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Interakce antikaon̊u s jaderným prostřed́ım
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Interakce antikaon̊u s jaderným prostřed́ım

Abstrakt

Předkládaná dizertačńı práce se věnuje studiu antikaon̊u v jaderném prostřed́ı. Ve vý-

počtech v rámci relativistické teorie středńıho pole jsme se zaměřili na rozpadové š́ı̌rky

kvazivázaných stav̊u antikaon̊u v jádrech. Při zahrnut́ı všech relevantńıch absorpčńıch

kanál̊u a zásadńıch dynamických proces̊u jsme nalezli značné š́ı̌rky těchto stav̊u i pro vaz-

bové energie antikaonu, pro něž se p̊uvodně předpokládalo silné potlačeńı š́ı̌rek v d̊usledku

kinematického blokováńı hlavńıho rozpadového kanálu. Ukázali jsme, že v jaderných a hy-

perjaderných systémech docháźı se zvyšováńım počtu vázaných antikaon̊u k saturaci jejich

vazbové energie. V d̊usledku toho v podivných hadronových systémech vázaných silnou

interakćı nedocháźı ke kondenzaci antikaon̊u. K výpočt̊um kvazivázaných stav̊u K̄–jádro

jsme rovněž použili rozptylové amplitudy K̄–nukleon, zkonstruované v rámci chirálńıho

mnohokanálového př́ıstupu. Silná energetická závislost chirálńıch amplitud vede k silně

vázaným stav̊um antikaon̊u s rozpadovými š́ı̌rkami, které jsou srovnatelné nebo i větš́ı než

odpov́ıdaj́ıćı vazbové energie.

Interaction of Antikaons with the Nuclear Medium

Abstract

The present thesis deals with the study of antikaons in the nuclear medium. First, we

focused on the decay widths of K̄–nuclear quasi-bound states within the relativistic mean-

field approach. When all relevant absorption channels and underlying dynamical processes

were taken into account, the widths were found to be substantial even in the K̄ binding

energy range where they were anticipated to be strongly suppressed by kinematical blocking

of the dominant decay channel. Calculations of nuclear and hypernuclear systems with a

large number of antikaons revealed that the K̄ binding energies saturate with the number

of antikaons. As a consequence, it was argued that kaon condensation does not occur

in strong-interaction self-bound strange hadronic matter. Finally, in-medium K̄–nucleon

scattering amplitudes developed within the chirally motivated coupled-channel model were

applied in calculations of K̄–nucleus quasi-bound states. The strong energy dependence

of the chiral amplitudes was shown to imply deeply bound K̄ states with decay widths

comparable or even larger than the corresponding binding energies.
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Preface

This thesis is devoted to the study of antikaons in the nuclear medium. Antikaons serve

as an impressive example of the growing interplay between various areas of contemporary

nuclear physics. The issue of (anti)kaons spans a wide range of topics starting with their

fundamental role in the theory of strong interactions at low-energies continuing over the

exploration of hadron properties in dense nuclear matter in heavy ion collisions to physics

of compact objects in astrophysics. Though the discovery of kaons took place more than

six decades ago there still remain many open problems and challenging questions to be

solved. In few years, hopefully, further progress in kaon and strangeness nuclear physics

can be anticipated with new facilities in Frascati, Mainz, J-PARC in Japan and FAIR in

Darmstadt.

The thesis is organized as follows: In Chapter 1, we briefly summarize the current state

of knowledge of the interaction of antikaons with nucleons and the nuclear medium at low

energies and discuss motivations for further studies. The theoretical frameworks used in our

work are outlined in Chapter 2. In Chapter 3, we present selected results of our calculations.

We first addressed the question of possible existence of deeply bound states of antikaons

in nuclei within the relativistic mean-field methodology. We focused on a detailed study of

the decay widths of K̄–nuclear states, in particular, whether the widths are small enough

to allow their experimental identification. Next we studied nuclear systems containing

more than one antikaon embedded in the nuclear medium, as well as hadronic systems

with extensive fraction of strangeness composed of large number of nucleons, hyperons,

and antikaons. The principal question here was whether or not kaon condensation could

occur in strong-interaction self-bound strange hadronic matter. In our most recent works,

we revisited the domain of single-K̄ nuclei and replaced the relativistic mean-field approach

by a chirally motivated model. The in-medium K̄N scattering amplitudes, resulting from a

chirally motivated coupled-channel model, were used to construct the K̄–nucleus potential

and calculate K̄–nuclear quasi-bound states. Since all relevant results of our work have

already been reported in various journals, in Chapter 3 we just highlight our main results.

A comprehensive and detailed discussion of our calculations and their outcome can be

found in selected publications in Appendix A. Finally, a summary with conclusions and

outlook is given in Chapter 4.

13





Chapter 1

Introduction

Ever since their discovery in late forties kaons and antikaons have participated in many

breakthrough advancements in particle physics. To explain slow decay of kaons but si-

multaneously their fast (and always in pairs) production in pion–proton reactions the

‘strangeness’ quantum number was introduced and its conservation in strong interactions

postulated. Later this led to development of quark model and thus to establishing foun-

dations of the standard model of particle physics. The violation of CP symmetry was

discovered in the decays of neutral kaons.

The topical importance of kaons and antikaons emerged when kaons were identified

with the pseudo-Nambu–Goldstone bosons of spontaneously broken (approximate) chiral

SU(3)L×SU(3)R symmetry of strong interactions. Hence, the interaction of kaons and

their properties in the nuclear medium encode important aspects of the nature of chiral

symmetry of quantum chromodynamics (QCD), its breaking and restoration. The issue

of antikaons in the nuclear medium has attracted considerable attention since the kaon

condensation was proposed to possibly take place in dense nuclear matter, realized perhaps

in the core of neutron stars. Recent theoretical and experimental interest has focused on

the possible existence of deeply-bound K̄–nuclear states.

In the following, we first discuss basic properties of interactions of antikaons with nucle-

ons and elucidate their complexity that is reflected further in the attempts to understand

many-body systems with antikaons. A separate section is devoted to antikaonic atoms as

they represent a significant source of information on the antikaon–nucleus interaction and

a strict test to be passed by any theoretical model. After that, the still unclear issue of the

possible existence of K̄–nuclear quasi-bound states is overviewed. Finally, in the last part

of the introduction, the possible role of antikaons in dense nuclear matter is discussed.

1.1 Antikaon–Nucleon Interaction

While the kaon–nucleon interaction is weakly repulsive (see e.g. Ref. [1] for a review),

the antikaon–nucleon interaction is strongly attractive (particularly in the isospin I = 0

15



16 Introduction

channel). In addition to the attraction in the elastic K̄N channel the coupling to the

πΣ channel is almost equaly strong. The characteristic feature of the K̄N system that

dominates the interaction at low energies is the existence of the Λ(1405) resonance lying

just 27 MeV below the K̄N threshold. The Λ(1405) was predicted as a K̄N quasi-bound

state first by Dalitz et al. within the vector-meson exchange model [2]. The K̄N interaction

was demonstrated to be strong enough to bind Λ(1405) also in the Jülich meson-exchange

model [3]. Conventionally, Λ(1405) is viewed as a meson–baryon quasi-bound state coupled

to the πΣ and K̄N channels [4]; but it can also be considered a standard ‘qqq’ baryon [5] or

even a pentaquark state [6]. Recently, it was found that chiral models generate two poles

in the complex energy plane that can be associated with the Λ(1405) resonance [7,8]. The

‘two-pole’ structure is supported by the analysis of the K−p → π0π0Σ0 measurement [9],

however, it is still not clear if these experimental data are compatible with the shape of

Λ(1405) obtained in other experiments. The actual nature of the Λ(1405) resonance thus

still remains a puzzling problem.

The available experimental data near and above the K̄N threshold contain valuable

information about the low-energy K̄N interaction. The data include precise measurements

of the K−p reaction branching ratios [10,11] as well as measurements of the K−p scatter-

ing and reaction cross sections [12–14] that are unfortunately subject to large experimental

errors, particularly near the K−p threshold. Moreover, the data base was recently supple-

mented by new measurements of the strong interaction effects on the 1s atomic state in

kaonic hydrogen [15–17].

Following the success in the SU(2) pion–nucleon sector (see e.g. Ref. [18] for a compre-

hensive overview), attempts have been made to consistently formulate chiral perturbation

theory, the low-energy effective theory of QCD, also in the strangeness sector. However,

the strangeness sector requires a special care – the antikaon–nucleon interaction is strongly

influenced by the Λ(1405) resonance rendering the standard chiral perturbation theory

inapplicable. To deal with such nonperturbative nature of the K̄N interaction one has

to resort to resummation techniques based on the Lippman–Schwinger [19, 21] or Bethe–

Salpeter equation [20, 22–25]. The Λ(1405) resonance is then generated dynamically as a

K̄N quasi-bound state embedded in the πΣ continuum.

Needless to say, consistent conclusions on the K̄N interaction are essential for reli-

able claims about the behavior of K̄ mesons in more complex systems. Unfortunately,

while chiral perturbation theory together with multichannel T -matrix resummation tech-

niques provide satisfactory description of the K̄N data at and near above threshold, the
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subthreshold extrapolations are still burdened by theoretical uncertainties.

1.2 Antikaonic Atoms

Hadronic atoms, in general, are important source of information on strong interactions of

hadrons with the nuclear medium at low energies. Owing to much larger mass than the

electron, the wavefunction of a hadron captured in an atomic state has a significant overlap

with the nuclear density distribution ρ. This allows us to extract the in-medium hadron–

nucleon t-matrix in a broad range of nuclear densities. In most cases, excluding very light

hadronic atoms, the analysis of large data sets of atomic energy-level shifts, widths and

yields is done by fitting optical potentials in a VK = tρ form, where t is the hadron–nucleon

scattering amplitude. So far, π−, K−, Σ−, and p̄ hadronic atoms have been observed and

studied. For a comprehensive review see Ref. [1].

In case of K− atoms, the data base consists of 65 energy-level shifts, widths, and

transition yields that span a wide range of nuclei from 7Li to 238U (in addition to kaonic

hydrogen [17], deuterium [26] and helium [27]). To analyze the data of kaonic atoms

either phenomenological or chirally inspired approaches were used. Phenomenological ap-

proaches employ empirical density-independent amplitudes t as well as density-dependent

amplitudes t(ρ) for the construction of the optical potential. As shown in Ref. [28], rea-

sonably good agreement with experimental data is achieved even for tρ optical potentials

with depths −ReVK & 100 MeV for medium-weight and heavy nuclei when extrapolated

to the nuclear matter density. However, much improved description of the data is provided

by density-dependent amplitudes or the relativistic mean-field methodology that results in

very deep optical potentials of order−ReVK ≈ 150−200 MeV with substantial absorptivity

−ImVK ≈ 60−80 MeV [1,29–31]. On the other hand, chirally motivated approaches start

with a microscopically constructed energy- and density-dependent scattering amplitude

t(
√
s, ρ) which is constrained by low-energy K̄N scattering data. Usually, the K̄N scatter-

ing amplitude was evaluated at the K̄N threshold energy and the potentials thus generated

were considerably shallower −VK ≈ 110− 120 MeV [32] than the phenomenological ones.

Yet, even shallower potentials −VK ≈ 50 MeV were obtained when the K− self-energy, tak-

ing into account medium effects, was self-consistently included in the construction of the

K− optical potential [33–35]. However, no chirally motivated model was able to reproduce

deep K− optical potentials and satisfactorily describe the data of kaonic atoms by now.

We demonstrated in Ref. [36] that considerably deeper potentials are obtained when the
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subthreshold K̄N energy domain is identified as the relevant region for the construction

of the optical potential. Still, to achieve satisfactory agreement with the K−–atom data,

phenomenological terms had to be added to chirally motivated VK . The phenomenolog-

ical part was found to be heavily dominated by ρ2 contributions that might correspond

to multi-nucleonic processes not addressed by present chiral models. The idea that for

kaonic atoms, with energies essentially at K̄–nucleus threshold, the subthreshold Λ(1405)

resonance plays a dominant role in causing the in-medium K̄N scattering amplitude to

become more attractive below the K̄N threshold was already proposed in Refs. [40–42].

The ‘deep’ vs. ‘shallow’ controversy of K−–nuclear optical potentials is further discussed

in the following section where additional estimates for VK are considered.

1.3 Antikaon–Nucleus Interaction

As discussed in the previous section, the phenomenology of kaonic atoms clearly favors

deep attractive K−–nuclear potentials and thus supports the existence of deeply bound

K̄ nuclear states. However, this does not necessarily imply that such states would be

sufficiently narrow to be resolved unambiguously in experiment. The depth of the K̄–

nucleus optical potential is decisive to answer whether the strong absorption of K̄ mesons

in the nuclear medium due to the K̄N → πΣ, πΛ and K̄NN → ΣN,ΛN processes could be

suppressed by the K̄–nucleus binding effects. Despite vigorous theoretical and experimental

effort this issue still remains an unresolved problem. Various theoretical estimates for VK

are listed below:

• An order of magnitude estimate of the K̄–nucleus interaction may be provided by

the leading-order Tomozawa–Weinberg (TW) term of the chiral SU(3) effective La-

grangian that, when treated in Born approximation, leads already to a sizeable at-

traction at nuclear matter density:

VK = − 3

8f 2
π

ρ ≈ −55
ρ

ρ0

MeV,

with ρ0 = 0.16 fm−3 and the pseudoscalar decay constant fπ ≈ 93 MeV. As already

mentioned, this attraction is roughly doubled, VK ≈ −100 MeV, when the TW

together with next-to-leading order terms are iterated in the K̄N−πΣ−πΛ coupled-

channel in-medium Lippmann–Schwinger or Bethe-Salpeter equations [32]. However,

potentials as shallow as VK ≈ −50 MeV are obtained, when the K̄ self-energy in
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the nuclear medium is taken into account self-consistently in the construction of

VK [34, 35]. When, in addition to hadron self-energies, the K̄-nucleus kinematics is

taken into account, the resulting potential depths become VK ≈ −100 MeV [36–38].

• The estimate based on the QCD sum-rules [39] leads to:

VK ∼ ms

mN

Σ
(s)
N − 1

2
Σ

(v)
N ∼ −130 MeV,

with the scalar and vector nucleon self-energies Σ
(s)
N , Σ

(v)
N ; and the (current) strange

quark and nucleon masses ms, mN .

• Similarly, the relativistic mean field estimate gives:

VK ∼ 1

3

(
Σ

(s)
N − Σ

(v)
N

)
∼ −170 MeV,

where the factor 1/3 comes from the fact that, in the constituent quark model, the

K̄ meson contains one nonstrange antiquark compared to three nonstrange quarks

in the nucleon [43,44].

• An estimate of VK ≈ −80 MeV results from the analysis of the K+/K− production

cross section ratios in the proton–proton and proton–nucleus collisions measured by

the KaoS collaboration at GSI [45]. In the underlying transport calculations the two-

nucleon absorption processes were apparently not considered, thus deeper potentials

may arise once nonmesonic decay channels are included.

• In Ref. [46], it was shown that the capture rates of the (K−
stop, π) reactions to spe-

cific Λ-hypernuclear states are sensitive to the strength of the K̄–nuclear potentials.

Although no conclusive results were obtained, deep K̄ optical potentials are favored.

Current experimental interest in searching for deeply bound K−-nuclear states was

triggered by suggestion to look for such states in the in-flight (K−, p) reaction [47] and in

the K̄NNN I = 0 system bound by BK ≈ 100 MeV when the dominant decay channel

K̄N → πΣ would be kinematically closed, resulting in a fairly narrow decay width [48] (as

conjectured already in [49]). Subsequently, several candidates for deeply bound K− states

were reported:
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• Controversial evidence of relatively narrow deeply bound states in the (K−
stop, p(n))

reactions on 4He (KEK-PS E471) [50, 51] that has been revoked later (KEK-PS

E549/570) [52].

• A possible explanation in terms of K− bound states of few statistically weak irregu-

larities of the neutron spectrum in the (K−, n) in-flight reaction on 16O (BNL-AGS,

parasite E930) [53] not confirmed by the subsequent study of the (K−, p(n)) reactions

on 12C (KEK-PS E548) [54].

• The FINUDA collaboration claimed evidence of the deeply bound K−pp state in

the K−
stop reactions on 6Li and 12C by observing back-to-back Λp pairs coming from

K−pp → Λp [55]. But these pairs could result from conventional absorption pro-

cesses when final state interaction is taken into account as shown in Ref. [56]. The

K−
stop pn→ Σ−p reaction on 6Li was also studied [57].

• Observation of a very deeply bound and narrow (B ∼ 160 MeV, Γ ∼ 30 MeV) K−pp

state based on the analysis of Λp pairs in p̄ annihilation on 4He at the OBELIX

spectrometer at LEAR, CERN [58]. However, in this experiment one can not rule

out the possibility that the Λp pairs assigned to the K−pp decay come from the

mesonic decay of a different K− cluster, like the K̄NNN I = 0 state. Moreover,

the large value of the reported binding energy disagrees with all existing few-body

calculations.

