus interaction. The Paris N̄N potential consists of

long-range one-pion exchange, correlated and uncorrelated two-pion exchange, and

medium-range part represented by the ω and A1 meson exchange. They are derived

using the G-parity transformation of the corresponding NN potential. The short-

range part of the N̄N potential responsible for the p̄ annihilation is described by a

phenomenological term. The parameters of the potential are obtained by �tting low-

energy p̄N scattering data consisting of p̄N elastic and annihilation cross-sections

(see [182,183] and references therein) and strong interaction level shifts and widths

in antiprotonic hydrogen [184,185].

There exist other realistic N̄N potential models such as the Bonn N̄N meson-

exchange model [42], Zhou�Timmermans model [43] or models based on chiral e�ec-

tive �eld theory (EFT), Bonn�Jülich chiral N2LO [44] or N3LO [45] potential models,
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Figure 2.2: Energy dependence of the Paris 09 p̄p (top) and p̄n (bottom) S-wave
c.m. amplitudes: in-medium (Pauli blocked) amplitudes for ρ0 = 0.17 fm−3 (solid
line) are compared with the free-space amplitudes (dotted line). Figure adapted
from author's publication [186].

which could be applied to p̄-nuclear states calculations as well. However, the Paris

potential has been recently confronted with the antiproton atom data [46], which

has stimulated us to apply it in the present calculations of p̄-nuclear quasi-bound

states.

The free-space c.m. S-wave p̄p and p̄n scattering amplitudes entering Eq. (2.38)

are derived from the Paris N̄N potential as appropriate mixtures of isospin 0

and 1 N̄N amplitudes evaluated as angular momentum averages. In Fig. 2.2, we

present free-space c.m. p̄p (top panel) and p̄n (bottom panel) S-wave scattering
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amplitudes compared with medium modi�ed amplitudes (2.38) at saturation den-

sity ρ0 = 0.17 fm−3. The amplitudes, plotted as a function of the energy shift

δ
√
s = E − Eth, with Eth = mN + mp̄, vary considerably with the energy below

threshold. The peaks of in-medium amplitudes are lower in comparison with the

free-space ones and shifted by ≈ 30 MeV towards threshold. Moreover, the peaks

of imaginary in-medium amplitudes are reduced much more than the peaks of real

in-medium amplitudes. The real in-medium p̄p amplitude becomes attractive in the

entire energy region below threshold. The real part of the in-medium p̄n amplitude

is attractive for δ
√
s ≤ −70 MeV with a small repulsive dip near threshold.

P-wave Interaction

The analysis of p̄ atom data [46] revealed that it is necessary to supplement

the Paris S-wave potential by the P -wave interaction to make the real p̄ potential

attractive in the relevant low-density region of a nucleus. To incorporate the P -wave

interaction in our model we supplement the r.h.s. of the S-wave optical potential in

Eq. (2.37) [2Ep̄V S
opt = q(r)] by a gradient term [46,187,188]:

2Ep̄Vopt(r) = q(r) + 3∇ · α(r)∇ . (2.43)

The factor 2l + 1 = 3 in the P -wave part is introduced to match the normalization

of the Paris N̄N scattering amplitudes and

α(r) = 4π
mN√
s

(
fPp̄p(δ

√
s)ρp(r) + fPp̄n(δ

√
s)ρn(r)

)
. (2.44)

Here, fPp̄p(δ
√
s) and fPp̄n(δ

√
s) represent the P -wave p̄p and p̄n free-space c.m. scat-

tering amplitudes, respectively. We do not consider any medium modi�cations of

the P -wave amplitudes since we assume that the P -wave potential should contribute

mainly near the surface of the nucleus due to its gradient form. The free-space p̄p

and p̄n P -wave scattering amplitudes are plotted as a function of the energy shift

δ
√
s = E − Eth in Fig. 3.6. The amplitudes exhibit again considerable energy

dependence below (but also above) threshold.

The analysis [46] also revealed that the optical potential constructed from the

Paris S- and P -wave amplitudes fails to reproduce the p̄ atom data. It is mainly

due to the P -wave amplitude � its real and imaginary parts had to be scaled by

di�erent factors to get reasonable �t. On the contrary, the optical potential based

on the Paris S-wave potential supplemented by a purely phenomenological P -wave
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Figure 2.3: Energy dependence of the Paris 09 p̄p (left) and p̄n (right) P -wave c.m.
free-space amplitudes. Figure adapted from author's publication [186].

term with fPp̄N = 2.9+ i1.8 fm3 �ts the data well. In our calculations, we adopt both

P -wave amplitudes, Paris as well as phenomenological, in order to study their e�ect

on binding energies and widths of p̄-nuclear states.

2.3.3 Chiral Coupled-Channel Meson�Baryon Interaction

Models

Meson�baryon interactions at low and intermediate energies are currently de-

scribed within microscopic models based on e�ective chiral Lagrangians that imple-

ment dynamics and symmetries of QCD. The existence of hadronic resonances at

energies close to threshold hinders the use of perturbative approaches, such as the

chiral perturbation theory. The state-of-the-art description of low-energy meson�

baryon interactions is provided by the so called `chirally-motivated meson�baryon

coupled-channel interaction models' which represent synergy of chiral perturbation

theory and coupled channel T-matrix resummation techniques [69,83,87�89,98,189].

The detailed description of these chiral models is beyond the scope of this thesis.

Below, we present only the basic ingredients of their construction.

The meson�baryon interactions (including the K̄N interaction) are determined

by solving coupled-channel Lippmann�Schwinger equation for the T -matrix

Tij = Vij + VikGkTkj , (2.45)
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where Vij are matrix elements of the interaction matrix kernel, Gk stands for the

intermediate state Green's function in a given channel and the indices ij run over

the meson�baryon coupled channels. The following meson�baryon interaction chan-

nels are usually considered: K̄N, πΛ, πΣ, ηΛ, ηΣ and KΞ. The meson�baryon

potentials Vij are constructed to match the equivalent amplitudes generated by the

chiral Lagrangian at leading or next-to-leading order.

However, the multichannel form of the T-matrix (2.45) is not suitable for cal-

culations of K−-nuclear bound states. Even in the most sophisticated three-body

Faddeev equations for the K̄NN system, the problem is reduced to the 2 channel

(K̄N�πΣ) formalism [190�192]. In our calculations, we use the one-channel (K̄N)

reduction which preserves the full coupled-channel nature of the underlying dynam-

ics [193]. For this purpose the one-channel T -matrix is constructed as follows

T11 ∼ Teff = Veff + VeffG1Teff . (2.46)

The e�ective potential Veff is a sum of the bare interaction in channel 1 (the K̄N

channel) and all contributions from the other N − 1 channels

Veff = V11 +
∑

2≤i≤N

V1iGiVi1 +
∑

2≤i,j≤N

V1iGiT
(N−1)
ij GjVj1 . (2.47)

Here, T (N−1)
ij is the resummation of interactions in all channels except the chan-

nel 1. The free parameters of the interaction model are �tted to low-energy K−N

observables such as the K−p total cross sections [66, 94, 95], threshold branching

ratios [92, 93], and 1s energy shifts and widths of kaonic hydrogen [67].

In this thesis, we adopt 6 di�erent chiral coupled-channel meson�baryon interac-

tion models, namely: Prague (P) [83], Kyoto�Munich (KM) [87], Murcia (M1 and

M2) [88], and Bonn (B2 and B4) [89]. They are all based on chiral SU(3) next-

to-leading-order (NLO) Lagrangian but they di�er in approaches to the solution of

the coupled-channel equations and in applied �tting procedures (in the Bonn mod-

els higher partial waves were included in the �t whereas in the other models only

S-waves were considered). The free-space S-wave c.m. scattering amplitudes fK−p

and fK−n derived from all models considered in our work are plotted as a function of

energy in Fig. 2.4. The K−p amplitudes agree with each other at and above thresh-

old (except the Bonn models B2 and B4) since they were �tted to the same data in

this energy region. Below threshold, i.e., in the energy region relevant to K−-nuclear

quasi-bound state calculations, the amplitudes di�er from each other considerably.
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Figure 2.4: Energy dependence of real (left) and imaginary (right) parts of free-
space c.m. K−p (top) and K−n (bottom) amplitudes in considered chiral models
(see text for details). Thin vertical lines mark threshold energies. Figure adapted
from author's publication [194].

Moreover, they exhibit strong energy dependence below threshold due to the exis-

tence of the Λ(1405) resonance. On the other hand, the K−n amplitudes in these

models do not match each other even at and above threshold and their energy de-

pendence is not so pronounced as in the K−p case. The strong energy dependence

of the K−p amplitudes due to the Λ(1405) requires a proper self-consistent scheme

for the construction of the K−-nucleus optical potential. The method of treating

the energy dependence will be discussed in the next section.

The free-space K−p and K−n scattering amplitudes enter the construction of in-

medium amplitudes (2.38) which subsequently de�ne the K−�nucleus optical poten-

tial. The corresponding in-medium amplitudes at saturation density ρ0 = 0.17 fm−3
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Figure 2.5: Energy dependence of real (left) and imaginary (right) parts of WRW
modi�ed c.m. K−p (top) and K−n (bottom) amplitudes at ρ0 = 0.17 fm−3 in
considered models. Thin vertical lines mark threshold energies. Figure adapted
from author's publication [194].

are presented in Fig. 2.5. The WRW procedure signi�cantly a�ects the K−p am-

plitudes (see Fig. 2.4 for comparison). The real parts of the amplitudes become

attractive in the entire energy region below threshold (except the Bonn models B2

and B4) and the imaginary parts are considerably lowered below threshold. On the

other hand, the K−n amplitudes exhibit only moderate changes in the medium.

In the P model, the Pauli correlations were previously accounted for in a di�erent

way (denoted further by `Pauli'). They were incorporated directly in the Green's

function G of Eq. (2.45) where the integration over the meson�baryon momenta

was restricted to a region ensuring the nucleon intermediate energy to be above the

Fermi level. Moreover, the e�ect of medium modi�cations of hadron masses was
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Figure 2.6: Energy dependence of free-space c.m. (dotted line) amplitude f rK−N =
1
2
(f rK−p+f rK−n) compared with WRW modi�ed amplitude (solid line), Pauli (dashed

line), and Pauli + SE (dot-dashed line) modi�ed amplitude at ρ0 = 0.17 fm−3 in the
P model (left: real parts, right: imaginary parts). The thin vertical line indicates
the K−N threshold. Figure adapted from author's publication [194].

considered in the P model by introducing hadron self-energies in the intermediate-

state Green's functions [83]. We compared the in-medium amplitudes obtained by

the WRW approach with the Pauli amplitudes in the P model to verify that both

approaches yield comparable results. In Fig. 2.6, we present Pauli correlated and

WRW modi�ed reduced4 in-medium amplitudes f rK−N = 1
2
(f rK−p + f rK−n) at satu-

ration density ρ0 = 0.17 fm−3 as a function of energy. Both approaches yield very

similar in-mediumK−N amplitudes below threshold. However, at and above thresh-

old the behavior of Pauli and WRW amplitudes is di�erent. In addition, Fig. 2.6

shows also the in-medium amplitudes including the hadron self-energies (denoted by

`Pauli+SE'). The Pauli+SE, Pauli and WRW modi�ed amplitudes are quite similar

to each other in the energy region relevant for K−-nuclear states calculations, but

they di�er signi�cantly at and above threshold.

4In the P model, the amplitudes are given in a separable form fK−N = g(p)frK−Ng(p′), where
g(p) is a momentum-space form factor (see Ref. [128])
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K− interactions with more nucleons

The above chiral models of meson�baryon interactions account for the K− ab-

sorption on a single-nucleon (mesonic conversion mode)

K−N → πY , Y = Σ,Λ, (2.48)

with threshold about 100 MeV and 180 MeV, respectively, below the total K−N

mass. The branching ratio for the K− single-nucleon absorption at rest measured

in bubble chamber experiments at CERN is about 80% [130�132]. However, in the

nuclear medium the K− absorption on two or more nucleons (nonmesonic decay

mode), such as

K−NN → NY , (2.49)

takes place as well. This mode with reaction rate of 20% at rest is dominated by

the channel with NΣ in the �nal state. It has threshold about 140 MeV lower

than the single-nucleon absorption threshold. The multinucleon absorption is not

implemented in chiral models and is usually described by a phenomenological po-

tential [7, 8, 133].

When the antikaon is deeply-bound in a nucleus, the single-nucleon absorption

mode becomes substantially suppressed or even closed and the K− absorption on

several nucleons prevails. Therefore, the K− multinucleon interactions have to be

taken into account for proper description of the K− behavior in the nuclear medium.

Recently, Friedman and Gal [133] supplemented the K− single-nucleon potential

constructed within all chiral meson�baryon interaction models mentioned above by

a phenomenological term representing the K− multinucleon interactions of the fol-

lowing form

2Re(ωK−)V
(2)

K− = −4πB(
ρ

ρ0

)αρ . (2.50)

The values of the complex amplitude B and positive exponent α were obtained by

�tting kaonic atom data for each chiral model separately. They are listed together

with their uncertainties in Table 2.3. The total K− potential, expressed as a sum of

the single-nucleon and multinucleon potentials, VK− = V
(1)

K− + V
(2)

K− , was confronted

with available data. Only two models, P and KM, were found to reproduce simulta-

neously the kaonic atom data and branching ratios of K− absorptions at rest [133].

It is to be noted that these models are equivalent to each other within uncertainties

shown in Table 2.3.

In this work, we adopt all chiral models describing the K−N interaction and
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Table 2.3: Values of the complex amplitude B and exponent α of the phenomenolog-
ical K− multinucleon potential V (2)

K− for all chiral meson�baryon interaction models
considered in this work. Table adapted from author's publication [194]

P1 KM1 P2 KM2
α 1 1 2 2

ReB (fm) -1.3 ± 0.2 -0.9 ± 0.2 -0.5 ± 0.6 0.3 ± 0.7
ImB (fm) 1.5 ± 0.2 1.4 ± 0.2 4.6 ± 0.7 3.8 ± 0.7

B2 B4 M1 M2
α 0.3 0.3 0.3 1

ReB (fm) 2.4 ± 0.2 3.1 ± 0.1 0.3 ± 0.1 2.1 ± 0.2
ImB (fm) 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 1.2 ± 0.2

supplement them by the corresponding multinucleon potential V (2)

K− . We assume that

the main contribution to the amplitude B (2.50) comes from the K−NN → NΣ

conversion. In order to account for phase space suppression for decay products in

this channel in the nuclear medium we multiply ImB, which is a constant, by the

kinematical suppression factor of the form

fΣN =
M3

s3/2

√
[s− (mN +mΣ)2][s− (mN −mΣ)2]

[M2 − (mN +mΣ)2][M2 − (mN −mΣ)2]
Θ(
√
s−mN −mΣ) , (2.51)

where M = 2mN +mK− and
√
s = M − δ√s [195].

The kaonic atom data probe reliably the real part of the K−�nucleus potential

only up to ∼ 25% of ρ0 and its imaginary part up to ∼ 50% of ρ0. The K−

multinucleon potential V (2)

K− is not fully constrained at densities above these limits

and its form is a matter of extrapolation. Therefore, we consider in our calculations

di�erent shapes of V (2)

K− for ρ(r) ≥ 0.5ρ0. First, the form of Eq. (2.50) is applied

in the entire density region (full density option, FD). Second, the potential V (2)

K− is

�xed at constant value V (2)

K−(0.5ρ0) for ρ(r) ≥ 0.5ρ0 (half density limit, HD). In the

third approximation, the `tρ' form of V (2)

K− is assumed for densities ρ(r) ≥ 0.5ρ0 in

Eq. (2.50), i.e. V (2)

K− ∼ −4πB(0.5)αρ for ρ(r) ≥ 0.5ρ0 (tρ limit, TR).
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2.4 Energy Dependence

The H̄N amplitudes introduced in the previous section exhibit strong energy

dependence near and below threshold. This feature requires a proper self-consistent

scheme for evaluating the H̄ optical potential.

The suppression factors fs (2.34), fΣN (2.51) and the microscopic p̄N and K−N

scattering amplitudes discussed above are functions of energy given by the Mandel-

stam variable

s = (EN + EH̄)2 − (~pN + ~pH̄)2 , (2.52)

where EN = mN −BN , EH̄ = mH̄ −BH̄ , and BN (BH̄) is the nucleon (antihadron)

binding energy in a nucleus. When considering the H̄N interaction in the two-body

c.m. frame the momentum dependent term vanishes, i.e., ~pN+~pH̄ = 0 and Eq. (2.52)

reduces to √
sM = mH̄ +mN −BH̄ −BN . (2.53)

However, the annihilation of the antihadron with the nucleon takes place in a nucleus

and the momentum dependent term in Eq. (2.52) can no longer be neglected [128].

It provides additional downward energy shift. Its proper self-consistent evaluation

is crucial in p̄-nuclear as well as K−-nuclear states calculations. Taking into account

averaging over the angles (~pN + ~pH̄)2 ≈ ~p 2
N + ~p 2

H̄
, Eq. (2.52) can be rewritten as

√
sJ = Eth

(
1− 2(BH̄ +BNav)

Eth

+
(BH̄ +BNav)

2

E2
th

− TH̄
Eth

− TNav
Eth

)1/2

. (2.54)

Here, Eth = mN + mH̄ , BNav and TNav are the average binding and kinetic energy

per nucleon, respectively, and TH̄ represents the H̄ kinetic energy. The average

binding energy per nucleon BNav is calculated self-consistently. The kinetic energies

are evaluated as corresponding expectation values of the kinetic energy operator

T̂ = − ~2
2m
4.

In the studies of kaonic atoms and kaonic nuclei [126, 196, 197] the K− kinetic

energy is usually expressed within the local density approximation as

p2
K−

2mK−
= −BK− − ReVK− − VC . (2.55)

The nucleon kinetic energy is approximated within the Fermi gas model by

p2
N

2mN

= TN

(
ρ

ρ̄

)2/3

, (2.56)
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where TN = 23 MeV is the average nucleon kinetic energy and ρ̄ is the average nuclear

density. The input for our K−-nuclear state calculations was adopted from the

kaonic atoms analysis by Friedman and Gal [133], therefore we use similar kinematics

in our calculations for the sake of consistency. The energy shift δ
√
s =
√
s− Eth is

expanded near threshold in terms of binding and kinetic energies (to leading order)

and the energy argument is of the form:

√
sK ≈ Eth −BN −BK− − VC − βNTN

(
ρ

ρ̄

)2/3

− βK− (−BK− − ReVK−(r)− VC) ,

(2.57)

where βN(K−) = mN(K−)/(mN + mK−) and BN = 8.5 MeV is the average binding

energy per nucleon. After introducing speci�c forms of density dependence ensuring

that δ
√
s → 0 as ρ → 0 in agreement with the low-density limit (for details see

Ref. [198]) the energy
√
s in Eq. (2.57) acquires the following form:

√
sE = Eth−BN

ρ

ρ̄
− βN

[
BK−

ρ

ρmax

+ TN

(
ρ

ρ̄

)2/3

+ VC

(
ρ

ρmax

)1/3
]

+ βK−ReVK−(r) ,

(2.58)

where ρmax is the maximal value of the nuclear density. The K− binding energy

BK− is multiplied by ρ/ρmax , which ensures that the K− kinetic energy expressed

in Eq. (2.55) in terms of local density approximation is positive at any nuclear

density.

We note that the H̄ binding energy BH̄ (and ReVK−) appears as an argument

in the expression for
√
s, which in turn serves as an argument for fs, fΣN , Vopt and

ΠK in Eqs (2.36), (2.41), (2.42), and (2.51). Therefore,
√
s has to be determined

self-consistently, namely its value obtained by solving the Dirac or Klein�Gordon

equation should agree with the value of
√
s which serves as input in Eqs. (2.36),

(2.37), (2.38), and (2.51).
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Results

In this chapter, we present selected results of our self-consistent calculations of

antihadron quasi-bound states in nuclei across the periodic table. The results are

unique and represent author's original contribution. They were published in promi-

nent scienti�c journals. The key publications can be found in Appendix B of this

thesis.

First, we studied B̄�nucleus interactions within the phenomenological RMF ap-

proach. We performed calculations of B̄ (p̄, Λ̄, Σ̄, Ξ̄) bound in 1s states of atomic

nuclei with a purely real potential constructed using the G-parity transformation,

thus neglecting the B̄ absorption. The B̄ coupling constants were properly scaled

to get the p̄ potential consistent with experimental data. We performed static as

well as dynamical calculations. We explored the dynamical e�ects caused by B̄ and

model dependence of calculated B̄ binding energies.

As a next step, we considered p̄ absorption inside nuclei by adopting the imagi-

nary part of a phenomenological optical potential. We took into account the phase

space suppression for annihilation products and explored various procedures for

evaluating the energy available for annihilation.

Then, we performed a similar study of p̄-nuclear quasi-bound states with an

optical potential based on the 2009 version of the Paris N̄N potential [41]. We

considered in-medium modi�cations of the free-space S-wave scattering amplitudes.

We explored the energy and density dependence of the S-wave p̄�nucleus potential

as well as the role of the p̄N P -wave interaction, and compared the predictions for

p̄ binding energies and widths with the phenomenological RMF approach.

We calculatedK−-nuclear quasi-bound states using recent chiral coupled-channel

62



RESULTS

models of meson�baryon interactions. First, the K− single-nucleon optical potential

was constructed from the K−N scattering amplitudes derived within six di�erent

meson�baryon interaction models and the model dependence of K− binding energies

and widths was studied. Then we supplemented the K− single-nucleon optical

potential by a phenomenological term describing K− interactions with two and

more nucleons. We explored the e�ect of the K− multinucleon interactions on K−

binding energies and widths.

3.1 B̄-Nuclear Quasi-Bound States

First, we explored B̄-nuclear bound states within the RMF approach without

considering B̄ absorption in a nucleus. The real part of the B̄�nucleus optical

potential was constructed using the G-parity transformation of relevant coupling

constants scaled by factor ξ = 0.2 in order to yield the p̄ potential consistent with

antiproton atom data. Due to the lack of information on antihyperon potential in

the medium we assumed the same value of the scaling factor for antihyperon�meson

couplings as well.

Below we present the most important results of this study published in POS

INPC2016 (2017) 280 and Nucl. Phys. A 945 (2016) 197. These publications are

attached in Appedix B.1 and B.2, respectively.

In Fig. 3.1, we present the potential acting on a baryon (B) in 1s state in 16O

(left) compared with the potential acting on an antibaryon (B̄) in the same nucleus

(right), calculated dynamically in the TM2 model and scaling factor ξ = 0.2. All

antibaryons feel attractive potential due to the G-parity transformation (note that

even Σ̄0 feels attraction inside the nucleus though the Σ0 potential is repulsive).

The potential acting on B̄ is deeper than the one acting on B inside the nucleus,

which indicates that the antibaryons would be bound more strongly than baryons.

The p̄ feels the deepest potential from all antibaryons. The antihyperon potential is

shallower due to the weaker coupling to the meson �elds [see Eq. (2.31)].

The antibaryon embedded in a nucleus a�ects the nuclear core. In order to

explore the extent of the core polarization we performed static as well as dynami-

cal calculations. In the static calculations, the core nucleus is not a�ected by the

presence of extra B̄ [i.e., the source terms from B̄ are omitted from the r.h.s. of

Eqs. (2.26)]. In the dynamical calculations, the polarization of the nuclear core due

to B̄, i.e., changes in the nucleon binding energies and densities, is taken into account

[the source terms from B̄ are considered in the r.h.s. of Eqs. (2.26)]. In Fig. 3.1, the
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Figure 3.1: B�nucleus (left) and B̄�nucleus (right) potentials in 16O, calculated dy-
namically in the TM2 model for ξ = 0.2. B̄�nucleus potentials calculated statically
(thin dotted lines) are shown for comparison.

B̄�nucleus potential calculated statically (right panel, thin dotted lines) is shown

for comparison. The potential calculated statically is evidently shallower than the

potential calculated dynamically for all antibaryons. The di�erence between the

depth of the potential calculated statically and dynamically illustrates the extent of

the core polarization. The antiproton causes the largest modi�cation of the nuclear

core, then follow Λ̄, Σ̄0, and �nally Ξ̄0 with almost negligible di�erence between the

static and dynamical potentials. The strong polarization of the nuclear core by p̄

was already demonstrated by Mishustin et al. [27, 28].

The 1s B̄ binding energies in 6Li, 12C, 16O, 40Ca, 90Zr, and 208Pb are shown

in Fig. 3.2, calculated dynamically in the TM1 and TM2 models with ξ = 0.2.

Antiproton is the most bound antibaryon in all nuclei considered since it feels the

deepest potential in the nuclear interior. The ordering of antihyperon binding en-

ergies corresponds to the depths of antihyperon potentials in Fig. 3.1. Charged

antihyperons feel in addition Coulomb and isovector attraction or repulsion which

modi�es their binding energies accordingly (we denote the antiparticle to Σ+ by

symbol Σ̄− and similarly for other antihyperons). The B̄ binding energies are quite

weakly A-dependent in a given model.

Next, we explored the model dependence of B̄ binding energies. In Fig. 3.3, we
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Figure 3.2: The A dependence of B̄ 1s binding energies, calculated dynamically in
the TM1 and TM2 models for ξ = 0.2.

present 1s p̄ binding energies Bp̄ in nuclei from 12C to 208Pb, calculated statically

(left) and dynamically (right) in di�erent RMF models. In the static calculations

(and dynamical calculations alike), the p̄ binding energies vary noticeably with the

applied RMF model. There is a large inconsistency between Bp̄ in light nuclei

calculated using the TM2 model and Bp̄ in the TM1 model for heavy nuclei (compare

also Bp̄ in 40Ca for both TM1 and TM2)1. The same holds for B̄ energies presented in

Fig. 3.2. In the case of the NL-SH and TW99 models the p̄ binding energy grows with

increasing A, as expected, since the antiproton feels attraction from larger amount of

nucleons (except 12C with an extreme central density). The di�erences between the

binding energies arise due to di�erent magnitudes of the σ and ω �elds provided by

the applied models. In normal nuclei, the central nuclear potential is proportional

to the di�erence of the scalar and vector potential and the resulting nuclear binding

energies are almost model independent. However, the p̄ potential is equal to the sum

of the scalar and vector potential due to the G-parity transformation. Consequently,

the di�erences between the total p̄ potentials calculated within di�erent RMFmodels

in a given nucleus become more pronounced, which results in signi�cant variations

of the p̄ binding energies.

1It is to be noted that TM model consists of two parameter sets TM1(2) for heavy (light) nuclei
which, however, yield their binding energies in agreement with experiment [163].
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lated statically (left) and dynamically (right) using the TM2 (black), TM1 (blue),
NL-SH (red) and TW99 (green) models. Figure adapted from author's publica-
tion [175].