• Evidence of the K̄NNN I = 0 state with B = 58 ± 6 MeV, Γ = 37 ± 14 MeV has

been presented by the FINUDA collaboration [59].

• Yamazaki et al. claimed evidence of the K−pp state in the pp → K+Λp reaction in

a reanalysis of the DISTO data [60].

The issue of deeply boundK−–nuclear states is far from being settled and further dedicated

systematic studies are necessary. Fortunately, fully exclusive study of the K− + 3He →
n+[K̄[NN ]I=1]I= 1

2
,I3=+ 1

2
reaction is scheduled as day-one experiment at the J-PARC facility

and further studies of the K̄–nucleus interaction are part of the future scientific program

at world laboratories.

Not only from the experimental point of view the issue of the possible existence of

deeply-bound K̄–nuclear states represents a challenging task. The complicated coupled-

channel nonperturbative nature of the K̄N interaction poses a difficult problem for the-

oretical models. Few-body K̄NN and K̄NNN systems were studied using variational
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techniques or Faddeev equations with phenomenological [48,61,62] as well as chiral poten-

tials [63–68]. For heavier nuclei, where the mean-field concept is applicable, the K̄–nuclear

states were studied within the relativistic mean-field methodology [31,69] or, more recently,

within models motivated by chiral effective field theory [37, 70]. All calculations agree on

K̄–nuclear configurations being bound, however, differ largely in the predicted binding

energies and widths of such states.

The knowledge of the interaction of K̄ mesons with a ‘conventional’ form of nuclear

matter represents a pathway to understanding the peculiar role of strangeness in dense

hadronic matter.

1.4 Antikaons in Dense Nuclear Matter

There is growing evidence that strangeness degrees of freedom might play an important role

in dense hadronic matter. Besides hyperons that are likely to appear in dense baryonic

matter [71], the possibility of kaon condensation was proposed by Kaplan and Nelson

[72, 73]. Ever since, much attention was devoted to the question of antikaons in dense

matter (see e.g. Refs. [74–79] for a comprehensive review).

Neutron stars, with densities extending several times normal nuclear density, offer

the most natural dense systems where kaon condensation could be realized. In neutron

stars, where weak interaction time-scales are operative, strangeness changing processes like

e− → νeK
− allow for conversion of high-pressure electron gas into kaon condensate once

the kaon effective mass drops below m∗
K . 200 MeV. Recalling that antikaons undergo

attraction of approximately 100 MeV per density unit of ρ0 [80], it was shown that the

kaon condensation might occur at densities as low as ρ ∼ 3ρ0 or higher, depending on

whether or not hyperons are taken into account [81]. On the other hand, in Ref. [80], the

onset of kaon condensation does not emerge at all for a large range of densities examined.

Once antikaons are considered relevant degrees of freedom of dense hadronic matter, the

resulting equation of state becomes much softer. Still, for a long time this was in accor-

dance with the limit of 1.5 solar masses M� for the mass of all observed neutron stars.

However, the argument is no more valid due to the recent observation of the M ≈ 2M�

neutron star PSR J1614-2230 [82].

Under laboratory conditions, heavy ion collisions represent an ideal tool to study in-

medium properties of antikaons in dense matter. However, in heavy ion collisions, where

the processes of equilibration and hadronization subsequent to dense matter formation
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occur over much shorter times, strong interactions govern the composition of matter. Still,

if antikaons are strongly bound in nuclei, as argued in Ref. [83], K̄ mesons could be the

relevant degrees of freedom of self-bound strange hadronic matter, realized as multi-K̄

nuclei. The K̄ binding energy BK is required to exceed BK & mK +mN −mΛ ≈ 320 MeV,

thus allowing the Λ → K̄N conversion in matter. The Λ and Ξ hyperons would no

longer appear as constituents of a more conventional kaon-free form of strange matter [84].

However, the densities of ρ ∼ 3ρ0, required for the onset of K̄ condensation, are unlikely to

be encountered in these strange hadronic nuclei [69,104]. Yet, precursor phenomena to kaon

condensation might be observed when the K̄ binding energy reachesBK & mK+mN−mΣ ≈
240 MeV. In this case the only available K̄ absorption mechanism would be the fairly weak

K̄NN → ΛN process. The issue of multi-K̄ nuclei and hypernuclei was studied by us

in Ref. [104, 105] where the K̄ binding energies, as well as the associated nuclear density

distributions were found to saturate upon increasing the number of antikaons embedded

in the medium. Since the calculated binding energies did not generally exceed 200 MeV

it was deemed that kaon condensation is unlikely in self-bound strange hadronic matter.

Similar results were obtained in Ref. [85–87] within the nuclear liquid drop model.



Chapter 2

Methodology

In our work we focused on the study of K̄–nuclear states in heavier nuclear systems where

the mean-field concept is applicable. We employed the relativistic mean-field theory (RMF)

which has proven to be successful in calculations of various nuclear properties, as well as

in studies of hypernuclei and allows straightforward inclusion of the K̄ meson degrees of

freedom.

Later in our calculations we replaced the RMF meson-exchange picture of the K̄-nucleon

interaction by a chirally motivated approach. In this approach, we constructed the K̄

meson self-energy operator from the microscopic in-medium chiral K̄-nucleon scattering

amplitudes calculated within the nonperturbative coupled-channel formalism.

2.1 Relativistic Mean Field Model

The starting point of the relativistic mean filed theory is the meson-exchange picture

of the strong nucleon–nucleon interactions. In RMF [88], the nucleus is described as a

system of nucleons, represented by the Dirac field, interacting through the exchange of

several intermediate-boson fields. The isoscalar-scalar σ-meson field is responsible for the

attraction between nucleons, whereas the isoscalar-vector ω-meson field acts repulsively

between nucleons. The isovector-vector ρ-meson field is introduced to tune the isospin

interaction. Finally, the photon field (A) accounts for the electromagnetic interaction.

The π and η mesons with unnatural parity are not included because we are working with

nuclear states which have well-defined parity.

23
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The model Lagrangian density then reads:

LRMF = ψ̄[i /D − (mN − gσNσ)]ψ

+
1

2
∂µ σ∂

µσ − 1

2
m2

σσ
2 +

1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
(∂µων − ∂νωµ)(∂µων − ∂νωµ) +

1

2
m2

ωωµω
µ +

1

4
d(ωµω

µ)2

− 1

4
(∂µ~ρν − ∂ν~ρµ)(∂µ~ρν − ∂ν~ρµ) +

1

2
m2

ρ~ρµ · ~ρµ

− 1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ),

(2.1)

with ψ denoting the nucleon iso-doublet:

ψ =

(
ψp

ψn

)
, (2.2)

and covariant derivative:

Dµ = ∂µ + igωNω + i ~ρµ · ~τ + ie1
2
(1 + τ3)Aµ. (2.3)

The arrows indicate iso-vector quantities, the dot denotes inner product, and ~τ stands for

the triplet of Pauli matrices. The mσ, mω, and mρ are the σ-, ω-, and ρ-meson masses,

respectively. The gσN , gωN , gρN , and e are the σ-, ω-, ρ-meson and photon couplings to

the nucleon, respectively. The g2, g3 and d represent the strengths of the scalar σ and

vector ω field self-interaction. The meson coupling constants are specified by the RMF

model parametrization. In our work we considered both the linear L-HS [89] and nonlinear

NL-SH [90], NL-TM1(2) [91] RMF models.

Using the principle of stationary action:

δS[qj]

δqj
=

δ

δqj

∫
d4x L [qj(x), ∂µqj(x)] = 0, (2.4)

where qj is a generalized coordinate, qj = ψ, ψ̄, σ, ωµ, ~ρµ, Aµ, leads to field equations of

motion:

∂µ

[
δL

δ(∂µqj)

]
− δL
δqj

= 0. (2.5)
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The Lagrangian density (2.1) thus yields the Dirac equation for nucleon:

[ i/∂ − (mN − gσNσ)− gωNγµω
µ − gρNγµ~τ · ~ρµ − eγµ

1
2
(1 + τ3)A

µ]ψ = 0 (2.6)

and the Klein–Gordon, Proca, and Maxwell equations for the intermediate-boson fields:(
∂ν∂

ν +m2
σ

)
σ = gσN ψ̄ψ + g2σ

2 − g3σ
3,

∂µ(∂µων − ∂µων) +m2
ωω

ν = gωN ψ̄γ
νψ − dων(ωµω

µ),

(∂µ − gρN~ρµ×)(∂µ~ρ ν − ∂µ~ρ ν) +m2
ρ~ρ

ν = gρN ψ̄γ
ν~τψ,

∂µ(∂µAν − ∂µAν) = eψ̄ 1
2
(1 + τ3)γ

νψ.

(2.7)

Equations (2.6)-(2.7) are coupled non-linear quantum field equations and their exact so-

lution is enormously complicated. Moreover, since we expect the coupling constants

(except e) to be large, perturbative approaches are not useful. Fortunately, there ex-

ists an approximative solution, which becomes more and more valid as the nuclear density

increases [88]. Namely, as the source terms on the r.h.s. of eq. (2.7) increase, the meson

field operators can be replaced by their vacuum expectation values, which are classical

fields.

Furthermore, symmetries simplify the calculations considerably. We are looking for

the nuclear ground states of doubly magic nuclei, and these are spherically symmetric.

Rotational invariance implies that space-like components of the intermediate-boson fields

vanish. In this case, the meson fields and also the source terms on the r.h.s. of the equa-

tions of motion (2.7) depend only on the radial coordinate r. The electromagnetic charge

conservation prohibits the charged components of the ρ-meson from appearing as classical

fields. Finally, since we are looking for stationary states, the time-derivatives of the boson

fields vanish. Altogether, the meson fields are replaced by:

σ(x) −→ 〈σ(x) 〉 = σ(r),

ωµ(x) −→ 〈ωµ(x) 〉 = δµ0 ω(r),

ρi
µ(x) −→ 〈 ρi

µ(x) 〉 = δµ0 δ
i3 ρ(r),

Aµ(x) −→ 〈Aµ(x) 〉 = δµ0A(r) .

(2.8)

Moreover, in the traditional RMF approach, the contribution of antiparticles is not directly
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considered. In this so called no-sea approximation the nucleon field is expanded as:

ψ(x) =
∑
i≤A

ψi(x)âi, (2.9)

where the summation runs only over occupied positive-energy levels. The ψi(x) now repre-

sents the wavefunction of a state i annihilated by the operator âi. With these assumptions

we can rewrite the field equations (2.6)-(2.7) in the form:

[−iα · ∇+ (mN − gσNσ)β + gωNω + gρNτ3ρ+ e 1
2
(1 + τ3)A]ψi = Ei ψi,

(−∇2 +m2
σ)σ = gσNρs + g2σ

2 − g3σ
3,

(−∇2+m2
ω)ω = gωNρv − dω4,

(−∇2 +m2
ρ )ρ = gρNρ3,

−∇2A = e ρp,

(2.10)

where Ei = i∂tψi. At this stage, it is possible to solve the equations numerically.

The densities on the r.h.s. of (2.10) are defined as:

ρs = 〈0| : ψ̄ψ : |0〉 =
∑
i≤A

ψ̄iψi,

ρv = 〈0| : ψ†ψ : |0〉 =
∑
i≤A

ψ†iψi,

ρ3 = 〈0| : ψ†τ3ψ : |0〉 =
∑
i≤A

ψ†i~τψi,

ρp = 〈0| : ψ† 1
2
(1 + τ3)ψ : |0〉 =

∑
i≤A

ψ†i
1
2
(1 + τ3)ψi,

(2.11)

where the no-sea approximation allows simple evaluation of the vacuum (≡ nuclear ground

state) expectation values of normal ordered quantum field operators (〈0| : . : |0〉). The

vector densities are normalized accordingly to yield proper (conserved) charges:∫
d3x ρv = A,∫
d3x ρ3 = Z −N,∫
d3x ρp = Z,

(2.12)

with the nucleon number A, proton number Z, and neutron number N .

The total energy of the system E is a vacuum expectation value of the Hamiltonian
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obtained via the Legendre transform of the Lagrangian:

E = 〈: H :〉 = 〈: piq̇i − L :〉 =

∫
d3x (Eiψ

†
iψi − 〈: L :〉)

=

∫
d3x

{
〈: ψ̄[−iα · ∇+mN − gσNσ + gωNω + gρNτ3ρ+ e1

2
(1 + τ3)]ψ :〉

+ 1
2
[(∇σ)2 +m2

σσ
2]− 1

2
[(∇ω)2 +m2

ωω
2]− 1

2
[(∇ρ)2 +m2

ρρ
2]− 1

2
(∇A)2

− 1
3
g2σ

3 + 1
4
g3σ

4 + 1
4
dω4

}
.

(2.13)

The vanishing of boson fields at large distances allows us to perform the following partial

integration:

1

2

∫
d3x (∇σ)2 +m2

σσ
2 =

1

2

∫
d3x σ(−∇2 +m2

σ)σ

=
1

2

∫
d3x σ(gσNρs + g2σ

2 − g3σ
3).

(2.14)

Similar manipulations for remaining fields, using normalization conditions (2.12) and Euler–

Lagrange equations (2.10), lead to the final expression for the total energy:

E =
∑
i≤A

Ei +
1

2

∫
d3x (gσN σρs − gωN ωρv − gρN ρρ3 − eAρp)

+
1

2

∫
d3x (1

3
g2 σ

3 − 1
2
g3 σ

4 − 1
2
dω4).

(2.15)

2.1.1 RMF with Strangeness Degrees of Freedom

The RMF methodology introduced in the preceding section can be extended in a rather

straightforward way to incorporate strangeness degrees of freedom. In the following we

separately discuss the inclusion of antikaon and hyperon degrees of freedom together with

the phenomenological input that was used to constrain the model.

2.1.1.1 Antikaons

To extend the RMF methodology in order to incorporate antikaons we introduced an

isospin doublet of complex scalar fields:

K =

(
K+

K0

)
, K† =

(
K− K̄0

)
, (2.16)
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where K0 and K+ denote neutral and positively charged kaons and K̄0 and K− their

corresponding antiparticles. Subsequently, we added to the nuclear RMF Lagrangian (2.1)

the Lagrangian LK :

LK = (DµK)†(DµK)−m2
KK

†K + gσKmKσK
†K + gσ∗KmKσ

∗K†K, (2.17)

where the covariant derivative Dµ involves the interaction of antikaons with vector ω, ρ, φ

and photon fields:

Dµ ≡ ∂µ + igωKωµ + igρK
~I · ~ρµ + igφKφµ + ie(I3 + 1/2Y)Aµ, (2.18)

where I is the isospin operator, I3 its third component, and Y stands for hypercharge.

In Eq. (2.17), mK , gσK , gσ∗K , gωK , gρK , and gφK are the antikaon mass and coupling

constants to the σ, σ∗, ω, ρ, and φ mesons, respectively. The ‘hidden strangeness’ scalar

σ∗ and vector φ fields that mediate the interaction exclusively between strange particles

are introduced together with the corresponding free-field Lagrangian:

Lσ∗φ =
1

2
∂µσ

∗∂µσ∗ − 1

2
m2

σ∗σ
∗2

− 1

4
(∂µφν − ∂νφµ)(∂µφν − ∂νφµ) +

1

2
m2

φφµφ
µ,

(2.19)

wheremσ∗ andmφ are the σ∗- and φ-meson masses, respectively. The full model Lagrangian

thus reads:

L = LRMF + Lσ∗φ + LK . (2.20)

Again, by minimizing the action, together with the RMF simplifications discussed pre-

viously for the purely nuclear case, LK leads to the Klein–Gordon equation for antikaons:

(−∇2 − ω2
K +m2

K + ΠK)K− = 0, (2.21)

with ωK = i∂tK
− and the antikaon self-energy ΠK given by:

ΠK =− gσKmKσ − gσ∗KmKσ
∗ − 2ωK(gωKω + gρKρ+ gφKφ+ eA)

− (gωKω + gρKρ− gφKφ+ eA)2.
(2.22)

For the antikaon couplings to the vector meson fields we adopted a purely F -type,
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vector SU(3) symmetry:

2gωK = 2gρK =
√

2gφK = gρπ = 6.04, (2.23)

where gρπ is due to the ρ→ 2π decay width [80]. However, SU(3) symmetry is not of much

help when fixing the K− coupling constants to the scalar σ field. Since there is still no

consensus about the microscopic nature of the σ field and its coupling to the K̄ mesons,

we treated gσK as a free parameter and adjusted it to several values of the K− binding

energy in the range 50–150 MeV. Finally, the coupling constant to the σ∗ field is taken

from the f0 → KK̄ decay to be gσ∗K = 2.65 [80].