Substantial di�erences between the p̄ binding energies calculated statically and

dynamically plotted in Fig. 3.3 indicate that the polarization of the nuclear core is

signi�cant. Indeed, the central core densities are almost twice as large as the satu-

ration density ρ0 . The p̄ binding energies shown in the �gure were calculated using

the standard TM1, TM2, and NL-SH RMF models as well as the density-dependent

TW99 model. We applied the TW99 model since the standard RMF models do not

have to describe correctly the behavior of a nucleus when extrapolated to such high

densities. But in the end, we found that the TW99 model gives similar results as

the standard RMF models with constant couplings. The di�erences between the p̄

binding energies calculated statically and dynamically vary with the applied RMF

model. It seems that the decisive factor is nuclear compressibility, value of which is

di�erent in each model considered (see Table A.1). It expresses how rapidly the bind-

ing energy changes with the density. The larger is the value of compressibility the

more pronounced is the increase of binding energy at a given density2. Indeed, the

TW99 model gives the lowest value of the nuclear compressibility (K = 240 MeV)

and, consequently, there is the smallest di�erence between Bp̄ calculated statically

2It is to be noted that all models yield similar increase of the central nuclear density due to p̄.
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and dynamically. Then follow the TM1 and TM2 models with compressibilities

K = 280 MeV and K = 344 MeV, respectively. The largest dynamical change of

the p̄ binding energy is observed for the NL-SH model with K = 355 MeV.

p̄ Absorption in Nucleus

As a next step, we considered the p̄ absorption in a nucleus and performed fully

self-consistent calculations of p̄-nuclear quasi-bound states. Below we present the

most important results of this study published in Nucl. Phys. A 945 (2016) 197.

This publication is attached in Appedix B.2.

The p̄ absorption is described by the phenomenological imaginary potential (2.33).

Since the parameter Imb0 = 1.9 fm was determined by p̄ absorption at threshold we

introduced suppression factors which account for phase space reduction for annihi-

lating products of the deeply bound antiproton. The suppression factors for decay

channels are plotted in Fig. 2.1. The range of
√
s relevant for our calculations,

√
s ≈ 1.55 - 1.72 GeV, is denoted by the shaded area in Fig. 2.1. We took into

account also kaon annihilation channels in our calculations (these channels were not

considered in previous studies of p̄ nuclei [27]). However, their contribution to the

total p̄ width was found negligible (5 MeV at most).

The extent of the phase space reduction and thus the size of suppression factors

depend strongly on the c.m. energy
√
s. We considered various procedures for

handling
√
s and explored its e�ect on p̄ widths. First, we adopted

√
s in the

two-body frame de�ned by Eq. (2.53) which was used in previous calculations by

Mishustin et al. [27]. We allowed two scenarios � the annihilation of p̄ with the

nucleon with average binding energy, BN = BNav (denoted by M1) and annihilation

with the proton in the 1s state, BN = Bp1s (denoted by M2). Next, we considered the

contribution from kinetic energies of annihilating partners and used
√
s of Eq. (2.54)

expressed in the antiproton�nucleus frame. The kinetic energies were calculated self-

consistently with constant (Jc) as well as reduced (Jr) (anti)nucleon masses in order

to study the e�ect of the medium. For completeness, we adopted also the forms of
√
s

from Eqs. (2.57) and (2.58) (denoted by K and E, respectively) in the calculations

of p̄-nuclear quasi-bound states. These expressions were modi�ed accordingly for

the p̄.

The e�ect of the suppression factors fs is illustrated in Table 3.1. Here, we

show binding energies Bp̄ and widths Γp̄ of the 1s p̄-nuclear state in 16O, calcu-

lated statically and dynamically using the real potential (`Real'), complex potential

(`Complex'), and complex potentials including the suppression factors (`fs(M1)' and
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Table 3.1: Binding energies Bp̄ and widths Γp̄ (in MeV) of the 1s p̄-nuclear state in
16O, calculated dynamically (Dyn) and statically (Stat) within the TM2 model using
the real and complex potentials consistent with p̄�atom data (see text for details).
Table adapted from author's publication [175].

Real Complex fs(M1) fs(Jr)

Dyn Stat Dyn Stat Dyn Stat Dyn Stat

Bp̄ 193.7 137.1 175.6 134.6 190.2 136.1 191.5 136.3
Γp̄ - - 552.3 293.3 232.5 165.0 182.3 147.0

`fs(Jr)'). When we compare calculations without and including p̄ absorption (`Real'

vs. `Complex') we observe that p̄ binding energies decrease noticeably when the p̄

absorption is considered. The binding energies and widths calculated dynamically

are much larger than those obtained in static calculations, which indicates that the

polarization of the nuclear core is signi�cant. When the phase space suppression is

taken into account the p̄ width is reduced by more than twice (compare `Complex'

and `fs(M1)' in the last row of Table 3.1). In addition, the p̄ binding energy increases

and becomes comparable with its `Real' value. When the p̄ and N momenta (see

`fs(Jr)') are included self-consistently into
√
s, the p̄ width is reduced by additional
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Figure 3.4: Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear
states in selected nuclei, calculated dynamically using the TM1 model and di�erent
forms of

√
s (see text for details). Figure adapted from author's publication [175].
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≈ 50 MeV, but still remains sizable. The corresponding lifetime of the p̄ in the nu-

cleus is ' 1 fm/c. The response of the nuclear core to the extra p̄ is not instant � it

could possibly last longer than the lifetime of p̄ inside a nucleus [28,31]. As a result,

the antiproton annihilates before the nuclear core is fully polarized. Our static and

dynamical calculations of p̄ binding energies and widths may be thus considered as

two limiting scenarios.

In Fig. 3.4, we present 1s p̄ binding energies (left panel) and widths (right panel)

in 40Ca, 90Zr, and 208Pb, calculated dynamically for ξ = 0.2 and Imb0 = 1.9 fm

within the same RMF model (TM1) but for di�erent forms of
√
s. The p̄ energies

in a given nucleus calculated using di�erent forms of
√
s do not deviate much from

each other. The p̄ widths are sizable and exhibit much larger dispersion. The largest

widths are predicted for
√
sM1 and the corresponding p̄ binding energies are thus

the smallest. We observe signi�cant reduction of the p̄ widths after including the

momentum dependent terms in
√
s. It is due to the additional sizable downward

energy shift coming from the p̄ and nucleon kinetic energies which implies larger

phase space suppression and thus smaller p̄ widths. The kinetic energies calculated

with reduced masses (
√
sJr) are larger and, consequently, the p̄ widths are smaller

than those calculated using constant masses (
√
sJc); the di�erence is up to 15 MeV

in the TM1 model. The
√
sM2 yields similar p̄ widths as

√
sJ. However, in this case
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the antiproton annihilates with the proton in the 1s state in the two-body frame

(Bp1s � BNav). The
√
sK from kaonic nuclei yields the p̄ widths comparable with

√
sJr. This agreement con�rms reasonable approximations used in the evaluation of

kinetic energies. However, when the low-density limit is taken into account (
√
sE)

the p̄ widths become by ≈ 30 MeV larger.

We studied the model dependence of p̄ binding energies and widths as well. In

Fig. 3.5, they are shown as a function of mass number A, calculated dynamically

in the TM1, TM2 and NL-SH models for ξ = 0.2, Imb0 = 1.9 fm, and
√
sJr. The

TM2 and NL-SH models yield similar p̄ binding energies and widths in 12C, 16O and
40Ca. On the other hand, the TM1 model predicts larger p̄ widths than the TM2

and NL-SH models (except the case of 90Zr). The p̄ binding energies in this model

are substantially lower than those in the TM2 and NL-SH models (see also Fig. 3.2).

Paris N̄N Potential

We performed self-consistent calculations of p̄ quasi-bound states in nuclei across

the periodic table using an optical potential constructed from p̄N scattering ampli-

tudes derived from the 2009 version of the Paris N̄N potential [41]. First, we per-

formed calculations using only the S-wave optical potential and explored its energy

and density dependence. Then, we took into account the p̄N P -wave interaction

and studied its e�ect on the p̄ binding energies and widths. We performed static, as

well as dynamical calculations and compared our results with the phenomenological

RMF approach. Below we present the most important results of this study pub-

lished in Nucl. Phys. A 969 (2018) 45. This publication is attached in Appedix

B.3.

As was demonstrated in the previous section, there is a strong model depen-

dence of the dynamical e�ects caused by the extra p̄ inside the nucleus which is

attributed to di�erent values of nuclear compressibility given by the applied RMF

models (models with larger compressibility predict larger dynamical changes in p̄

binding energies). In order to explore model dependence of the calculations with

the Paris potential, we performed calculations using the RMF NL-SH [164] and

TM(1)2 [163] models. We found that unlike the phenomenological RMF approach

the present static as well as dynamical calculations based on Paris N̄N amplitudes

yield quite similar results within the TM and NL-SH models, the di�erences in p̄

binding energies and widths are up to 10 MeV. It is due to the energy dependence of

the p̄N amplitudes which compensates the increase of the nuclear density. Namely,

larger dynamical changes imply larger subthreshold energy shift and thus weaker
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Figure 3.6: The potential felt by p̄ at threshold (`th medium'), in the p̄ atom and p̄
nucleus, calculated for 40Ca+p̄ with in-medium Paris S-wave amplitudes and static
RMF densities. The p̄ potential calculated using free-space amplitudes at threshold
is shown for comparison (`th free'). Figure adapted from author's publication [186].

p̄N amplitudes (see Fig. 2.2). We preferred the NL-SH model in the present work

since the TM model consists of two di�erent parameter sets � TM2 for light nuclei

and TM1 for heavy nuclei.

The p̄N amplitudes are strongly energy and density dependent, as was shown

in Fig. 2.2. Consequently, the depth and shape of the p̄�nucleus potential depend

greatly on the energies and densities pertinent to the processes under consideration.

In Fig. 3.6 we present the p̄ potential in 40Ca calculated for di�erent energies and

densities: i) using the Paris free-space S-wave amplitudes at threshold (denoted by

`th free'), ii) using in-medium Paris S-wave amplitudes at threshold (denoted by

`th medium'), iii) using in-medium Paris S-wave amplitudes at energies relevant

to p̄ atoms (constructed following Ref. [46]), and iv) using in-medium Paris S-wave

amplitudes at energies relevant to p̄ nuclei (
√
sJc). The p̄ potential constructed using

the free-space amplitudes has a repulsive real part and fairly absorptive imaginary

part. When the medium modi�cations of the amplitudes are taken into account,

the p̄ potential becomes attractive and more absorptive. At the energies relevant

to p̄ atoms, the p̄ potential is more attractive and weakly absorptive. Finally, at

the energies relevant to p̄ nuclei, the p̄ potential is strongly attractive, however, also

strongly absorptive. This demonstrates that proper self-consistent evaluation of the

energy
√
s is essential.

Next, we focus on the p̄ binding energies and widths in various nuclei calculated
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Figure 3.7: 1s p̄ binding energies (left panel) and widths (right panel) in various nu-
clei, calculated statically (upper panel) and dynamically (lower panel) for

√
sJc using

S-wave Paris potential (red squares), including phenomenological P -wave potential
(green triangles down), Paris P -wave potential (blue triangles up) and phenomeno-
logical RMF potential (black circles).

statically and dynamically using the Paris N̄N potential and the role of the P -

wave interaction. Throughout the calculations we used
√
sJc with self-consistently

evaluated kinetic energies and constant (anti)nucleon masses.

In Fig. 3.7, we present 1s p̄ binding energies (left) and widths (right) as a func-

tion of mass number A, calculated statically (top panel) and dynamically (bottom

panel) with the Paris S-wave (squares), Paris S + P -wave (triangles up), and Paris

S-wave + phen. P -wave (triangles down) potentials. The p̄ binding energies and

widths calculated within phenomenological RMF approach (`phen Vopt', circles) are
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shown for comparison. In dynamical and static calculations alike, both P -wave in-

teraction terms, Paris as well as phenomenological, do not a�ect much the p̄ binding

energies � they are comparable with binding energies evaluated using only the S-

wave potential. On the other hand, the p̄ widths are reduced signi�cantly when the

phenomenological P -wave term is included in the p̄ optical potential. The e�ect is

even more pronounced for the Paris P -wave interaction.

The p̄ widths calculated dynamically are noticeably larger than the widths cal-

culated statically. It is caused by the increase of the central nuclear density, which

exceeds the decrease of the p̄N amplitudes due to the larger energy shift with re-

spect to threshold (δ
√
s ∼ −255 MeV in the dynamical case vs. δ

√
s ∼ −200 MeV

in the static case). On the other hand, the p̄ binding energies increase moderately

and get closer to each other when the dynamical e�ects are taken into account. The

p̄ widths exhibit much large dispersion then the p̄ binding energies for the di�erent

potentials.

The Paris S-wave + phen. P -wave potential yields very similar p̄ widths as the

phenomenological approach in the dynamical calculations. They are in the range of

∼ 200 − 230 MeV, which means the p̄ lifetime of 1 fm/c, and are comparable with

the corresponding binding energies. The agreement between the phenomenological

RMF and Paris S-wave + phen. P -wave potentials is quite impressive.
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calculated dynamically within the NL-SH model for
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Finally, we explored the p̄ excited states in selected nuclei. Fig. 3.8 shows p̄

spectra in 40Ca calculated using the Paris S-wave + phen. P -wave potential and

phenomenological RMF approach. The Paris S-wave + phen. P -wave potential

yields the 1p and 1d binding energies slightly larger and thus the s-p and s-d level

spacing smaller than the RMF approach. It is an e�ect of a broader p̄ potential

well generated by the Paris S-wave + phen. P -wave potential. Nevertheless, both

approaches yield comparable p̄ widths and the overall agreement is surprisingly good.

It is to be noted that there is no spin-orbit splitting of the p and d levels presented

in Fig. 3.8 since the Vopt is a central potential constructed from angular momentum-

averaged scattering amplitudes. In the RMF approach, the p̄ binding energies in 1p

and 1d spin doublets are nearly degenerate, the di�erence in p̄ energies (as well as p̄

widths) is up to ∼ 1 MeV. This is in agreement with spin symmetry in antinucleon

spectra within the RMF approach [32�34,199]. In the left panel of Fig. 3.8 we show

the spin-averaged 1p and 1d p̄ binding energies and widths for better comparison

with the results obtained with the central Paris potential.

74



RESULTS

3.2 K−-Nuclear Quasi-Bound States

We calculated K− binding energies and widths in nuclei across the periodic table

using the K− optical potential derived within six current meson�baryon interaction

models and compared the predictions. We took into account also K− interactions

with two and more nucleons in terms of a phenomenological optical potential. The

parameters of this potential were �tted to kaonic atom data for each considered

model separately.

Below we present the most important results of this study published in Phys.

Lett. B 770 (2017) 342 and Phys. Rev. C 96 (2017) 015205. These publications

are attached in Appendix B.4 and B.5, respectively.

In our calculations of K−-nuclear states we considered only static RMF densities

entering the optical potential (2.37). The core polarization due to the K− should

be taken into account. However, it was found that the polarization e�ects increase

BK− by ≈ 6 MeV in 6Li, by ≤ 2 MeV in 40Ca, and by ≤ 0.5 MeV in 208Pb [126].

In any case, the role of the nuclear polarization is less pronounced than the model

dependence.

First, we constructed the K− single-nucleon optical potential using the S-wave

K−N scattering amplitudes derived from the chiral meson�baryon interaction mod-

els presented in Chapter 2, Subsection 2.3.3. All the models yield di�erent K−N

amplitudes below threshold (see Figs. 2.4 and 2.5), which indicates considerable

model dependence of K− binding energies and widths.

In Fig. 3.9, we present 1s K− binding energies BK− and corresponding widths

ΓK− , calculated self-consistently within the P, KM, M1, and M2 models using
√
sE

from Eq. (2.58). The calculated K− binding energies are strongly model dependent,

as expected. The binding energies BK− are gradually increasing with mass number

A and their A-dependence is very similar in all models considered. On the other

hand, the K− widths are weakly A-dependent. The largest widths (' 40 MeV)

are predicted by the KM model. The P and M1 models yield K− widths in heavy

nuclei about three times smaller than the KM model. The M2 model yields similar

widths as the KM model for 208Pb and 90Zr, while the widths in lighter nuclei are

comparable with the P model widths. For the Bonn models B2 and B4, we did not

obtain any K−-nuclear bound states because the real parts of the in-medium K−N

amplitudes are repulsive in the relevant subthreshold region (see Figs. 2.4 and 2.5).

The K− widths obtained within all chiral models are smaller or comparable with

the corresponding binding energies. Such result might stimulate searches for K−-
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Figure 3.9: 1s K− binding energies (left) and corresponding widths (right) in various
nuclei calculated self-consistently in the P (circles), KM (squares), M1 (diamonds),
and M2 (triangles) models. K− multinucleon interactions are not considered. Figure
adapted from author's publication [194].

nuclear bound states in many-body nuclear system. However, the chiral models

take into account only the K−N → πY (Y = Λ,Σ) conversion mode. An insep-

arable component of every realistic description of K− interactions in the nuclear

medium is the absorption of K− on two or more nucleons. Following Ref. [133], we

supplemented theK− single-nucleon potential from chiral models by the correspond-

ing phenomenological multinucleon potential (2.50) and studied its impact on K−

binding energies and widths. The novelty of these calculations consists in the fact

that the K− multinucleon potential was constructed for each of the chiral models

separately and that it involves besides K− absorption also elastic K− interactions.

In Fig. 3.10, we show real (left) and imaginary (right) parts of the total K−

potential, calculated self-consistently for 208Pb+K− in the KM model supplemented

by the multinucleon potential V (2)

K− from Eq. (2.50) with α = 1 (KM1, top) and α = 2

(KM2, bottom) for three di�erent extrapolations of the multinucleon potential V (2)

K−

(for details see Chapter 2, Subsection 2.3.3). The gray shaded areas stand for

uncertainties in V (2)

K− due to the complex parameter B (see Table 2.3). We show also

the underlying chirally-inspiredK− single-nucleon potential for comparison (denoted

by `KN'). The real parts of the K− optical potential are a�ected by multinucleon

interactions markedly less than its imaginary parts in all considered models. This

has crucial consequences for the widths of K−-nuclear states. In the KM1 model,

the FD, HD and TR options yield ReVK− shallower than the original single-nucleon
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Figure 3.10: The real (left) and imaginary (right) parts of the K− optical potential
in the 208Pb+K− nucleus, calculated self-consistently in the KM1 (top) and KM2
(bottom) model, for three di�erent versions of the K− multinucleon potential (see
text for details). The shaded area stands for uncertainties. The single-nucleon K−

potential (KN, green solid line) calculated in the KM model is shown for comparison.

V
(1)

K− potential. The same holds for the P1 and P2 models (not shown in the �gure).

In the KM2 model, the overall K− real potential is deeper than the underlying K−

single-nucleon potential. The ReVK− potentials for HD, TR and FD options di�er

between each other up to ≈ 20 MeV in each interaction model. On the other hand,

the imaginary parts of VK− exhibit much larger dispersion for di�erent versions

of V (2)

K− , as illustrated in Fig. 3.10, right panels. The K− multinucleon absorption

signi�cantly deepens the imaginary part of the K− optical potential. For the FD

option of V (2)

K− , the KM model yields |ImVK−|�|ReVK−| inside the nucleus for both
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Figure 3.11: The respective contributions from K−N (dashed dotted line) and
K−NN (dashed line) potentials to the total real (left) and imaginary (right) K−

optical potential in the 208Pb+K− nucleus, calculated self-consistently in the FD
version of KM1 (top) and KM2 (bottom) models. The shaded areas denote the un-
certainty bands. The K− single-nucleon potential (KN, blue solid line) calculated in
the KM model (i.e. w/o multinucleon interactions) is shown for comparison. Figure
adapted from author's publication [194].

values of α, even when the uncertainties of the K− multinucleon potential are taken

into account. The same holds for the P model (not shown in the �gure).

The individual contributions from the single-nucleon V (1)

K− (denoted by `KN') and

multinucleon V (2)

K− (denoted by `KNN') potentials to the total K− optical potential

VK− including their uncertainties (shaded areas) are shown in Fig. 3.11, calculated

self-consistently for 208Pb+K− in the KM1 (top panels) and KM2 model (bottom

panels) and the FD version of V (2)

K− . We present the single-nucleon K−N potential
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(KN, blue solid line) derived from the K−N amplitude model KM for comparison.

The contribution from ReV (2)

K− to the total real K−�nucleus potential is repulsive in

the KM1 model, as well as in the P1 and P2 models (not shown in the �gure). As

a result, the total K−�nucleus potential including multinucleon processes is less at-

tractive than the original single-nucleon K−�nucleus potential. In the KM2 model,

the contribution from V
(2)

K− brings additional attraction to the total potential due

to positive sign of the e�ective amplitude ReB (see Table 2.3). The single-nucleon

potential V (1)

K− in the KM1 and KM2 models (as well as in P1 and P2 models) di�ers

from the original single-nucleon K−N potential due to the di�erent subthreshold

energy shift (δ
√
s ∼ −85 MeV in the KM model without the multinucleon interac-

tions, δ
√
s ∼ −50 MeV in the KM1 model and δ

√
s ∼ −80 MeV in the KM2 model

at normal nuclear density). The uncertainties in the K−N part arise from variations

of δ
√
s caused by the uncertainties in the total K−-nuclear potential.

The K− multinucleon absorptions dramatically increase the depth of the total

imaginary K− potential as illustrated in the right panels of Fig. 3.11. The K−

multinucleon processes contribute substantially to K− absorption mainly in the

interior of a nucleus. The range of V (2)

K− potential is considerably smaller than the

range of the V (1)

K− potential and thus in the surface region of a nucleus K− single-

nucleon absorption dominates in accordance with experimental �ndings [130�132].

Next, we evaluated the ratios of K− single- and multinucleon absorptions as a

function of nuclear radius (density). They are presented in Fig. 3.12. The ratios

were expressed as fractions of ImV (1)

K− and ImV (2)

K− with respect to the total imaginary

K− potential ImVK− , calculated self-consistently for 208Pb+K− in the P and KM

models for the FD option of V (2)

K− . The density ρ/ρ0 (thin dotted line) is shown

for comparison. Since the range of the corresponding potentials is di�erent, the

relative contributions of ImV (1)

K− and ImV (2)

K− to K− absorption are changing with

radius (density). At the nuclear surface, the K− absorption on a single nucleon

dominates, while it is reduced in the nuclear interior due to vicinity of πΣ threshold

and the multinucleon absorption prevails. The models with α = 2 yield lower

relative fraction of single-nucleon K−N absorption in the nuclear medium than the

models with α = 1. It is due to the self-consistent value of
√
s at ρ0 which is closer

to the K−N → πΣ threshold in the case with α = 2. The analysis of Ref. [133]

showed that the fractions of K− absorption on a single nucleon (∼ 75%) and several

nucleons (∼ 25%) from the bubble chamber experiments are sensitive to about 15%

of nuclear density (denoted in Fig. 3.12 by vertical black line). At this density, the

ratios ImV
(2)

K−/ImV
(1)

K− are lower than experimental fractions of K− absorption at
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Figure 3.12: The ratio of ImV (1)

K− (dashed line) and ImV (2)

K− (solid line) potentials
to the total K− imaginary potential ImVK− as a function of radius, calculated self-
consistently for 208Pb+K− system within the KM1, KM2, P1, and P2 models and
FD option of the K− multinucleon potential. The relative nuclear density ρ/ρ0

(dotted line) and vertical lines denoting 15% of ρ0 are shown for comparison. Figure
adapted from author's publication [200].

rest [130�132] due to di�erent self-consistent values of δ
√
s for kaonic and nuclear

states. It is to be noted that the other options for multinucleon potential, HD and

TR, yield similar fraction of K− single-nucleon and multinucleon absorption inside

the nucleus as the FD option.

Finally, in Table 3.2 we present 1s K− binding energies BK− and widths ΓK− ,

calculated with the underlying K− optical potentials VK− = V
(1)

K− + V
(2)

K− within the

KM and P models, respectively. These two models provide reasonable description of

kaonic atom data as well as K− single-nucleon absorption fractions. For comparison,

we show also K− binding energies and widths calculated only with the chirally-

inspired K− single-nucleon potential. The K− widths increase considerably after

including K− multinucleon potential V (2)

K− , while K− binding energies change less

(they decrease in KM1, P1, and P2 models and increase in KM2 model)3. The HD

and TR options of V (2)

K− potential predict K− widths of order ∼ 100 MeV and the

binding energies much smaller than the corresponding widths in most nuclei. The

FD multinucleon potentials V (2)

K− do not even yield antikaon bound states in the

3For the FD variant of the P2 model, we had to scale huge imaginary part ImVK− by factor 0.8 in
order to get fully converged self-consistent solution of the Klein�Gordon equation Eq. (2.42). The
calculation with the unscaled imaginary potential is not numerically stable due to extremely strong
K− absorption � the non-converged ΓK− > 500 MeV while the corresponding BK− < 15 MeV.
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Table 3.2: 1s K− binding energies and widths (in MeV) in various nuclei calculated
using the single nucleon K−N KM amplitudes (denoted KN); plus a phenomenolog-
ical amplitude B(ρ/ρ0)α, where α = 1 and 2, for half-density limit (HD), tρ option
(TR), and full density option (FD). Table adapted from author's publications [194].

KM model α = 1 α = 2

KN HD TR FD HD TR FD
6Li BK− 25 11 not not 23 19 not

ΓK− 45 116 bound bound 122 160 bound
12C BK− 45 34 20 not 48 44 not

ΓK− 44 114 182 bound 125 191 bound
16O BK− 45 34 25 not 48 46 not

ΓK− 40 109 158 bound 121 167 bound
40Ca BK− 59 50 40 not 64 63 not

ΓK− 37 113 164 bound 126 175 bound
90Zr BK− 69 56 47 17 72 71 30

ΓK− 36 107 156 312 120 167 499
208Pb BK− 78 64 56 33 80 80 53

ΓK− 38 108 153 273 122 163 429

P model α = 1 α = 2

KN HD TR FD HD TR FD
6Li BK− 38 21 not not 36 28 not

ΓK− 40 112 bound bound 133 183 bound
12C BK− 64 50 35 not 64 57 not

ΓK− 28 96 165 bound 122 196 bound
16O BK− 64 50 39 not 63 59 not

ΓK− 25 94 142 bound 117 169 bound
40Ca BK− 81 67 56 not 82 79 not

ΓK− 14 95 145 bound 120 175 bound
90Zr BK− 90 74 62 19 87 85 not

ΓK− 12 88 136 340 114 164 bound
208Pb BK− 99 82 70 37 96 92 47∗

ΓK− 14 92 137 302 117 163 412∗

∗ the solution of the Klein-Gordon equation for ImVK− scaled by factor 0.8

vast majority of nuclei. We found 1s K− quasi-bound states in 90Zr and 208Pb but

the K− binding energies of such states are small and widths are huge, one order of

magnitude larger than the binding energies. These results are valid generally, even

when the uncertainties in the multinucleon potential V (2)

K− are taken into account.

We performed calculations also within the B2, B4, M1, and M2 models supple-
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mented by relevant multinucleon interaction terms from Ref. [133]. The resulting

K− widths are again larger or comparable with the corresponding binding ener-

gies. Moreover, even the Bonn models B2 and B4 yield K− bound states in nuclei

after supplementing the K− single-nucleon potential by the phenomenological K−

multinucleon potential which is strongly attractive.
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Chapter 4

Summary & Outlook

In this work we studied interactions of antihadrons, namely the antiproton, anti-

hyperons, and antikaon, with nuclear many-body systems. The antihadron�nucleus

interactions were described by a phenomenological complex optical potential or by

an optical potential constructed using recent microscopic models of antihadron�

nucleon interactions. The structure of considered nuclei was calculated within the

framework of the Relativistic Mean-Field model. We explored possibility of the ex-

istence of H̄-nuclear quasi-bound states. Our fully self-consistent calculations yield

unique predictions for the H̄ binding energies and decay widths. They may serve as

a guideline for experimentalists studying propagation of antihadrons in the nuclear

medium or even searching for a possible hint of H̄ quasi-bound states in nuclei.

First, we performed detailed calculations of p̄, Λ̄, Σ̄, and Ξ̄ bound states in se-

lected nuclei across the periodic table within several parametrizations of the RMF

model, not considering antibaryon absorption. We explored dynamical e�ects in nu-

clei caused by the antibaryon in the 1s nuclear state using the G-parity motivated

B̄�meson coupling constants properly scaled to yield p̄ potential in agreement with

available data. Due to lack of experimental information on antihyperon interactions,

the same scaling was assumed for antihyperons as well. The estimate for Σ̄� and

Ξ̄�nucleus potentials was given for the �rst time.

Next, we developed a model for the p̄ absorption in the nuclear medium and

performed �rst fully self-consistent calculations of p̄ nuclei using a phenomenological

optical potential consistent with p̄ atom data. We took into account the phase

space reduction for p̄ annihilation products and evaluated suppression factors for

relevant annihilation channels. The energy available for the annihilation products

was calculated self-consistently, considering additional energy shift due to non-zero

momenta of annihilating partners in the p̄�nucleus system.
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We carried out a comparable study of p̄-nuclear quasi-bound states using a mi-

croscopic N̄N potential for the �rst time. The free-space p̄N amplitudes derived

from the latest version of the Paris N̄N potential were modi�ed using the multiple

scattering approach in order to account for Pauli correlations in the medium. We

explored the e�ect of the P -wave interaction on p̄ binding energies and widths. Since

the optical potential based on the Paris S + P -wave scattering amplitudes failed to

�t the p̄ atom data we considered the phenomenological P -wave term as well.

Finally, we calculated K−-nuclear quasi-bound states using K−�nucleus opti-

cal potentials derived self-consistently from the microscopic K−N amplitudes. The

scattering amplitudes were obtained within several chirally-motivated meson�baryon

coupled-channel models. We took into account the in-medium modi�cation of the

K−N amplitudes by applying multiple scattering procedure WRW. We considered

the K− multinucleon interactions in terms of a phenomenological potential, param-

eters of which were �tted to the data for each of the chiral models separately. We

explored the e�ect of the K− multinucleon interactions on K− binding energies and

widths. Such a systematic study of K−-nuclear quasi-bound states was performed

for the �rst time.

In our calculations, we con�rmed that an antibaryon embedded in a nucleus

causes signi�cant modi�cations of the nuclear core. Its binding energy increases

considerably and the central nuclear density reaches 2 - 3 times the saturation den-

sity. The most pronounced changes in the nuclear core are caused by the antiproton.

We found that the extent of core polarization e�ects depends strongly on the applied

RMF model.

Our calculations of p̄ and K− quasi-bound states in nuclei, which included their

absorption in the nuclear medium, yielded the p̄ andK− widths larger or comparable

with the binding energies (if such nuclear quasi-bound states ever exist). This fact

disfavors experimental observation of such states.

In the case of p̄-nuclear states we found good agreement between the results

obtained using the phenomenological RMF potential and the Paris S-wave + phe-

nomenological P -wave potential. These two potentials are consistent with antipro-

tonic atom data and p̄ scattering o� nuclei at low energies. Moreover, we found

that the P -wave interaction almost does not a�ect the binding energies of p̄-nuclear

states. This is in sharp contrast to the case of p̄ atoms where it was found necessary

to include the P -wave interaction in order to increase attraction of the p̄ optical

potential [46].
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The K− binding energies and widths vary signi�cantly with the applied chiral

meson�baryon interaction model. After including the K− multinucleon interactions,

which are an inseparable ingredient of any realistic description of K− propagation

in the nuclear medium , we observed huge increase of the K− widths and decrease of

the corresponding binding energies. This feature is valid generally in chiral models

which reproduce the experimental data from kaonic atoms and theK− single-nucleon

absorption fraction at rest from bubble chamber experiments. Another valuable �nd-

ing is that due to the strong energy and density dependence of the p̄N and K−N

amplitudes, there exist no universal p̄�nucleus or K−�nucleus potential. Its depth

and shape depend greatly on the energies and densities pertinent to the process

under consideration.

In conclusion, it is to be noted that other microscopic N̄N models, such as

the Bonn�Jülich chiral NNLO [44] and N3LO [45] EFT potential models or Zhou�

Timmermans model [43], should be applied to the description of p̄ interaction with

the nuclear medium. Comparison between these N̄N interaction models could bring

valuable information about in-medium p̄ interactions in the direct confrontation with

the data from p̄ atoms and p̄ scattering o� nuclei, as well as predictions for p̄-nuclear

quasi-bound states. Next, more realistic models of the antihyperon�nucleus inter-

actions, including their absorption in the medium, should be developed in the near

future. The knowledge of B̄�nucleus potentials derived within di�erent theoret-

ical approaches could be then used in the simulations of antibaryon interactions

with nuclei under kinematical conditions relevant to the processes to be studied at

FAIR [52,53].

Regarding the K−N interaction, the description of K− multinucleon processes

within microscopic approaches, such as the chirally-motivated coupled-channel model,

is needed. Moreover, though the formation of K− bound states in nuclear many-

body systems seems to be improbable due to the sizable absorption of K− on two or

more nucleons, it is desirable to explore the role of the K− multinucleon interactions

in few-body systems as well.
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Appendix A

RMF Model Parametrizations

In this thesis we use the following RMF parametrizations: the NL-SH model [164],

the TM1(2) models for heavy (light) nuclei [163], and the density-dependent model

TW99 [171]. These models contain values of meson masses and meson�nucleon

Table A.1: The values of meson masses and coupling constants in the TM1, TM2,
NL-SH and TW99 models. The characteristics of nuclear matter (saturation density
ρ0, binding energy per nucleon E/A, and nuclear compressibility K) calculated
within the given models are shown for comparison.

TM1 TM2 NL-SH TW99

mN (MeV) 938 938 939 939
mσ (MeV) 511.198 526.443 526.059 550
mω (MeV) 783 783 783 783
mρ (MeV) 770 770 763 763
gσN 10.0289 11.4694 10.444 10.7285
gωN 12.6139 14.6377 12.945 13.2902
gρN 9.2644 9.3566 8.766 7.3220
g2 (fm−1) -7.2325 -4.4440 -6.9099 0
g3 0.6183 4.6076 -15.8337 0
d 71.3075 84.5318 0 0

ρ0 (fm−3) 0.145 0.132 0.146 0.153
E/A (MeV) -16.3 -16.2 -16.3 -16.3
K (MeV) 281 344 355 240
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RMF MODEL PARAMETRIZATIONS

Table A.2: The parameters of the density-dependent meson�nucleon couplings in
the TW99 model.

aσ cσ cσ dσ aρ

1.365469 0.226061 0.409704 0.901995 0.515

aω bω cω dω -
1.402488 0.172577 0.344293 0.983955 -

coupling constants which were obtained by �tting properties of nuclear matter and

selected �nite nuclei, such as saturation point, binding energies, and charge RMS

radii. The values are listed in Table A.1. The NL-SH and TM models are so called

`nonlinear' since they contain σ and ω self-interactions with extra couplings g2, g3

and d. These models proved themselves to be reliable in the description of nuclear

matter properties as well as characteristics of �nite nuclei. The density-dependent

model TW99 contains in addition parameters for the density-dependent meson-

nucleon couplings [see Eqs. (2.18) and (2.19)] which are listed in Table A.2. This

model does not contain meson self-interaction terms and it is capable of describing

nuclear matter and �nite nuclei properties in similar fashion as the nonlinear models.
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lected nuclei. Due to the lack of information on the in-medium antihyperon annihilation near
threshold only the p̄ absorption was considered. It was described by the imaginary part of a phe-
nomenological optical potential fitted to p̄-atom data. The annihilation was treated dynamically,
taking into account explicitly the reduced phase space for annihilation products in the nuclear
medium, as well as the compressed nuclear density due to the antiproton. The energy available
for the annihilation products was evaluated self-consistently, considering additional energy shift
due to particle momenta in the p̄-nucleus system. Corresponding p̄ widths were significantly re-
duced, however, they still remain sizable. Next, the p̄-nucleus interaction was constructed using
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approach.
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Antibaryon interactions with the nuclear medium Jaroslava Hrtánková

1. Introduction

The antibaryon–nucleus interaction is an interesting and topical issue in view of the future
experiments at FAIR facility. Its study could provide us with information about the behavior of
an antibaryon inside the medium as well as nuclear dynamics. Moreover, it could serve as a test
for models of (anti)hadron–hadron interactions. In particular, much attention was devoted to the
p̄-nucleus interaction and possible existence of p̄-nuclear quasi-bound states [1]. It was argued
in Ref. [1] that the phase space for p̄ annihilation products in the medium could be substantially
suppressed so that p̄ could live relatively long inside the nucleus.

In this contribution, we report on our recent self-consistent calculations of B̄ bound states
in various nuclei using G-parity motivated coupling constants. Special attention was devoted to
calculations of p̄-nuclear bound states, which were performed using a phenomenological optical
potential as well as microscopic Paris N̄N potential.

In Section 2, we briefly introduce the model used in our calculations. Our results are presented
in Section 3 and conclusions are drawn in Section 4.

2. Model

The interactions of an antibaryon with A nucleons are studied within the relativistic mean-field
approach (RMF) [2]. In this model, the (anti)baryons interact among each other by the exchange of
the scalar (σ ) and vector (ωµ ,~ρµ ) meson fields, and the massless photon field Aµ . The equations of
motion are derived from the standard Lagrangian density LN extended by the Lagrangian density
LB̄ describing the antibaryon interaction with the nuclear medium using the variational principle
(see Ref. [3] for details). The Dirac equations for nucleons and antibaryon read:

[−i~α~∇+β (m j +S j)+Vj]ψα
j = εα

j ψα
j , j = N, B̄ , (2.1)

where
S j = gσ jσ , Vj = gω jω0 +gρ jρ0τ3 + e j

1+ τ3

2
A0 (2.2)

are the scalar and vector potentials, respectively. Here, α denotes single particle states, m j stands
for (anti)baryon masses and gσ j,gω j,gρ j, and e j are (anti)baryon coupling constants to correspond-
ing fields. The Klein–Gordon equations for the meson fields involve additional source terms due to
the antibaryon:

(−4+mσ2 +g2σ +g3σ2)σ =−gσNρSN−gσ B̄ρSB̄ ,

(−4+mω2 +dω2
0 )ω0 = gωNρV N +gωB̄ρV B̄ ,

(−4+mρ2)ρ0 = gρNρIN +gρB̄ρIB̄ ,

−4A0 = eNρQN + eB̄ρQB̄ ,

(2.3)

where mσ ,mω ,mρ are the masses of considered mesons and ρS j,ρV j,ρI j and ρQ j are the scalar,
vector, isovector and charge densities, respectively. The system of coupled Dirac (2.1) and Klein–
Gordon (2.3) equations is solved self-consistently by iterative procedure.

The values of the nucleon–meson coupling constants and meson masses were adopted from
the nonlinear RMF models TM1(2) [4] for heavy (light) nuclei and from the NL-SH model [5].
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Figure 1: The phase space suppression factor fs as a function of the center-of-mass energy
√

s.

The hyperon–meson coupling constants for the ω and ρ fields were derived using SU(6) symmetry
relations. The values of the σ coupling constants were obtained from fits to available experimental
data — Λ hypernuclei [6], Σ atoms [7], and Ξ production in (K+,K−) reaction [8].

The B̄–nucleus interaction is constructed from the B–nucleus interaction with the help of the
G-parity transformation: the potential generated by the exchange of the ω meson changes sign due
to the G-parity and becomes attractive. The G-parity is surely a valid concept for the long and
medium range B̄ potential. It yields a very deep B̄-nucleus potential, e. g., the p̄ potential would be
about 750 MeV deep inside a nucleus. However, the B̄ annihilation, which is a dominant process in
the short range interaction, and various many-body effects could cause significant deviations from
the G-parity values in the nuclear medium. Indeed, the experiments with antiprotonic atoms [9]
and p̄ scattering off nuclei at low energies [10] suggest that the real part of the p̄-nucleus potential
is 100− 300 MeV deep in the nuclear interior. Therefore, we introduce a scaling factor ξ for
the antibaryon–meson coupling constants which are in the following relation to the baryon–meson
couplings:

gσ B̄ = ξ gσN , gωB̄ =−ξ gωN , gρB̄ = ξ gρN . (2.4)

In this work, we consider the value of ξ = 0.2−0.3 which is in accordance with the experimental
data fits. We assume the same scaling for antihyperons, as well, due to the lack of experimental
information on antihyperon interactions.

The realistic description of B̄-nucleus interaction should involve B̄ absorption in the medium.
In our calculations, only the p̄ absorption in a nucleus has been considered since we found no
experimental information on antihyperon annihilation in the medium. The p̄ absorption is de-
scribed by the imaginary part of the optical potential in a ‘tρ’ form adopted from optical model
phenomenology [9]:

2µImVopt(r) =−4π
(

1+
µ

mN

A−1
A

)
Imb0ρ(r) , (2.5)
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Figure 2: Energy dependence of the Paris 09 p̄N S-wave amplitudes: Pauli blocked amplitude for ρ0 =

0.17 fm−3 (solid lines) is compared with free-space amplitude (dotted lines).

where µ is the p̄–nucleus reduced mass. The density ρ(r) is evaluated dynamically within the
RMF model, while the parameter Imb0 = 1.9 fm is determined by fitting the p̄ atom data [9].
The effective scattering length Imb0 describes the p̄ absorption at threshold and, therefore, we
evaluate the suppression factor fs for a given decay channel to account for reduction of the phase
space available for decay products of the p̄ annihilation in the nuclear medium. The absorptive p̄
potential then acquires the form

ImVp̄(r,
√

s,ρ) = ∑
channel

Bc fs(
√

s)ImVopt(r) , (2.6)

where Bc is the branching ratio for a given channel (see Ref. [3] for details). The calculated phase
space suppression factors as a function of

√
s for all channels considered are depicted in Figure 1.

Next, we construct the p̄ optical potential using the S-wave p̄N scattering amplitudes derived
from the latest version of the Paris N̄N potential [11]. The free-space amplitudes are modified
using the multiple scattering approach of Wass et al. [12] to account for Pauli correlations in the
medium. The in-medium isospin 1 and 0 amplitudes are of the form

F1 =
f p̄n(δ

√
s)

1+ 1
4 ξk

√
s

mN
f p̄n(δ

√
s)ρ

, F0 =
[2 f p̄p(δ

√
s)− f p̄n(δ

√
s)]

1+ 1
4 ξk

√
s

mN
[2 f p̄p(δ

√
s)− f p̄n(δ

√
s)]ρ

. (2.7)

Here, f p̄n and f p̄p denote the free-space amplitudes as a function of δ
√

s =
√

s−Eth; ρ is the
nuclear core density distribution and ξk is taken from Ref. [13]. In Figure 2, there are free-space p̄N
amplitudes compared with the in-medium modified amplitudes at ρ0 as a function of energy. Both
amplitudes vary significantly with energy below threshold. The peaks of the in-medium amplitudes
are lower in comparison with the free-space amplitudes and are shifted towards threshold. The S-
wave optical potential is of the following form:

2Ep̄Vopt =−4π
√

s
mN

(
F0

1
2

ρp +F1

(
1
2

ρp +ρn

))
, (2.8)
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where ρp (ρn) is the proton (neutron) density distribution and the factor
√

s/mN transforms the
in-medium amplitudes to the p̄-nucleus frame.

The energy relevant for the p̄ scattering amplitudes and suppression factors in the nuclear
medium is defined by Mandelstam variable

s = (EN +Ep̄)
2− (~pN +~pp̄)

2 , (2.9)

where EN = mN−BNav, Ep̄ = mp̄−B p̄, BNav and B p̄ are the average binding energy per nucleon and
the p̄ binding energy, respectively. In the two-body c.m. frame ~pN +~pp̄ = 0 and Eq. (2.9) reduces
to √

s = mp̄ +mN−Bp̄−BNav (M). (2.10)

However, in the p̄-nucleus frame the momentum dependent term in Eq. (2.9) is no longer negli-
gible [14] and provides additional downward energy shift. Then the Mandelstam variable can be
rewritten as

√
s = Eth

(
1− 2(Bp̄ +BNav)

Eth
+

(Bp̄ +BNav)
2

E2
th

− 1
Eth

Tp̄−
1

Eth
TNav

)1/2

(J), (2.11)

where TNav is the average kinetic energy per nucleon and Tp̄ represents the p̄ kinetic energy.
The kinetic energies were calculated as the expectation values of the kinetic energy operator
Tj =− h̄2

2m(∗)
j

4, where m∗j = m j−S j is the (anti)nucleon reduced mass.

3. Results

First, we performed self-consistent calculations of 1s B̄ bound states in various nuclei using the
RMF model with G-parity motivated coupling constants, introduced in previous section. Then, we
considered the p̄ absorption inside the nucleus. The p̄ absorption was described by the imaginary
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Figure 3: The B–nucleus (left) and B̄–nucleus (right) potentials in 16O, calculated dynamically in the TM2
model for ξ = 0.2.
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Figure 4: The A dependence of B̄ 1s binding energies, calculated dynamically in the TM model for ξ = 0.2.

part of the phenomenological optical potential. Finally, we studied p̄ quasi-bound states within the
latest version of the Paris N̄N potential.

In Figure 3, there is the total potential acting on an extra baryon and extra antibaryon in the 1s
state in 16O, calculated dynamically (i. e., the core polarization effect due to B̄ was considered) in
the TM2 model. All antibaryons feel attractive potential due to the G-parity transformation (note
that even Σ̄0 feels attraction inside the nucleus). The depth of the potential felt by B̄ is deeper than
the one felt by B inside the nucleus and indicates that the antibaryons would be strongly bound
in the medium. Figure 4 presents corresponding 1s binding energies of B̄ bound in nuclei across
the periodic table, calculated dynamically in the TM model and ξ = 0.2. The p̄ is the most bound
antibaryon in all nuclei considered since it feels the deepest potential inside the medium. The
Λ̄, Σ̄0 and Ξ̄0 are bound less due to the weaker couplings to the meson fields. It is to be noted
that the presented binding energies were calculated in two models, the TM2 model for 6Li, 12C
and 16O and the TM1 model for 40Ca, 90Zr and 208Pb. These two models yield different values of
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Figure 5: Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei,
calculated dynamically using the TM1 model for different

√
s.
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Figure 6: Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei, cal-
culated dynamically for

√
s = J using the Paris N̄N S-wave potential (red) and phenomenological approach

within the NL-SH model (black).

nuclear compressibility and different magnitudes of the σ and ω fields and, therefore, the binding
energies do not grow with the increasing mass number A as would be expected (see Ref. [3] for
more details).

Next, we considered the p̄ absorption inside the nucleus by adding the imaginary part of the
phenomenological potential to the real p̄-nucleus potential evaluated within the RMF approach. In
Figure 5, there are binding energies (left panel) and widths (right panel) of the 1s p̄-nuclear states
in various nuclei, calculated dynamically in the TM1 model. The presented results were calculated
for
√

s in the two-body frame (M) and laboratory frame (J). The two versions of
√

s yield similar
p̄ binding energies. The energies in a given nucleus are not much affected by the p̄ absorption
(compare with Figure 4). On the other hand, the p̄ widths are sizable in the two-body c.m. frame
and are significantly reduced after including the momentum dependent term in

√
s. However, they

still remain large.
We performed a comparable study of p̄-nuclear quasi-bound states using the microscopic Paris

N̄N S-wave potential. The resulting 1s p̄ binding energies and corresponding widths are presented
in Figure 6. The p̄ binding energies and widths calculated using the phenomenological approach
within the NL-SH model are shown for comparison. The Paris S-wave potential yield smaller p̄
binding energies than the phenomenological potential in all nuclei considered. The p̄ widths exhibit
the same A dependence, however, they are much larger than those calculated with the phenomeno-
logical potential. It is to be noted that the Paris N̄N potential contains sizable P-wave interaction
which should be included in the calculations. Such calculations have been performed recently and
will be published elsewhere.

4. Conclusions

We performed self-consistent calculations of antibaryon-nucleus bound states in selected nu-
clei. First, the B̄-nucleus potential was constructed within the RMF approach using the G-parity
motivated coupling constants properly scaled to fit available experimental data. The real parts of the

6
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potentials felt by B̄ inside nuclei are attractive and fairly deep due to the G-parity transformation. In
our calculations, we considered only the p̄ absorption inside the nucleus so far. The absorption was
described by the imaginary part of the phenomenological potential. The phase space suppression
factors entering the phenomenological potential were evaluated self-consistently using

√
s for the

two-body frame and p̄-nucleus frame. It was found that the energy shift due to N and p̄ momenta
significantly reduces the p̄ widths. However, they still remain sizable for potentials consistent with
p̄-atom data. Next, we performed calculations of p̄-nuclear quasi-bound states using the optical
potential constructed from the Paris N̄N S-wave scattering amplitudes. The free-space p̄N am-
plitudes were modified in order to account for Pauli correlations in medium. The resulting 1s p̄
binding energies are about 10% smaller and widths about 20% larger than those calculated with the
phenomenological approach.
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Abstract

We performed fully self-consistent calculations of p̄-nuclear bound states using a complex p̄-nucleus 
potential accounting for p̄-atom data. While the real part of the potential is constructed within the relativistic 
mean-field (RMF) model, the p̄ annihilation in the nuclear medium is described by a phenomenological 
optical potential. We confirm large polarization effects of the nuclear core caused by the presence of the 
antiproton. The p̄ annihilation is treated dynamically, taking into account explicitly the reduced phase space 
for annihilation from deeply bound states as well as the compressed nuclear density due to the antiproton. 
The energy available for the products of p̄ annihilation in the nuclear medium is evaluated self-consistently, 
considering the additional energy shift due to transformation from the p̄N system to p̄-nucleus system. 
Corresponding p̄ widths in the medium are significantly suppressed, however, they still remain considerable 
for the p̄ potential consistent with experimental data.
© 2015 Elsevier B.V. All rights reserved.

Keywords: Antiproton–nucleus interaction; Antiproton annihilation; Antiproton nuclear bound states

1. Introduction

The study of the interaction of antiprotons with nuclei is a source of valuable information 
about the behavior of antiproton in nuclear matter, the in-medium p̄N interactions, as well as 
nuclear dynamics. Experiments aiming at exploring the p̄-nucleon interaction have been per-
formed since the discovery of the antiproton in 1955 [1]. The antiproton–proton annihilation was 
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studied at the Brookhaven National Laboratory (BNL) and CERN in the 1960s [2] (see also [3]
and the references therein).

Theoretical considerations about the p̄-nucleus interaction are based on symmetry between 
NN and N̄N potentials. In the framework of a meson exchange model, the real part of an 
N̄N potential constructed using the G-parity transformation is strongly attractive [4], which 
led to conjectures about deeply bound p̄ states in nuclei [5–7]. The possibility of existence of 
antiproton–nucleon or antiproton–nucleus quasi-bound states was studied in experiments at the 
LEAR facility at CERN [8]. The p̄ elastic and inelastic scattering off nuclei and proton knock-out 
reactions were analyzed in order to extract information about the p̄-nucleus potential. The mea-
surements of the differential cross-section for the p̄ elastic scattering off 12C at 46.8 MeV favor a 
shallow attractive ReVopt with the depth ≤ 70 MeV and an absorptive part ImVopt ≥ 2ReVopt [8]. 
On the other hand, p̄ production in proton–nucleus and nucleus–nucleus collisions is well de-
scribed by ReVopt ∼ −(100–200) MeV [9]. Despite considerable efforts, no convincing evidence 
for existence of p̄N or p̄-nucleus bound states has been found [10,11].

Unique information about the p̄-nucleus optical potential near threshold has been provided by 
analyses of strong interaction energy shifts and widths of p̄-atomic levels [12–14]. Global fits of 
107 data points of X-ray and radiochemical data led to the p̄ potential with an attractive real part 
about 110 MeV deep and an absorptive imaginary part about 160 MeV deep when extrapolated 
into the nuclear interior [14]. However, the p̄-atom data probe reliably the p̄-nucleus potential 
at the far periphery of the nucleus and model dependent extrapolations to the nuclear interior 
are a source of large uncertainties. Very recently Friedman et al. [15] applied N̄N scattering 
amplitudes of the latest version of the Paris N̄N potential [16] to construct the p̄-nucleus optical 
potential and demonstrated the importance of P-wave amplitudes to account for the p̄-atom data.

The p̄-nucleus interaction has attracted renewed interest in recent years at the prospect of 
future experiments with p̄ beams at the FAIR facility at GSI [17]. The p̄-nuclear bound states 
and the possibility of their formation have been studied in Refs. [18–23] within the relativistic 
mean-field approach [24,25] by employing the G-parity transformation of nucleon–meson cou-
pling constants. A scaling factor ξ was introduced to vary the depth of the p̄-nucleus potential 
[18–22]. This scaling factor which represents departure from the G-parity symmetry can be then 
fitted to yield the p̄ potential consistent with available experimental data. The calculations pre-
dicted strong binding of the antiproton inside a nucleus and large compression of the nuclear 
core induced by the presence of p̄. The p̄ annihilation in the nuclear medium was studied as 
well [18]. Partial widths were evaluated with the help of vacuum annihilation cross sections for 
considered annihilation channels and the phase space suppression for p̄ annihilation from deeply 
bound states was taken into account. The lifetime of p̄ in a nucleus was estimated to be in the 
range of 2–20 fm/c.

In Refs. [21,22] the Giessen Boltzmann–Uehling–Uhlenbeck (GiBUU) transport model [26]
was applied to p̄-nucleus interactions in a wide range of p̄-beam momenta. The GiBUU model 
was used to fit the KEK data [27] on p̄ absorption cross sections at plab = 470–880 MeV/c to fix 
the value of the scaling factor ξ = 0.22, which corresponds to ReVopt � 150 MeV deep at normal 
nuclear density. Dynamical response of selected nuclei to the incident antiproton together with 
the probability that the antiproton reaches the dense nuclear environment before it annihilates 
was examined. The time required for the nuclear compression was found to be within the range 
of the p̄ lifetime calculated in Ref. [18].

Recently, Gaitanos et al. [28,29] developed a non-linear derivative (NLD) model which ac-
counts for momentum dependence of the nuclear mean fields, which is missing in standard RMF 
models. This momentum dependence reduces the G-parity motivated p̄ optical potential and 
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yields its depth in agreement with available experimental data. It was demonstrated that the 
RMF approach with antiproton–meson couplings scaled by a factor ξ = 0.2–0.3 can reproduce 
the NLD results in average [30].