The original set of field equations (2.10) is supplemented by Eq. (2.21) and equations

for the σ∗ and φ fields:

(−∇2 +m∗2
σ )σ∗ = gσ∗KmKρ

(K)
s ,

(−∇2 +m2
φ)φ = −gφKρ

(K)
v ,

(2.24)

with source terms induced only by antikaons:

ρ(K)
s = K−K+,

ρ(K)
v = (ωK + gωKω + gρKρ− gφKφ+ eA)K−K+.

(2.25)

The presence of antikaons also generates additional source terms:

+ gσKmKρ
(K)
s ,

− gωKρ
(K)
v ,

− gρKρ
(K)
v ,

− eρ(K)
v

(2.26)

in the field equations (2.7).

The particular choice of the interaction scheme (2.18) results in ρ
(K)
v being the conserved

Noether current. This allows us to normalize the current to the appropriate number κ of

antikaons in the system: ∫
d3xρ(K)

v = κ. (2.27)

Further, the presence of antikaons alters the expression for the total energy of the
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system which is supplemented by:

δE(K) = κωK − 1

2

∫
d3x

[
(gσKσ + gσ∗Kσ

∗)mKρ
(K)
s

+(gωK ω + gρK ρ+ gφK φ+ eA)ρ(K)
v

]
.

(2.28)

Absorption of Antikaons in the Nuclear Medium

One drawback of the RMF methodology for antikaons is that it does not directly address

the absorption of antikaons in the nuclear medium. In our approach, we employed the

optical model phenomenology where the K−–nuclear states acquire a width by allowing

the antikaon self-energy ΠK to become complex and replacing

ωK → ωK − i
ΓK

2
. (2.29)

The imaginary part of the K− self-energy Im ΠK was constructed phenomenologically in a

tρ form. The amplitude t was constrained by fits to kaonic atom data [31] and the nuclear

density ρ was taken from RMF calculations. It is to be noted that the nuclear density

was treated as a dynamical quantity in our self-consistent calculations. When the antikaon

is embedded in the nuclear medium, the attractive K̄-nucleus interaction leads to nuclear

core polarization (increased nuclear density) and thus to increased widths of the K̄–nuclear

states. On the other hand, the binding energy of the antikaon reduces the phase space

available for the decay products of the K̄–nuclear states. The amplitude t was made energy

dependent by introducing suppression factors, explicitly considering the K̄ binding energy

for the initial decaying state and assuming two-body final state kinematics.

The first considered decay channel is the pionic conversion mode on a single nucleon:

K̄N → πΣ, πΛ (70%, 10%), (2.30)

with thresholds about 100 MeV and 180 MeV, respectively, below the K̄N total mass. The

K− self-energy operator corresponding to these processes is:

Im Π
(1)
K = (0.7f1Σ + 0.1f1Λ)V

(1)
0 ρ(r), (2.31)

where the factors 0.7 and 0.1 represent the branching ratios measured in the CERN bubble

chamber experiments [92], the value of V
(1)
0 is determined by the kaonic atom fits and the
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suppression factors f1Y (Y = Σ,Λ) are given by:

f1Y =
M3

01

M3
1

√
[M2

1 − (mπ +mY )2][M2
1 − (mY −mπ)2]

[M2
01 − (mπ +mY )2][M2

01 − (mY −mπ)2]
, (2.32)

with M01 = mK +mN , M1 = M01 −BK , where BK is the K− binding energy.

The second considered decay channel is the non-pionic conversion mode on two nucleons:

K̄NN → Y N (20%), (2.33)

with thresholds about mπ ' 140 MeV lower than the single-nucleon thresholds. Since this

channel is heavily dominated by the ΣN final state, the ΛN channel was not considered.

The corresponding part of the K− self-energy is given by:

Im Π
(2)
K = 0.2 f2ΣV

(2)
0 ρ2(r)/ρ0, (2.34)

where the constant 0.2 represents the branching ratio, ρ0 = 0.16 fm−3 appears from dimen-

sional requirements and V
(2)
0 is again determined from the kaonic atom data. The quadratic

density dependence of this part is a direct consequence of the double scattering character

of the multi-nucleon absorption process. The suppression factor f2Σ has the form:

f2Σ =
M3

02

M3
2

√
[M2

2 − (mN +mΣ)2][M2
2 − (mΣ −mN)2]

[M2
02 − (mN +mΣ)2][M2

02 − (mΣ −mN)2]
, (2.35)

with M02 = mK + 2mN and M2 = M02 −BK .

p-Wave Interaction

Even though the K̄N p-wave interaction, dominated by the Σ(1385) resonance, plays only a

minor role near threshold, it might become increasingly important for the K̄ tightly bound

in a nucleus [93]. In order to examine the possible role of p waves, we have extended the

K− self-energy ΠK to incorporate the p-wave interaction through the phenomenological

Kisslinger-form term [94]:

Π
(P )
K = 4π

(
1 +

ωK

mN

)−1

[∇ρ(r)] · cKN∇, (2.36)
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where cKN is the parameter of a particular model of the p-wave interaction (see Refs. [37,69]

for details).

2.1.1.2 Hyperons

As a next step of our calculations we studied behavior of antikaons when submerged

into strange baryonic matter. To achieve a baryonic environment with large fraction of

strangeness we considered many-body systems of SU(3) octet baryons N,Λ,Σ, and Ξ that

can be made particle stable against strong interactions [95, 96]. The energy-release (Q)

values for various conversion reactions of the type B1B2 → B3B4:

reaction Q (MeV)

Σ−p→ Λn 81

Σ+n→ Λp 75

Σ−Λ → Ξ−n 52

Σ+Λ → Ξ0p 52

Σ−Σ+ → ΛΛ 156

Σ+Ξ− → Ξ0Λ 80

Σ−Ξ0 → Ξ−Λ 75

Ξ−p→ ΛΛ 28

Ξ0n→ ΛΛ 23

together with phenomenological guidance on hyperon-nucleus interactions suggest that

only the conversions Ξ−p → ΛΛ and Ξ0n → ΛΛ can be overcome by binding effects. It

becomes possible then to form particle-stable multi-{N,Λ,Ξ} configurations for which the

conversion ΞN → ΛΛ is Pauli blocked owing to the Λ orbitals being filled up to the Fermi

level. Composite configurations with Σ hyperons are unlikely to be particle stable since

the energy release in the ΣN → ΛN conversion is too high (Q & 75 MeV) and, moreover,

the Σ–nuclear potential is repulsive [97].

To include hyperons in the RMF methodology we added LY to the nuclear RMF La-

grangian:

LY = Ȳ
[
i /D − (mY − gσY σ − gσ∗Y σ

∗)
]
Y. (2.37)

The Dirac field Y stands for hyperonic degrees of freedom of mass mY , interacting through

the exchange of scalar (σ and σ∗) and vector (ω, ρ, φ, A) fields introduced by the covariant
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derivative:

Dµ = ∂µ + igωY ωµ + igρY
~I · ~ρµ + igφY φµ + ie(I3 +

1

2
Y)Aµ, (2.38)

where giY represents coupling constants of hyperons to the corresponding fields.

The couplings of the Λ hyperon to vector mesons were fixed by SU(6) symmetry rela-

tions:

gωΛ =
2

3
gωN , gρΛ = 0, gφΛ = −

√
2

3
gωN . (2.39)

The coupling to the scalar σ field was fixed to reproduce the Λ-hypernuclear binding

energies [98]. The coupling of the Λ hyperon to the σ∗ field was fitted to the measured

binding energies of double-Λ hypernuclei [99]. For Ξ hyperons, the SU(6) symmetry gives:

gωΞ =
1

3
gωN , gρΞ = −gρN , gφΞ = −2

√
2

3
gωN . (2.40)

Because there is no experimental information on Ξ(Λ) − Ξ interactions, we put gφΞ =

gσ∗Ξ = 0 to avoid parameters that might lead to unphysical consequences and that are

expected to play a marginal role. The coupling to the scalar σ field was then constrained

to yield an optical potential ReVΞ− = −14 MeV in the center of 12C [100].

The Lagrangian (2.37) leads to the Dirac equation for hyperons:

[−iα·∇+β(mY −gσY σ−gσ∗Y σ
∗)gωY ω+gρY I3ρ+gφY φ+e(I3+1/2Y)A]Yi = EiYi, (2.41)

where Yi now represents the wavefunction of the hyperon Y (Λ, Ξ) in a state of energy

Ei. Further, the presence of hyperons modifies the equations of motion for the meson and

Coulomb fields by additional source terms that are to be added to the right hand sides of

equations (2.7) and (2.24):

gσY ρ
(Y )
s = gσY ȲiYi,

gωY ρ
(Y )
v = gωY Y

†
i Yi,

gρY ρ
(Y )
3 = gρY Y

†
i I3Yi,

eρ(Y )
c = eY †

i (I3 + 1/2Y)Yi,

gσ∗Y ρ
(Y )
s = gσ∗Y ȲiYi,

gφY ρ
(Y )
v = gφY Y

†
i Yi,

(2.42)
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where summation runs over occupied energy levels (i) for all hyperon species (Y ). Corre-

spondingly, the expression for the total energy is modified by the additional terms:

δE(Y ) =
∑

i≤A,Y

Ei −
1

2

∫
d3x(−gσY σρ

(Y )
s − gσ∗Y σ

∗ρ(Y )
s

+ gωY ωρ
(Y )
v + gρY ρρ

(Y )
3 + gφY φρ

(Y )
v + eAρ(Y )

c ).

(2.43)

2.2 Model Based on Chiral Meson–Baryon

Amplitudes

In this section, basic ingredients of the chirally motivated coupled-channel technique are

presented. However, it is beyond the scope of the thesis to give full details of this approach.

The model is thoroughly described in Refs. [21,101].

2.2.1 Chirally Motivated Coupled-Channel Approach

A successful description of low-energy K̄N interactions is provided by a chiral model com-

bined with a coupled-channel T -matrix resummation technique. In our approach [36, 37]

we employed chirally motivated coupled channel s-wave potentials in a separable form:

Vij(p, p
′) =

√
1

2ωi

Mi

Ei

gi(p)
Cij(

√
s)

fifj

gj(p
′)

√
1

2ωj

Mj

Ej

, (2.44)

where the indices i and j run over the meson–baryon coupled channels: πΛ, πΣ, K̄N , ηΛ,

ηΣ, and KΞ, including all their charge states. The
√
s, p and p′ stand for the total meson–

baryon c.m. energy, initial and final state meson momenta, respectively. Ei, Mi and ωi

stand for the baryon energy, baryon mass, and meson energy in the c.m. system of channel

i. The coupling matrix Cij is determined directly from the chiral SU(3) Lagrangian. The

parameters fi and fj represent the pseudoscalar meson decay constants and the Yamaguchi-

type form factors

gi(p) =
1

1 + (p/αi)
2 (2.45)

are determined by the inverse-range parameters αi. The potential (2.44) is then iterated

to all orders in the Lippmann–Schwinger equation:

Tij = Vij + VikGkTkj, (2.46)
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where the meson–baryon propagator is given by:

Gi(
√
s, ρ) =

1

f 2
i

Mi√
s

∫
Ωi(ρ)

d3p

(2π)3

g2
i (p)

p2
i − p2 − Πi(ωi, Ei, ~p, ρ) + i0

, (2.47)

where pi is the on-shell c.m. momentum in channel i. When the elementary K̄N system

is submerged into the nuclear medium of density ρ one has to consider the effects of Pauli

blocking in the K̄N channels as well as effects of the meson and baryon self-energies. The

effect of Pauli blocking is accounted for by the integration domain Ωi(ρ), and Πi represents

the sum of meson and baryon self-energies in channel i. Since the antikaon self-energy

is constructed from the resulting K̄N amplitude, a self-consistent procedure is required.

The baryon and pion self-energies were approximated by density-dependent potentials of

the V = V0 ρ/ρ0 form consistent with the mean-field potentials used in nuclear structure

calculations.

The separable form of the potential (2.44) results in the scattering amplitude which is

also of a separable form:

Fij(p, p
′,
√
s) = −gi(p)gj(p

′)

4πfifj

√
MiMj

s

[
1− CG−1C

]
ij
. (2.48)

The multichannel form of the scattering amplitude (2.48) is not particularly suitable for

nuclear bound state applications. We are interested in the dynamics of one single channel,

K̄N , while insisting on retaining the full coupled-channel nature of the underlying dynam-

ics. For this purpose the effective interaction Veff is constructed which incorporates the

dynamics of N coupled channels into a single channel [102]:

T eff = V eff + V effG1T
eff = T11. (2.49)

Consistency of Eq. (2.49) with Eq. (2.46) requires Veff to be a sum of the bare interaction

in channel 1 (K̄N) and contributions from all other N − 1 channels:

Veff = V11 +
∑

2≤i≤N

V1iGiVi1 +
∑

2≤i,j≤N

V1iGiT
(N−1)
ij GjVj1, (2.50)

where T
(N−1)
ij is a resummation of interactions in channels other than 1:

T
(N−1)
ij = V

(N−1)
ij +

∑
1≤k≤N

V
(N−1)
ik G

(N−1)
k T

(N−1)
kj ; i, j = 2, . . . , N. (2.51)
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2.2.2 K̄–Nucleus Optical Potential

From the microscopic two-body K̄N amplitude, one should, in principle, be able to con-

struct the full many-body K̄–nucleus amplitude. This task is extremely difficult and for

the nuclear mass region of our interest computationally intractable. We therefore employed

the multiple scattering theory and constructed a K̄–nucleus optical model potential. In

the lowest approximation, the complicated many-body K̄–nucleus scattering amplitude is

decomposed as a sum of the two-body K̄N scattering amplitudes on each target nucleon.

The self-energy operator ΠK (optical potential Vopt) may be written as [103]:

ΠK = 2ω Vopt = −4π

√
s

mN

FK̄N

(
p,
√
s, ρ
)
ρ, (2.52)

where FK̄N is the K̄N forward scattering amplitude.

The self-energy operator (2.52) is then incorporated into the K̄ meson Klein–Gordon

equation: [
∇2 + ω2

K −m2
K − ΠK(p,

√
s, ρ)

]
K− = 0, (2.53)

where

ωK = mK −BK − VC − i
ΓK

2
(2.54)

is the complex energy. The Coulomb interaction is introduced via the minimal substitution

by adding −VC to ωK .

Before using the optical potential (2.52) in calculations we have to prescribe how to

express the two-body K̄N c.m. energy
√
s =

√
(EK + EN)2 − (~pk + ~pN)2 and the rel-

ative momentum ~p in Eq. (2.52) via K̄–nucleus kinematic variables. Near threshold,

Eth = mN +mK , we approximate:

~p ' ξN~pK − ξN~pN , ξN(K) = mN(K)/(mN +mK) (2.55)

and after averaging over angles:

p2 ' ξNξK

(
2mK

p2
N

2mN

+ 2mN
p2

K

2mK

)
. (2.56)

Similarly, for
√
s, neglecting quadratic terms in the binding energies BN = mN − EN and
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BK = mK − EK , we write:

√
s ' Eth −BN −BK − ξN

p2
N

2mN

− ξK
p2

K

2mK

. (2.57)

The nucleon kinetic energy p2
N/(2mN) was approximated in the Fermi gas model and the

K− kinetic energy p2
K/(2mK) is identified in the local density approximation:

p2
N/(2mN) = TN(ρ/ρ0)

2/3 with TN = 23 MeV,

p2
K/(2mK) = −BK − ReVopt − VC.

(2.58)

We note that all the terms on the r.h.s. of Eq. (2.57) are negative, thus resulting in the

anticipated negative energy shift into the K̄N subthreshold region.

It is to be stressed that the optical potential (2.52), entering the K.–G. equation

(2.53), depends on the binding energy BK . This interconnection introduces additional

self-consistency requirement in the solution of the K.–G. equation (2.53).

The chiral K̄N scattering amplitude incorporates only the s-wave two-body scattering.

As discussed in section 2.1.1, the p-wave interaction and two-body absorption mechanisms

can contribute significantly to the properties of K̄–nuclear states. To estimate the p-wave

contribution, we added into the K− self-energy a phenomenological term Π
(p)
K identical to

that of Eq. (2.36), where the parametrization of the p-wave amplitude cKN was taken from

Ref. [70]. To include two-nucleon processes we proceeded in exactly the same way as in

the RMF calculations. We added the phenomenological term in the form of Eq. (2.34)

that is constrained by kaonic atom data fits together with the phenomenological energy

dependence given by the phase-space reduction for K− bound states.





Chapter 3

Results

In this section we present selected results of our calculations. First we focused on the strong-

interaction decay widths of K−–nuclear quasi-bound states within the RMF approach.

Then, we explored nuclear and hypernuclear configurations containing several antikaons.