In this work, we performed fully self-consistent calculations of p̄ nuclear bound states us-
ing a complex p̄-nucleus potential consistent with p̄-atom data, aiming at analyzing in detail 
various effects which could have impact on calculated p̄-nuclear characteristics. In particular, 
we explored dynamical response of the nuclear core to the presence of the deeply bound an-
tiproton. In view of appreciable densities in the interior of p̄ nuclei, it is desirable to check how 
reliable are the underlying RMF models in such highly dense nuclear matter. We therefore ap-
plied in our calculations various RMF models which yield different compressibilities of nuclear 
matter, including the TW99 model with density-dependent couplings [31], and compared their 
predictions. Annihilation widths in the nuclear medium depend strongly on the energy available 
for the decay products of the deeply bound antiproton, as well as the density of the surround-
ing nuclear medium. It is thus imperative to perform fully dynamical calculations of p̄-nuclear 
states using a complex p̄ potential which incorporates main features of the p̄-nucleus interac-
tion, while taking into account self-consistently the additional energy shift corresponding to the 
transformation from the 2 c.m. p̄N annihilation to p̄N annihilation in a nucleus. The procedure 
for self-consistent handling the sub-threshold energy dependence was recently applied in calcu-
lations of kaonic atoms, and kaonic and η nuclear states using chirally motivated K̄N amplitudes 
[32–37].

The paper is organized as follows. In Section 2, we briefly describe the applied RMF model 
for calculating p̄ nuclear states, discuss the underlying p̄-nucleus interaction and p̄ absorption in 
the nuclear medium including self-consistent schemes for evaluating the energy 

√
s which enters 

phase space suppression factors. In Section 3, we present selected results of our calculations of 
p̄ quasi-bound states in various nuclei across the periodic table in order to demonstrate dynam-
ical effects in the nuclear core caused by the antiproton, model dependence of the calculations, 
and the role of various factors that determine p̄ widths in the nuclear medium. Conclusions are 
summarized in Section 4.

2. Model

The interaction of an antiproton with a nucleus is studied within the relativistic mean-field 
model [24,25]. In this model, the interaction among (anti)nucleons is mediated by the exchange 
of the scalar (σ ) and vector (ωμ, �ρμ) meson fields, and the massless photon field Aμ. In order 
to incorporate the p̄ into the model we extended the standard Lagrangian density for nucleonic 
sector by the Lagrangian density which describes the antiproton interaction with the nuclear 
medium:

L =
∑

j=N,p̄

ψ̄j [iγ μ∂μ − mj − gσjσ − gωjγμωμ − gρjγμ�τ · �ρμ − eγμ

1

2
(1 + τ3)A

μ]ψj

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

2
(
1

2
�μν�

μν − m2
ωωμωμ)

− 1

2
(
1

2
�Rμν · �Rμν − m2

ρ �ρμ · �ρμ) − 1

4
FμνF

μν

− 1

3
g2σ

3 − 1

4
g3σ

4 + 1

4
d(ωμωμ)2 , (1)
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where mj denotes the mass of the (anti)nucleon; mσ , mω , mρ are the masses of the considered 
meson fields; gσj , gωj , gρj and e are the (anti)nucleon couplings to corresponding fields – g2, 
g3 and d represent the strengths of the σ and ω field self-interactions. The field tensor fulfills 
Fμν = ∂μFν − ∂νFμ, and correspondingly for the �μν and �Rμν .

The equations of motion are derived using the variational principle employing the mean-field 
and no-sea approximations. Furthermore, we are dealing with stationary states and spherically 
symmetric nuclei. We assume that single particle states do not mix isospin, i.e., only the neutral 
component of the isovector ρ-meson field is considered. The Dirac equations for nucleons and 
antiproton then read:

[−i �α �∇ + β(mj + Sj ) + Vj ]ψα
j = εα

j ψα
j , j = N, p̄ , (2)

where

Sj = gσjσ, Vj = gωjω0 + gρjρ0τ3 + ej

1 + τ3

2
A0 (3)

are the scalar and vector potentials and α denotes single particle states. The equations of motion 
for the boson fields acquire additional source terms due to the presence of p̄:

(−
 + m2
σ + g2σ + g3σ

2)σ = −gσNρSN − gσp̄ρSp̄ ,

(−
 + m2
ω + dω2

0)ω0 = gωNρV N + gωp̄ρV p̄ ,

(−
 + m2
ρ)ρ0 = gρNρIN + gρp̄ρIp̄ ,

−
A0 = eNρQN + ep̄ρQp̄ ,

(4)

where ρSj , ρVj , ρIj and ρQj are the scalar, vector, isovector, and charge densities, respectively. 
The coupled system of the equations of motion Eq. (2) and Eq. (4) is solved fully self-consistently 
by iterative procedure.

The nucleon–meson coupling constants and meson masses were adopted from the nonlinear 
RMF model TM1 for heavy nuclei and TM2 for light nuclei [38]. These two RMF parametriza-
tions proved successful in the description of ground state characteristics of ordinary nuclei in 
the corresponding mass regions, however, it is not guaranteed that they will provide consistent 
account of the properties of p̄ nuclei (e.g. p̄ and total binding energies), particularly their A
dependence. Moreover, since TM1 and TM2 yield quite different compressibilities of nuclear 
matter, they could predict different size of the nuclear core modifications due to the antiproton. 
We thus performed calculations of selected p̄ nuclei using the RMF NL-SH parametrization [39]
as well, and studied model dependence of our results.

The antiproton placed in a nucleus causes strong polarization effects resulting in the high 
central density of the nuclear core, reaching up to 4 times the nuclear matter density. The ap-
plication of standard RMF models for the description of nuclear matter at such densities has to 
be considered as extrapolation. Therefore, we employed also the density-dependent RMF model 
[31] which is more suitable for the description of dense nuclear matter. In the density-dependent 
model, the nucleon–meson couplings are a function of the nucleon density ρVN

giN(ρVN) = giN(ρ0)fi(x) , i = σ,ω , (5)

where

fi(x) = ai

1 + bi(x + di)
2

1 + ci(x + di)2
, (6)
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and x = ρVN/ρ0, where ρ0 represents the saturation density of nuclear matter. The coupling of 
the ρ meson has an exponential character

gρN(ρV N) = gρN(ρ0)exp[−aρ(x − 1)] . (7)

The parameters ai , bi , ci , di and aρ are fitted to Dirac–Brueckner calculations of nuclear mat-
ter and constrained by conditions on the functions fi(x) [31]. The density dependence of the 
nucleon–meson couplings leads to an extra term �R in the Dirac equation for nucleons

[−i �α �∇ + β(mN + SN) + VN + �R]ψα
N = εα

Nψα
N , (8)

where

�R = ∂gωN

∂ρVN

ρVNω0 + ∂gρN

∂ρVN

ρINρ0 − ∂gσN

∂ρVN

ρSNσ . (9)

The Klein–Gordon equations for the meson fields retain their form as in Eq. (4) only the cou-
plings become a function of density.

The equations of motion in the RMF model are derived on the Hartree level where each nu-
cleon moves in mean fields created by all nucleons bound in the nucleus. Consequently, the 
nucleon feels in addition a kind of “attraction” as well as “repulsion” from itself. In ordinary 
nuclei this self-interaction has only a minor (1/A) effect.1 However, the potential acting on the 
antiproton in a nucleus is much deeper than the potential acting on nucleons and so the im-
pact of the p̄ self-interaction could become pronounced. In order to explore the role of the p̄
self-interaction, we performed calculations where the p̄ source terms were omitted in the Klein–
Gordon equations for the boson fields acting on the antiproton, i.e.

(−
 + m2
M)�p̄ = gMNρMN����������+ gMp̄ρMp̄ (10)

and compared them with the results of regular calculations according to Eq. (4). The impact of 
the unphysical p̄ self-interaction depends on the depth of the p̄ potential. The deeper is the p̄
potential the larger is the role of the p̄ self-interaction. We will demonstrate in the following 
section that the effect of the p̄ self-interaction is negligible for the p̄ potential consistent with 
available experimental data.

2.1. p̄-nucleus interaction

On the level of hadron degrees of freedom the strong interaction between nucleons is under-
stood as a meson exchange process. When going from the NN interaction to N̄N interaction 
the G-parity transformation, which consist of charge conjugation and rotation in isospin space, 
seems to be a natural link for the medium and long range part of the interaction which is governed 
by the meson exchange. To describe the p̄-nucleus interaction we thus make use of the G-parity 
transformation. The real part of the p̄-nucleus potential is obtained by the transformation of the 
nucleon–nucleus potential

Up̄ =
∑
M

GMUM , (11)

where UM denotes the potential generated by the exchange of the meson M and GM is the 
G-parity eigenvalue for the corresponding meson field. When expressed in terms of coupling 
constants we have

1 It is to be noted that the self-interaction is directly subtracted in the Hartree–Fock formalism.
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gσp̄ = gσN, gωp̄ = −gωN, gρp̄ = gρN . (12)

Within the RMF approach the nuclear ground state is well described by an attractive scalar poten-
tial S(0) � −400 MeV and a repulsive vector potential V (0) � 350 MeV. The central potential 
acting on a nucleon in a nucleus is then S(0) + V (0) � −50 MeV. Since the vector potential 
generated by the ω meson exchange changes its sign under the G-parity transformation, the total 
p̄ potential would be strongly attractive and ≈ 750 MeV deep in the nuclear interior.

We should stress that G-parity is surely a valid concept for the long and medium range p̄
potential. However, the p̄ annihilation plays a crucial role in the p̄N and p̄-nucleus interactions. 
It has a major contribution in the short range region and it is not clear to what extent it affects the 
elastic part of the interaction. Moreover, various many-body effects could cause deviations from 
the G-parity values in the nuclear medium as well [18]. Therefore G-parity should be regarded as 
a mere starting point to determine the p̄-meson coupling constants in standard RMF models. It 
is to be noted that a recent approach [30] which incorporates the momentum dependence of the 
mean fields yields the p̄ potential consistent with in-medium antinucleon phenomenology while 
retaining the G-parity symmetry.

The form of the p̄ potential in the nuclear medium is still quite uncertain, despite considerable 
experimental as well as theoretical efforts in the past. Following Refs. [18–22] we introduce a 
uniform scaling factor ξ ∈ 〈0, 1〉 for the p̄-meson coupling constants:

gσp̄ = ξ gσN, gωp̄ = −ξ gωN, gρp̄ = ξ gρN (13)

to control the strength of the p̄-nucleus interaction. The experiments with antiprotonic atoms, p̄
scattering off nuclei and p̄ production in proton–nucleus and nucleus–nucleus collisions suggest 
that the real part of the p̄ potential should be in the range of −(100–300) MeV at normal nuclear 
density [12,14,21] which corresponds to ξ = 0.2–0.3.

For the real part of the p̄-nucleus potential we adopted the value ξ = 0.2 which provides the 
p̄ potential consistent with p̄-atom data. It is to be stressed here that due to sizable modifications 
of the nuclear core caused by the deeply bound antiproton, the dynamically evaluated p̄ potential 
becomes considerably deeper than the corresponding potential deduced from the analysis of p̄
atoms, as will be demonstrated in Section 4.

2.1.1. p̄ annihilation
The annihilation of the antiproton in the nuclear medium is an inseparable part of any realistic 

description of the p̄-nucleus interaction. Since the RMF approach does not address directly the 
p̄ absorption in a nucleus, we adopted the imaginary part of the optical potential in a ‘tρ’ form 
from optical model phenomenology [14]:

2μImVopt(r) = −4π

(
1 + μ

mN

A − 1

A

)
Imb0ρ(r) , (14)

where μ is the p̄-nucleus reduced mass. While the density ρ(r) was treated as a dynamical 
quantity evaluated within the RMF model, the global parameter Imb0 = 1.9 fm adopted from 
Ref. [14], was fitted to p̄ atom data. It is to be noted that the value of Imb0 was determined for a 
finite-range (FR) interaction, where original densities were replaced by ‘folded’ densities, while 
here it was applied to construct a zero-range ‘tρ’ potential. We checked that the RMF densities in 
the present work yield r.m.s. radii larger than the unfolded densities used in the p̄ atom analysis 
and thus effectively approximate the FR ‘folded’ densities in Ref. [14].

In our calculations we considered that Imb0 involves annihilation channels with corresponding 
branching ratios Bc listed in Table 1. They are sorted according the number of mesons in final 
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Table 1
The annihilation channels for p̄N at rest in vacuum. Here, nf is the number of decay products and Bc denotes the 
branching ratio of a particular decay channela.

nf Channel Bc [%] nf Channel Bc [%]

2 2π0 0.07 π+π−π0 1.8
π+π− 0.31 π0KSKL 6.7 · 10−4

π0ρ0 1.7 π±K∓KS 2.7 · 10−3

π±ρ∓ 0.9 ωK+K− 2.3 · 10−3

π0ω 0.6 4 4π0 0.5
ρ0ω 2.3 π+π−2π0 7.8
ωη 1.5 2π+2π− 4.2
2ω 3.0 5 5π0 0.5
K+K− 1.0 · 10−3 π+π−3π0 20.1
KSKL 7.9 · 10−4 2π+2π−π0 10.4

3 2π0η 0.7 6 π+π−4π0 1.9
π+π−η 1.3 2π+2π−2π0 13.3
2π0ω 2.6 3π+3π− 2.0
π+π−ω 6.6 7 3π+3π−π0 1.9
π+π−ρ0 3.6 2π+2π−3π0 4.0

a The non-strange annihilation channels and their branching ratios are taken from Ref. [18] (see also references therein). 
Branching ratios for channels containing kaons are taken from Ref. [41].

state. We included only direct decay channels, i.e. only non-resonant contributions and no further 
decay of produced mesons were taken into account, as in Ref. [18]. Moreover, we considered 
annihilation channels containing kaons.

The energy available for p̄N annihilation in vacuum at rest is 
√

s = mp̄ + mN . In the nuclear 
medium, this energy is reduced due to the binding of the antiproton and nucleon. Consequently, 
the phase space available for annihilation products should be substantially suppressed for deeply 
bound p̄, which might lead to a relatively long living antiproton in the nuclear interior [18].

We took into account the suppression of phase space by introducing corresponding suppres-
sion factors fs. For the two body decay channels fs were evaluated with the help of the formula 
[40]:

fs = M2

s

√
[s − (m1 + m2)2][s − (m1 − m2)2]

[M2 − (m1 + m2)2][M2 − (m1 − m2)2]�(
√

s − m1 − m2) , (15)

where m1, m2 are the masses of the annihilation products and M = mp̄ + mN . For channels 
containing more than 2 particles in the final state the suppression factors fs were calculated with 
the help of the Monte Carlo simulation tool PLUTO [42]. To compute the suppression factors for 
the channels containing more than 4 particles in the final state we expressed the decay products 
in terms of two or three effective particles. The n-body phase space φn was then decomposed 
into smaller subspaces according the formula [40]

dφn(P ;p1, . . . , pn) = dφj (q;p1, . . . , pj ) × dφn−j+1(P ;q,pj+1, . . . , pn)(2π)3dq2,

(16)

where q2 = (
∑j

i=1 Ei)
2 − | ∑j

i=1 �pi |2, P is the 4-momentum of the annihilating pair and pi are 
the 4-momenta of the annihilation products. The suppression factor was expressed as a ratio of 
Dalitz plot area for reduced 

√
s and vacuum 

√
s = 2mN . The phase space suppression factors 
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Fig. 1. The phase space suppression factors fs as a function of the c.m. energy 
√

s. The range of 
√

s relevant for p̄-nuclear 
states is denoted by gray area.

for considered annihilation channels are plotted as a function of the center-of-mass energy 
√

s in 
Fig. 1.

The energy available for the annihilation in the medium is given by Mandelstam variable

s = (EN + Ep̄)2 − ( �pN + �pp̄)2 , (17)

where EN = mN − BN , Ep̄ = mp̄ − Bp̄ , and BN (Bp̄) is the nucleon (p̄) binding energy. In the 
two-body c.m. frame �pN + �pp̄ = 0 and Eq. (17) reduces to

√
s = mp̄ + mN − Bp̄ − BN. (18)

This form of 
√

s was considered in Ref. [18]. However, when the annihilation of the antiproton 
with a nucleon takes place in a nucleus, the momentum dependent term in Eq. (17) is no longer 
negligible [32] and provides additional downward energy shift to that stemming from the binding 
energies Bp̄ and BN . Taking into account averaging over the angles ( �pN + �pp̄)2 ≈ �p 2

N + �p 2
p̄ , 

Eq. (17) can be rewritten as

√
s = Eth

(
1 − 2(Bp̄ + BNav)

Eth
+ (Bp̄ + BNav)

2

E2
th

− 1

Eth
Tp̄ − 1

Eth
TNav

)1/2

, (19)

where Eth = 2mN , BNav and TNav is the average binding and average kinetic energy per nucleon, 
respectively, and Tp̄ represents the p̄ kinetic energy. The kinetic energies of the nucleon and the 

antiproton were calculated as the expectation values of the kinetic energy operator Tj = − h̄2

2m∗
j

, 

where m∗
j = mj − Sj is the (anti)nucleon reduced mass.

In the studies of K−-nuclear potentials [32,33], the momentum dependence in 
√

s was trans-
formed into the density dependence. The nucleon kinetic energy was approximated within the 
Fermi gas model by TN(

ρN

ρ0
)2/3, where TN = 23 MeV, and the kaon kinetic energy was expressed 

within the local density approximation by TK ≈ −BK − ReVK(r), where VK = VK + VC and 
VC is the K− Coulomb potential, which led to the expression

√
s = mN + mK − BNav − ξNBK + ξKReVK(r) − ξNTN(

ρN

ρ0
)2/3, (20)
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where ξN(K) = mN(K)

mN+mK
. In more recent calculations of kaonic atoms [34,35] and η-nuclear bound 

states [36,37], δ
√

s = √
s − mN − mH was adjusted to respect the low density limit δ

√
s → 0

upon ρ → 0:

δ
√

s = −BNav
ρN

ρ̄N

− ξNBH

ρN

ρ0
− ξNTN(

ρN

ρ0
)2/3 + ξH ReVH (r) − ξNVC(

ρN

ρ0
)1/3, (21)

where ρ̄N is the average nucleon density and H = K, η (for η mesons, the last term in Eq. (21)
is zero).

The absorptive p̄ potential used fully self-consistently in our calculations of p̄-nucleus states 
acquires the form

ImVp̄(r,
√

s, ρ) =
∑

channel

Bcfs(
√

s)ImVopt(r). (22)

3. Results

We adopted the formalism introduced in Section 2 to detailed calculations of p̄ bound states 
in selected nuclei across the periodic table. First, we did not consider the p̄ absorption and ex-
plored various dynamical effects in these nuclei caused by the antiproton in the 1s nuclear state 
using the G-parity motivated p̄-meson coupling constants scaled by the factor ξ (Eq. (13)). We 
studied model dependence of the calculations, as well as the effect of the p̄ self-interaction. We 
confirmed previous findings of Mishustin et al. [18] who had revealed that the insertion of the p̄
into the nucleus causes significant polarization of the nuclear core. Then, we took into account 
the p̄ absorption in the nuclear medium and performed first fully self-consistent calculations 
of p̄ nuclei using an optical potential consistent with p̄ atom data [14]. Selected results of our 
calculations are presented in the following subsections.

3.1. Dynamical effects and model dependence

In order to explore the extent of dynamical effects in the nuclear core due to the presence of 
p̄, we performed static as well as dynamical calculations of p̄ nuclei. In static calculations the 
antiproton source terms are omitted in the right hand sides of all equations of motion (4). When 
the exact G-parity symmetry is assumed for the p̄ coupling constants, the antiproton potential 
is about 800 MeV deep in 16O calculated statically within the TM2 model. When calculated 
dynamically, the p̄ potential reaches nearly 1700 MeV in all nuclei considered. The dynamical 
effects are thus considerable and should not be neglected. The binding energies of p̄ in the 1s

state are 1212.4 MeV in 16Op̄ (TM2 model) and 1107.5 MeV in 208Pbp̄ (TM1 model). The 
corresponding total binding energies are B = 1259.9 MeV and B = 2651.2 MeV for 16Op̄ and 
208Pbp̄ , respectively (compare with B = 128.9 MeV for 16O and B = 1634.8 MeV for 208Pb).

The antiproton embedded in the nucleus causes its compression and the nuclear core density 
increases, particularly in the vicinity of p̄ where it reaches ∼3–4 times the normal nuclear den-
sity. The effect is more pronounced in lighter nuclei where the antiproton, which is localized in 
the central region of the nucleus up to ≈1.5 fm, affects the whole nucleus. In heavier nuclei, the 
increase in the core density distribution is significant only in the central region of the nucleus, 
r ≤ 2 fm.

Standard RMF models need not be reliable at such high nuclear densities occurring in p̄ nu-
clei. Therefore, we also performed calculations using the density-dependent model TW99 [31]
which is considered more suitable for the description of dense nuclear matter. The TW99 model 
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Fig. 2. The isovector density distribution in 208Pbp̄ calculated dynamically for different values of the scaling parameter 
ξ within the TM1 model (upper left panel) and DD TW99 model (upper right panel). The radial dependence of the 
nucleon–meson couplings is shown in the lower panels.

yields approximately the same depth of the p̄ potential and somewhat higher nuclear core densi-
ties than the TM model. This is due to the lower compressibility of the TW99 model – compare 
K = 240 MeV in the TW99 model, K = 344 MeV in the TM2 model, and K = 280 MeV in the 
TM1 model. The only qualitative difference between the TM and TW99 models concerns the 
isovector density distribution, ρp(r) − ρn(r). In Fig. 2, we present comparison of isovector den-
sities in 208Pbp̄ calculated dynamically within the TM1 and TW99 models for different values 
of the scaling factor ξ . In the TM1 model (left panel), the density of protons exceeds the density 
of neutrons in the central region of the nucleus. Protons are more concentrated around the p̄ than 
neutrons because they feel strong isovector attraction which together with Coulomb attraction 
from the antiproton surpass the Coulomb repulsion among protons. The rearrangement of the 
nuclear structure is sizeable even in light nuclei. In the TW99 model (right panel) we observe the 
opposite effect. Neutrons are more concentrated in the center of the nucleus where the antiproton 
is localized. This is due to the decreasing strength of the isovector ρ meson coupling with in-
creasing nucleon density as can be seen in the lower panel of Fig. 2. Consequently, protons feel 
much weaker isovector attraction and neutrons much weaker isovector repulsion in the center of 
the nucleus. The isovector rearrangement of the nuclear structure is now less pronounced in light 
nuclei containing less nucleons.

During our dynamical calculations we noticed that the central p̄ density ρp̄(0) reaches its 
maximum for ξ ≈ 0.5 and then starts to decrease, as illustrated in the left part of Fig. 3. Here, we 
present the p̄ density distribution in 208Pbp̄ , calculated dynamically for different values of ξ us-
ing the TM1 model. This sudden decrease of the central p̄ density is due to the p̄ self-interaction 
(see Section 2) which causes sizable effects on the calculated observables when the p̄ potential 
in the nuclear medium is very deep. When the p̄ self-interaction is subtracted (right panel) the 
ρp̄(0) increases gradually with ξ and saturates at much higher values of ξ . Fig. 4 shows the nu-
clear core density distribution in 208Pbp̄ , calculated dynamically in the TM1 model with (left) 
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Fig. 3. The p̄ density distribution in 208Pbp̄ , calculated dynamically for different values of ξ in the TM1 model with 
(left) and without (right) the p̄ self-interaction.

Fig. 4. The core density distribution in 208Pbp̄ , calculated dynamically for different values of ξ in the TM1 model with 
(left) and without (right) the p̄ self-interaction. The case of 208Pb is shown for comparison.

and without (right) the p̄ self-interaction. It follows a similar trend as the p̄ density distribution, 
but it saturates at a different value of ξ .

In Fig. 5, we compare scalar Sp̄ and vector Vp̄ potentials acting on the p̄ in 208Pb, calcu-
lated dynamically using the TM1 model with and without the p̄ self-interaction. When the p̄
self-interaction is included (left panel), the scalar potential Sp̄ is deeper than the vector potential 
Vp̄ . The difference between their depths grows with increasing value of the scaling factor – for 
ξ = 1, Sp̄(0) is twice as deep as Vp̄(0). When the p̄ self-interaction is subtracted (right panel), 
the p̄ scalar potential is comparable or even shallower than the vector potential, the difference 
between their depths being much smaller now.
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Fig. 5. Scalar Sp̄ and vector Vp̄ potentials felt by p̄ in 208Pb, calculated dynamically for different values of ξ in the TM1 
model with (left panel) and without (right panel) the p̄ self-interaction.

Fig. 6. The real part of the optical potential acting on p̄ in 208Pb, calculated dynamically for different values of ξ in the 
TM1 model with (black lines) and without (red lines) the p̄ self-interaction. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

The interplay between the value of Sp̄ − Vp̄ , the p̄ single particle energy, and the p̄ rest 
mass affects the large component of the solution of the Dirac equation for the underlying p̄
wave function which controls the density distribution. As the difference between the scalar and 
vector potential increases with ξ in the case with the p̄ self-interaction, a sudden change of sign 
occurs in the solution of the Dirac equation for the large component of the p̄ wave function. 
Consequently, the density starts to decrease. It should be noted that the change of sign appears 
also in the case without the p̄ self-interaction but at much higher values of ξ .

Fig. 6 shows the total potential acting on p̄ in 208Pb, calculated dynamically for selected 
values of ξ within the TM1 model with (black lines) and without (red lines) the p̄ self-interaction. 
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Fig. 7. Binding energies of 1s p̄-nuclear states across the periodic table calculated statically (left) and dynamically (right) 
using the TM2 (black), TM1 (blue), NL-SH (red) and TW99 (green) models. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

The effect of the p̄ self-interaction starts to be considerable for really deep p̄ potentials, i.e. for 
ξ ≥ 0.5. Correspondingly, the p̄ binding energies and the total binding energies of p̄ nuclei are 
larger when the p̄ self-interaction is subtracted and the effect increases with ξ – for ξ = 1 the 
difference is more than 200 MeV in 208Pbp̄ .

It is to be stressed that the available experimental data constrain the depth of the p̄ potential at 
much lower values than the G-parity transformation. The corresponding scaling factor of the p̄
coupling constants which gives the potential consistent with the data is ξ ≈ 0.2, which is safely 
in the region where the effect of the p̄ self-interaction is negligible. From now on we will discuss 
the results of our calculations for the value of ξ = 0.2 only.

Binding energies Bp̄ of 1s p̄-nuclear states in core nuclei from 12C to 208Pb are plotted in 
Fig. 7, where the results of static as well as dynamical calculations for various RMF models 
are presented. Substantial differences between the p̄ binding energies calculated statically and 
dynamically indicate that the polarization of the nuclear core is, even for ξ = 0.2, still significant. 
Indeed, the central nuclear core densities are almost twice larger than the saturation density. 
The p̄ binding energies shown in the figure were calculated using the TM1, TM2, NL-SH and 
TW99 models. They evince a strong model dependence. In this work we often used the TM 
model [38] which consists of two parameter sets – the TM2 model designed to account for 
properties of light nuclei and the TM1 model describing heavy nuclei. However, these two TM 
parametrizations yield quite different characteristics of p̄ nuclei, as illustrated in the figure. There 
is a large inconsistency between Bp̄ in light nuclei calculated using the TM2 model and Bp̄ for 
the TM1 model in heavy nuclei (compare also Bp̄ in Ca for both TM1 and TM2). In the case of 
the NL-SH and TW99 models the p̄ binding energy grows with increasing A, as expected, since 
the antiproton feels attraction from larger amount of nucleons (except 12C with an extreme central 
density). The differences between the p̄ binding energies calculated statically and dynamically 
indicate that the response of the nuclear core to the extra antiproton varies with the applied RMF 
model, where nuclear compressibility seems to be the decisive factor. The TW99 model gives 
the lowest value of the nuclear compressibility (K = 240 MeV) out of the models used in our 
calculations. Consequently, there is a smallest difference between Bp̄ calculated statically and 
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Fig. 8. The real ReVopt and imaginary ImVopt part of the p̄ potential in 208Pb, calculated dynamically using the TM1 
model and different procedures of handling self-consistently 

√
s (see text for details). The p̄ potential calculated statically 

for selected 
√

s (Jr-static) is shown for comparison.

dynamically. Then follow the TM1 and TM2 models with compressibilities K = 280 MeV and 
K = 344 MeV, respectively. The largest dynamical change of the p̄ binding energy is observed 
for the NL-SH model with K = 355 MeV.

As demonstrated in Fig. 7, the p̄ binding energies calculated using the above RMF models 
remain sizable even for the reduced p̄ couplings (ξ = 0.2), which has consequences for the 
evaluation of the widths of p̄-nuclear states discussed in the following subsection.

3.2. p̄ annihilation in a nucleus

We performed first fully self-consistent calculations of p̄-nuclear states including antiproton 
absorption in a nucleus. The p̄ annihilation was described by the imaginary part of a phenomeno-
logical optical potential, parameters of which were determined from global fits to antiproton 
atom data [14]. The effective scattering length Imb0 (see Eq. (14)) accounts for the p̄ absorp-
tion at threshold. However, the energy available for p̄ annihilation products in the medium is 
lowered for the deeply bound antiproton. As a consequence, many annihilation channels may 
be considerably suppressed, which could result in significantly reduced widths of the deeply 
bound p̄-nuclear states [18]. We evaluated the phase space suppression factors for considered 
annihilation channels as described in Section 2. They are presented in Fig. 1 as a function of the 
center-of-mass energy. As 

√
s decreases many channels become suppressed or even closed, es-

pecially channels with massive particles in the final state and multi-particle decay channels. The 
range of 

√
s relevant for our calculations, 

√
s ≈ 1.55–1.72 GeV, is denoted by the shaded area 

in Fig. 1. Unlike Ref. [18], we considered also kaon annihilation channels in our calculations. 
However, their contribution to the total p̄ width was found negligible (5 MeV at most).

We considered various procedures for handling 
√

s which controls the phase space reduction 
and consequently the p̄ widths. First, we adopted 

√
s defined by Eq. (18) which was applied 

by Mishustin et al. [18]. We also assumed two scenarios – the annihilation with a proton in 
the 1s state, BN = Bp1s , (denoted by M2) and the case when BN was replaced by the aver-



J. Hrtánková, J. Mareš / Nuclear Physics A 945 (2016) 197–215 211

Fig. 9. Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei, calculated dynam-
ically using the TM1 model and different forms of 

√
s (see text for details).

age binding energy per nucleon BNav (denoted by M1). Next, we used 
√

s transformed into the 
antiproton–nucleus system (19) with non-negligible contribution from kinetic energies of annihi-
lating partners. To explore the effect of the medium, we calculated the underlying kinetic energies 
for constant (Jc) as well as reduced (Jr) (anti)nucleon masses. Finally, we applied the forms of 

√
s

used in the calculations of kaonic nuclei (20), and η nuclei as well as kaonic atoms (21) (denoted 
by K and E, respectively). In Fig. 8, we present the real and imaginary parts of the p̄ potential 
in 208Pb, calculated dynamically in the TM1 model for the above forms of 

√
s. The real parts 

of the p̄ potentials calculated dynamically for ξ = 0.2 and Imb0 = 1.9 fm have approximately 
the same depth for all considered procedures for evaluating 

√
s. On the other hand, the absorp-

tive p̄ potentials ImVopt exhibit strong dependence on the applied form of 
√

s. The p̄ potential 
calculated statically is shown in the figure as well. Both ReVopt and ImVopt are much shallower 
than the dynamically calculated potentials in the central region of the nucleus which illustrates 
the importance of a dynamical, self-consistent treatment during antiproton–nucleus bound states 
calculations using an optical potential describing the p̄ absorption.

In Fig. 9, we compare binding energies (left panel) and widths (right panel) of 1s p̄-nuclear 
states in 40Ca, 90Zr, and 208Pb, calculated dynamically for ξ = 0.2 and Imb0 = 1.9 fm using the 
same RMF model (TM1) but different forms of 

√
s. As can be seen, the p̄ energies in a given 

nucleus calculated using different forms of 
√

s do not deviate much from each other since the 
real parts of the underlying p̄ potential are approximately the same (see Fig. 8, left panel). The p̄
widths are sizable and exhibit much larger dispersion. The largest widths are predicted for 

√
s =

M1 and the corresponding p̄ binding energies are thus the smallest. The p̄ widths are significantly 
reduced after including the non-negligible momentum dependent term in 

√
s. It is due to the 

additional sizable downward energy shift coming from the p̄ and nucleon kinetic energies.2 The 
kinetic energies calculated with reduced masses (

√
s = Jr) are larger and consequently the p̄

2 Similarly reduced p̄ widths are obtained for 
√

s = M2. However, in this case the annihilation of p̄ with a proton in 
the 1s state is assumed (Bp1s � BNav).
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Fig. 10. Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states across the periodic table calcu-
lated dynamically for 

√
s = Jr using the TM2 (black), TM1 (blue) and NL-SH (red) models. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Binding energies Bp̄ and widths �p̄ (in MeV) of the 1s p̄-nuclear state in 16O, calculated dynamically (Dyn) and 
statically (Stat) within the TM2 model using the real and complex potentials consistent with p̄-atom data (see text for 
details).

Real Complex fs(M1) fs(Jr)

Dyn Stat Dyn Stat Dyn Stat Dyn Stat

Bp̄ 193.7 137.1 175.6 134.6 190.2 136.1 191.5 136.3
�p̄ – – 552.3 293.3 232.5 165.0 182.3 147.0

widths are smaller than those calculated using constant masses (
√

s = Jc); the difference is up 
to 15 MeV in the TM1 model. The p̄ widths calculated using 

√
s = K and Jr are comparable. 

However, when the low density limit is taken into account (
√

s = E) the p̄ widths become by 
≈ 30 MeV larger.

The model dependence of the p̄ binding energies and widths of 1s p̄-nuclear states across the 
periodic table calculated dynamically for ξ = 0.2, Imb0 = 1.9 fm, and 

√
s = Jr is illustrated in 

Fig. 10. The TM2 and NL-SH models give similar p̄ binding energies in 12C, 16O and 40Ca. The 
corresponding p̄ widths are also quite close to each other. On the other hand, the TM1 model, 
which yields considerably lower values of Bp̄ predicts larger p̄ widths than the TM2 and NL-SH 
models (except the case of 90Zr).

In Table 2, we present binding energies Bp̄ and widths �p̄ of the 1s p̄-nuclear state in 
16O, calculated using the real and complex potentials consistent with p̄-atom data (ξ = 0.2, 
Imb0 = 1.9 fm). To illustrate the role of the suppression factors fs we show the results of calcu-
lations without fs (‘Complex’), as well as including fs for 

√
s due to Bp̄ and BNav (‘fs(M1)’) 

and for 
√

s with the additional downward energy shift caused by the momenta of annihilating 
partners (‘fs(Jr)’). The static calculations, which do not account for the core polarization effects, 
give approximately the same values of the p̄ binding energy for all cases. The binding energies 
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calculated dynamically are much larger, which indicates that the polarization of the core nucleus 
is significant. When the phase space suppression is taken into account the p̄ width is reduced by 
more than twice (compare ‘Complex’ and ‘fs(M1)’ in the last row of Table 2). When treating √

s self-consistently including the p̄ and N momenta (see ‘fs(Jr)’), the p̄ width is reduced by 
additional ≈ 50 MeV, but still remains sizable. The corresponding lifetime of the antiproton in 
the nucleus is � 1 fm/c.

4. Conclusions

In this work, we studied the sub-threshold antiproton interaction with the nuclear medium. The 
real part of the p̄-nucleus potential was constructed within the RMF approach using G parity as 
a starting point. Since the empirical p̄-nucleus interaction is much weaker than that derived from 
G-parity transformed p̄ coupling constants, a uniform scaling factor ξ was introduced to control 
the strength of the p̄-nucleus interaction.

We explored dynamical effects caused by the presence of the strongly interacting p̄ in the 
1s1/2 state of selected nuclei across the periodic table and confirmed sizable changes in the 
nuclear structure. The central density of the nuclear core considerably increases – it reaches 
about 3 times the normal nuclear density. While in light nuclei the antiproton affects the entire 
nucleus, in heavier nuclei the increase in the core density distribution is significant only in the 
central region where p̄ is localized, r ≤ 2 fm. Since various RMF models give quite different 
equation of state at such high densities, we employed several RMF parametrizations including 
the density-dependent TW99 model to check the model dependence of our results. The response 
of the nuclear core to the strongly bound antiproton varies with the applied RMF model as it is 
affected by the corresponding nuclear compressibility.

In the RMF approach, the antiproton as well as each nucleon moves in mean fields created by 
all (anti)nucleons in the nucleus, including itself. The effect of the p̄ self-interaction increases 
with the strength of the p̄ couplings. It causes saturation of the antiproton and nuclear core 
density distributions and subsequent decrease at some critical value of the scaling factor ξ . We 
checked that for the values of ξ ∼ 0.2–0.3, consistent with empirical p̄-nucleus potentials with 
depths ≈150–200 MeV, the effect is tiny and can thus be neglected. This finding is general 
enough to be applied in RMF calculations of other nuclear systems with a strongly interacting 
hadron.

In order to include the p̄ annihilation in the nuclear medium, we adopted the imaginary part 
of a phenomenological optical potential with parameters constrained by fits to p̄-atom data. We 
considered various relevant decay channels of p̄N annihilation at rest and took into account 
the phase space suppression for annihilation products of the deeply bound antiproton in the nu-
clear medium. We performed dynamical calculations of p̄-nuclear bound states using a complex 
optical potential consistent with p̄-atom data. We explored in detail the interplay between the 
underlying dynamical processes and the relevant kinematical conditions that determine the anni-
hilation width of p̄ bound states in the nuclear medium. The p̄ widths decrease by factor 2 when 
the suppression of the phase space is considered and they are further reduced by ≈ 50 MeV when 
the momenta of annihilating partners are taken into account. However, the p̄ widths still remain 
sizeable for a realistic p̄-nucleus interaction. We noticed that the p̄ absorption remarkably influ-
enced the polarization of the nuclear core. It is therefore mandatory to perform the calculations 
with a complex p̄-nucleus potential fully self-consistently. Such calculations were performed in 
this work for the first time ever.
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It is desirable to use the self-consistent techniques applied in this work in calculations of 
p̄-nucleus interaction based on a more fundamental N̄N potential model, such as the Paris N̄N

potential [16] used in the most recent study of p̄ atoms [15], and compare them with the calcu-
lations within the RMF approach. We are currently finalizing such calculations and the results 
will be published elsewhere. It is also desirable to study in detail the p̄-nucleus interaction above 
threshold to describe p̄-nucleus scattering processes because knowledge of such processes, of 
the p̄ behavior in the nuclear medium, as well as post p̄ annihilation dynamics of the nuclear 
core is expected to be in great demand in view of future experiments at FAIR [17]. Considering 
anticipated production of hyperon–antihyperon pairs in p̄-nucleus collisions at FAIR it is timely 
to extend the present model to calculations of nuclear systems with (anti)hyperons.
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Abstract

An optical potential constructed using the p̄N scattering amplitudes derived from the 2009 version of 
the Paris N̄N potential is applied in calculations of p̄ quasi-bound states in selected nuclei across the 
periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a 
nucleus appears crucial for evaluating p̄ binding energies and widths. Particular attention is paid to the 
role of P -wave amplitudes. While the P -wave potential nearly does not affect calculated p̄ binding en-
ergies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a 
phenomenological P -wave term yields in dynamical calculations p̄ binding energies Bp̄ ≈ 200 MeV and 
widths �p̄ ∼ 200–230 MeV, which is very close to the values obtained within the RMF model consistent 
with p̄-atom data.
© 2017 Elsevier B.V. All rights reserved.

Keywords: Antiproton–nucleus interaction; Paris N̄N potential; Antiproton–nuclear bound states

1. Introduction

The elastic part of an N̄N potential constructed from a boson exchange NN potential using 
the G-parity transformation is strongly attractive (see, e.g. [1]). This fact stimulated speculations 
about existence of p̄-nuclear bound states [2–4]. The p̄N and p̄-nucleus interactions, as well 
as their capability of forming corresponding bound states have been explored extensively in 
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LEAR experiments at CERN [5,6]. Complementary information about the p̄ optical potential 
near threshold was acquired within the study of strong interaction energy shifts and widths in 
antiprotonic atoms [7–9]. Analyses of p̄-atom data and p̄ scattering off nuclei at low energies 
disclosed that the antiproton interaction with a nucleus is dominated by p̄ annihilation which 
governs propagation of the antiproton in nuclear matter. It was found that the experimental data 
could be well fitted by a p̄-nuclear optical potential, imaginary part of which greatly outweighs 
the strongly attractive real part. However, if the antiproton is deeply bound in the nuclear medium 
the situation might change. In fact, the phase space for p̄ annihilation products gets considerably 
reduced, which could lead to relatively long p̄ lifetime in nuclear matter [10]. Nonetheless, no 
definite evidence of forming a p̄N or p̄-nucleus quasi-bound state has been reported so far.

The study of p̄ interactions with a nucleon and the nuclear medium is still topical. One 
example worth mentioning is the very recent analysis of J/� events collected by the BESIII 
experiment which supports the existence of either a p̄p molecule-like state or a bound state [11]. 
It is to be noted that one of the observed resonant states, X(1835), was described by the 2009 
version of the Paris N̄N potential, assuming that it originates from a p̄p bound state [20,11]. 
Furthermore, the knowledge of p̄-nucleus interaction at various densities and under different 
kinematical conditions will be utilized and further expanded in forthcoming experiments with 
p̄-beams at FAIR [12]. Simulations of the considered processes in a wide range of p̄-beam mo-
menta, providing experimentalists with valuable hints, are being performed within the Giessen 
Boltzmann–Ueling–Uhlenbeck (GiBUU) transport model [13] in which the p̄ potential in nuclear 
matter serves as input.

Properties of p̄-nuclear quasi-bound states have been calculated within the Relativistic Mean 
Field (RMF) model [4,10,14–17] using the G-parity transformation of coupling constants in-
volved. A scaling factor representing departure from G-parity together with a phenomenological 
imaginary part were introduced to construct an optical potential consistent with experimental 
data. In Ref. [17], the p̄ annihilation was treated dynamically and fully self-consistently, taking 
into account the reduced phase-space for annihilation products as well as compression of the 
nuclear core caused by the antiproton. Though the calculated p̄ widths in the nuclear medium 
were found to be suppressed significantly, they remained considerable. Recently, Gaitanos et al. 
have developed a non-linear derivative (NLD) model [18,19]. It incorporates momentum depen-
dence of mean fields acting on p̄ which yields the depth of the p̄-nucleus potential in accord with 
experimental data, without introducing any additional scaling factor.

Several microscopic N̄N potential models, such as those based on one- and two-pion ex-
change [20,21] or chiral EFT [22,23] have been developed recently. Friedman et al. [24] con-
fronted the 2009 version of the Paris N̄N potential [20] with the p̄-atom data across the periodic 
table and antinucleon interactions with nuclei up to 400 MeV/c, including elastic scattering and 
annihilation cross sections. Their analysis revealed necessity to include the P -wave part of the 
p̄N interaction to make the real p̄ potential attractive in the relevant low density region of the 
nucleus, as required by experiment. However, it was found that the Paris S-wave potential sup-
plemented by the contribution of the Paris P -wave amplitudes fails to achieve reasonable fit to 
p̄ atom data. On the other hand, the Paris S-wave potential with a purely phenomenological 
P -wave term accounts well for the data on the low-density, near-threshold p̄-nucleus interaction. 
From this point of view, it is tempting to apply the S-wave amplitudes derived from the Paris 
N̄N potential and either the Paris or phenomenological P -wave amplitudes to the description 
of p̄ interactions in the nuclear interior, i.e., farther down below threshold and at higher nuclear 
densities.
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In the present work we employ the 2009 version of the Paris N̄N model in the construction of 
an optical potential which is then used in calculations of p̄-nuclear quasi-bound states for the first 
time. We demonstrate the role of a proper self-consistent treatment of the energy dependence of 
scattering amplitudes involved. The adopted procedure for evaluating the sub-threshold energy 
shift has been applied before in calculations of kaonic and p̄ atoms, as well as K−-, η- and 
p̄-nuclear states [17,24–32]. We take into account the P -wave part of the p̄N potential aiming 
at exploring its impact on calculated p̄ binding energies and widths. Finally, we compare present 
results with those obtained within the RMF approach constrained by p̄-atom data [17].

The paper is organized as follows. In Section 2, we briefly describe applied methodology. We 
present construction of the in-medium p̄N S-wave amplitudes from the free-space amplitudes 
derived within the Paris N̄N potential. We discuss a self-consistent procedure for treating the 
energy dependence of the amplitudes and construct a relevant p̄ optical potential. Moreover, 
we introduce the P -wave interaction term which supplements the S-wave part of the potential. 
In Section 3, we present selected results of our calculations of p̄ quasi-bound states in various 
nuclei across the periodic table, illustrating dynamical effects in the nuclear core caused by the 
antiproton and the role of the P -wave part of the p̄N potential. Summary of the present study is 
given in Section 4.

2. Model

The binding energy Bp̄ and width �p̄ of a p̄ quasi-bound state in a nucleus are obtained by 
solving the Dirac equation

[−i �α · �∇ + βmp̄ + Vopt(r)]ψp̄ = εp̄ψp̄, (1)

where mp̄ is the mass of the antiproton, εp̄ = −Bp̄ − i�p̄/2, (Bp̄ > 0), and Vopt(r) is a complex 
optical potential which enters the Dirac equation as a time component of a 4-vector.1

2.1. S-wave interaction

First, we consider only the S-wave optical potential which is constructed in a ‘tρ’ form as 
follows:

2Ep̄V S
opt(r) = −4π

(
F0

1

2
ρp(r) + F1

(
1

2
ρp(r) + ρn(r)

))
, (2)

where Ep̄ = mp̄ − Bp̄ , F0 and F1 are isospin 0 and 1 in-medium amplitudes in the p̄-nucleus 
frame, and ρp(r) [ρn(r)] is the proton (neutron) density distribution calculated within the RMF 
model NL-SH [33].2 The amplitudes F0 and F1 entering Eq. (2) are constructed from the 
free-space p̄N amplitudes in the two-body frame using the multiple scattering approach of 
Wass et al. [34] (WRW) which accounts for Pauli correlations in the nuclear medium

1 As a test, we solved the Schrödinger equation for the same potential Vopt(r) and got p̄ energies and widths which 
differ by less than 1 MeV from those obtained by solving Eq. (1).

2 The NL-SH model contains non-linear scalar self-interactions comprising of the cubic and quadratic terms in the 
σ field. The model has proven successful in reproducing the binding energies and charge radii of nuclei, as well as 
neutron-skin thickness. In addition, it describes well saturation properties of nuclear matter, such as the binding energy 
per nucleon av = −16.33 MeV, nuclear matter density ρ0 = 0.146 fm−3, and compressibility K = 355 MeV.
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F1 =
√

s
mN

f S
p̄n(δ

√
s)

1 + 1
4ξk

√
s

mN
f S

p̄n(δ
√

s)ρ(r)
, F0 =

√
s

mN
[2f S

p̄p(δ
√

s) − f S
p̄n(δ

√
s)]

1 + 1
4ξk

√
s

mN
[2f S

p̄p(δ
√

s) − f S
p̄n(δ

√
s)]ρ(r)

. (3)

Here, f S
p̄n (f S

p̄p) denotes the free-space p̄n (p̄p) S-wave two-body cm scattering amplitude as 
a function of δ

√
s = √

s − Eth, where s is the Mandelstam variable and Eth = mN + mp̄ . The 
factor 

√
s/mN transforms the amplitudes from the two-body frame to the p̄-nucleus frame. The 

nuclear density distribution ρ(r) = ρp(r) + ρn(r) and the Pauli correlation factor ξk is defined 
as follows

ξk = 9π

k2
F

⎛
⎝4

∞∫
0

dr

r
exp(ikr)j2

1 (kFr)

⎞
⎠ , (4)

where j1(kFr) is the spherical Bessel function, kF is the Fermi momentum, and

k =
√

(εp̄ + mp̄)2 − m2
p̄.

The integral in Eq. (4) can be solved analytically. The resulting expression is of the form

ξk = 9π

k2
F

[
1 − q2

6
+ q2

4

(
2 + q2

6

)
ln

(
1 + 4

q2

)
− 4

3
q

(π

2
− arctan

(q

2

))]
, (5)

where q = −ik/kF.
The free-space S-wave scattering amplitudes are derived from the 2009 version of the Paris 

N̄N potential [20]. The p̄n and p̄p amplitudes are expressed as appropriate mixtures of isospin 
T = 0 and T = 1 N̄N amplitudes, evaluated as angular momentum averages of fixed-T ampli-
tudes [24].

In Fig. 1 the free-space p̄p (top panel) and p̄n (bottom panel) amplitudes plotted as 
a function of energy are compared with the in-medium amplitudes at saturation density 
ρ0 = 0.17 fm−3. Both free and WRW modified amplitudes manifest strong energy depen-
dence for δ

√
s = E − Eth ≤ 0. While the in-medium p̄p amplitude is attractive in the entire 

energy range below threshold, the real part of the in-medium p̄n amplitude is attractive for 
δ
√

s ≤ −70 MeV and with slightly repulsive dip near threshold. The peaks of both in-medium 
amplitudes are lower in comparison with the free-space amplitudes and shifted by ≈ 30 MeV 
towards the p̄N threshold.

We explored the effect of the WRW procedure on p̄ binding energies and widths and per-
formed, out of curiosity, also calculation with the free-space S-wave amplitudes. In Table 1 we 
present 1s p̄ binding energies and widths in 208Pb calculated with the free-space amplitudes and 
WRW modified (in-medium) amplitudes, using static RMF densities. The in-medium modifica-
tions significantly reduce the p̄ widths whereas the p̄ binding energies are affected only slightly. 
This could be anticipated upon closer inspection of Fig. 1. The differences between the free-
space and WRW-modified real p̄N amplitudes at δ

√
s = E − Eth ∼ −200 MeV (which is the 

energy shift relevant to static calculations) is almost negligible (see left panels). On the other 
hand, the imaginary amplitudes (right panels) are evidently reduced at δ

√
s ∼ −200 MeV when 

in-medium modifications are taken into account. Consequently, the p̄ widths are reduced as well.
The energy argument of the p̄N scattering amplitudes is expressed by Mandelstam variable

s = (EN + Ep̄)2 − ( �pN + �pp̄)2 , (6)
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Fig. 1. Energy dependence of the Paris 09 p̄p (top) and p̄n (bottom) S-wave two-body cm amplitudes: in-medium (Pauli 
blocked) amplitudes for ρ0 = 0.17 fm−3 (solid line) are compared with the free-space amplitude (dotted line).

Table 1
1s p̄ binding energies and widths 
(in MeV) in 208Pb, calculated using 
static RMF densities with the free-
space (free) and in-medium (WRW) 
S-wave amplitudes.

free WRW

Bp̄ (MeV) 184.8 188.6
�p̄ (MeV) 318.5 233.8

where EN = mN − BNav with BNav = 8.5 MeV being the average binding energy per nucleon. 
In the two-body c.m. frame �pN + �pp̄ = 0 and Eq. (6) reduces to

√
sM = mp̄ + mN − Bp̄ − BNav . (7)

However, when the interaction of the antiproton with a nucleon takes place in a nucleus, the 
momentum dependent term in Eq. (6) does not vanish and gives rise to an additional downward 
energy shift [25]. Taking into account averaging over the angles ( �pN + �pp̄)2 ≈ �p 2

N + �p 2
p̄ , Eq. (6)

can be rewritten as
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Fig. 2. The potential felt by p̄ at threshold (‘th medium’), in the p̄ atom and p̄ nucleus, calculated for 40Ca+p̄ with 
in-medium Paris S-wave amplitudes and static RMF densities. The p̄ potential calculated using free-space amplitudes at 
threshold is shown for comparison (‘th free’).

√
sJ = Eth

(
1 − 2(Bp̄ + BNav)

Eth
+ (Bp̄ + BNav)

2

E2
th

− Tp̄

Eth
− TNav

Eth

)1/2

, (8)

where TNav is the average kinetic energy per nucleon and Tp̄ represents the kinetic energy of the 
antiproton. The kinetic energies were calculated as the corresponding expectation values of the 
kinetic energy operator T̂ = − h̄2

2mN

.

We note that the p̄ binding energy Bp̄ appears as an argument in the expression for 
√

s, 
which in turn serves as an argument for Vopt in Eq (1). Therefore, 

√
s has to be determined 

self-consistently, namely its value obtained by solving the Dirac equation (1) should agree with 
the value of 

√
s which serves as input in Eqs. (2) and (3). An additional self-consistency scheme 

has to be considered in dynamical calculations: The RMF densities entering the expression (2) for 
Vopt are modified by the p̄ bound in a nucleus and thus by the solution of the Dirac equation (1).

The p̄N amplitudes are strongly energy and density dependent, as was shown in Fig. 1. Con-
sequently, the depth and shape of the p̄-nuclear potential depend greatly on the energies and 
densities pertinent to the processes under consideration. This is demonstrated in Fig. 2 where 
we present the p̄ potential in 40Ca calculated using the free-space amplitudes at threshold and 
in-medium Paris S-wave amplitudes in three different energy regions: At threshold, for δ

√
s = 0, 

the p̄ potential constructed using the free space amplitudes (denoted by ‘th free’) has a repulsive 
real part and fairly absorptive imaginary part. When medium modifications of the amplitudes are 
taken into account (‘th medium’), the p̄ potential becomes attractive and more absorptive. At en-
ergies relevant to p̄ atoms the p̄ potential, constructed following Ref. [24], is more attractive and 
weakly absorptive. At energies relevant to p̄ nuclei (

√
sJ), the p̄ potential is strongly attractive, 

however, also strongly absorptive. Clearly, proper self-consistent evaluation of the energy shift 
δ
√

s is crucial.

2.2. P-wave interaction

Recent calculations of p̄ atoms and scattering of 48 MeV antiprotons [24] showed that a 
sizable contribution from the P -wave part of the p̄N interaction is needed to get reasonable 
description of the experimental data. In order to examine the effect of the P -wave interaction 
on the binding energies and widths of p̄-nuclear quasi-bound states, we supplement the S-wave 
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Fig. 3. Energy dependence of the Paris 09 p̄p (left) and p̄n (right) P -wave free-space amplitudes.

optical potential in Eq. (2) [q(r) = 2Ep̄V S
opt(r)] by a gradient term which stands for the P -wave 

interaction [24,35,36]

2Ep̄Vopt(r) = q(r) + 3 �∇ · α(r) �∇ . (9)

The factor 2l + 1 = 3 in the P -wave part is introduced to match the normalization of the Paris 
N̄N scattering amplitudes and

α(r) = 4π
mN√

s

(
f P

p̄p(δ
√

s)ρp(r) + f P
p̄n(δ

√
s)ρn(r)

)
. (10)

Here, f P
p̄p(δ

√
s) and f P

p̄n(δ
√

s) denote the P -wave p̄p and p̄n free-space scattering amplitudes, 
respectively. We assume that the P -wave interaction contributes mainly near the nuclear surface 
where the nuclear densities are relatively low, and further in the interior its effect should decrease 
due to gradient form of the P -wave potential. Therefore, we do not consider medium modifica-
tions of the Paris P -wave amplitudes. The free-space p̄p and p̄n P -wave scattering amplitudes 
derived from the latest version of the Paris N̄N potential are shown as a function of energy in 
Fig. 3. Again, we witness a strong energy dependence of the amplitudes.