Finally, chirally motivated K̄N scattering amplitudes were used to construct the K− self-

energy operator and calculate K−–nuclear states. We highlight here our key results, while

more detailed discussion of the results can be found in the selected articles in Appendix A.

It is complicated to evaluate the author’s contribution to particular publications, since

each article is a result of collective efforts. However, the collection of selected publications

represents the author’s original calculations. Ref. [37] is an exception as it covers a broad

range of topics. The author contributed there by calculations of K̄–nuclear states.

3.1 Dynamical RMF Calculations of K̄–Nuclear

States

We performed dynamical relativistic mean field calculations of K̄–nuclear states for nuclei

across the periodic table. Our aim was to study in detail the interplay between underlying

dynamical processes and K̄ absorption thresholds that determine the decay widths of the

K̄–nuclear quasi-bound states. Since there is still no definite consensus about the K̄–

nucleus interaction, we scaled its strength in our calculations to cover a wide range of

K̄ binding energies, BK . 200 MeV. Antikaons in the nuclear medium are subject to

strong-interaction absorption processes. Thus, for antikaonic nuclei, the principal question

is whether the decay widths ΓK of K̄ states are small enough to allow their experimental

identification. If antikaons bound strongly to nuclei, BK & 90 MeV, the dominant decay

channel K̄N → πΣ + 90 MeV (≈ 70%) would be kinematically blocked and the decay

widths would be governed by weaker absorption processes. As argued in Ref. [48], the

widths ΓK of K̄ states could be as small as ΓK ≈ 20 MeV.

However, in our calculations [69] we demonstrated that the widths of K̄–nuclear states
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Figure 3.1: The 1s K− decay width ΓK calculated in 16
K−O using the NL-SH RMF model

(top panel) and in 208
K−Pb using the L-HS RMF model (bottom panel) as a function of the

K− binding energy BK , for absorption through K̄N → πΣ, with and without K̄N → πΛ,
and assuming ρ or ρ2 dependence for K̄NN → ΣN .

are substantial, ΓK & 50 MeV, even for deeply-bound K̄ mesons, BK ≈ 100 MeV, once the

dynamical processes and all absorption channels are considered. Significant contributions

to the widths were found from the nonmesonic absorption modes K̄NN → ΣN +240 MeV

(≈ 20%) on two nucleons and K̄N → πΛ + 160 MeV (≈ 10%) processes with higher

thresholds.

In Fig. 3.1, the calculated decay width ΓK as a function of the K̄ binding energy BK

is shown for the 1s K−–nuclear states in 16O and 208Pb using the NL-SH and L-HS RMF

model parametrizations, respectively, for various assumptions on theK− absorption modes.
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Figure 3.2: Nuclear density ρN of 12
K−C (left panel) and 40

K−Ca (right panel) for several 1s
K−–nuclear states with the specified binding energy, using the NL-SH RMF model. The
dotted curves stand for the corresponding nuclear density in the absence of the K− meson.

The shape of the ΓK = ΓK(BK) follows the binding energy dependence of the suppression

factors of Eqs. (2.32) and (2.34). The widths fall off rapidly until BK ≈ 90 MeV, reflecting

the presence of the K̄N → πΣ reaction threshold. For BK & 90 MeV, the widths are

dominated by the two-nucleon absorption processes K̄NN → Y N . The curves denoted by

empty circles correspond to theK− decay widths calculated with only the K̄N → πΣ (80%)

and K̄NN → ΣN (20%) absorption modes included. Significant contributions to the decay

widths were found when the K̄N → πΛ conversion mode was explicitly considered (empty

squares), adding approximately 20 MeV to the widths for the K− binding energies in range

BK ≈ 100−160 MeV. Further enhancement of the K̄ absorption widths (full circles and full

squares) is obtained when the linear density dependence of the multi-nucleon conversion

channels K̄NN → Y N is replaced by the quadratic one which is more appropriate for

two-nucleon absorption processes. The enhancement is particularly pronounced in light

nuclear systems for high values of the K̄ binding energy. It results from strong nuclear

core polarization effects due to the presence of the K̄ meson. The nuclear core polarization

is illustrated in Fig. 3.2 where the nucleon density distributions ρN in 12
K−C and 40

K−Ca

calculated in the NL-SH RMF model are shown for several values of the K− binding energy
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BK . In case of larger nuclear systems, antikaons affect the nuclear density distributions

only in the vicinity of the center of the nucleus which corresponds to the density distribution

of the K− meson.

We also verified that the inclusion of the ρ-meson exchange modifies the results only

slightly. It reduces the K̄ binding energy BK by less than about 5 MeV, compared with

the minimal σω model of Ref. [31]. The effect of the p-wave interaction was also studied

since it could play an important role for tightly bound K̄ mesons in light nuclear systems.

Although the inclusion of p-waves was found to play a marginal role in heavier K̄–nuclear

systems, the contribution of ∼ 10 MeV to the total K̄ binding in light nuclear systems

(such as 12
K−C) is certainly nonnegligible. For details see Appendix A.1.

Finally, we also performed first calculations of nuclear systems containing more than

one antikaon. These systems are discussed in the following section.

3.2 Nuclear Configurations with Multiple

Strangeness

We explored in detail baryonic configurations with large fraction of strangeness. Antikaons

were embedded into the nuclear [104], and lately also into the hypernuclear [105] medium in

order to search for kaon condensation precursor phenomena in self-bound strange hadronic

matter. For a sufficiently attractive K̄–nucleus interaction the strong nuclear core polar-

ization induced by the presence of K̄ mesons could lead to sizeable enhancement of the

K̄ meson binding energy upon increasing the number of antikaons in the nuclear medium.

This might result in substantially bound configurations stable against strong interactions

once the K̄ binding energy exceeds BK & 320 MeV, or narrow K̄ states for BK & 240 MeV

where only the K̄NN → ΛN absorption mechanism would contribute to the widths.

In our calculations, by contrast, we observed that the K̄ binding energies BK saturate

with the number of antikaons submerged in the nuclear medium. The saturation pattern

is found to be robust feature of the multi-K̄ strangeness nuclear configurations, appearing

for all RMF models considered and a wide range of variations of the K̄–nucleus interaction.

In Fig. 3.3, the 1s K− binding energy BK in multi-K− nuclei 16O+κK− is plotted as a

function of the number κ of antikaons for several compositions of the K− self-energy of

Eq. (2.22). In the lower (upper) group of curves, the gσK coupling constant was fixed

to yield BK = 50 (100) MeV in 16O+1K−. The primary reason behind the saturation

is the repulsive interaction between antikaons mediated by the vector ω-meson field. No
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Figure 3.3: The 1s K− binding energy BK in 16O+κK− as a function of the number κ of
antikaons for various mean-field compositions calculated in the NL-SH RMF model.

saturation was observed for purely scalar σ-meson exchange. With respect to the minimal

σω model, main contributions originate from the φ- and ρ-meson vector fields which act

repulsively between antikaons. On the other hand, the Coulomb and σ∗ fields make only

a small difference. The effect of K̄ absorption, denoted by ImVopt, is substantial for

BK . 100 MeV.

The saturation of K̄ binding energies is reflected also in the behavior of the associated

nuclear and antikaon density distributions. In Fig. 3.4, the nuclear ρN and antikaon ρK den-

sity distributions are shown for several numbers κ of antikaons embedded in 208Pb+κK−.

The K− coupling constants were chosen such that BK = 100 MeV in the single-K− con-

figuration. The density distributions behave quite regularly and the initial increase of the

central densities slows down with κ. Generally, for all nuclei considered, nuclear densities

saturate at 2 − 3 times the nuclear-matter density. We are aware of the fact that the

nuclear densities reached in these multi-K̄ nuclear configurations are quite higher than
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butions in 16O+κK− calculated in the NL-SH RMF model.

the typical values of nuclear densities for which the RMF methodology was constrained.

However, qualitatively identical results [106] were obtained for RMF models with density-

dependent coupling constants constrained to reproduce Dirac–Brueckner calculations of

nuclear matter [107–109].

The saturation of the K̄ binding energies occurs also in the presence of large number

of hyperons. This is illustrated in Fig. 3.5 where K̄ mesons were embedded into particle-

stable configurations of nucleons and Λ and Ξ hyperons. The initial values of the antikaon

coupling constants were again fixed such that BK = 100 MeV for κ = 1 and no hyperons

(η = µ = 0). The figure demonstrates that the heavier the system is the more antikaons is

required to reach saturation of BK . We note that adding hyperons lowers BK with respect

to multi-K̄ nuclear configurations and that BK does not exceed 120 MeV.

Further, we studied systems composed solely of K̄0 mesons and neutrons or K− mesons

and protons, as well as the possibility to bind K+ mesons in multi-strangeness configura-
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tions. For results of these calculations, as well as full details of the results briefly discussed

above, we refer to A.2 and A.3 in Appendix.

3.3 Chirally Motivated Approach for Kaonic Nuclei

In our recent works [36–38], a self-consistent procedure to construct the self-energy operator

ΠK of K̄ mesons in the nuclear medium from the underlying K̄N scattering amplitudes

was developed. The K̄N scattering amplitudes were generated within a chirally motivated

in-medium coupled-channel model of meson–baryon interactions. It was shown how to

incorporate strong energy and density dependencies of the chiral K̄N scattering amplitudes

into the self-consistent evaluation of ΠK . The K̄ meson self-energy operator was then used

to confront the data of kaonic atoms and to calculate K̄–nuclear quasi-bound states. Our

calculations [36] provided for the first time a microscopic link between shallow chiral K̄–
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nuclear interaction mediated by vector mesons only, as well as for NLO30 chiral ‘+ SE’
amplitudes are shown for comparison.

nuclear potentials evaluated at threshold and deep phenomenological potentials obtained

by the K−-atom data analysis.

The calculations of K̄–nuclear states revealed that chirally motivated potentials are

sufficiently attractive to bind K̄ mesons in nuclei. The K̄ binding energies in range of

50–90 MeV for nuclei spanning from 6Li to 208Pb were obtained. In Fig. 3.6, the K−

separation energies BK of the 1s K−–nuclear states are shown for several nuclei and

various constructions of the self-energy operator ΠK . The values of BK obtained using

the K̄N leading order TW1 in-medium amplitudes evaluated at threshold energy (‘Eth’,√
s = Eth = mK +mN) without and with (‘+SE’) hadron self-energies are compared with

those (‘s1/2’) calculated self-consistently using the subthreshold extrapolation of
√
s from

Eq. (2.57). The K− separation energies resulting from the next-to-leading order chiral

amplitudes (‘NLO30’) are also shown for comparison. It is worth noting that the binding

energies calculated using the leading-order sub-threshold extrapolated TW1 amplitudes

are remarkably close to those calculated within the RMF approach where the interaction
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modes are not included.

of antikaons is mediated exclusively by vector mesons with purely SU(3) F-type couplings.

The results for all K̄–nuclear quasi-bound states, including excited states, are shown in

Fig. 3.7 where theK− separation energiesBK (left panel) and decay widths ΓK (right panel)

are calculated using the static RMF densities and the NLO30 amplitudes with hadron self-

energies. The present two-body chiral amplitudes when evaluated self-consistently below

the K̄N threshold yield fairly narrow low-lying 1s K̄–nuclear states with decay widths

ΓK ∼ 15 MeV, due to the proximity of the K̄N → πΣ reaction threshold. On the

other hand, the widths of the excited states are quite large especially for light nuclei.

Moreover, contributions from the K̄NN → Y N absorption processes are estimated to

yield additional ∼ 40 MeV to the total widths in this energy range, as demonstrated in

the last block of Table 3.1 (‘+2N abs.’). When the K̄NN → Y N processes are taken into

account, the resulting decay widths are comparable or even larger than the corresponding

K̄ binding energies, exceeding considerably the energy level spacings. In Table 3.1, we

present the K− binding energies BK and decay widths ΓK of the K− quasi-bound states

in 40Ca calculated self-consistently in the NLO30 chiral model with hadron self-energies.

The results of calculations which take into account dynamical nuclear core polarization

by the strongly bound K− meson are compared with calculations using the static RMF

densities in the first two blocks. As anticipated, dynamical calculations give generally
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Table 3.1: Binding energies BK and widths ΓK (in MeV) of the K− nuclear quasi-bound
states in Ca, calculated self-consistently using the NLO30 amplitudes with hadron self-
energies. Calculations with dynamical and static RMF densities are compared in the first
two blocks. Results with static RMF densities including p-wave amplitudes are shown in
the third block, and K̄NN → Y N decay modes are included in the last block.

dynamical static stat. + p wave stat. + 2N abs.
BK ΓK BK ΓK BK ΓK BK ΓK

1s 72.3 14.8 70.5 14.9 73.0 14.8 68.9 58.9
1p 52.8 17.7 50.6 18.0 53.1 17.9 49.2 53.6
1d 30.5 29.2 28.8 30.3 32.1 29.3 27.7 59.7
2s 24.6 30.9 23.9 33.8 26.3 34.2 21.6 67.1

higher binding energies and smaller widths. Also shown in Table 3.1, using the static

RMF densities, is the effect of adding the p-wave K̄N interaction assigned to the Σ(1385)

resonance. Consistently with the kaonic atoms phenomenology p-waves play a secondary

role for deeply-bound K− states.

For a detailed discussion of the obtained results we refer to A.4 and A.5 in Appendix.



Chapter 4

Summary

In this work we performed a comprehensive study of the interaction of K̄ mesons with

nuclei. Using various theoretical models we analysed available sources of experimental

data and carried out for the first time complex, fully self-consistent calculations of K̄–

nuclear states.

Altogether, the results of our dynamical calculations suggest the decay widths of K−–

nuclear states to be substantial, ΓK & 50 MeV, even if the dominant decay mode K̄N → πΣ

is kinematically closed. Within a chirally motivated model we demonstrated that the

strong energy dependence of the underlying K̄N interaction results in deeply bound states

of K̄ mesons in nuclei. When the K̄NN → Y N processes are considered the total decay

widths are comparable or even higher than the corresponding binding energies, exceeding

considerably the energy level spacings. The large widths resulting from our calculations

should discourage the searches for narrow K̄–nuclear quasi-bound states in any but very

light nuclei.

In nuclear and hypernuclear systems containing several antikaons, the K̄ binding en-

ergies were found to saturate with increasing the number of antikaons embedded in the

medium. The primary reason responsible for the saturation of binding energies and as-

sociated density distributions is the repulsion between antikaons due to the vector-meson

exchange. The saturation of K̄ binding energies manifests itself also in the behavior of

baryon densities that do not exhibit any abrupt or substantial increase and behave quite

regularly with the number of antikaons. Since the K̄ binding energy BK was found to be

bounded from above, BK . 200 MeV, we conclude that kaon condensation or its precur-

sor phenomena do not occur in these strange hadronic configurations. Nevertheless, this

does not rule out kaon condensation in neutron stars where different conditions govern the

composition of matter.

To progress further, it is necessary yet to account for the two-nucleon absorption pro-

cesses, as well as their possible dispersive contributions, on the basis of a fully microscopic

model. Moreover, very little is known about the K̄K̄ interaction and this subject also

requires further studies.
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[63] Y. Ikeda and T. Sato, Phys. Rev. C 76 (2007) 035203.
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Multi-K̄ (hyper)nuclei,

Proc. Hadronic Atoms and Kaonic Nuclei, Oct. 12–16, 2009, Trento, Italy,

arXiv:1003.2328 [nucl-ex].

10. D. Gazda, E. Friedman, A. Gal, J. Mareš,
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Abstract

We report on self-consistent calculations of single-K− nuclear states and multi-K̄ nuclear

states in 12C, 16O, 40Ca and 208Pb within the relativistic mean-field (RMF) approach.

Gradient terms motivated by the p–wave resonance Σ(1385) are found to play a secondary

role for single-K− nuclear systems where the mean-field concept is acceptable. Significant

contributions from the K̄N → πΛ conversion mode, and from the nonmesonic K̄NN →
Y N conversion modes which are assumed to follow a ρ2 density dependence, are evaluated

for the deep binding-energy range of over 100 MeV where the decay channel K̄N → πΣ is

closed. Altogether we obtain K− total decay widths of 50–100 MeV for binding energies

exceeding 100 MeV in single-K− nuclei. Multi-K̄ nuclear calculations indicate that the

binding energy per K̄ meson saturates upon increasing the number of K̄ mesons embedded

in the nuclear medium. The nuclear and K̄ densities increase only moderately and are close

to saturation, with no indication of any kaon-condensation precursor.

1 Introduction

The subject of the present work is the study of K̄ meson interactions with the nuclear

medium. It is closely related to one of the most important, so far unresolved problems

in hadronic physics, of how hadron masses and interactions change within the nuclear

medium. The in-medium properties of antikaons in dense nuclear matter have attracted

considerable attention since the pioneering work of Kaplan and Nelson on the possibility

of kaon condensation in dense matter [1, 2] and subsequent works offering related scenarios

in nuclear matter [3, 4].