The analysis of Friedman et al. [24] revealed that the potential constructed from the Paris 
S- and P -wave amplitudes fails to fit the antiproton atom data and that it is through the fault 
of the P -wave part. Their analysis also showed that the potential based on the Paris S-wave 
and phenomenological P -wave amplitude f P

p̄N = 2.9 + i1.8 fm3 [24] does fit the data well. 
Therefore, we performed calculations exploring the effect of the P -wave interaction using both 
the Paris and phenomenological P -wave interactions.

3. Results

In this section, we present selected results of our self-consistent calculations of p̄ quasi-bound 
states in nuclei across the periodic table using an optical potential constructed from the p̄N

scattering amplitudes derived from the 2009 version of the Paris N̄N potential [20]. First, we 
performed calculations using only the S-wave optical potential and explored its energy and den-
sity dependence. Then, we took into account the P -wave p̄N interaction and studied its effect 
on the p̄ binding energies and widths.

We performed static, as well as dynamical calculations. In the static calculations, the nuclear 
core is unaffected by the presence of the antiproton and its structure thus remains the same. In the 
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Fig. 4. Binding energies (left panel) and widths (right panel) of 1s p̄ bound states in selected nuclei, calculated dynami-
cally with S-wave Paris potential and different forms of 

√
s [M (J) denotes 

√
sM (

√
sJ), see text for details].

dynamical calculations, the p̄ polarizes the nuclear core, causing changes in the nuclear density 
distribution and nucleon single-particle energies. In our previous calculations of p̄ quasi-bound 
states within the RMF model [17] it was demonstrated that the nuclear core is significantly af-
fected by the extra antiproton – the nuclear density in the central region reaches 2–3 times the 
saturation density. Since the p̄ optical potential is density dependent, such increase in the density 
would result in a considerable increase of the p̄ binding energies and widths. In fact, there is a 
competing effect, energy dependence of the imaginary part of the phenomenological p̄N scatter-
ing amplitude, coming from the phase space suppression for the p̄ annihilation products, which 
partly compensates the effect of the increased density. The corresponding lifetime of the p̄ inside 
a nucleus is then ∼ 1 fm/c [17]. However, the response of the nuclear core to the extra p̄ is not 
instant – it could possibly last longer than the lifetime of p̄ inside a nucleus [14,15]. As a result, 
the antiproton annihilates before the nuclear core is fully polarized. Our static and dynamical 
calculations of p̄ binding energies and widths may thus be considered as two limiting scenarios.

As was shown in Figs. 1 and 3, the p̄N scattering amplitudes strongly depend on energy. 
It is thus very important to evaluate the p̄-nucleus potential self-consistently in the appropriate 
reference frame. This is demonstrated in Fig. 4, where we present 1s p̄ binding energies (left 
panel) and corresponding widths (right panel) in various nuclei calculated dynamically using the 
Paris S-wave potential and two forms of the energy factor: 

√
sM [Eq. (7)] and 

√
sJ [Eq. (8)]. 

The two forms of 
√

s yield very different binding energies and widths. As for the 
√

sM, the p̄
binding energies are sizable and show weak A-dependence. The corresponding p̄ widths are huge 
(≤ 400 MeV), much larger than the binding energies. Including momentum dependent terms in √

sJ causes additional considerable downward energy shift, which leads to lower values of p̄N

scattering amplitudes (see Fig. 1; the relevant energy shift δ
√

s ≤ −200 MeV) and, consequently, 
shallower p̄-nucleus optical potential. The p̄ widths are strongly reduced, yet remain sizable. The 
p̄ binding energies decrease as well (up to ∼ 20%) and are again almost A-independent. Finally, 
it is to be noted that in static calculations, the effect of the momentum dependent terms in 

√
sJ

on p̄ binding energies and widths is about half of that effect in the dynamical case.
Next, we consider the P -wave part of the p̄N interaction. We adopt the Paris p̄p and p̄n

P -wave scattering amplitudes as well as the phenomenological P -wave potential fitted by Fried-
man and Gal to p̄ atom data [24] and construct the S + P -wave p̄-nucleus optical potential 
[Eq. (9)] which is further applied in self-consistent calculations of p̄-nuclear quasi-bound states.
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Fig. 5. 1s p̄ binding energies (left panel) and widths (right panel) in various nuclei, calculated statically for 
√

sJ using 
S-wave Paris potential (red squares), including phenomenological P -wave potential (green triangles down), Paris P -wave 
potential (blue triangles up) and phenomenological RMF potential (black circles). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Self-consistent energy shifts δ

√
sJ in 208Pb+p̄ relevant to static 

calculations within the Paris S-wave, Paris S + P -wave and Paris 
S-wave + phen. P -wave potentials.

208Pb+p̄ Paris S Paris S + P Paris S + phen. P

δ
√

sJ (MeV) −210.6 −238.9 −223.6

In Fig. 5, we present 1s p̄ binding energies (left) and widths (right) as a function of mass 
number A, calculated statically with the Paris S-wave (squares), Paris S + P -wave (triangles 
up), Paris S-wave + phen. P -wave (triangles down) potentials for 

√
sJ [Eq. (8)]. The p̄ bind-

ing energies and widths calculated statically with a phenomenological optical potential (‘phen 
Vopt’, circles) [17] are shown for comparison. The real part of this p̄-nucleus potential was con-
structed within the RMF approach using G-parity motivated p̄-meson coupling constants which 
were multiplied by a scaling factor to account for available experimental data. The p̄ absorp-
tion was described by the imaginary part of a purely phenomenological optical potential fitted 
to strong interaction energy shifts and widths in p̄-atoms. The reduced phase space available for 
annihilation of p̄ deeply bound in the nuclear medium was taken into account by introducing 
corresponding suppression factors (see Ref. [17] for more details).

As can be seen from Fig. 5, both P -wave interaction terms, Paris as well as phenomenological, 
do not affect much the p̄ binding energies – they are comparable with binding energies evaluated 
using only the S-wave potential. On the other hand, the p̄ widths decrease noticeably when the 
phenomenological P -wave term is included in the p̄ optical potential. The effect is even more 
pronounced for the Paris P -wave interaction. We observe strong A-dependence of p̄ widths for 
the Paris S+P -wave potential. On the contrary, the widths calculated with the phenomenological 
P -wave term, as well as only with the S-wave potential vary much less with A (starting oxygen).

To better understand this behavior, we show in Table 2 the energy shifts δ
√

sJ in 208Pb+p̄

evaluated self-consistently in static calculations with Paris S-wave, Paris S + P -wave and Paris 
S-wave + phen. P -wave potentials. The S-wave potential yields the smallest energy shift with 
respect to threshold, which implies stronger p̄N amplitudes (see Fig. 1) and thus larger p̄ binding 
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Fig. 6. The real (solid curves) and imaginary (dashed curves) parts of the S-wave Paris potential (red) and the local 
(Krell–Ericson [37]) forms of the Paris S + P -wave (green) and Paris S-wave + phen. P -wave (blue) potentials felt by 
p̄ in 208Pb, calculated statically for 

√
sJ (see text for details). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)

energies and widths. When the P -wave interaction is taken into account, the downward energy 
shift increases. As a result, the S-wave part of the p̄ potential becomes weaker. However, this 
decrease of the S-wave attraction is more than compensated by the real part of the P -wave 
potential as illustrated in Fig. 6. Here we present the Paris S-wave, Paris S + P -wave and Paris 
S-wave + phen. P -wave p̄ potentials in 208Pb, calculated statically for 

√
sJ.

3 As a result, the 
p̄ binding energies shown in Fig. 5 are very close to each other. On the other hand, the weaker 
imaginary part of the S-wave potential is not fully compensated by the P -wave part, particularly 
the Paris P -wave which is very weakly absorptive for the corresponding δ

√
sJ (see Fig. 3 and 

Table 2). The imaginary part of the S + P potential is thus shallower than that of pure S-wave 
potential. On top of that, the range of the Paris S + P -wave potential is smaller than the range 
of the Paris S-wave + phen. P -wave potential (see Fig. 6). Therefore, the p̄ widths in heavier 
nuclei calculated using the Paris S + P -wave potential decrease considerably.

It is to be noted that the depth of the S + P -wave potential is a result of delicate interplay 
between the S- and P -wave parts which are linked together. Very important is also the balance 
between the real and imaginary parts of the P -wave amplitudes since their strength controls the 
range of the potential.

Dynamical effects are illustrated in Fig. 7 where we compare 1s p̄ binding energies (left panel) 
and corresponding widths (right panel) in various nuclei, calculated statically and dynamically 
for 

√
sJ using the Paris S-wave and Paris S-wave + phen. P -wave optical potentials. In both 

cases, the binding energies Bp̄ calculated dynamically are somewhat larger than those obtained 
in static calculations and the polarization effects decrease with the mass number A. In dynamical 
and static calculations alike, the p̄ binding energies calculated for the Paris S + phen. P -wave 
potential are comparable with those obtained with the Paris S-wave potential. The P -wave inter-
action slightly increases the p̄ binding energies in heavier nuclei (40Ca, 90Zr, and 208Pb) and 
decreases them in light nuclei (16O and 12C). The p̄ widths calculated dynamically are no-

3 Fig. 6 shows local forms of the S + P -wave potentials obtained from nonlocal Kisslinger potential of Eq. (9) using 
the Krell–Ericson transformation [37].
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Fig. 7. 1s p̄ binding energies (left panel) and widths (right panel) in various nuclei, calculated statically (triangles) 
and dynamically (circles) for 

√
sJ using S-wave Paris potential (red) and including phenomenological P -wave potential 

(black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

ticeably larger than the widths calculated statically. It is caused mainly by the increase of the 
central nuclear density, which outweighs the decrease of the p̄N amplitudes due to the larger en-
ergy shift with respect to threshold (δ

√
sdyn ∼ −255 MeV vs. δ

√
sstat ∼ −200 MeV). The Paris 

S-wave + phen. P -wave potential yields again smaller p̄ widths than the S-wave potential. Still, 
the p̄ widths calculated dynamically are larger or at least comparable with the corresponding p̄
binding energies. The lifetime of the antiproton inside the nucleus is consistent with � 1 fm/c.

It is to be noted that in our previous RMF calculations [17] we found strong model depen-
dence of the dynamical effects caused by the extra p̄ inside the nucleus. It could be attributed 
to different values of nuclear compressibility given by applied RMF models (models with larger 
compressibility predict larger dynamical changes in p̄ binding energies). In order to explore 
model dependence in the present study, we performed calculations also using the RMF model 
TM(1)2 [38]. We found that unlike the phenomenological RMF approach the present static as 
well as dynamical calculations based on Paris N̄N amplitudes yield quite similar results within 
the TM and NL-SH models, the differences in p̄ binding energies and widths are up to 10 MeV. 
It is due to energy dependence of the p̄N amplitudes which compensates the increase of the nu-
clear density. Namely, larger dynamical changes imply larger subthreshold energy shift and thus 
weaker p̄N amplitudes (see Fig. 1). We preferred the NL-SH model in the present work since 
the TM model consists of two different parameter sets – TM2 for light nuclei and TM1 for heavy 
nuclei.

Next, we compare the predictions for p̄ binding energies and widths calculated dynamically 
using the 2009 version of the Paris N̄N potential with our former calculations based on the 
RMF model [17]. The 1s p̄ binding energies (left) and corresponding widths (right) in selected 
nuclei calculated using the phenomenological RMF approach (circle), Paris S-wave potential 
(square), Paris S + P -wave potential (triangle up) and Paris S-wave + phen. P -wave potential 
(triangle down) are shown in Fig. 8. The binding energies are very close to each other in all 
cases, Bp̄ ∼ 200 MeV, and rather weakly A-dependent. The p̄ widths exhibit considerably larger 
dispersion for the different potentials. The Paris S-wave potential yields sizable widths in all 
nuclei, �p̄ ∼ 300 MeV. The Paris P -wave interaction again reduces the p̄ widths significantly, 
to less than one half. The Paris S-wave + phen. P -wave potential yields very similar p̄ widths 
as the phenomenological approach. They are in the range of ∼ 200–230 MeV and comparable 
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Fig. 8. Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei, calculated dynam-
ically for 

√
sJ using the Paris N̄N S-wave potential (red), Paris S-wave + phen. P -wave (green) and phenomenological 

approach within the RMF model NL-SH (black). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 9. 1s and 1p binding energies (lines) and widths (boxes) of p̄ in 16O calculated dynamically within the NL-SH 
model for 

√
sJ with phenomenological p̄ optical potential (left panel) and Paris S-wave + phen. P -wave potential (right 

panel). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

with the corresponding binding energies. The agreement between the phenomenological RMF 
and Paris S-wave + phen. P -wave potentials is quite impressive.

One has to mention that in the dynamical calculations, the depths of the Paris S + P -wave 
and Paris S-wave + phen. P -wave potentials in the central region of all nuclei are very similar 
to each other. However, the range of the Paris S + P -wave potential (in the local form) is again 
much smaller than the range of the Paris S + phen. P -wave potential. Consequently, the p̄ widths 
calculated using the Paris S + P potential are considerably smaller.

We may thus infer that the real and imaginary parts of the Paris P -wave amplitudes are not 
well balanced in the energy region relevant to p̄-nuclear states calculations. Anyway, it was 
demonstrated by Friedman and Gal (see Table 1 in Ref. [24]) that the real and imaginary parts of 
the Paris P -wave had to be scaled by different factors in order to obtain satisfactory fit to p̄ atom 
data.

Besides the p̄ ground states we calculated also p̄ excited states in selected nuclei. In Fig. 9 we 
compare the binding energies and widths of the 1s and 1p p̄ states in 16O, calculated dynamically 
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Fig. 10. 1s, 1p and 1d binding energies (lines) and widths (boxes) of p̄ in 40Ca calculated dynamically within the NL-SH 
model for 

√
sJ with phenomenological p̄ optical potential (left panel) and Paris S-wave + phen. P -wave potential (right 

panel). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

using the Paris S-wave + phen. P -wave potential (right) and within the phenomenological RMF 
approach (left). The Paris S-wave + phen. P -wave potential yields similar spectrum of the p̄
bound states as the RMF potential, however the 1p binding energy is about 20% larger and the 
width is slightly smaller than in the RMF model. Nevertheless, the agreement of the two spectra, 
which were obtained within two different approaches, is surprisingly good.

Fig. 10 shows similar p̄ spectra in 40Ca. The 1p and 1d binding energies calculated with 
the Paris S-wave + phen. P -wave potential are again slightly larger (and s − p and s − d level 
spacing smaller) than in the phenomenological RMF approach. It is due to a broader p̄ potential 
well of the Paris S-wave + phen. P -wave potential. Both approaches yield comparable p̄ widths.

It is to be noted that in the present calculations, Vopt is a central potential constructed from 
angular momentum-averaged scattering amplitudes and thus there is no spin-orbit splitting of p
and d levels presented in Figs. 9 and 10. In the RMF approach, the p̄ binding energies in 1p

and 1d spin doublets are nearly degenerate, the difference in p̄ energies (as well as p̄ widths) is 
up to ∼ 1 MeV. These findings are in agreement with spin symmetry predicted for antinucleon 
spectra [39–42]. In the left panels of Figs. 9 and 10 we show spin-averaged 1p and 1d p̄ binding 
energies and widths.

4. Summary

We performed fully self-consistent calculations of p̄-nuclear quasi-bound states using an op-
tical potential constructed from the S- and P -wave p̄N scattering amplitudes obtained within 
the 2009 version of the Paris N̄N potential [24]. The free-space S-wave scattering ampli-
tudes were modified by WRW procedure [34] in order to account for Pauli correlations in the 
medium. A self-consistent scheme for proper dealing with the energy and density dependence 
of the in-medium amplitudes was adopted in evaluation of the p̄-nuclear optical potential. To 
our knowledge, such calculations based on a microscopic model were carried out for the first 
time. Previous studies of p̄-nuclear states were performed within phenomenological (RMF) ap-
proaches [4,10,14–17].

First, we explored the S-wave part of the p̄ optical potential and showed that its form depends 
strongly on energy and density at which it is evaluated. The potential derived from free-space 
p̄N amplitudes is repulsive and moderately absorptive at threshold. After applying in-medium 
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modifications of the amplitudes, the potential becomes strongly attractive and absorptive at en-
ergies and densities relevant to p̄-nuclear states calculations. As a result, p̄ binding energies in 
the 1s state amount to almost 200 MeV, and the corresponding widths �p̄ ∼ 300 MeV in the 
dynamical calculations.

Then we took into account the P -wave part of the p̄ optical potential. Recent analysis by 
Friedman et al. [24] revealed that the optical potential based on the Paris S- and P -wave scat-
tering amplitudes fails to fit the p̄ atom data. On the other hand, the Paris S-wave potential 
supplemented by a phenomenological P -wave term reproduces the data well. We adopted both 
the Paris and phenomenological P -wave terms in our calculations. We performed static calcu-
lations (neglecting modifications of the nuclear core) as well as dynamical calculations (nuclear 
core is polarized by p̄) which yield lower and upper estimates of p̄ binding energies and widths. 
We found that the P -wave interaction almost does not affect the binding energies of p̄-nuclear 
quasi-bound states. This is in sharp contrast to the case of p̄ atoms where it was found necessary 
to include the P -wave term of the Paris p̄N interaction in order to increase attraction of the p̄
optical potential [24]. This again illustrates how the form of the potential depends on energy and 
density.

The widths of p̄-nuclear states are reduced substantially when the P -wave interaction part is 
considered. The Paris P -wave potential reduces the widths much more than the phenomenologi-
cal one. It is a result of a delicate balance between the S- and P -wave parts of the total p̄ optical 
potential. The strength of the P -wave part which acts mainly near the nuclear surface and thus 
controls the range of the optical potential seems to be decisive.

Finally, we compared results of our present calculations using the Paris N̄N potential with our 
previous calculations of p̄-nuclear quasi-bound states performed within the RMF model tuned to 
the p̄-atom data [17]. The p̄ binding energies and widths calculated dynamically with the Paris 
S-wave potential supplemented by the phenomenological P -wave term were found to be in good 
agreement with the RMF model calculations. Both approaches yield the 1s p̄ binding energies 
Bp̄ ≈ 200 MeV and the widths �p̄ ∼ 200–230 MeV in considered nuclei. We find this agreement 
rewarding as it shows that the p̄ atoms fits not only define the form of the p̄ optical potential near 
threshold and at low density region but, moreover, quite sufficiently constrain extrapolations to 
higher densities and farther down below threshold – to the region relevant to p̄-nuclear states.

In conclusion, it is to be noted that the present work based on the 2009 version of the Paris N̄N

potential was inspired by the recent study of Friedman and Gal [24]. They examined this very 
potential in the analysis of experimental results for antiprotonic atoms across the periodic table as 
well as antinucleon interactions with nuclei up to 400 MeV/c. Other realistic N̄N models, such as 
the Bonn–Jülich chiral NNLO [22] and N3LO [23] EFT potential models or Zhou–Timmermans 
model [21], could be applied in the study of p̄ interactions with the nuclear medium. It would be 
desirable to perform such calculations and compare between different N̄N interaction models.
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We performed self-consistent calculations of K −-nuclear quasi-bound states using a single-nucleon K −
optical potential derived from chiral meson–baryon coupled-channel interaction models, supplemented 
by a phenomenological K − multinucleon potential introduced recently to achieve good fits to kaonic 
atom data [1]. Our calculations show that the effect of K − multinucleon interactions on K − widths 
in nuclei is decisive. The resulting widths are considerably larger than corresponding binding energies. 
Moreover, when the density dependence of the K −-multinucleon interactions derived in the fits of kaonic 
atoms is extended to the nuclear interior, the only two models acceptable after imposing as additional 
constraint the single-nucleon fraction of K − absorption at rest do not yield any kaonic nuclear bound 
state in majority of considered nuclei.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Interaction between the K − meson and nucleon(s) has been 
object of increased interest in recent years [2–6]. The K −N interac-
tion is closely related to such issues as the nature of the �(1405)

resonance, propagation of the antikaon in nuclear matter, produc-
tion of strangeness or existence of K −-nuclear quasi-bound states. 
Despite much effort in the last decade [7–9], the question of kaonic 
nuclear states is still not resolved.

The K −N interaction has recently been described in the frame-
work of chirally motivated meson–baryon interaction models, pa-
rameters of which have been tuned to fit low-energy experimental 
data. As was shown in Ref. [1], commonly accepted models pro-
vide quite diverse K −N scattering amplitudes below threshold. 
However, the amplitudes from this very energy region enter the 
construction of a K −-nucleus potential relevant for calculations of 
kaonic nuclear states.

A distinctive feature of the K − p amplitudes is their strong en-
ergy dependence originating from the presence of the �(1405)

resonance, which is generated dynamically in the chiral coupled-
channel models of meson–baryon interactions. It is thus imper-
ative to treat the energy dependence of scattering amplitudes 
properly and evaluate the K −-nucleus optical potential self-
consistently [10,11].

* Corresponding author.
E-mail address: hrtankova@ujf.cas.cz (J. Hrtánková).

The chiral meson–baryon interaction models discussed in this 
work, Prague (P) [12] and Kyoto–Munich (KM) [13], include only 
K − absorption on a single-nucleon, K −N → πY (Y = �, �). Cal-
culations of K −-nuclear bound states based solely on these chiral 
models yield K − absorption widths quite small due to the proxim-
ity of π� threshold [10,11,14]. However, in the nuclear medium 
K − multinucleon interactions take place as well [1,15,16] and their 
role increases with density and K − binding energy. Therefore, the 
K − multinucleon processes, absorption in particular, have to be 
taken into account in any realistic assessment of the K − widths 
(to lesser extent also K − binding energies) in the nuclear medium. 
In Refs. [10,11,14], the K −N N absorption was incorporated using 
a phenomenological potential fitted to kaonic atom data since the 
applied chiral model did not address such processes. Recently Seki-
hara et al. [17] described the non-mesonic K − interaction channels 
within a chiral unitary approach for the s-wave K̄ N amplitude 
and evaluated the ratio of mesonic to non-mesonic K − absorption 
at rest inside the medium. The experimental information about 
this ratio comes from bubble chamber experiments [18–20]. Fried-
man and Gal performed fits of kaonic atom data for several re-
cent chirally motivated meson–baryon coupled-channel interaction 
models [1]. Subsequent comparison with the single-nucleon frac-
tions of K − absorption at rest provided strict constraint on the 
meson–baryon interaction models describing the single-nucleon 
K − potential as well as on the corresponding phenomenological 
K − multinucleon optical potentials. Only the P and KM models 
were found acceptable by this analysis.

http://dx.doi.org/10.1016/j.physletb.2017.04.052
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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In this work, we apply the above two interaction models in cal-
culations of K −- nuclear quasi bound states. The single-nucleon 
K − potential is supplemented by a corresponding phenomenologi-
cal optical potential which describes K − multinucleon interactions. 
We demonstrate that the K − multinucleon interactions in the nu-
clear medium affect crucially the K − widths. For the first time, 
we perform calculations of kaonic nuclear states using K −-nuclear 
potentials containing both K − single-nucleon and multinucleon in-
teractions, while the multinucleon potential was fitted for each 
chiral K −N amplitude model to kaonic atom data separately and 
further confronted with branching rations of K − absorption at rest.

2. Methodology

The self-consistent calculations of K −-nuclear quasi-bound 
states are based on solving the Klein–Gordon equation for K − in 
the medium[ �∇2 + ω̃2

K − − m2
K − − �K −(ωK − ,ρ)

]
φK − = 0 , (1)

which yields kaon binding energies B K − and widths 	K − . Here, 
mK − denotes the K − mass, ω̃K − = mK − − B K − − i	K −/2 − V C =
ωK − − V C , V C is the Coulomb potential, and ρ is the nuclear 
density distribution. In the present work, the energy- and density-
dependent kaon self-energy operator �K − is constructed from 
scattering amplitudes derived within chiral SU(3) meson–baryon 
coupled-channel interaction models: Prague (P) [12] and Kyoto–
Munich (KM) [13]. These models capture physics of the �(1405)

resonance and reproduce low energy K −N observables, consisting 
of cross-sections for low-energy K − p processes (listed in Ref. [13]), 
three accurately determined threshold branching ratios [21], as 
well as the 1s level shift and width in the K − hydrogen atom from 
the SIDDHARTA experiment [22].

The self-energy operator �K − entering Eq. (1) is constructed in 
a “tρ” form as follows:

�K − = 2Re(ωK −)V (1)

K − = −4π

√
s

mN

(
F0

1

2
ρp + F1

(
1

2
ρp + ρn

))
.

(2)

Here, F0 and F1 denote the isospin 0 and 1 s-wave in-medium 
amplitudes, respectively, mN is the nucleon mass, 

√
s is the K −N

total energy, and V (1)

K − denotes the (single-nucleon) K −-nucleus 
optical potential corresponding to the K −N amplitudes. The kine-
matical factor 

√
s/mN transforms the scattering amplitudes from 

the two-body frame to the K −-nucleus frame. The proton and neu-
tron density distributions ρp and ρn in a given core nucleus are 
obtained within the relativistic mean-field model NL-SH [23].

The in-medium amplitudes F0 and F1 are derived from the 
free-space amplitudes, F K −n(

√
s) and F K − p(

√
s), using the mul-

tiple scattering approach (WRW) [24] which accounts for Pauli 
correlations in the nuclear medium:

F1 = F K −n(
√

s)

1 + 1
4 ξk

√
s

mN
F K −n(

√
s)ρ

,

F0 = [2F K − p(
√

s) − F K −n(
√

s)]
1 + 1

4 ξk

√
s

mN
[2F K − p(

√
s) − F K −n(

√
s)]ρ

, (3)

where ξk is adopted from Ref. [1].
The distinctive feature of K − p amplitudes constructed in chi-

rally motivated coupled-channel models is their strong energy (and 
density) dependence near and below threshold due to dynamically 
generated subthreshold s-wave resonance �(1405). The energy de-
pendence of in-medium scattering amplitudes calls for a proper 

Table 1
Values of the complex amplitude B and exponent α used to evaluate V (2)

K − for chiral 
meson–baryon interaction models considered in this work.

P1 KM1 P2 KM2

α 1 1 2 2
ReB (fm) −1.3 ± 0.2 −0.9 ± 0.2 −0.5 ± 0.6 0.3 ± 0.7
ImB (fm) 1.5 ± 0.2 1.4 ± 0.2 4.6 ± 0.7 3.8 ± 0.7

self-consistent evaluation of corresponding K − optical potentials 
used in genuine calculations of K − atomic as well as nuclear 
states, as shown in Refs. [1,10,14,16].