The existence of Λ(1405), a K̄N quasi-bound state lying about 27 MeV below the

K−p threshold, suggests that the K̄N interaction is strongly attractive, as demonstrated

first in a vector-meson exchange model due to Dalitz et al. [5]. This is consistent with

low-energy K̄N scattering data [6] as well as with the measured level shift of the 1s state
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in the kaonic hydrogen atom [7, 8]. The Λ(1405), as a K−p quasi-bound state, was also

corroborated in the Jülich meson exchange model [9], where the scalar σ and vector ω

mesons act jointly to give strong attraction. Subsequent chiral SU(3) calculations showed

that the I = 0 coupled-channel K̄N − πΣ interaction is sufficiently attractive to bind the

Λ(1405) [10, 11]. For an update on such calculations see Refs. [12, 13, 14].

The K̄–nucleus interaction, too, is strongly attractive, as deduced from analyses of

strong-interaction level shifts and widths in kaonic atoms [15, 16, 17, 18, 19, 20]. These fits

to kaonic-atom data are based on phenomenological density dependent optical potentials

[15, 16, 17, 19, 20] or on a relativistic mean-field (RMF) approach [18], yielding strongly

attractive K−–nucleus potentials of depths 150–200 MeV. For an update see Ref. [21]. In

contrast, coupled-channel calculations using K̄N interactions constrained by chiral models

and fitted to the low-energy K̄N scattering and reaction data result in shallower K̄–

nucleus potentials of depth in the range of 100–150 MeV [22]. Imposing a self-consistency

requirement on the evaluation of the in-medium K̄–nucleus potential, yields much shal-

lower potentials of depth about 50 MeV [23, 24, 25, 26]. Similar results are obtained

when the Jülich meson-exchange model is used within a self-consistent coupled-channel

calculation [27]. A depth of about 80 MeV is indicated by analyzing the enhanced near-

threshold production of K− mesons in proton–nucleus collisions, in recent experiments by

the KaoS Collaboration at GSI [28] (and references cited therein to earlier nucleus-nucleus

experiments).

The K̄–nuclear interaction is also strongly absorptive, due dominantly to the one-

nucleon absorption reactions K̄N → πY with approximately 100 MeV (Y = Σ) and

180 MeV (Y = Λ) energy release for the final hyperon Y . The strong absorptivity is

confirmed by fits to kaonic-atom data [17].

Considerable interest in this field in recent years has focused on the question of possible

existence of deeply bound K̄–nuclear states, and whether such states are sufficiently narrow

to allow unique experimental identification. Kishimoto [29], and Akaishi and Yamazaki

[30, 31], suggested to look for K̄–nuclear states bound by over 100 MeV, for which the

dominant K̄N → πΣ decay channel would become kinematically forbidden. Furthermore,

it was suggested that multi-K̄ high-density nuclear clusters should also exist, providing

perhaps a precursor stage to kaon condensation [32]. Several searches for K̄ deeply bound

states have been subsequently made in KEK [33, 34, 35, 36], by the FINUDA collaboration

in DAΦNE, Frascati [37] and at the AGS, Brookhaven [38]. However, the interpretation of

the observed spectra is ambiguous, as demonstrated by an alternative explanation of the
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(allegedly K−pp) peak observed in the back-to-back Λp invariant mass distribution of K−stop

reactions on 6,7Li and on 12C [37] in terms of quasi-free K−NN absorption and final-state

interaction [39].

The theoretical calculations of K̄–nuclear bound states may be divided into two classes:

(i) few-body calculations using a single-channel G-matrix or AMD methodology [31, 40,

41, 42], and coupled-channel K̄NN − πΣN Faddeev equations [43, 44] which agree with

Refs. [31, 42] on K−pp being bound, although differing widely on the binding energy and

width calculated for this lightest possible system; (ii) dynamical RMF calculations [45, 46]

which take into account the polarization of the nucleus owing to the strongly interacting K̄

meson, as well as the reduction of phase space available for the decay of the deeply bound

K̄ meson. The calculations of Ref. [19] provide a lower limit of ΓK− ' 50 MeV on the

width of nuclear bound states for K− binding energy in the range BK− ∼ 100− 200 MeV.

The purpose of the present paper is twofold. In the first part we report on dynamical

calculations of single-K− nuclear states within the relativistic mean field (RMF) approach.

This part of the work deals with three items:

• Effects due to the vector-meson ρ and φ mean fields which were not included in

our previous calculations [45] are studied. The introduction of the ρ-meson mean

field allows for a departure from N = Z nuclear cores for K̄–nuclear states, and the

introduction of the φ-meson mean field allows for studying multi-strange K̄–nuclear

states.

• The effect of p-wave gradient terms motivated by the I = 1 Σ(1385) resonance is

studied by extending the RMF coupled equations in the simplest form. Although the

role of the K̄N p-wave interaction is marginal near threshold [47], it might become

more important for deeply bound antikaons, owing to local variations in the nuclear

densities induced by the antikaon [48].

• Following our previous work [45], we explore in more detail and rigor the absorptive

part of the optical potential in the energy region where the dominant decay channel

K̄N → πΣ is closed. This is done by incorporating for the first time the K̄N → πΛ

channel, with threshold some 80 MeV below the πΣ threshold, and by considering

a ρ2 density dependence for the two-nucleon absorption modes K̄NN → Y N . The

ρ2 dependence is more appropriate for the description of the two-nucleon nature of

these absorption modes.
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In the second part of this work we explore within the RMF methodology deeply bound

multi-K̄ nuclear states, in order to study the behavior of the nuclear medium under the

influence of increasing strangeness. The issue here is whether or not the binding energy

per K̄ meson of multi-K̄ nuclear states increases significantly upon adding a large number

of K̄ mesons, so that K̄ mesons provide the physical degrees of freedom for self-bound

strange hadronic systems. Kaon condensation in nuclear matter would occur beyond some

threshold value of strangeness, if the binding energy per K̄ meson exceeds the combina-

tion mK + µN − mΛ & 320 MeV (in this paper we use ~ = c = 1), where µN is the

nucleon chemical potential. In such a case, Λ, Σ and Ξ hyperons would no longer combine

macroscopically with nucleons to compose the more conventional kaon-free form of strange

hadronic matter [49]. In neutron stars, the binding energy per K̄ meson necessary for

the onset of kaon condensation is given by mK − µe− , where µe− is the electron chemical

potential (generally accepted to assume values of µe− . 200 MeV). The RMF approach

was first applied to the study of kaon condensation in the mid 1990s, originally without

considering a possible interplay with hyperons [50, 51] and then with hyperons included

[52, 53]. This approach was also used in Ref. [54] to consider K̄0 condensation in addition

to K− condensation in neutron stars. Recent calculations offer a wide range of interest-

ing precursor phenomena to kaon condensation in both hadronic and quark sectors (see

Refs. [55, 56, 57, 58, 59] and previous work cited therein). The present calculations may

shed some light on the likelihood of a kaon-condensation scenario in nuclear matter.

The RMF methodology, including the extension to absorptive processes and p-wave

gradient interaction terms, and to multi-K̄ nuclear states is discussed in Sec. 2. Results of

calculations for a representative set of nuclear cores across the periodic table are presented

and discussed in Sec. 3. Section 4 summarizes the new results of the present work, along

with conclusions and outlook.

2 Model

In the present work, K̄-nuclear states are studied within the theoretical framework of the

relativistic mean field (RMF) approach applied to a system of nucleons and one or more K̄

mesons. The interaction among hadrons is mediated by the exchange of scalar and vector

meson fields. The standard RMF Lagrangian density LN describing the nucleonic sector is

specified in Sec. 3. The (anti)kaonic sector is incorporated by adding to LN the Lagrangian
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density LK :

LK = (DµK)† (D µK)−m2
KK

†K + gσKmKK
†K σ , (1)

with

K =

(
K+

K0

)
K† =

(
K−, K̄0

)
(2)

and the covariant derivative Dµ given by:

Dµ ≡ ∂µ + i gωK ωµ + i gρK ~τ · ~ρµ + i gφK φµ + i e 1
2
(1 + τ3)Aµ . (3)

This particular choice of interaction scheme leads to the coupling of the vector meson fields

to conserved currents. The conserved (Noether) current associated with the kaonic field is

obtained from the invariance of LK under global phase transformation. Using

K → eiλK ⇒ δLK = 0 ⇒ ∂µ j
µ
K = ∂µ

[
δLK

δ (∂µK)
δK + δK†

δLK
δ (∂µK†)

]
= 0 , (4)

one obtains a conserved vector current whose vacuum (represented by filled shells of nu-

cleons and κ K̄ mesons) expectation value transforms to the expression for ρK− given in

Eq. (6) below. The standard variational principle yields equations of motion for all field

operators. The meson field operators and source terms are then replaced by their expecta-

tion values, according to the mean-field approximation. For simplicity, we limit discussion

in this section to nuclear systems with K− mesons. The generalization to nuclear systems

with K̄0 mesons is straightforward.

Whereas the Dirac equation for nucleons is not explicitly affected by the addition of

LK , the presence of K− mesons induces additional source terms in the equations of motion

for the meson (mean) fields:

(−∇2 +m2
σ)σ0 = +gσNρs + g2σ

2
0 − g3σ

3
0 + gσKmKK

−K+

(−∇2 +m2
ω)ω0 = +gωNρv − gωKρK−

(−∇2 +m2
ρ)ρ0 = +gρNρ3 − gρKρK− (5)

(−∇2 +m2
φ)φ0 = −gφKρK−

−∇2A0 = +e ρp − e ρK− ,

with ρs, ρv and ρ3 denoting the scalar, vector and isovector nuclear densities, respectively,
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and with ρp denoting the proton density. The K− density ρK− is given by:

ρK− = 2(EK− + gωK ω0 + gρK ρ0 + gφK φ0 + eA0)K−K+ ,

∫
d3x ρK− = κ , (6)

where EK− = i ∂tK
−. The density ρK− is normalized to the number of antikaons κ in a

multi-K− system.

The Klein–Gordon (KG) equation of motion for the K− meson obtained from the RMF

model acquires the form:

[−∇2 − E2
K− +m2

K + Re ΠK− ]K− = 0 , (7)

where the K− self-energy term is given by:

Re ΠK− = − gσKmKσ0 − 2EK−(gωKω0 + gρKρ0 + gφKφ0 + eA0) (8)

− (gωKω0 + gρKρ0 + gφKφ0 + eA0)2 .

This implies a K− effective mass m∗K of the form m∗2K = m2
K − gσKmKσ0, in contrast to

another possible choice [54] m∗K = mK − gσKσ0. Qualitatively, our results are insensitive

to this difference and the conclusions of the present study hold also for the other choice.

Assuming that all the K− mesons occupy the same energy level, the total binding

energy of the combined κK−–nuclear system B(A,Z, κK−) has the form:

B(A,Z, κK−) =
∑A

i=1B
sp
i + κBsp

K− (9)

− 1

2

∫
d3 x(−gσN σ0ρs + gωN ω0ρv + gρN ρ0ρ3 + eA0ρp)

− 1

2

∫
d3 x(−1

3
g2 σ

3
0 − 1

2
g3 σ

4
0)

+
1

2

∫
d3 x[(gωK ω0 + gρK ρ0 + gφK φ0 + eA0)ρK− + gσKmKσ0K

−K+] ,

with Bsp
i = mN − Ei and Bsp

K− = mK − EK− , where Ei and EK− are the nucleon and

K− single particle energies, respectively. From this expression, it is evident that the K−

binding energy BK− = B[A,Z, κK−] − B[A,Z, (κ − 1)K−] contains, in addition to Bsp
K− ,

mean field contributions representing part of the rearrangement energy of the nuclear core.
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2.1 P-wave contributions

To study the role of p waves in the K̄N interaction, we have extended the K− self energy

ΠK− by adding a phenomenological isoscalar p–wave potential:

Π
(P )

K− = 4π

(
1 +

EK−

mN

)−1

c0(∇ρv) · ∇ , (10)

where c0 = (cp + cn)/2 ≈ 3cp/2 is an energy-dependent strength parameter dominated by

the contribution of the Σ(1385) p-wave resonance [60]. Calculations were done for K−–

nuclear states bound by about 100 MeV, corresponding roughly to
√
sK̄N = 1330 MeV,

namely about 55 MeV below the Σ(1385) resonance, where c0 is positive (attractive) and

nearly real:

c0(1330 MeV) =
3

2
cp(1330 MeV) = 0.186 fm3 , (11)

in agreement with the plot of cp in Fig. 2 of Ref. [42].

2.2 Absorptive contributions

Having dealt with the nuclear binding energy of K− mesons, in the next step we consider

K̄ absorption in the nuclear medium, in order to evaluate the K− decay width ΓK− . In

our model, this is done by allowing the self energy ΠK− to become complex and replacing

EK− → EK− − iΓK−/2. Since the imaginary part of the self energy is not addressed by

the traditional RMF approach, Im ΠK− was taken from optical model phenomenology. We

follow Ref. [45] taking the optical potential imaginary-part depth from fits to K− atomic

data, while the nuclear density is treated as a dynamical quantity in these self-consistent

calculations. Once the antikaon is embedded in the nuclear medium, the attractive K̄N

interaction compresses the nuclear core, thus increasing the nuclear density which leads

to an increased K̄ width. On the other hand, the phase space available for decay prod-

ucts is reduced due to the binding energy of the K̄ meson, particularly in the case of K̄

deeply bound states. To accomplish this reduction, suppression factors multiplying Im ΠK−

were introduced, explicitly considering K̄ binding energy for the initial decaying state and

assuming two-body final state kinematics.

We first consider absorption on a single nucleon, leading to the following pionic decay

modes:

K̄N → πΣ, πΛ (70%, 10%) , (12)
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with thresholds about 100 MeV and 180 MeV, respectively, below the K̄N total mass.

The numbers in parentheses give approximately the branching ratios known from bub-

ble chamber and emulsion experiments [61]. The corresponding single-nucleon absorptive

contribution to the optical potential is given in leading approximation by:

Im Π
(1)

K− = (0.7f1Σ + 0.1f1Λ)W0 ρv(r) , (13)

where W0 is taken from kaonic atom fits and the phase-space suppression factors f1Y

(Y = Σ,Λ) are given by:

f1Y =
M3

01

M3
1

√
[M2

1 − (mπ +mY )2][M2
1 − (mY −mπ)2]

[M2
01 − (mπ +mY )2][M2

01 − (mY −mπ)2]
Θ(M1 −mπ −mY ) , (14)

with M01 = mK +mN and M1 = M01 −BK− .

Absorption on two nucleons leads to non-pionic decay modes

K̄NN → Y N (20%) , (15)

with thresholds about mπ ' 140 MeV lower than the corresponding pionic decay mode

thresholds. Since the non-pionic modes are heavily dominated by the ΣN final state, the

ΛN channel was not considered in the present work and we focused attention primarily

on a quadratic density dependence of the ΣN final-state contribution to the absorptive

part of the optical potential. A quadratic density dependence for two-nucleon absorption

processes has been successfully used in studies of pionic atoms [17, 21]. The K̄ two-nucleon

absorptive part of the optical potential is given by:

Im Π
(2)

K− = 0.2 f2Σ W0 ρ
2
v(r)/ρ0 , (16)

where the factor 0.2 represents the approximately 20% branching ratio for two-nucleon

absorption from rest [61] and ρ0 ∼ 0.16 fm−3 is an A-dependent central nuclear density

used for properly normalizing the two-nucleon absorption strength with respect to the

one-nucleon absorption strength. The phase-space suppression factor f2Σ has the form:

f2Σ =
M3

02

M3
2

√
[M2

2 − (mN +mΣ)2][M2
2 − (mΣ −mN)2]

[M2
02 − (mN +mΣ)2][M2

02 − (mΣ −mN)2]
Θ(M2 −mΣ −mN) , (17)

with M02 = mK + 2mN and M2 = M02 −BK− .
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The set of coupled equations containing the Dirac equation for nucleons, the KG equa-

tions (5) and (7) for the meson mean fields and for antikaons, respectively, was solved

self-consistently using an iterative procedure.

3 Results and discussion

Calculations of K̄-nuclear states in 12C, 16O, 40Ca, and 208Pb were performed, using both

the linear (HS) [62] and non-linear (NL-SH) [63] parameterizations of the nucleonic La-

grangian density LN . These RMF parameterizations give quite different estimates of nu-

clear properties. In particular, the non-linear models yield generally lower values of the

nuclear incompressibility. Therefore, stronger polarization effects in these models owing to

the presence of K̄ meson(s) are anticipated, in comparison with the linear models.