The energy argument of in-medium amplitudes entering Eq. (3)
is defined by Mandelstam variable

s = (E N + E K −)2 − (�pN + �pK −)2 , (4)

where E N = mN − B N , E K − = mK − − B K − and �pN(K −) is the nucleon 
(kaon) momentum. The momentum dependent term in Eq. (4) is 
no longer zero in the K −-nucleus cm frame and generates addi-
tional downward energy shift [10]. The K −N amplitudes are ex-
pressed as a function of energy 

√
s = Eth + δ

√
s where the energy 

shift δ
√

s can be approximated as

δ
√

s = −B N
ρ

ρ̄
+ βK −ReV K −(r)

− βN

[
B K −

ρ

ρmax
+ T N

(
ρ

ρ̄

)2/3

+ V C

(
ρ

ρmax

)1/3
]

. (5)

Here, B N = 8.5 MeV is the average binding energy per nucleon, 
ρ̄ is the average nuclear density, ρmax is the maximal value of the 
nuclear density, and βN(K −) = mN(K −)/(mN + mK − ). T N = 23 MeV 
is the average nucleon kinetic energy in Fermi Gas Model. The en-
ergy shift respects the low-density limit, i.e. δ

√
s → 0 as ρ → 0

and the minimal substitution requirement E → E − V C [25]. Self-
consistency is ensured by dependence of δ

√
s on B K − , as well as 

on the K − optical potential V K − determined by the energy depen-
dent K −N in-medium amplitudes.

The K − interactions with two and more nucleons are an indis-
pensable component of a K −-nucleus interaction [26–29]. Recent 
analyses by Friedman and Gal have confirmed that the optical po-
tential constructed from in-medium chirally motivated K −N am-
plitudes have to be supplemented by a phenomenological term 
representing K − multinucleon processes in order to achieve good 
fit to kaonic atom data [1,16]. Therefore, we supplement the 
single-nucleon potential V (1)

K − by a phenomenological potential 
V (2)

K − of the form

2Re(ωK −)V (2)

K − = −4π B(
ρ

ρ0
)αρ , (6)

where B is a complex amplitude and α is a positive number. 
The parameters of the potential were fitted to kaonic atom data 
for both P and KM chiral meson–baryon interaction models sepa-
rately. It has been shown in Ref. [1] that only these two models 
are capable to reproduce simultaneously kaonic atom data and K −
single-nucleon absorption fractions determined in bubble chamber 
experiments [18–20]. The corresponding values of the parameters 
α, ReB and ImB including uncertainties are listed in Table 1. In 
view of the uncertainties (noticeably larger for α = 2), the P and 
KM models could be regarded as equivalent.

The full K − optical potential V K − used in a self-consistent eval-
uation of the subthreshold energy shift δ

√
s and in calculations of 

kaonic nuclear states is then constructed as a sum of the single-
and multinucleon optical potentials V K − = V (1)

K − + V (2)

K − .
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Fig. 1. Subthreshold energies probed in the 208Pb + K − nucleus as a function of relative density ρ/ρ0, calculated self-consistently in the P1 and KM1 models for both options 
of the K − multinucleon interaction potential (see text for details) (left) compared with the energy shift calculated with the single-nucleon K − potential (KN, solid line). The 
right panel shows comparison of subthreshold energies probed in considered K −N amplitude models, supplemented by the FD variant of V (2)

K − . The dashed and dotted areas 
stand for uncertainties and the gray band denotes their overlap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

In our calculations, we consider the conversion of K − on two 
nucleons K −N N → �N to be the dominant mode of K − ab-
sorption in the nuclear interior [17,27,30]. The amplitudes ImB
for multinucleon processes are multiplied by a suppression fac-
tor which reflects the phase space reduction for decay products 
in K −N N → �N absorption in the nuclear medium [27].

Experiments with kaonic atoms probe the real part of the K −
optical potential reliably only up to ∼ 25% of ρ0 and the imag-
inary part, that is dominant in causing strong interaction effects 
in kaonic atoms, is determined up to ∼ 50% of ρ0 [1,26]. Fur-
ther in the nuclear interior, the shape of the phenomenological 
K − optical potential V (2)

K − is mere extrapolation or analytic con-
tinuation of the empirical formula applied in the kaonic atom fit. 
Moreover, the larger value of the exponent α in Eq. (6), the larger 
is sensitivity of extrapolations to the nuclear interior. Therefore, 
we consider two limiting options for V (2)

K − beyond the half density 
limit ρ(r) = 0.5ρ0 in our calculations. First, we apply the form (6)
in the entire nucleus (full density option – FD). Second, we fix the 
potential V (2)

K − at constant value V (2)

K − (0.5ρ0) for ρ(r) ≥ 0.5 ρ0 (half 
density limit – HD).

3. Results

The formalism outlined in Section 2 was adopted to self-
consistent calculations of K − nuclear quasi-bound states in se-
lected nuclei across the periodic table. Here we present results 
for the P and KM models, supplemented by a phenomenological 
K − multinucleon potential V (2)

K − determined in the fits of kaonic 
atom data. We took into account uncertainties of the parameters 
of V (2)

K − shown in Table 1. Results for other K −N interaction mod-
els considered in Ref. [1] including more details will be discussed 
elsewhere [31].

A characteristic feature of the self-consistently evaluated energy 
shift δ

√
s from Eq. (5) is its strong density dependence which plays 

important role in calculations of kaonic nuclear, as well as atomic 
states using energy dependent chirally motivated K −N amplitudes. 
The left panel of Fig. 1 illustrates the strong density dependence 
of δ

√
s in 208Pb, calculated self-consistently within the P and KM 

models for α = 1 (P1 and KM1). These models yield for both 
HD and FD options of V (2)

K − smaller energy shift with respect to 
the K −N threshold than the original single-nucleon potential V (1)

K −

(KN). The smallest δ
√

s is obtained for the full density option FD. 
The P2 and KM2 models (not shown in the figure) yield energy 
shifts closer to the original KN case. The KM2 model gives even 
slightly larger δ

√
s for the HD option than the K − single-nucleon 

potential due to attractive ReV (2)

K − (positive ReB , see Table 1). How-
ever, the uncertainties for α = 2 shown in Table 1 are so large that 
the sign of ReB(α = 2) is insignificant. The energy shift for the FD 
option is in any case shallower than for the original K − single-
nucleon potential owing to very strong absorption.

In the right panel of Fig. 1, we present subthreshold energies 
probed by the K −-nuclear potential as a function of the nuclear 
density in 208Pb, calculated in P and KM interaction models with 
the FD version of the K − multinucleon potential. The dashed and 
dotted areas denote uncertainties involved in the K − multinucleon 
potential V (2)

K − calculated for the KM1 and KM2 models, respec-
tively; the gray band stands for their overlap. The figure illustrates 
the extent of the uncertainties as well as model dependence. The 
energy shifts range from ≈ −35 to −115 MeV in the nuclear cen-
ter. The P1 and KM1 models yield smaller spread in δ

√
s due to 

the uncertainties than the models with α = 2. For both values of 
α, the energy shifts calculated using the P and KM models are 
lying within the corresponding uncertainty band, which suggests 
that the models could be regarded as equivalent. It is to be noted 
that in the P2 model, we had to scale the imaginary part of the 
total K − potential entering the Klein–Gordon equation by factor 
0.8 in order to get numerically stable solution (converged itera-
tion loop). Without the scaling of ImV K − the energy shift would 
be smaller than the one presented in the right panel of Fig. 1 (for 
more details see footnote 1).

Fig. 2 shows real (left) and imaginary (right) parts of the to-
tal K − potential, calculated self-consistently for 208Pb + K − in 
the KM1 (top) and KM2 (bottom) model. The gray shaded ar-
eas stand for uncertainties in V (2)

K − . The K − multinucleon inter-
actions affect the real part of the K − optical potential markedly 
less than its imaginary part in all considered models, which has 
crucial consequences for the widths of K − nuclear states. The 
ReV K − potentials for HD and FD options differ by ≈ 20 MeV in 
each interaction model. On the other hand, the imaginary parts 
of V K − exhibit much larger dispersion for different versions of 
V (2)

K − , as illustrated in Fig. 2, right panels. The K − multinucleon 
absorption significantly deepens the imaginary part of the K − op-
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Fig. 2. The real (left) and imaginary (right) parts of the K − optical potential in the 208Pb + K − nucleus, calculated self-consistently in the KM1 (top) and KM2 (bottom) 
model, for two different versions of the K − multinucleon potential (see text for details). The shaded area stands for uncertainties. The single-nucleon K − potential (KN, 
green solid line) calculated in the KM model is shown for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

tical potential. For the FD option of V (2)

K − , the KM model yields 
| ImV K − |
| ReV K − | inside the nucleus for both values of α, even 
when the uncertainties of the K − multinucleon potential are taken 
into account. The same holds for the P model (not shown in the 
figure).

The particular role of K − single- and multinucleon absorptions 
with respect to the nuclear density is illustrated in Fig. 3. Here we 
compare individual contributions of K − single-nucleon and mult-
inucleon absorptions to the total K − absorption, expressed as a 
fraction of ImV (1)

K − and ImV (2)

K − with respect to the total imaginary 
K − potential ImV K − , calculated self-consistently for 208Pb + K − in 
the P and KM models. The density ρ/ρ0 (thin dotted line) is shown 
for comparison. The relative contribution of ImV (1)

K − and ImV (2)

K − to 
K − absorption is changing with radius (density) because of the 
different range of corresponding potentials. At the nuclear surface, 
the K − absorption on a single nucleon dominates, while it is re-
duced in the nuclear interior due to vicinity of π� threshold and 
the multinucleon absorption prevails. The single-nucleon K −N ab-
sorption in the nuclear medium is more suppressed in the models 
with α = 2 since the self-consistent value of 

√
s at ρ0 is closer to 

the π� threshold than in the models with α = 1. The analysis of 
Friedman and Gal [1] showed that the fractions of K − absorption 
on a single nucleon (∼ 75%) and several nucleons (∼ 25%) from the 
bubble chamber experiments are sensitive to about 15% of nuclear 
density (denoted in Fig. 3 by vertical black line). At this density, 

Fig. 3. The ratio of ImV (1)

K − (dashed line) and ImV (2)

K − (solid line) potentials to 
the total K − imaginary potential ImV K − as a function of radius, calculated self-
consistently for 208Pb+ K − system within different meson–baryon interaction mod-
els and FD option of the K − multinucleon potential. The relative nuclear density 
ρ/ρ0 (dotted line) and vertical lines denoting 15% of ρ0 are shown for comparison.

the ratios ImV (2)

K −/ImV (1)

K − are lower than experimental fractions of 
K − absorption at rest [18–20] due to different self-consistent val-
ues of δ

√
s for kaonic and nuclear states. However, we stress that 
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Table 2
1s K − binding energies B K − and widths 	K − (in MeV) in various nuclei calculated 
using the single nucleon K −N amplitudes (denoted KN); plus a phenomenologi-
cal amplitude B(ρ/ρ0)α , where α = 1 and 2, for ‘half-density limit’ (HD) and ‘full 
density’ option (FD) (see text for details).

KM model α = 1 α = 2

KN HD FD HD FD
16O B K − 45 34 not 48 not

	K − 40 109 bound 121 bound

40Ca B K − 59 50 not 64 not
	K − 37 113 bound 126 bound

208Pb B K − 78 64 33 80 53
	K − 38 108 273 122 429

P model α = 1 α = 2
16O B K − 64 49 not 63 not

	K − 25 94 bound 117 bound

40Ca B K − 81 67 not 82 not
	K − 14 95 bound 120 bound

208Pb B K − 99 82 36 96 47*

	K − 14 92 302 117 412*

* The solution of Eq. (1) for ImV K − scaled by factor 0.8.

one has to compare corresponding widths, rather than ImV (1)

K − and 
ImV (2)

K − , for proper confrontation with experiment.
In Table 2 we present 1s K − binding energies B K − and widths 

	K − , calculated in the KM and P models. The K − binding energies 
and widths calculated only with the underlying K − single-nucleon 
potential are shown for comparison. When K − multinucleon in-
teractions are included, the K − widths increase considerably. For 
the HD option the K − widths are of order ∼ 100 MeV and exceed 
significantly the corresponding K − binding energies.

For the K − interaction models with the FD multinucleon poten-
tials V (2)

K − , the antikaon is unbound in the majority of nuclei. We 
found 1s K − quasi-bound states in 208Pb, however, the K − widths 
are huge, one order of magnitude larger than the binding ener-
gies.1 These conclusions remain valid even when the uncertainties 
in the K − multinucleon potential are taken into account.

4. Conclusions

This work reports on calculations of K − nuclear quasi-bound 
states performed using a K − single-nucleon potential derived 
within two chirally motivated meson–baryon coupled-channel 
models P and KM, supplemented by a phenomenological poten-
tial representing the K − multinucleon interactions. Parameters of 
the phenomenological potential were recently fitted by Friedman 
and Gal [1] to kaonic atom data for each meson–baryon interac-
tion model separately. Moreover, in the analysis of Ref. [1] the 
single-nucleon K − potential constructed within the P and KM chi-
ral models together with a phenomenological K − multinucleon 
potential V (2)

K − was confronted with the branching ratios of K −
single-nucleon absorption at rest for the first time. The fractions of 
K − single-nucleon absorption calculated within these two models 
are in agreement with the data from bubble chamber experiments.

Since the kaonic atom data probe the K − optical potential reli-
ably up to at most ∼ 50% of ρ0, two scenarios for extrapolating 
V (2)

K − to higher densities ρ ≥ 0.5ρ0 were considered. Moreover, 
uncertainties of the parameters of the phenomenological K − mult-

1 In the case of the P2 model, we present the solution of the Klein–Gordon equa-
tion (1) for 208Pb with ImV K − scaled by factor 0.8 since the calculation with the full 
imaginary potential is not numerically stable due to extremely strong K − absorp-
tion – the non-converged 	K − > 500 MeV while the corresponding B K − < 15 MeV.

inucleon potentials were taken into account in order to verify that 
the results are sufficiently robust.

The fractions of K − single-nucleon and multinucleon absorp-
tion in the medium were evaluated. At the surface of a nucleus, 
the fractions are in accordance with experimental data. In the nu-
clear interior, the K − single-nucleon absorption is reduced due to 
the vicinity of π� threshold and the K − multinucleon absorption 
prevails.

The K − multinucleon interactions were found to cause radical 
increase of K − widths. In vast majority of nuclei the widths ex-
ceed considerably K − binding energies. The FD variant of the phe-
nomenological potential does not even yield any K − bound states 
in most of the nuclei. Calculations performed for other nuclei and 
other recent K −N interaction models considered in Ref. [1] con-
firmed our conclusions concerning the decisive effect of K − mult-
inucleon interactions on K − widths in nuclei [31]. In view of our 
results, it would be desirable to explore the role of the K − multi-
nucleon processes in few-body systems as well.

The main message of the present study is that the K −-nuclear 
quasi-bound states in many-body nuclear systems, if they ever ex-
ist, have huge widths, considerably exceeding K − binding energies. 
Their identification in experiment thus seems impossible.
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K− nuclear states: Binding energies and widths
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K− optical potentials relevant to calculations of K− nuclear quasibound states were developed within several
chiral meson-baryon coupled-channels interaction models. The applied models yield quite different K− binding
energies and widths. Then the K− multinucleon interactions were incorporated by a phenomenological optical
potential fitted recently to kaonic atom data. Though the applied K− interaction models differ significantly in
the K−N subthreshold region, our self-consistent calculations of kaonic nuclei across the periodic table lead
to conclusions valid quite generally. Due to K− multinucleon absorption in the nuclear medium, the calculated
widths of K− nuclear states are sizable, �K− � 90 MeV, and exceed substantially their binding energies in all
considered nuclei.

DOI: 10.1103/PhysRevC.96.015205

I. INTRODUCTION

The near-threshold K̄N attraction seems to be strong
enough to bind the antikaon in the nuclear medium and form
a kaonic nucleus [1–4]. However, strong absorption of K−
in nuclear matter, as well as in-medium modifications and
distinct energy dependence of the K−N scattering amplitudes
attributed to the �(1405) resonance could call this presumption
into question and thus have to be carefully accounted for in
relevant calculations.

Unique information allowing us to fix the K−p interaction
at and above threshold is provided by low-energy K̄N
scattering data (summarized, e.g., in Ref. [5]), threshold
branching ratios [6], and, in particular, strong interaction
energy shift and width of kaonic hydrogen atom [7]. The
K−n interaction is much poorly determined due to the lack
of sufficiently accurate data. Considerably less is known about
the K−N interaction below threshold. Information about the
subthreshold interaction of K− with nucleons comes from the
analyses of π� spectra in the region of �(1405) and especially
from the measurement of energy shifts and widths of K−
atomic states throughout the periodic table [8,9].

The theoretical description of the K−N interaction is
currently provided by chirally motivated meson-baryon in-
teraction models. Parameters of these models are tuned to
reproduce the above low-energy K−N observables. In the
present study, the free-space K−N scattering amplitudes
derived within various chiral SU(3) meson-baryon coupled-
channels interaction models: Prague (P) [10], Kyoto-Munich
(KM) [5], Murcia (M1 and M2) [11], and Bonn (B2 and
B4) [12] are used to construct the kaon self-energy operator
�K− . The free s-wave scattering amplitudes FK−p(

√
s) and

FK−n(
√

s) considered in this work are shown in Fig. 1. Being
constrained by the data, the FK−p(

√
s) amplitudes [Fig. 1 (top)]

agree with each other at threshold and, except the Bonn model
amplitudes, also above threshold. The form of B2 and B4
amplitudes deviates from the others because higher partial

*hrtankova@ujf.cas.cz
†mares@ujf.cas.cz

waves were included in the Bonn model fits. All the K−p
amplitudes differ considerably below threshold, which implies
the region relevant for K−-nuclear bound-state calculations.
Moreover, they are significantly energy dependent below
threshold due to existence of �(1405) resonance which is
dynamically generated in these models. It is thus important
to evaluate the K−-nucleus potential self-consistently [13,14].
The K−n amplitudes [Fig. 1 (bottom)] differ appreciably from
each other in the entire energy range considered here. Figure 1
illustrates significant model dependence of the input scattering
amplitudes. As a result, binding energies BK− and widths �K−

of kaonic nuclear states calculated within the above K−N
interaction models are expected to differ substantially from
each other.

The implications of self-consistent treatment of energy
dependence of chirally inspired K−N amplitudes near thresh-
old for calculations of K−-nuclear states were discussed in
Ref. [15]. Due to a sizable downward energy shift towards
π� threshold, the K− potential constructed within the P
model yields relatively small K− widths because only the
K− absorption on a single nucleon, K−N → πY (Y = �,�),
is involved in this model [13–15]. In nuclear medium,
K− multinucleon interactions, such as K−NN → YN , take
place as well [16–18] and should thus be considered in
any realistic study of K−-nuclear quasibound states. Indeed,
recent analyses of kaonic atoms have confirmed that a phe-
nomenological term representing K− multinucleon processes
has to be added to the optical potential constructed from
in-medium chirally motivated K−N amplitudes in order to
achieve good fit to the data [17,18]. In Refs. [13–15], the
K−NN absorption was included using a phenomenological
potential and, as a consequence, the K− widths increased
and became comparable with K− binding energies. Although
the chiral K−N interaction models do not involve the K−
multinucleon processes explicitly, Sekihara et al. [19] derived
nonmesonic K− interaction channels within a chiral unitary
approach for the s-wave K̄N amplitude and calculated the
ratio of mesonic to nonmesonic K− absorption at rest in
nuclear matter. The experimental information about this ratio
comes from bubble chamber experiments [20–22]. Recently,
Friedman and Gal have supplemented the K− single-nucleon

2469-9985/2017/96(1)/015205(12) 015205-1 ©2017 American Physical Society
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FIG. 1. Energy dependence of real (left) and imaginary (right) parts of free-space K−p (top) and K−n (bottom) amplitudes in considered
chiral models (see text for details). Thin vertical lines mark threshold energies.

potential constructed from several chiral K−N amplitude
models by a phenomenological term representing the K−
multinucleon interactions and fitted its parameters to kaonic
atom data for each meson-baryon interaction model separately
[18]. Moreover, they confronted the total K− optical potential
with experimental fractions of K− absorption at rest. They
found that only the P and KM models supplemented by the K−
multinucleon potential are able to reproduce both experimental
constraints simultaneously. These two models were recently
used in calculations of K− quasibound states [23] and the K−
multinucleon interactions were found to cause radical increase
of the widths of K−-nuclear states.

In this work, we apply all six chirally motivated meson-
baryon coupled-channels interaction models considered in
Ref. [18] to calculations of K−-nuclear quasibound states,
aiming at exploring model dependence of predicted K−
binding energies and widths. Then we supplement the K−
single-nucleon potential by a corresponding phenomeno-
logical optical potential describing the K− multinucleon
interactions in order to study in detail their impact on K−

binding energies and widths. Unlike previous calculations,
we consider various K−N interaction models presented in
recent years. Most of them were never applied in such studies
before. We perform unique calculations of kaonic nuclear
quasibound states using the K−-nuclear potentials containing
both K− single-nucleon and multinucleon interactions which
were fitted to available data for each meson-baryon interaction
model.

The paper is organized as follows. In Sec. II we present
construction of the in-medium K−N amplitudes from the free-
space amplitudes derived within chirally inspired coupled-
channels models of meson-baryon interactions. We introduce a
self-consistent scheme for treating energy dependence of these
amplitudes and derive for each interaction model a relevant
K−-nuclear potential. We discuss results of our calculations
of K−-nuclear quasi-bound states using these potentials. In
Sec. III, we present phenomenological potentials describing
K− multinucleon interactions and explore their impact on the
widths and binding energies of kaonic nuclear quasibound
states. A brief summary is given in Sec. IV.

015205-2
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II. CHIRALLY MOTIVATED K− NUCLEAR POTENTIALS

The binding energies BK− and widths �K− of K−-nuclear
quasibound states are determined by solving self-consistently
the Klein-Gordon equation

[ �∇2 + ω̃2
K− − m2

K− − �K− (ωK− ,ρ)
]
φK− = 0, (1)

where ω̃K− = mK− − BK− − i�K−/2 − VC = ωK− − VC ,
mK− is the K− mass, VC is the Coulomb potential introduced
via the minimal substitution [24], and ρ is the nuclear
density distribution. The energy- and density-dependent kaon
self-energy operator �K− describes K− interactions with the
nuclear medium.

The self-energy operator �K− in Eq. (1) is constructed in
a “tρ” form with the in-medium amplitudes derived from the
chirally motivated K−N scattering amplitudes presented in
Fig. 1. It is expressed as

�K− = 2Re(ωK−)V (1)
K−

= −4π

√
s

mN

[
F0

1

2
ρp + F1

(
1

2
ρp + ρn

)]
, (2)

where F0 and F1 are the isospin 0 and 1 s-wave in-medium
amplitudes, respectively,

√
s is the total energy of the K−N

system, mN is the nucleon mass, and V
(1)
K− stands for the

(single-nucleon) K−-nucleus optical potential. The kinemat-
ical factor

√
s/mN comes from transforming amplitudes

from the two-body center-of-mass frame to the laboratory
frame. The ρp and ρn denote proton and neutron density
distributions, respectively, in a given core nucleus obtained
within the relativistic mean-field model NL-SH [25]. We
consider static nuclear density distribution, which means that
core polarization effects are not included in our calculations.
The polarization effects are A dependent—for instance, within
the P model, they increase BK− by ≈6 MeV in Li, by �2 MeV
in Ca, and by �0.5 MeV in Pb [15]. In any case, the role
of the nuclear polarization is less pronounced than the model
dependence.

The modifications of the free-space amplitudes due to Pauli
principle in the medium are accounted for by using the multiple
scattering approach (WRW) [26]. The in-medium amplitudes
F0 and F1 are then given in the following form:

F1 = FK−n(
√

s)

1 + 1
4ξk

√
s

mN
FK−n(

√
s)ρ

,

(3)

F0 = [2FK−p(
√

s) − FK−n(
√

s)]

1 + 1
4ξk

√
s

mN
[2FK−p(

√
s) − FK−n(

√
s)]ρ

,

where

ξk = 9π

p2
F

4Iq, Iq =
∫ ∞

0

dt

t
exp(iqt)j 2

1 (t). (4)

Here pF is the Fermi momentum corresponding to density
ρ = 2p3

F/(3π2), j1(t) is the spherical Bessel function, and
q =

√
ω2

K− − m2
K−/pF. The integral Iq in Eq. (4) can be

evaluated analytically as [18]

4Iq = 1 − q2

6
+ q2

4

(
2 + q2

6

)
ln

(
1 + 4

q2

)

− 4

3
q
[π

2
− arctan(q/2)

]
. (5)

In Fig. 2, we present the K−p and K−n amplitudes in
the considered models, modified by the WRW procedure at
saturation density ρ0 = 0.17 fm−3 plotted as a function of
energy. It follows from comparison with Fig. 1 that the K−p
amplitudes are affected significantly by Pauli correlations:
The real part of the amplitudes becomes attractive in the
entire energy region below threshold (except the B2 and B4
models) and the imaginary part is considerably lowered below
threshold. On the other hand, the K−n amplitudes are modified
by Pauli correlations only moderately.

In previous calculations [13,15], the in-medium mod-
ifications of the K−N amplitudes in the P model [10]
were accounted for in a different way. The integration over
the intermediate meson-baryon momenta in the underlying
Green’s function was restricted to a region ensuring the
nucleon intermediate energy to be above the Fermi level
(denoted further “Pauli”). Moreover, the in-medium hadron
self-energies (denoted “Pauli+SE”) were considered in some
cases as well. In Fig. 3, we compare the Pauli correlated
amplitudes with the WRW modified amplitudes in the P
model. Both approaches, WRW and Pauli, yield similar K−N
in-medium reduced amplitudes1 fK−N = 1

2 (fK−p + fK−n) in
the subthreshold energy region. Above threshold, the behavior
of Pauli and WRW modified amplitudes is different. The effect
of hadron self-energies is illustrated in Fig. 3 as well. The
Pauli correlated and Pauli+SE amplitudes are again quite
similar to each other farther below threshold (in the region
relevant to K−-nuclear bound state calculations), but they
differ appreciably near and above threshold.

The existence of the subthreshold resonance �(1405),
which is dynamically generated in chirally motivated coupled-
channels models, causes that the K−p amplitudes exhibit
strong energy (and density) dependence near and below thresh-
old. This feature requires a proper self-consistent scheme for
evaluating the K− optical potential in both calculations of K−
atomic as well as nuclear states [13,15,17,18].

The in-medium amplitudes entering Eq. (3) are a function
of energy

√
s given by Mandelstam variable

s = (EN + EK− )2 − ( �pN + �pK− )2, (6)

where EN = mN − BN , EK− = mK− − BK− − VC , and
�pN(K−) is the nucleon (kaon) momentum. Unlike the free two-
body center-of-mass system, the momentum-dependent term
( �pN + �pK− )2 �= 0 in the K−-nucleus center-of-mass frame,
which generates additional substantial downward energy
shift [13]. The non-negligible momentum term is on averaging
over angles equal to p2

K− + p2
N . This averaging, i.e., dropping

the term ∼ �pK− · �pN , has been meant to provide a mean value

1FK−N = g(p)fK−Ng(p′), where g(p) is a momentum-space form
factor (see Ref. [13]).
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FIG. 2. Energy dependence of real (left) and imaginary (right) parts of WRW modified K−p (top) and K−n (bottom) amplitudes at
ρ0 = 0.17 fm−3 in considered models. Thin vertical lines mark threshold energies.

of the energy
√

s for a given density. It is not a substitute
for a proper treatment of Fermi motion. The effect of Fermi
motion was studied in detail in Ref. [27] where it was
demonstrated that the Fermi averaging has a small effect on the
K− binding energy. Nevertheless, we performed calculations
using averaging on the level of K−N amplitudes instead of
angular averaging. We verified that both approaches yield very
similar results—K− binding energies differ by �2% and the
widths by �10%.