The (anti)kaon coupling constants to the meson fields were chosen as follows: The cou-

pling constant gωK was given a reference value g0
ωK = (1/3)gωN following the simple quark

model. The reference value for gσK was taken then from fits to kaonic atom data, which

yielded g0
σK = 0.2 gσN for the linear and g0

σK = 0.233 gσN for the non-linear parameteri-

zations of LN [18]. Finally, the coupling constants gρK and gφK were adopted from the

SU(3) relations:
√

2 gφK = 2 gρK = gρπ = 6.04 [53].

The SU(3) relation 2gωK = gρπ was not imposed on gωK since its value was varied

in the calculations, along with varying gσK , in order to scan over different values of K̄

binding energies. Thus a particular way of varying these coupling constants away from

their ‘reference’ values was used. Starting from giK ≡ αi g
0
iK = 0 (i = σ, ω), we first

scaled up αω from the value required for the onset of binding all the way to αω = 1,

corresponding to gωK = g0
ωK . Then, for αω = 1, we scaled up ασ from 0 to 1 corresponding

to gσK = g0
σK , and finally we again scaled αω from 1 upwards until the binding energy value

of BK̄ ' 200 MeV was reached. Generally, similar results and conclusions are reached if

different scanning procedures are applied. We comment below, for multi-K̄ nuclei, when

this is no longer the case.

3.1 Single-K− nuclei

In the first part of this work, single-K− nuclear states were studied. We verified that the

interaction generated by the ρ-meson mean field has a small effect on the K− binding energy

BK− and on the width ΓK− , for BK− . 200 MeV and for all the RMF parameterizations

considered in the present work. This interaction acts repulsively on a K− meson, producing
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Figure 1: Nucleon single-particle energies with respect to the nucleon mass in 16O (left
spectrum) and in 16

K−O (middle and right spectra) for BK− = 100 MeV, with and without
coupling the K− meson to the ρ-meson mean field, using the NL-SH RMF model.

a small decrease of BK− , less than 5 MeV in the case of 208Pb where the most significant

effect is anticipated due to the large excess of neutrons. The effect of the ρ meson field

on the K− decay width is even smaller, except in the region 60 MeV . BK− . 100 MeV

where the phase-space suppression factor f1Σ varies rapidly and, hence, ΓK− increases by

approximately 10 MeV.

Figure 1 shows the effect of the ρK− coupling on the nucleon single-particle energies

in 16O. The left-hand spectrum shows the nucleon single-particle energies in the absence

of K− mesons, using the NL-SH model. The middle spectrum displays the rearrangement

of these single-particle energies caused by a K− meson bound by 100 MeV, with no ρK−

coupling. The most pronounced effect is observed for the 1s1/2 nucleon states, which

become significantly more bound in the presence of a 1s K− meson. The right-hand

spectrum displays further modification of the nucleon single-particle energies due to the

ρK− coupling. It is seen that the isovector ρK− interaction reverses the order of the

1s1/2 proton and neutron energy levels, determined in the absence of ρK− coupling by the

72 Selected Publications



0

50

100

150

200

Γ K
- 

(M
eV

)

πΣ; ρ

πΣ; ρ2

πΣ, πΛ; ρ

πΣ, πΛ; ρ2

0 50 100 150 200
B

K
- (MeV)

0

50

100

Γ K
- 

(M
eV

)

12
CK

-

40
CaK

-

Figure 2: Widths of the 1s K−-nuclear state in 12
K−C (top panel) and in 40

K−Ca (bottom
panel) as a function of the K− binding energy, for absorption through K̄N → πΣ, with
and without K̄N → πΛ, and assuming ρ or ρ2 dependence for K̄NN → ΣN (using the
NL-SH RMF model).

Coulomb interaction. This reversal is due to the ρK− coupling acting against the Coulomb

interaction.

The interaction generated by the φ-meson mean field reduces the K− binding energy

in systems with more than one K− meson, as it mediates repulsive interaction exclusively

among strange particles. Generally, for the parameterizations and nuclei studied, the effect

of the φ-meson repulsion increases with BK− , owing to the increased central K− density.

It amounts to several MeV for binding energies BK− . 200 MeV.

In the next step, considering the K− decay modes discussed in the previous section, we

calculated the corresponding widths of K−-nuclear bound states. In particular, we consid-

ered the one-nucleon absorption mode K̄N → πΛ, in addition to the dominant K̄N → πΣ

mode studied in our recent work [45], and also both ρ and ρ2 density dependencies of the

two-nucleon absorption mode K̄NN → ΣN .

Figure 2 shows the calculated width ΓK− as a function of the binding energy BK−
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Figure 3: Widths of the 1s K−-nuclear state in 16
K−O using the NL-SH RMF model (top

panel), and in 208
K−Pb using the HS RMF model (bottom panel), as a function of the K−

binding energy for various combinations of and assumptions on the K− absorption modes
as in Fig. 2.

for the K− 1s state in 12
K−C (top) and in 40

K−Ca (bottom), using the nonlinear model NL-

SH. The effect of allowing the πΛ decay mode (10%) to share alongside with πΣ (70%)

the one-nucleon absorption strength is shown by squares, compared to circles for the πΣ

mode alone (80%). In each of the two groups of curves shown (one for ρ and the other

one for ρ2 density dependence of the two-nucleon mode) the inclusion of the secondary

πΛ decay mode contributes approximately 20 MeV in 12
K−C and 15 MeV in 40

K−Ca to the

width in the region of binding energies BK− between 100 and 160 MeV. As for the density

dependence of the two-nucleon absorption mode, the widths calculated assuming ρ and

ρ2 density dependence are denoted by open and solid symbols, respectively. Assuming ρ2

instead of ρ density dependence, it leads to increased widths of the 1s K−-nuclear states,

as demonstrated for 12
K−C and 40

K−Ca in Fig. 2, and for 16
K−O in Fig. 3. The effect of the ρ2

dependence of the 2N -absorption mode clearly grows with BK− as a consequence of the

enhanced central nuclear density ρN . While for BK− . 100 MeV it is less than 10 MeV,

74 Selected Publications



6 4 2
r (fm)

0

0.1

0.2

0.3

0.4

0.5

ρ N
 (

fm
-

3 )

0 2 4 6
r (fm)

no K
-

B
K

- = 50 MeV

B
K

- = 100 MeV

B
K

- = 150 MeV

B
K

- = 200 MeV
12

CK
-

40
CaK

-
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K−C (left panel) and 40

K−Ca (right panel) for several 1s
K−-nuclear states with specified binding energy, using the NL-SH RMF model. The dotted
curves denote the corresponding nuclear density in the absence of the K− meson.

for BK− & 150 MeV it amounts to about 20 MeV in C and as much as about 30 MeV in

Ca.

Figure 3 shows the widths ΓK− in 16
K−O for the nonlinear model NL-SH (top) and

in 208
K−Pb for the linear model HS (bottom). As in the previous figure, switching on

the πΛ decay channel adds further conversion width to K−-nuclear states. In the range

BK− ' 100−160 MeV the width ΓK− increases by about 20 MeV. The πΛ conversion mode

disappears at BK− ' 175 MeV. The effect of the πΛ absorption channel is almost uniform

for both nonlinear (NL-SH in Fig. 2 and Fig. 3, top) and linear (HS in Fig. 3, bottom) pa-

rameterizations in all nuclei under consideration. On the other hand, the widths calculated

assuming ρ2 dependence for the two-nucleon absorption mode exhibit strong sensitivity to

the type of RMF model applied and to the nucleus considered (via the nuclear density ρN).

In 208
K−Pb, there is almost no difference between the widths ΓK− calculated using ρ or ρ2

dependence. It was found that nonlinear parameterizations, represented here by NL-SH,

produce larger increase of the width ΓK− owing to a ρ2 density dependence of the 2N

K− absorption than linear models do, as could be anticipated from the considerably lower

incompressibilities predicted by nonlinear models. It is to be noted that the particularly

large widths ΓK− in 40
K−Ca for BK− & 150 MeV are due to a more significant increase of

the central nuclear density in 40
K−Ca than in 12

K−C within the NL-SH model, see Fig. 4.
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Figure 5: Widths of the 1s K−-nuclear state in 16
K−O for various absorption branching

ratios K̄N → πΣ : K̄NN → ΣN , using the NL-SH RMF model and ρ2 dependence for
the 2N -absorption channel. The dotted curve stands for the decay widths in the absence
of 2N -absorption.

Figure 4 demonstrates that the effect of nuclear compression, as evidenced by the

increase of the nuclear density ρN upon increasing the binding energy BK− of the 1s state,

is limited to relatively small radii, r . 1.5 fm. Whereas in as light a nucleus as C this region

constitutes most of the nucleus, it is only a fraction of the nuclear volume in medium-weight

nuclei such as Ca and in heavier nuclei (not shown in the figure).

We also studied another possible source of uncertainty for the calculated K− decay

width, namely the dependence on the branching ratios assumed for the various conversion

modes. Figure 5 shows the K− decay width ΓK− as a function of the K− binding energy

BK− in 16
K−O for the NL-SH model, assuming a ρ2 dependence of the 2N -conversion mode.

The branching ratios of the decay modes, K̄N → πΣ : K̄NN → ΣN , are varied from 0.7 :

0.3 (circles) to 0.8 : 0.2 (squares) and to 0.9 : 0.1 (diamonds). The dotted curve represents
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the decay widths calculated when the 2N -absorption modes are neglected altogether. It is

shown that varying the K− absorption branching ratios by ±0.1 away from the commonly

used value 0.8 : 0.2 alters the K− decay width ΓK− by less than 10 MeV for binding energies

BK− . 90 MeV. More remarkable is the effect in the region of BK− & 90 MeV, where the

dispersion reaches values of approximately 50 MeV. These results further point out to the

delicacy of the estimates for the K− decay widths in that region of binding energies. It is

worth noting that the 0.8 : 0.2 ‘canonical’ ratio is used here in a rather conservative way,

implicitly assuming that it is effective for capture in the nuclear central-density region

[see Eq. (16) for Im Π
(2)

K− ], whereas capture from rest in bubble-chamber and emulsion

experiments [61] is likely to occur in lower-density regions. Therefore, the contribution

to the K− decay widths due to Im Π
(2)

K− could be larger than estimated by adopting the

0.8 : 0.2 ‘canonical’ ratio. The ambiguities involved in evaluating the contribution of

Im Π
(2)

K− have been recently discussed by Yamagata and Hirenzaki [64].

The last item studied for single-K− nuclear states was the effect of a p-wave K−-

nucleus interaction Π
(P )

K− [Eq. (10)]. Table 1 demonstrates the effects of this interaction,

with a strength parameter c0 given by Eq. (11) for a nominal value of BK− = 100 MeV.

Shown are the K− binding energy BK− , the single-particle binding energy Bsp
K− and the

decay width ΓK− , calculated for 1s K−–nuclear states using the NL-SH parameterization.

The results using the linear HS model are almost the same. The calculations excluding

the p-wave K− interaction are denoted by S, while those including the p-wave interaction

are denoted by S+P. It is seen that the introduction of the p-wave interaction leads to an

increase of the binding energy by approximately 13 MeV in 12
K−C and by approximately

6 MeV in 40
K−Ca. The decay width is then enhanced by about 6 MeV for carbon and by

about 3 MeV for calcium. This enhancement of the decay width is a consequence of the

K− binding energy dependence of ΓK− in the relevant region of BK− (see Fig. 2) and also

Table 1: p-wave interaction contributions to the K− binding energy BK− , to the single-
particle binding energy Bsp

K− and to the width ΓK− , for the 1s K−–nuclear states in 12
K−C and

in 40
K−Ca, using the NL-SH parameterization. Results for s-wave interactions exclusively are

denoted by S and results including the p-wave interaction Eqs. (10) and (11) are denoted
by S+P.

12C 40Ca
BK− (MeV) Bsp

K− (MeV) ΓK− (MeV) BK− (MeV) Bsp
K− (MeV) ΓK− (MeV)

S 100.0 109.8 51.1 100.0 104.4 35.0
S+P 112.8 123.3 56.9 105.6 111.8 38.3
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of the moderate increase of the nuclear density distributions when compared to the case

of purely s-wave interactions.

3.2 Multi-K̄ nuclei

In the second part of this work, we embedded several (κ ≥ 2) antikaons in the nuclear

medium and studied the nuclear response, as well as the energies and widths of bound

states in such multi-K̄ nuclear systems. We studied nuclear systems containing only K−

mesons or only K̄0 mesons.

Figure 6 shows the calculated binding energies and widths of 1s K− states in 16O

with two bound antikaons, using the NL-SH model, in comparison to similar calculations

for a single antikaon bound in 16O. The K− binding energy BK− of the second K− in

the double-K− nucleus 16
2K−O is lower than the K− binding energy in 16

1K−O for binding

energies BK− . 90 MeV. Primarily, this is a consequence of the dominance of the mutual

repulsion induced by the vector-meson mean fields between the two K− mesons over the

extra polarization of the nuclear core evoked by the presence of the second K− meson. It
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Figure 6: 1s K− binding energy (bottom panels) and width (top panels) in 16O with one
and two antikaon(s) as a function of the coupling strengths αω and ασ (see text), using the
NL-SH RMF model.
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function of the 1s K− binding energy, using the NL-SH RMF model.

is worth noting that this result is amplified by the larger width ΓK− in the case of two

antikaons, which acts repulsively, and by setting ασ = 0, for the attractive interaction

generated by the scalar mean field, at the low BK− region of the left-hand panels in the

figure. (If the coupling of the K− meson to all the vector-meson mean fields is switched

off, so that BK− is generated solely via the scalar σ-meson mean field, and furthermore the

imaginary potential is switched off, the binding energy BK− of the second K− in 16
2K−O is

always larger than BK− in 16
1K−O.) This hierarchy is reversed at BK− ' 90 MeV when the

K− binding energy in 16
2K−O becomes larger than in 16

1K−O, reflecting a strong polarization

of the nuclear core (see Figs. 7 and 10). The enhancement of the binding energy BK−

in the double K− nucleus is then responsible for the crossings of the curves for the K−

decay widths ΓK− , at BK− ' 90 and 170 MeV, caused by the binding energy dependence

of the suppression factors. Finally, the sharp decrease of the width ΓK− in 16
2K−O, at

BK− ' 230 MeV, is due to the disappearance of the 2N -absorption channel K̄NN → ΣN .
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Figure 7 shows the average nuclear density ρ̄ in 16O and in 208Pb with one and with two

K− mesons as a function of the K− binding energy. Adding the second K− to the nuclear

system leads to further polarization of the nuclear core. The enhancement of the average

nuclear density is quite pronounced in light nuclei (16O) while in heavy nuclei (208Pb) it is

rather weak.

Figure 8 presents the 1s K̄ binding energy BK̄ in the multi-K̄ nuclei 16O + κK̄, where

κK̄ = κK− or κK̄0, as a function of the number of antikaons κ, calculated within the

NL-SH RMF parameterization. The figure demonstrates that increasing the number of

antikaons in the nuclear medium does not necessarily lead to a sizable increase of the

binding energy BK̄ . Just on the contrary, for relatively small values of BK̄ (the curve

starting with 50 MeV for κ = 1 in the figure), BK̄ decreases as a function of κ. This is

consistent with the trend shown in Fig. 6 for one and two K− mesons. (Had we replaced
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Figure 8: 1s K̄ binding energy BK̄ in 16O + κK̄, where K̄ = K− (circles) or K̄0 (squares),
as a function of the number κ of antikaons, using the NL-SH RMF model.
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the vector-meson mean-field couplings by an equivalent purely scalar-meson mean-field

coupling to yield the same starting value of BK̄ , setting also Im ΠK̄ = 0, BK̄ would rather

increase as a function of κ.) For the higher starting values for BK̄ in the figure, a moderate

decrease of BK̄ as a function of κ occurs for κ > 3, indicating that the K̄ binding energies

have reached saturation. We note that the difference between the K− and K̄0 curves is

relatively small, a few MeV at most, decreasing with κ owing to the increased role of the

Coulomb repulsion among the K− mesons.

Figure 9 shows the 1s K̄ binding energy in the multi-K̄ nuclei 208Pb + κK̄, where

κK̄ = κK− or κK̄0, calculated using the NL-SH model. It is found that the attractive

Coulomb interaction of a K− meson with the large number of protons (Z = 82 for 208Pb)

outweighs the repulsion due to the ρK̄ coupling, so that the lowest-energy configuration is

provided by a purely K− charge configuration. The K− curves are displaced by about 15
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100 MeV in 16O + 1K−. The dotted curve stands for the 16O density in the absence of K−

mesons.

MeV to higher values of binding energies than the respective K̄0 curves. Here and in the

previous figure, the K̄0 couplings to the isoscalar-meson mean fields were taken identical

to the corresponding K− couplings, while differing in sign for the isovector ρ-meson mean

field. Furthermore, Im ΠK̄ was assumed to be the same for K̄0 mesons as for K− mesons.

For the lowest starting value of BK̄ in Fig. 9, as for 16O in the previous figure, BK̄ decreases

as a function of κ, although at a slower rate. For higher starting values of BK̄ , a moderate

increase of BK̄(κ) is observed, which gradually slows down with increasing the number of

antikaons κ. We checked that saturation of BK̄(κ) is actually reached for a higher value of

κ than shown in the figure (κ ≥ 10).

The dependence of the nuclear density ρN(r) and the K− density ρK−(r) on the number
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Figure 11: Same as in Fig. 10, but for 208Pb + κK− with ασ = 0 and αω = 0.86, yielding
BK− = 100 MeV in 208Pb + 1K−.

of K− mesons embedded in the nuclear medium is shown in Fig. 10 for (16O + κK−) and

in Fig. 11 for (208Pb + κK−). Shown also for comparison, in dotted lines, are the density

distributions ρN for κ = 0. The K− couplings were chosen such that the 1K− configuration

was bound by 100 MeV. The density distributions behave quite regularly as a function of κ.

In 16O+κK−, for κ ≥ 4, the nuclear density distribution recovers the saddle it had without

antikaons at r ≈ 0. The increase of the nuclear density resulting from the 1s antikaons is

limited to the vicinity of the nuclear center where the density ρK− is substantial, much the

same as for single-K− nuclei (see Fig. 4) upon increasing BK− . The gradual increase of

ρK− as well as of ρN slows down with κ, leading to saturation as demonstrated for ρN(0) in

Figs. 10 and 11. The saturation is also apparent when the K− densities ρK− (normalized

to κ) are shown as ρK−(0)/κ in Table 2.
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Table 2: Values of ρK−(0)/κ (in fm−3) as a function of the number of K− mesons κ in 16O
and 208Pb, using the NL-SH RMF parameterization. The K− density ρK− is normalized
to κ. The K− coupling constants for each core nucleus give rise to BK− = 100 MeV for a
single K− meson.

κ 1 2 4 6 8 10
ρK−(0)/κ 16O + κK− 0.098 0.106 0.088 0.070
ρK−(0)/κ 208Pb + κK− 0.009 0.010 0.013 0.014 0.015 0.013

4 Conclusions

In the present work, we studied in detail the interplay between the underlying dynamical

processes and the relevant kinematical conditions which determine the decay width of

deeply bound K̄–nuclear states in the nuclear medium. We performed fully self-consistent

dynamical calculations of K̄–nuclear states for nuclear systems with one and several K̄

mesons within the RMF approach.

We verified that the interaction of a 1s K− meson with the ρ-meson mean field affects

negligibly the K− binding energy. Its main effect on the nucleon single particle energies

is to partly cancel, and for the 1s nucleon level even reverse the p − n Coulomb energy

difference. For all nuclei and RMF parameterizations considered in the present work, the

ρ-meson contribution slightly decreases the K− binding energy BK− by less than about

5 MeV for BK− . 200 MeV. Similarly, the φ-meson contribution in systems with several

K− mesons reduces the K− binding energy by a few MeV in this range of BK− values.

The calculations involving the p-wave interaction of the K− meson with a nucleus

indicate that the p-wave interaction plays a secondary role for deeply bound K−–nuclear

systems where the mean-field concept is acceptable. Although the p-wave interaction by

itself is too weak to cause nuclear binding, its contribution in the lightest (carbon) nucleus

considered in the present work amounts to more than 10 MeV and is certainly nonnegligible.

Since the effect of the p-wave interaction appears to increase upon decreasing the atomic

number, it could play a primary role in deeply and tightly bound few-body K− systems.

We found that the implementation of the πΛ decay channel in the single-nucleon absorp-

tion mode enhances the K− conversion width for K− binding energies BK− . 170 MeV.

This enhancement is almost uniform for both linear and nonlinear parameterizations in all

nuclei considered. The most remarkable contribution occurs for K− binding energies in

the range BK− ≈ 100 − 160 MeV where it reaches values of approximately 20 MeV. The

assumption of a ρ2 density dependence for the 2N -absorption mode adds further conversion
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width especially to the deeply bound K−–nuclear states. The increase is particularly large

for nonlinear parameterizations owing to the strong polarization effects affordable through

the moderate value of nuclear incompressibility, as opposed to the highly unrealistic values

in linear parameterizations. Altogether, the results of these comprehensive calculations

suggest that K− total decay widths for deeply bound K− nuclear states (BK− > 100 MeV)

are substantial, ΓK− ∼ 50− 100 MeV.

We also studied nuclear systems containing several antikaons. The nuclear and K̄

densities were found to behave quite regularly upon increasing the number of antikaons

embedded in the nuclear medium. The calculations do not indicate any abrupt or substan-

tial increase of the densities. The central nuclear densities in multi-K− 16O nuclei and in

multi-K− 208Pb nuclei appear to saturate at about only 50% and 60%, respectively, higher

values than the central nuclear densities in the corresponding systems with one antikaon.

Furthermore, the K̄ binding energy saturates upon increasing the number of K̄ mesons

embedded in the nuclear medium. The heavier the nucleus is, the more antikaons it takes

to saturate the binding energies, but even for 208Pb the number required does not exceed

approximately 10. The saturated values of K̄ binding energies do not exceed the range of

values 100–200 MeV considered normally as providing deep binding for one antikaon. This

range of binding energies leaves antikaons in multi-K̄ nuclei comfortably above the range

of energies where hyperons might be relevant. It is therefore unlikely that multi-K̄ nuclei

may offer precursor phenomena in nuclear matter towards kaon condensation. This does

not rule out that kaon condensation occurs in neutron stars where different constraints hold

for the composition of matter. Although we presented results for one particular choice of

RMF model, the NL-SH model [63], the use of other realistic mean-field models supports

these conclusions.
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Abstract

We extend previous relativistic mean-field (RMF) calculations of multi-K̄ nuclei, using

vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained

phenomenologically. For a given core nucleus, the resulting K̄ separation energy BK̄ , as well

as the associated nuclear and K̄-meson densities, saturate with the number κ of K̄ mesons

for κ > κsat ∼ 10. Saturation appears robust against a wide range of variations, including

the RMF nuclear model used and the type of boson fields mediating the strong interactions.

Because BK̄ generally does not exceed 200 MeV, it is argued that multi-K̄ nuclei do not

compete with multihyperonic nuclei in providing the ground state of strange hadronic

configurations, and that kaon condensation is unlikely to occur in strong-interaction self-

bound strange hadronic matter. Last, we explore possibly self-bound strange systems made

of neutrons and K̄0 mesons, or protons and K− mesons, and study their properties.

1 Introduction and Overview

Kaon condensation in dense matter was proposed over 20 years ago by Kaplan and Nelson

[1, 2]. It is necessary to distinguish in this context between K mesons and K̄ mesons

which interact quite differently with matter. The empirical evidence from K− atoms is

that the K̄-nuclear interaction is strongly attractive, and absorptive as well, with typical

values of 150 − 200 MeV attraction at nuclear-matter density ρ0, as reviewed recently

by Friedman and Gal [3]. A strong nuclear attraction of somewhat less than 100 MeV

at ρ0 for K− mesons, compared to a weak repulsion of order 25 MeV for K+ mesons,

follows from observations of enhanced near-threshold production of K− mesons in proton-

nucleus collisions at GSI [4]. This weakly repulsive nature of the K+-nuclear interactions

was quantified a long time ago, starting with Dover and Moffa [5], and is also reviewed in

Ref. [3]. Given the distinction between the nuclear interactions of K mesons and K̄ mesons,

the term kaon condensation is used loosely here and elsewhere to mean K̄ condensation.
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Neutron stars, with a density range extending over several times ρ0, offer the most nat-

ural dense systems where kaon condensation could be realized; see Refs. [6, 7, 8, 9, 10, 11]

for comprehensive reviews of past work. We note that in Heaven, for neutron stars, weak-

interaction time scales of order 10−8 s and longer are operative, enabling strangeness-

changing processes such as e− → K− + νe to transform high-pressure dense electrons

to K− mesons once the effective mass of K− mesons drops down below approximately

200 MeV. Under some optimal conditions, recalling that K̄ mesons undergo attraction

of order 100 MeV per density unit of ρ0 [12], kaon condensation could occur at densi-

ties about 3ρ0, depending on the way hyperons enter the constituency of neutron stars as

first recognised by Ellis, Knorren and Prakash [13]. However, on Earth under laboratory

conditions, strong-interaction time scales of order 10−23 s are operative; processes of equi-

libration and hadronization subsequent to dense-matter formation in heavy-ion collisions

occur over much shorter times than those controlling the composition of neutron stars.

If antikaons bind strongly to nuclei, according to a scenario spelled out recently by Ya-

mazaki et al. [14], then K̄ mesons might provide the relevant physical degrees of freedom

for self-bound strange hadronic matter that would then be realized as multi-K̄ nuclei. It

requires that the K̄ separation energy BK̄ beyond some threshold value of strangeness

exceeds mKc
2 + µN −mΛc

2 & 320 MeV, where µN is the nucleon chemical potential, thus

allowing for the conversion Λ → K̄ + N in matter. For this strong binding, Λ and Ξ

hyperons would no longer combine macroscopically with nucleons to compose the more

conventional kaon-free form of strange hadronic matter [15]. K̄ mesons will then condense

macroscopically. However, the nuclear densities encountered in these strange hadronic nu-

clei are somewhat less than the typical 3ρ0 threshold required to lower sufficiently the K̄

energy in matter to reach condensation. Yet, precursor phenomena to kaon condensation

in nuclear matter could occur at lower densities as soon as BK̄ exceeds the combination

mKc
2 + µN −mΣc

2 & 240 MeV. In this case, the only mechanism underlying the widths

of multi-K̄ states is the fairly weak conversion K̄NN → ΛN .

Recently we have reported on preliminary calculations of multi-K̄ nuclear configura-

tions [16] using the relativistic mean-field (RMF) methodology, constrained by K̄-nucleus

phenomenology. It was found that the nuclear and K̄ densities behave regularly on increas-

ing the number of antikaons embedded in the nuclear medium, without any indication for

abrupt or substantial increase, and that the K̄ separation energy saturates. Roughly

speaking, the heavier the nucleus is, the more antikaons it takes to saturate the separa-

tion energies, but even for 208Pb the number required does not exceed approximately 10.
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Because the calculated K̄ separation energies BK̄ do not generally exceed 200 MeV, for

input binding in the accepted “deep-binding” range BK̄ ∼ 100 − 150 MeV for a single

K̄ meson [17, 18, 19], it was deemed unlikely that kaon condensation occurs in nuclear

matter. This leaves antikaons in multi-K̄ nuclei comfortably above the range of energies

appropriate to (hyperonic) strange hadronic matter [15]. In the present article we discuss

the full scope of these calculations demonstrating the robustness of this saturation prop-

erty. In particular we study the sensitivity of the results to the nuclear equation of state

used, through the nonlinear RMF version employed, and the role of “hidden strangeness”

isoscalar meson fields beyond the standard isoscalar, scalar (σ), and vector (ω) meson

fields. Although both σ- and ω-meson fields mediate attraction between K̄ mesons and

nucleons, they play different roles for the interactions within K̄ mesons, similarly to the

pattern well known for nucleons. The σ meson induces attraction, whereas the ω me-

son induces repulsion. If the K̄-meson couplings were exclusively limited to scalar-meson

fields, the resulting K̄-meson separation energies would not have saturated. However, chi-

ral model studies of K̄N low-energy phenomenology give a clear evidence in favor of the

lowest-order Tomozawa-Weinberg vector interaction, which in terms of meson exchanges is

equivalent to vector-meson exchanges with purely F-type SU(3) pseudoscalar-pseudoscalar-

vector (PPV) vertices [19]. Our philosophy in this work is to use these vector-meson fields

coupling constants as they are, augmenting the K̄-nucleus vector interaction by additional

scalar couplings such that BK̄ ∼ 100 − 150 MeV holds for single-K̄ nuclei. We find no

precursor behavior to kaon condensation for K̄ mesons in self-bound nuclear matter.

We also explore in this work exotic strange self-bound configurations where K̄ mesons

are bound to either neutrons or protons. The simple example of a quasibound K−pp sys-

tem (and thus also its charge-symmetric partner K̄0nn) recently calculated solving Faddeev

coupled-channel equations [20, 21, 22], clearly demonstrates that K̄ mesons can bind to-

gether nuclear clusters that are otherwise unbound. The point here is that the underlying

K−p and K̄0n interactions (each with equally mixed I = 0 and I = 1 components) pro-

vide considerably more attraction than the purely I = 1 K−n and K̄0p interactions. The

RMF calculations reported here start with eight neutrons, showing that a finite number of

neutrons can be made self bound by adding together a few K̄0 mesons, with K̄ separation

energies of order BK̄ ∼ 50− 100 MeV. We study the role of the isovector ρ meson in stabi-

lizing these exotic configurations, owing to its role in distinguishing between the underlying

I = 0 and I = 1 K̄N interactions. We find that the emergent stable neutron configurations

are more tightly bound than in the corresponding ordinary nuclei with N ≈ Z along the
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stability valley, and the neutron single-particle spectra display substantial rearrangement.

However, these exotic configurations are found to be unstable against charge-exchange

K̄0 + n → K− + p reactions.

In Sec. 2 we briefly outline the RMF methodology and discuss the K̄ coupling constants

to the meson fields used in the present calculations. Results are shown and discussed in

Sec. 3 for K̄ separation energies and density distributions, also displaying the dependence

on the type of nonlinear RMF model used and the contribution of specific meson fields

to the energy systematics and particularly to maintaining saturation in a robust way. A

separate subsection is devoted to the study of exotic multi-K̄ “nuclei” with neutrons only.

Again, binding energies and densities are discussed, plus rearrangement features of the

neutrons in the K̄-extended mean field. We conclude with a brief summary in Sec. 4.

2 Methodology

2.1 RMF equations of motion

Bound nuclear systems of nucleons and several K̄ mesons are treated in this work within

the RMF framework, where the interactions among hadrons are mediated by the exchange

of scalar- and vector-meson fields. The model Lagrangian consists of a standard nuclear

part LN and the Lagrangian density LK describing the kaonic sector:

LK = (DµK)† (D µK)−m2
KK

†K + gσKmKK
†K σ + gσ∗KmKK

†K σ∗ . (1)

Here,

Dµ ≡ ∂µ + i gωK ωµ + i gρK ~τ · ~ρµ + i gφK φµ + i e 1
2
(1 + τ3)Aµ , (2)

and K (K†) denotes the kaon (antikaon) doublet. To be specific, we discuss K−-nuclear

systems. Similar expressions hold for K̄0 mesons. In addition to a scalar-meson field σ and

to vector-meson fields ω and ρ normally used in purely nuclear RMF calculations, we also

considered meson fields that couple exclusively to strangeness degrees of freedom, a scalar

σ∗, and a vector φ. Standard techniques yield a coupled system of equations of motion for

nucleons and all meson mean fields involved; we refer the reader to our earlier work [16]

for details. Here it suffices to recall that the presence of K̄ meson(s) induces additional

source terms in the Klein-Gordon (KG) equations for the meson (mean) fields. In the case

94 Selected Publications



of K− mesons, the source terms contain the K− density

ρK− = 2(EK− + gωK ω0 + gρK ρ0 + gφK φ0 + eA0)K−K+ ,

∫
d3x ρK− = κ , (3)

where EK− = i ∂tK
−. Hence, the K̄ mesons modify the scalar and vector potentials that

enter the Dirac equation for nucleons, thus leading to rearrangement of the nuclear core.

The polarized nucleons, in turn, modify the K̄-nucleus interaction. This calls for a self-

consistent procedure for solving the equations of motion.

In our model, the KG equation of motion for the K− meson acquires the form

[−∇2 − E2
K− +m2

K + Re ΠK− ]K− = 0 , (4)

with the K− self-energy given by

Re ΠK− = − (gσKmKσ0 + gσ∗KmKσ
∗
0)− 2EK−(gωKω0 + gρKρ0 + gφKφ0 + eA0) (5)

− (gωKω0 + gρKρ0 + gφKφ0 + eA0)2 .

Of the three terms on the right-hand side (rhs) of Eq. (5), the first one is a scalar-meson

contribution, whereas the other two terms are vector-meson contributions. The scalar

contribution is sometimes lumped together with the kaon mass mK to form a density-

dependent effective kaon mass m∗K via

m∗K
2 = mK

2 − gσKmKσ0 − gσ∗KmKσ
∗
0 . (6)

Finally, to account for K− absorption in the nuclear medium, the self-energy ΠK− =

2EK−V
K−

RMF in Eq. (4) was made complex by adding Im ΠK− and the real energy EK− was

replaced by EK−− iΓK−/2. The imaginary part of the self-energy, Im ΠK− , was taken from

optical model phenomenology, with a strength fitted to K− atomic data [23] and with

energy dependence that follows the reduced phase space for the decaying initial state. We

assumed two-body final-state kinematics for the decay products in the absorption channels

K̄N → πY (Y = Σ, Λ) (80%) and K̄NN → Y N (20%) with branching ratios indicated

in parentheses [17, 18].