The kaon kinetic energy is given in the local density
approximation by

p2
K−

2mK−
= −BK− − ReVK− − VC, (7)

where VK− is the K−-nuclear optical potential. The nucleon
kinetic energy is expressed within the Fermi gas model as

p2
N

2mN

= TN

(
ρ

ρ̄

)2/3

, (8)

where TN = 23 MeV is the average nucleon kinetic energy
and ρ̄ is the average nuclear density distribution.

Finally, the K−N amplitudes can be expressed as a function
of energy

√
s = Eth + δ

√
s where Eth = mN + mK− and the

energy shift δ
√

s is expanded near threshold in terms of binding
and kinetic energies (to leading order):

δ
√

s ≈ −BN − BK− − VC − βNTN

(
ρ

ρ̄

)2/3

−βK− [−BK− − ReVK− (r) − VC], (9)

where βN(K−) = mN(K−)/(mN + mK−) and BN = 8.5 MeV is
the average binding energy per nucleon. After introducing
specific forms of density dependence ensuring that δ

√
s → 0

as ρ → 0 in agreement with the low-density limit (for details,
see Ref. [17]) the energy shift δ

√
s in Eq. (9) has the following

form:

δ
√

s = −BN

ρ

ρ̄
− βN

[
BK−

ρ

ρmax
+ TN

(
ρ

ρ̄

)2/3

+VC

(
ρ

ρmax

)1/3]
+ βK−ReVK− (r), (10)
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FIG. 3. Energy dependence of free-space (dotted line) amplitude fK−N = 1
2 (fK−p + fK−n) compared with WRW modified amplitude

(solid line), Pauli (dashed line), and Pauli + SE (dot-dashed line) modified amplitude for ρ0 = 0.17 fm−3 in the P model (left: real parts, right:
imaginary parts). The thin vertical line indicates the K−N threshold.

where ρmax is the maximal value of the nuclear density. The K−
binding energy BK− is multiplied by ρ/ρmax, which ensures
that the K− kinetic energy expressed in Eq. (7) in terms of
local density approximation is positive at any nuclear density.

It is to be noted that since the input of our work was adopted
from the kaonic atoms analysis of Friedman and Gal [18], it is
desirable to keep consistent and use similar kinematics in our
calculations.

In Fig. 4 we present the downward energy shift
δ
√

s = E − Eth as a function of relative density ρ/ρ0 probed
in the self-consistent calculations with in-medium K− optical
potential V

(1)
K− based on amplitudes from chiral models P,

KM, M1, and M2. The calculations were performed for the
16O + K− system. The models considered here predict quite
different energy shifts, reaching at the saturation density values
between ∼−40 MeV for the M2 model and ∼−100 MeV for
the P model. The energy shifts corresponding to the Bonn
models B2 and B4 are not plotted in the figure since these
models do not yield any K−-nuclear bound state. It is to be
noted that though the free-space amplitudes in Fig. 1 are shown
only to

√
s = 1370 MeV, the amplitudes for KM and P models

are available down to 1300 MeV. The energy shifts δ
√

s in the
models shown in Fig. 4 are thus safely in the available energy
region.

In calculations presented in this work, we take into account
only Pauli correlations in the medium expressed within the
WRW approach. One might argue that the effect of hadron self-
energies should be included as well. In Fig. 5 we demonstrate
the role of hadron self-energies in 40Ca. We compare the K−

potential V
(1)
K− calculated in the P model within the WRW

method (left panel) with the K− potential calculated using the
Pauli and Pauli +SE in-medium amplitudes, used in previous
calculations of K−-nuclear bound states [15] (right panel).
The hadron self-energies modify considerably the potential
evaluated at threshold while their effect becomes rather small
in self-consistent treatment of the energy shift. Then the

WRW, Pauli, and Pauli+SE options for in-medium modifi-
cations of K−N amplitudes give nearly identical K−-nucleus
potentials.

As was shown in Figs. 1 and 2, the chiral K−N amplitudes
differ considerably below threshold, thus in the region relevant
to calculations of kaonic nuclear states. As a consequence,
corresponding K−-nucleus potentials derived using these
amplitudes differ significantly as well. In Fig. 6, we present
real (left) and imaginary (right) parts of the K−-nuclear optical
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FIG. 4. Subthreshold energies probed in the 16O + K− nucleus
as a function of relative density ρ/ρ0, calculated self-consistently
using K−N amplitudes in the P (dot-dashed line), KM (solid line),
M1 (dashed line), and M2 (dotted line) models.
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FIG. 5. K− nuclear potential V
(1)
K− in 40Ca calculated using chiral K−N P amplitudes at threshold (dashed lines) and with

√
s (Eq. (8) of

Ref. [15]) (solid lines) in two in-medium versions: WRW (left panel) and Pauli+SE (right panel). The Pauli version (right panel, dotted line)
for

√
s from [15] is shown as well (see text for details).

potential V
(1)
K− in 40Ca, calculated self-consistently within P,

KM, M1, and M2 models. The depths of ReV (1)
K− are ranging

from 30 MeV in the M2 model to 110 MeV in the P model.
The imaginary parts of the K− potentials are rather shallow
inside the nucleus, which reflects sizable downward energy
shift to the vicinity of threshold of the main decay channel
K−N → π�. The apparent dip in the surface region is due to
the low-density limit adopted in δ

√
s [see Eq. (10)].

The 1s binding energies BK− and widths �K− in selected
nuclei are presented in Fig. 7. The calculated K− binding
energies are strongly model dependent due to different depths
of ReV (1)

K− in various K−N interaction models. However, they
exhibit similar A dependence in all models considered. The
K− widths are rather small and weakly A dependent. The KM

model predicts widths up to three times larger than the P and
M1 models. The M2 model yields similar widths as the KM
model for 208Pb and 90Zr, while the widths in lighter nuclei are
comparable with the P model widths. It is to be noted that we
get no kaonic nuclear bound states for the Bonn models B2 and
B4 because the real parts of the in-medium K−N amplitudes
are repulsive in the relevant subthreshold region (see Figs. 1
and 2).

In Fig. 8 (left panel) we compare K−-nuclear single-particle
spectra in 40Ca, calculated using various K−N interaction
models. Again, the K− binding energies BK− strongly depend
on the model used. The relative position of the K− spectra is in
accordance with the depths of the K−-nucleus potentials V

(1)
K−

shown in Fig. 6. The corresponding K−N → πY conversion
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FIG. 6. Real (left) and imaginary (right) parts of the K− nuclear potential V (1)
K− in 40Ca calculated self-consistently using chiral P (dot-dashed

line), KM (solid line), M1 (dashed line), and M2 (dotted line) amplitudes.
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FIG. 7. 1s K− binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently in P (circles), KM
(squares), M1 (diamonds), and M2 (triangles) models. K−-multinucleon interactions are not considered.

widths are presented in Fig. 8 (right panel). In the P and KM
models, the 1s-state widths are reduced due to considerable
energy shift towards the π� threshold and become smaller
than the widths of excited states, for which

√
s is farther from

the π� threshold. On the other hand, the K− widths calculated
in M1 and M2 models follow the opposite trend. It is because√

s in these models is much closer to the K−N threshold where
the (dominant) imaginary part of the K−p amplitudes starts
to decrease towards the threshold (see Fig. 2). This feature
is more pronounced in the M2 model, which gives a smaller
downward energy shift due to the shallower K− potential (1d
and 2s states are unbound).

Following results of calculations presented so far, one might
conclude that at least some K−N interaction models predict
sufficiently bound kaonic nuclear states with relatively narrow
widths. In the nuclear medium, however, K− multinucleon
processes take place as well. They are becoming more and

more important with increasing nuclear density and K−
binding energy [28,29]. We will demonstrate their significant
role in self-consistent calculations of kaonic nuclei in the next
section.

III. THE ROLE OF K− MULTINUCLEON INTERACTIONS

The K− multinucleon interactions are an inseparable
component of every realistic description of K−-nucleus
interactions. As was shown in recent analysis by Friedman and
Gal [18], the single-nucleon K− potential constructed within
all chiral meson-baryon interaction models considered in this
work has to be supplemented by a phenomenological term
representing K− multinucleon processes in order to obtain
good fit to kaonic atom data. The total K− optical potential
is then a sum of single-nucleon and multinucleon potential
VK− = V

(1)
K− + V

(2)
K− , where the single-nucleon potential V

(1)
K− is
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FIG. 8. K− binding energies (left) and widths (right) in s, p, and d levels in 40Ca calculated self-consistently in P, KM, M1, and M2
models. K−-multinucleon interactions are not considered.
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TABLE I. Values of the complex amplitude B and exponent α

used to evaluate V
(2)
K− for all chiral meson-baryon interaction models

considered in this work.

P1 KM1 P2 KM2

α 1 1 2 2
ReB (fm) −1.3 ± 0.2 −0.9 ± 0.2 −0.5 ± 0.6 0.3 ± 0.7
ImB (fm) 1.5 ± 0.2 1.4 ± 0.2 4.6 ± 0.7 3.8 ± 0.7

B2 B4 M1 M2
α 0.3 0.3 0.3 1
ReB (fm) 2.4 ± 0.2 3.1 ± 0.1 0.3 ± 0.1 2.1 ± 0.2
ImB (fm) 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 1.2 ± 0.2

given by Eq. (2) and the multinucleon term V
(2)
K− is of the form

2Re(ωK−)V (2)
K− = −4πB

(
ρ

ρ0

)α

ρ. (11)

The values of the complex amplitude B and positive exponent
α listed in Table I were obtained by fitting kaonic atom data
for each K−N amplitude model separately [18]. Moreover,
the total K− optical potentials VK− were then confronted
with branching ratios of K− absorption at rest. Only two
models, P and KM, were found to reproduce simultaneously
the fractions of K− single-nucleon absorption from bubble
chamber experiments [20–22] and kaonic atom data. Yet we
performed calculations for all six discussed K−N amplitude
models. It is to be noted that the P and KM models could
be regarded as equivalent within the uncertainties shown in
Table I.

The dominant mode of K− absorption on two nucleons in
the nuclear interior is the nonpionic conversion K−NN →
�N [19,28,30]. Since the amplitude ImB is constant, we
multiply it by kinematical suppression factor to account for
phase space reduction for decay products in K−NN → �N
absorption in the nuclear medium. The suppression factor used
in our calculation is of the form

f�N = M3

s
3/2
m

√
[sm − (mN + m�)2][sm − (mN − m�)2]

[M2 − (mN + m�)2][M2 − (mN − m�)2]

×�(
√

sm − mN − m�), (12)

where M = 2mN + mK− and
√

sm = M − δ
√

s [28].
It is to be noted that for processes on a single nucleon, the

proper energy dependence is embedded directly in the K−N
amplitudes constructed within chirally motivated coupled-
channels models.

Analyses of Friedman and Gal have shown that kaonic atom
data constrain reliably the real part of the K− optical potential
up to ∼25% of ρ0 and its imaginary part up to ∼50% of
ρ0. The shape of the phenomenological K− optical potential
V

(2)
K− in the nuclear interior is thus a matter of extrapolation

to higher densities. In order to allow for more flexibility, we
consider different options for V

(2)
K− beyond the half density limit

ρ(r) = 0.5ρ0 in our calculations. First, the form (11) is
applied in the entire nucleus (full density option, FD). Second,
the potential V

(2)
K− is fixed at constant value V

(2)
K− (0.5ρ0) for
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FIG. 9. Subthreshold energies probed in the 208Pb + K− nucleus
as a function of relative density ρ/ρ0, calculated self-consistently
in all K−N amplitude models considered, supplemented by the FD
variant of V

(2)
K− . The dashed and dotted areas denote the uncertainty

bands calculated in the KM1 and KM2 models and the shaded gray
band represents their overlap.

ρ(r) � 0.5ρ0 (half density limit, HD). In the third approx-
imation (TR), the tρ form of V

(2)
K− is assumed for densities

ρ(r) � 0.5ρ0 in Eq. (11), i.e., V
(2)
K− ∼ −4πB(0.5)αρ for

ρ(r) � 0.5ρ0.
In Fig. 9, we present subthreshold energy shift

δ
√

s = E − Eth as a function of the nuclear density in 208Pb,
calculated in all K−N interaction models considered in this
work, with the FD version of the K− multinucleon potential.
For illustration, we show also the uncertainties involved in the
KM1 and KM2 multinucleon potentials. They are denoted by
dashed and dotted areas and the gray shaded band denotes their
overlap. After including the K− multinucleon interactions in
the KM and P models (the only two models accepted by
analysis of Ref. [18]), the energy shift δ

√
s for a particular

density becomes smaller and moves back towards the K−N
threshold (compare Fig. 4 and Fig. 9). On the other hand, the
B2, B4, and M2 models supplemented by a strongly attractive
K− multinucleon potential ReV (2)

K− (see Table I) probe much
deeper energy region below threshold than the KM and P
models. In fact, fairly deep ReV (2)

K− , (200–300) MeV, causes
that K− will be bound even in the Bonn models B2 and B4.

We witness large model dependence of the downward
energy shifts δ

√
s, ranging from −35 to −230 MeV in

the nuclear center. This suggests that the models yield
considerably different K− optical potentials. Yet, the KM and
P models could be regarded as equivalent since they all lie in
corresponding uncertainty bands and describe kaonic atom
data equally well. We note that the free-space amplitudes
in the M1, M2, B2, and B4 models were available only for
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FIG. 10. The respective contributions from K−N (dashed dotted line) and K−NN (dashed line) potentials to the total real (left) and
imaginary (right) K− optical potential in the 208Pb + K− nucleus, calculated self-consistently in the FD version of KM1 (top) and KM2
(bottom) models. The shaded areas denote the uncertainty bands. The K− single-nucleon potential (KN, blue solid line) calculated in the KM
model (i.e., without multinucleon interactions) is shown for comparison.

√
s � 1370 MeV. Therefore, we fixed the K−N amplitudes at

constant value FK−N (1370) when
√

s got below 1370 MeV in
our self-consistent calculations.

The individual contributions from single-nucleon V
(1)
K− and

multinucleon V
(2)
K− potentials to the total K− optical potential

VK− including their uncertainties (shaded areas) are shown
in Fig. 10, calculated self-consistently for 208Pb + K− in the
KM1 (top panels) and KM2 model (bottom panels) and the
FD version of V

(2)
K− . For comparison, we present the single-

nucleon K−N potential (KN, blue solid line) derived from the
K−N amplitude model KM without considering multinucleon
interactions. The contribution from ReV (2)

K− to the total real K−-
nucleus potential is repulsive in the KM1 model, as well as in

the P1 and P2 models (not shown in the figure). As a result, the
total K−-nucleus potential including multinucleon processes
is less attractive than the original single-nucleon K−-nucleus
potential. In the KM2 model the contribution from V

(2)
K− brings

additional attraction to the total potential due to positive sign
of the effective amplitude ReB (see Table I). However, the
extensive uncertainty band in Fig. 10 proves that the sign of
ReB in the KM2 model is insignificant. The V

(1)
K− part of the

optical potential in the KM1 and KM2 models (as well as in
other models) differs from the original single-nucleon K−N
potential due to the different subthreshold energy shift (see
Fig. 9 and Fig. 4). The uncertainties in the K−N part arise
from variations of δ

√
s caused by the uncertainties in total
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FIG. 11. The ratio of ImV
(1)
K− (dashed line) and ImV

(2)
K− (solid line)

potentials to the total K− imaginary potential ImVK− as a function
of radius, calculated self-consistently for the 1s K− state in 208Pb
using the KM1 model and different options for the K− multinucleon
potential. The relative nuclear density ρ/ρ0 (dotted line) is shown for
comparison.

K−-nuclear potential. The depths of the total ReVK− in the
KM1(2), P1(2), and M1 models including the multinucleon
potential V

(2)
K− are of the range �(50–100) MeV (not quoting

uncertainties).
Adding K− multinucleon absorptions dramatically in-

creases the depth of the total imaginary K− potential as
illustrated in the right panels of Fig. 10. In the KM models
(as well as P models, not shown in the figure), ImVK− is
much deeper than ReVK− for both values of α even when the
uncertainties are taken into account. The K− multinucleon
processes contribute substantially to K− absorption mainly
in the interior of a nucleus. As a result, the depth of
ImVK− �(70–170) MeV in the KM1, P1, and M1 models and
ImVK− � 270 MeV in the KM2 and P2 models (not quoting
uncertainties). The range of V

(2)
K− potential is considerably

smaller than the range of the V
(1)
K− potential and thus in the

surface region of a nucleus, K− single-nucleon absorption
dominates in accordance with experimental findings [20–22].

The B2, B4, and M2 models yield the real part of the total
K−-nucleus potential extremely deep, ∼(200–300) MeV in
the nuclear interior, thanks to a strongly attractive ReV (2)

K− . On
the contrary, the imaginary part of the VK− potentials in these
models is shallower than in the KM1 model.

Next, we evaluated the fractions of the K− single- and
multinucleon absorptions as a ratio of ImV

(1)
K− and ImV

(2)
K−

with respect to the total imaginary K− potential ImVK− .
These ratios are depicted in Fig. 11 as a function of radius,
calculated self-consistently for the 1s K− state in 208Pb using
the KM1 model and HD, TR, and FD options for V

(2)
K− . For

comparison, the relative density ρ/ρ0 (thin dotted line) is
shown here as well. Since the range and density dependence

TABLE II. 1s K− binding energies and widths (in MeV) in vari-
ous nuclei calculated using the single-nucleon K−N KM amplitudes
(denoted KN); plus a phenomenological amplitude B(ρ/ρ0)α , where
α = 1 and 2, for “half-density limit” (HD), tρ option (TR), and full
density option (FD).

KM model α = 1 α = 2

KN HD TR FD HD TR FD

6Li BK− 25 11 Not Not 23 19 Not
�K− 45 116 bound bound 122 160 bound

12C BK− 45 34 20 Not 48 44 Not
�K− 44 114 182 bound 125 191 bound

16O BK− 45 34 25 Not 48 46 Not
�K− 40 109 158 bound 121 167 bound

40Ca BK− 59 50 40 Not 64 63 Not
�K− 37 113 164 bound 126 175 bound

90Zr BK− 69 56 47 17 72 71 30
�K− 36 107 156 312 120 167 499

208Pb BK− 78 64 56 33 80 80 53
�K− 38 108 153 273 122 163 429

P model α = 1 α = 2

KN HD TR FD HD TR FD
6Li BK− 38 21 Not Not 36 28 Not

�K− 40 112 bound bound 133 183 bound
12C BK− 64 50 35 Not 64 57 Not

�K− 28 96 165 bound 122 196 bound
16O BK− 64 50 39 Not 63 59 Not

�K− 25 94 142 bound 117 169 bound
40Ca BK− 81 67 56 Not 82 79 Not

�K− 14 95 145 bound 120 175 bound
90Zr BK− 90 74 62 19 87 85 Not

�K− 12 88 136 340 114 164 bound
208Pb BK− 99 82 70 37 96 92 47a

�K− 14 92 137 302 117 163 412a

athe solution of the Klein-Gordon equation for ImVK− scaled by factor
0.8.

of V
(1)
K− and V

(2)
K− potentials is different (see Fig. 10) the

relative contribution of ImV
(1)
K− and ImV

(2)
K− to K− absorption

is changing with the radius (density). In the surface region
of a nucleus, the dominant process is the K− absorption on a
single nucleon, while in the nuclear interior, the single-nucleon
absorption is reduced due to the vicinity of the π� threshold
and multinucleon absorption prevails. All three higher-density
versions of V

(2)
K− yield the same fractions of single- and

multinucleon absorption at the nuclear surface and differ
slightly from each other inside the nucleus.

The above-discussed K−N amplitude models supple-
mented by K− multinucleon interactions described by the
phenomenological potential V

(2)
K− were applied to calculations

of K−-nuclear bound states in various nuclei across the
periodic table. We considered all three extrapolations HD, TR,
and FD of V

(2)
K− .

In Table II, we present 1s K− binding energies BK− and
widths �K− , calculated in the KM and P models, respectively.
For comparison, we show also K− binding energies and
widths calculated only with the underlying chirally inspired
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TABLE III. 1s K− binding energies and widths (in MeV) in 16O
and 208Pb calculated using the single-nucleon K−N amplitudes M1,
M2, B2, B4 plus a phenomenological amplitudes B(ρ/ρ0)α from
Table I.

M1 M2 B2 B4

KN FD KN FD KN FD KN FD

16O BK− 25 48 10 135 Not 98 Not 170
�K− 16 117 22 244 bound 271 bound 190

208Pb BK− 56 80 38 170 Not 146 Not 200
�K− 14 121 32 214 bound 259 bound 174

K− single-nucleon potential. In these models, which provide
reasonable description of kaonic atom data and fractions
of K− single- and multinucleon absorptions at rest, K−
widths increase considerably after including K− multinucleon
processes, while K− binding energies change only slightly
(they decrease in KM1, P1, and P22 models and increase in
KM2 model). For the FD multinucleon potentials V

(2)
K− , the

antikaon is unbound in the vast majority of nuclei. In 90Zr
and 208Pb, we found 1s K− quasibound states, however, the
K− binding energies of such states are small and widths are
huge, one order of magnitude larger than the binding energies.
For other variants of V

(2)
K− potential, HD and TR, K− widths

are of order ∼100 MeV but, again, the binding energies are
much smaller than the widths in most nuclei. The smallest K−
widths are predicted in the P model for α = 1 and the HD
option; nevertheless, they still exceed noticeably the binding
energies. These results hold generally and remain valid even
when the uncertainties in the multinucleon potential V

(2)
K− are

taken into account.
For completeness, we show in Table III binding energies

and widths of the K− 1s states in 16O and 208Pb, calculated in
M1, M2, B2, and B4 models and FD variant of V

(2)
K− . Unlike

KM and P models, these models give K− quasibound states
for the FD option also in 16O due to strongly attractive K−
multinucleon interactions. However, the predicted K− binding
energies are again much smaller than the widths (except the B4
model, which yields comparable binding energies and widths).
However, it is to be stressed that none of the models in Table III
reproduces experimental values of the fractions of K− single-
and multinucleon absorptions at rest.

Table IV presents the binding energies and widths of K−
quasibound states in 208Pb, calculated in the KM1 model
with FD and HD options of the multinucleon potential. The
binding energies and widths of K− states calculated with the
underlying K−N single-nucleon potentials (KN) are presented
here for comparison. The K−N → πY conversion widths are

2For the FD variant of the P2 model, we had to scale huge
imaginary part ImVK− by factor 0.8 in order to get fully converged
self-consistent solution of the Klein-Gordon equation Eq. (1). The
calculation with the unscaled imaginary potential is not numerically
stable due to extremely strong K− absorption—the nonconverged
�K− > 500 MeV while the corresponding BK− < 15 MeV.

TABLE IV. K− binding energies and widths (in MeV) in 208Pb
calculated using the single-nucleon K−N KM amplitudes (denoted
KN); plus a phenomenological amplitude B(ρ/ρ0)α , where α = 1, for
half density (HD) and full density (FD) options (see text for details).

208Pb + K− 1s 1p 1d 1f 1g 1h 1i

KN BK− 78 70 61 52 42 31 20
�K− 38 38 40 42 45 46 47

HD BK− 64 58 51 42 33 22 8
�K− 108 110 112 115 120 127 143

FD BK− 33 24 9 Not Not Not Not
�K− 273 285 306 bound bound bound bound

gradually increasing in excited states as δ
√

s is moving away
from the π� threshold. However, the increase in the KM
model is not as pronounced as in the P model [15], where the
difference between the K− widths due to K− single-nucleon
absorption in the 1s and 1i states is �35 MeV (compare also
�K− of excited states in 40Ca for various K−N amplitude
models in Fig. 8). For the HD option of multinucleon potential,
the K− binding energies are smaller and widths are more than
twice larger than in the KN case. In the FD version of V

(2)
K− ,

the number of excited K− quasibound states is considerably
reduced because of strong K− absorption.

IV. CONCLUSIONS

We performed calculations of K− nuclear quasi-bound
states using K−-nucleus optical potentials derived self-
consistently from K−N amplitudes, obtained within sev-
eral recent chirally-motivated meson-baryon coupled-channels
models. Following analyses of Friedman and Gal [17,18]
these models need to be supplemented by a phenomenological
term representing K− multinucleon interactions in order to fit
kaonic atom data. Though only the P and KM models are able
to reproduce at the same time the experimentally determined
fractions of K− single-nucleon absorption at rest [18], we con-
sidered also the other K−N amplitude models in order to ex-
plore model dependence of our calculations. The main aim of
our work was to assess the effect of the K− multinucleon pro-
cesses on binding energies and widths of kaonic nuclear states.

First, we constructed the chirally motivated K− single-
nucleon part of the optical potential using six different sets of
K−N amplitudes. In order to account for Pauli correlations
in the nuclear medium, we applied the multiple-scattering
WRW procedure [26]. We verified that hadron self-energies,
considered in previous calculations of in-medium K−N
amplitudes [13,14], affect the K− single-nucleon potential
only slightly in the energy region relevant to our current
calculations. An important aspect of chirally motivated K−N
amplitudes is their energy dependence, which has to be
treated self-consistently, taking into account the non-negligible
contribution from K− and N momenta. Each of the considered
models gives different depths of ReVK− in a nucleus and thus
probes different energy regions below the K−N threshold. The
resulting K− binding energies BK− are then strongly model
dependent. The widths of the 1s K−-nuclear states come out
quite small. The smallest widths �K− are predicted by the
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Murcia model M1, whereas the KM model predicts the K−
widths three times as large.

Next, we added to each K− single-nucleon potential V
(1)
K−

a corresponding phenomenological multinucleon potential
V

(2)
K− , parameters of which were recently fitted to kaonic

atom data [18]. Since the kaonic-atom data probe the K−
optical potential reliably up to at most ∼50% of ρ0, we
considered three different scenarios for extrapolating V

(2)
K−

to higher densities, ρ � 0.5ρ0. Though the applied models
differ widely in the subthreshold region, our calculations
lead to some quite general conclusions, valid for each of
the K−-nucleus interaction models. We found that the K−
multinucleon absorption gives rise to substantial increase of
the widths of K−-nuclear states. The K− widths exceed
considerably the K− binding energies in the vast majority of
nuclei. In the KM and P models, the only models accepted by
the analysis of Friedman and Gal [18], the FD variant of V

(2)
K−

even does not yield any K−-nuclear bound state in most of the
nuclei under consideration. We verified that these conclusions
remain valid even after taking into account the uncertainties in
the multinucleon potential V

(2)
K− .

After exploring various chirally inspired coupled-channels
models of meson-baryon interactions together with a

phenomenological K− multinucleon part fitted to reproduce
the experimental data, we feel free to conclude that the widths
of K−-nuclear quasibound states in nuclei with A � 6 are
considerably larger than their binding energies. Therefore,
observation of such states in experiment seems highly unlikely.
We believe that our results will stimulate theoretical studies of
the role of K− multinucleon processes in lighter K−-nuclear
systems in which few-body techniques are applicable.
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