The set of coupled equations containing the Dirac equation for nucleons, the KG equa-

tions for the meson mean fields and for antikaons was solved fully self-consistently using

an iterative procedure. This appeared crucial for the proper evaluation of the dynamical
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effects in nuclei with κ (κ = 1, 2, 3, · · · ) K̄ mesons. The K̄ separation energy

BK̄ = B[A,Z, κK̄]−B[A,Z, (κ− 1)K̄] , (7)

where B(A,Z, κK̄) is the binding energy of the κK̄-nuclear system, contains mean-field

contributions due to rearrangement of the nuclear core.

2.2 Choice of parameters

For the nucleonic Lagrangian density LN we used the RMF parameter sets NL-SH [24]

and NL-TM1(2) [25] which have been successfully used in numerous calculations of various

nuclear systems. For the (anti-)kaon coupling constants to the vector-meson fields, we used

a purely F-type SU(3) symmetry, αV ≡ F/(F +D) = 1:

2gωK =
√

2 gφK = 2 gρK = gρπ = 6.04 , (8)

where the value of gρπ is due to the ρ → 2π decay width. As mentioned in Sec. 1,

this choice corresponds to the underlying Tomozawa-Weinberg lowest-order term in chiral

perturbation theory [19]. The value of g
SU(3)
ωK = 3.02 adopted here is considerably lower

than the quark-model (QM) value applied to NL-SH, gωK = 1
3
gNL−SH
ωN = 4.32, which was

used in our previous work [16], and we consider it to be the minimal value suggested by

theory. The K̄ RMF vector potential at threshold in nuclear matter is then given, in the

static approximation, by using the last two terms on the rhs of Eq. (5):

V K−
RMF−vector = −g

SU(3)
ωK gNL−SH

ωN ρ0

m2
ω

− 1

2mK

(
g

SU(3)
ωK gNL−SH

ωN ρ0

m2
ω

)2

= −76.7 MeV , (9)

with mω = 783 MeV and ρNL−SH
0 = 0.146 fm−3. We point out that the value gNL−SH

ωN = 12.95

is not far away from the value gESC04
ωN = 11.06 from the latest NN -potential fit by the

Nijmegen group [26]. This latter value was obtained in that NN analysis after allowing for

part of the isoscalar vector-meson field strength to result from a combined ρ-π exchange.

We also studied the role of isovector K̄ nucleus interactions by comparing the results of

using the present SU(3) choice g
SU(3)
ρK = 3.02 with results applying a QM universal isospin

coupling to NL-SH: gρK = gNL−SH
ρN = 4.38. This value is substantially higher than the

Nijmegen potential fit value gESC04
ρN = 2.77, apparently to compensate for disregarding the

almost four times higher value of the tensor coupling constant fESC04
ρN .
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SU(3) symmetry is not much of help in fixing the (anti-)kaon coupling to the scalar-

meson field σ, simply because the microscopic origin of the σ field and its various couplings

are not unambiguous. It has been shown recently that interpreting the σ field in terms of

a (Jπ, I) = (0+, 0) resonance in the ππ-KK̄ coupled-channel system leads to a vanishing

K̄N forward-scattering amplitude at threshold, thus suggesting a vanishing contribution to

the corresponding K̄-nucleus optical potential [27]. However, even for the empirically large

value of gσN obtained in the NN case (gESC04
σN = 10.17) and also within the RMF description

of nuclei, there is no consensus on its microscopic origin, except that QCD sum-rules do

produce strong scalar condensates. Modern NN potentials using chiral perturbation theory

guidelines obtain a rather strong isoscalar-scalar two-pion exchange contribution involving

excitation of ∆(1232) in intermediate states [28]. A similar two-pion exchange contribution

for K̄N , involving the excitation of K∗(892), cannot be excluded at present. In the absence

of QCD sum-rule determinations of gσK , one relies for an order of magnitude estimate on

simplified models such as the QM, giving rise to gQM
σK = 1

3
gσN , which for the NL-SH

model gives gQM
σK = 3.48. The associated RMF K− nuclear scalar potential, in the static

approximation, is given by:

V K−
RMF−scalar = −g

QM
σK g

NL−SH
σN ρs0

2m2
σ

= −66.3 MeV , (10)

using the values mσ = 526.1 MeV from NL-SH and ρs0 ≈ 0.9ρ0, where ρs0 is the scalar

density. Our choice of gσK is conceptually different, fitting gσK to several selected values of

K̄ separation energy BK̄ in nuclear systems with a single K̄ meson. These fitted values, all

of which were considerably lower than the QM value, are specified in the next section. Thus,

our scalar potentials are viewed as a supplement to the minimal vector potentials discussed

above to scan over K̄ nuclear binding energies in a given energy range, without imparting

any microscopic meaning to these scalar potentials. We also tested the effect of adding

another scalar-meson field that couples exclusively to strangeness, “hidden strangeness”

σ∗ meson with mass mσ∗ = 980 MeV, and coupling constant gσ∗K = 2.65 determined from

f0(980)→ K+K− decay [12].
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3 Results and discussion

3.1 Saturation of K̄ binding energies and hadronic densities

Following the observation made in Ref. [16] that K̄ binding energies, as well as nuclear

and K̄ densities, saturate on increasing the number κ of K̄ mesons, we have explored how

robust this saturation is. In particular we studied, for several selected nuclei across the

periodic table, the role of various components of the K̄-nucleus interaction in establishing

saturation and the sensitivity to the choice of the RMF model. Representative examples

are shown in Figs. 1 and 2.

Figure 1 presents the 1s K− separation energy BK− in multi-K− nuclei 16O + κK−

as a function of the number κ of K− mesons, using the NL-SH RMF parametrization,

for several mean-field compositions of the K− self-energy Eq. (5) with K− vector-meson

couplings given by Eq. (8). The upper group of curves is based on a value of gσK = 2.433

ensuring BK− = 100 MeV for κ = 1. The φ, ρ, σ∗ meson fields do not practically contribute

in this case, whereas the Coulomb field adds a few MeV attraction and ImVopt adds a few

MeV repulsion. For κ > 1, the various curves of the upper group diverge from each other:

with respect to a “minimal” σ+ω model (open circles), the main contributors are the

repulsive φ and ρ vector mesons, as judged by the curves marked by solid circles and open

squares, respectively. Given their contributions, which get larger with κ, the inclusion of

the Coulomb field, the σ∗ meson field and ImVopt makes a small difference. However, the

K− absorptivity ImVopt makes a big difference for the lower group of curves consisting of

only two choices, both with gσK = 1.703 fitted to BK− ≈ 40 − 50 MeV for κ = 1. The

energy dependence of ImVopt magnifies its effect for relatively low values of BK− in the

region BK̄ ≤ 100 MeV, adding significant repulsion the lesser the value of BK− is. This

added repulsion (lowest curve in Fig. 1) leads to a rapid fall-off of BK− , terminating the

binding at κ = 3, because the system 16O+4K− is found to be unbound for this particular

choice of κ = 1 parameters. The lesson from Fig. 1 is that saturation of the K− binding

energy in nuclear systems with κ K−mesons is a robust phenomenon, which remains valid

regardless of the type of meson fields mediating the strong interaction among antikaons and

nucleons, provided a minimal isoscalar vector-meson field (ω) is included. For a sufficiently

large number κ of K− mesons, the combined repulsive K−K− interaction generated by the

vector meson fields ω, φ, ρ wins over the attractive interaction generated by the isoscalar

scalar-meson fields (dominated by σ). The effect of adding the σ∗ scalar field is found to

be insignificant. These conclusions hold also for a Lagrangian in which scalar fields are
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Figure 1: 1s K− separation energy BK− in 16O+κK− as a function of the number κ of
antikaons in several calculations detailed in the text, as listed in the inset, using the NL-SH
RMF nuclear model with gσK = 2.433 for the upper group of curves and gσK = 1.703 for
the lower group.

introduced differently than in Eq. (1), resulting in a correspondingly different definition of

effective masses, m∗K = mK − gσKσ0 − gσ∗Kσ∗0 [29], than in Eq. (6).

Figure 2 shows the 1s K− separation energy BK− in multi-K− nuclei 40Ca + κK− as a

function of the number κ of K− mesons, calculated in the NL-SH, NL-TM1, and NL-TM2

RMF models for two choices of gσK designed, within each model, to produce BK− = 100 and

130 MeV for κ = 1. The values of gσK for NL-SH were 1.703 and 2.993, respectively. The

difference between the various curves, for a given starting value of BK− , originates from the
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Figure 2: 1s K− separation energy BK− in 40Ca+κK−, as a function of the number κ
of K− mesons, calculated in the NL-SH (circles, solid lines), NL-TM1 (triangles, dashed
lines), and NL-TM2 (squares, dot-dashed lines) RMF models. The lower (upper) group of
curves was constrained to produce BK− = 100 (130) MeV for κ = 1.

specific balance in each one of these RMF models between the vector fields and the scalar

field. The figure illustrates that the saturation of the K̄ binding energy in nuclear systems

with several antikaons is not limited to a particular choice of RMF parametrization but is

a general feature independent of the applied RMF model. Without loss of generality, we

therefore specialize in the subsequent discussion to a specific RMF model, namely NL-SH.

The dependence of the nuclear density ρN(r) and the K− density ρK−(r) on the number

κ of K− mesons in multi-K− nuclei 40Ca +κK− is shown in Fig. 3. The coupling constant

gσK = 1.703 was chosen such that the single-K− configuration was bound by 100 MeV,

the same as for the NL-SH lower curve in Fig. 2. The density distribution ρN for 40Ca is

also shown, for comparison, by the dotted curve in the upper panel. It is clear from this

figure that the central nuclear density ρN saturates for κ = 8 at a value about twice larger

than that for ρN in 40Ca. In the lower panel, it is seen that the gradual increase of ρK−
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Figure 3: Nuclear density ρN (top panel) and 1s K− density ρK− (bottom panel) in
40Ca+κK−, calculated in the NL-SH RMF model, with gσK = 1.703 chosen to yield BK− =
100 MeV in 40Ca+1K−. The dotted curve stands for the 40Ca density in the absence of
K− mesons.

with κ slows down with increasing κ.

The saturation of the nuclear density in multi-K̄ nuclei manifests itself also in the

behavior of the K̄ effective mass in the nuclear medium, Eq. (6), as a function of the

number κ of antikaons. This is illustrated for 208Pb + κK− in Fig. 4. Note that the

calculated effective mass distribution m∗K−(r) remains almost independent of the number
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Figure 4: 1s K− effective mass m∗K− in multi-K− nuclei 208Pb+κK−, calculated in the
NL-SH model with gσK = 2.433 chosen to yield BK− = 100 MeV in 208Pb+1K−. The
dashed curve stands for the “static” case where the 208Pb σ field in a purely nuclear RMF
calculation was used in Eq. (6) for m∗K− . The dashed arrow indicates the charge half-density
radius Rch in 208Pb.

of K− mesons over a large volume of the nucleus, for r ≥ 3–4 fm, reflecting a similar κ

independence of the scalar σ field through the underlying nuclear density. In fact, the σ

field in this region is almost unaffected by the presence of K− mesons, as demonstrated

by the dashed curve which uses the “static” 208Pb σ field from a purely nuclear RMF

calculation. It is only within a relatively small region near the nuclear center, typically

r ≤ 2–3 fm, that the variation of m∗K−(r) with κ gets to be more pronounced. However,

m∗K−(r = 0) quickly saturates, already for κ ≈ 8. The figure demonstrates clearly that the

concept of “nuclear matter” is far from being realized, even for a nucleus as large as 208Pb

and that conclusions made on K̄ binding and kaon condensation in finite nuclei, using

nuclear-matter arguments, should be taken with a grain of salt.
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3.2 Exotic K̄ nuclear configurations

0 2 4 6 8 10 12
κ

40

60

80

100

120

140
B

K
 (

M
eV

)

16
O + κK

-

16n + κK
0

8n + κK
0

Γ= 50 MeV
Γ= 100 MeV

Γ= 0

Figure 5: 1s K̄ separation energy BK̄ in 16O+κK−, 16n+κK̄0, and 8n+κK̄0, as a function

of κ, calculated in the NL-SH RMF model, with gρK = 0 (dot-dashed curves), g
SU(3)
ρK = 3.02

(solid curves) and gρK = gρN = 4.38 (dashed curves). ImVopt = 0 is assumed everywhere
except for the two lowest solid curves (open squares) in 8n+κK̄0 where ImVopt 6= 0, such
that the value of width ΓK̄0 is held fixed at 50 and 100 MeV, respectively, see text.

Because in the underlying K̄N dynamics the I = 0 interaction is considerably more

attractive than the I = 1 interaction, we have looked for ways to maximize the role of

the K̄N I = 0 channel in multi-K̄ nuclei. For a nuclear core with N = Z, no matter

which charge states are assigned to the K̄ mesons, the average K̄N interaction is given by

a (2I + 1)-average which disfavors the I = 0 channel. This disadvantage is partly removed
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by considering nK̄0 (or pK−) multi-K̄ nuclei, where both isospin channels assume equal

weight, so that the stronger I = 0 component may provide sufficient attraction to overcome

the insufficient attraction in purely neutron matter. We therefore studied exotic configu-

rations consisting solely of K̄0 mesons bound to neutrons. Our calculations confirmed that

K̄ mesons can bind together systems of nucleons that otherwise are unbound.

In Fig. 5, we compare the separation energies BK̄ in 16n+κK̄0 and in 8n+κK̄0 exotic

multi-K̄ configurations with BK̄ in 16O+κK− multi-K̄ nuclei, most of which were calcu-

lated in the NL-SH RMF model with the “canonical” gvK coupling constants of Eq. (8) and

gσK = 2.433 chosen to yield BK− = 100 MeV in 16O+1K− as in Fig. 1, and for ImVopt = 0.

For each sequence of multi-K̄ nuclei, BK̄ increases as a function of κ to a maximum value

and then starts to decrease. Whereas the sequence consisting of 8 neutrons plus K̄0 mesons

starts with κ = 1 (not shown in the figure), a larger number of neutrons generally requires a

threshold value for κ as shown for the sequences consisting of 16 neutrons plus K̄0 mesons.

Exceptions to the use of the canonical gvK set of Eq. (8), or to ImVopt = 0, are as follows:

• gSU(3)
ρK = 3.02 was used everywhere except for gρK = 0 in the dot-dashed curves and

except for gρK = gρN = 4.38 (universal isospin coupling) in the dashed curves to

study the role of the ρ meson in “nonexotic” multi-K̄ nuclei (16O + κK−) and in

“exotic” ones (16n+κK̄0). In 16O+κK−, the values of BK− for a given value of

κ > 1 decrease as gρK is increased, as expected from the repulsive K−K− isovector

interaction. In contrast, the larger the value of gρK is, the larger is the value of BK̄0

expected in 16n+κK̄0, because it is the ρ isovector interaction that distinguishes the

more attractive I = 0 component of the K̄0n interaction from the less attractive

I = 1 component. Indeed, this holds for κ ≤ 8 in the figure. However, for κ > 8,

the contribution of the repulsive K̄0K̄0 isovector interaction becomes substantial for

the values of gρK 6= 0 used here; the BK̄0 dashed curve for the universal ρ coupling

heads down, crossing the BK̄0 solid curve corresponding to SU(3) ρ coupling. All

in all, substantial binding in 16n+κK̄0 multi-K̄ nuclei is reached for these values of

gρK 6= 0.

• The effect of ImVopt on BK̄ is relatively unimportant for BK̄ ≥ 100 MeV, where the

dominant K̄N → πΣ decay channel is closed. The inclusion of ImVopt is found then

to induce repulsion of less than 5 MeV. However, in 8n+κK̄0 multi-K̄ nuclei, where

BK̄0 ≤ 80 MeV, the effect of ImVopt becomes significant. An estimate of this effect

is given by comparing the BK̄0 curve for Γ = 0 (solid squares) with the BK̄0 curves

using ImVopt 6= 0 (open squares) such that the value of ΓK̄0 is held fixed at 50 and 100
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MeV. As expected, the larger input widths induce a stronger repulsion that lowers

the calculated BK̄0 values. Yet considerably lower values of BK̄0 are obtained once

the K̄0 widths are included self-consistently in these dynamical calculations.
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Figure 6: Nuclear density ρN (top panel) and 1s K̄ density ρK̄ (bottom panel) in 16O+8K−,
16n+8K̄0 and 8n+8K̄0, calculated in the NL-SH RMF model, with the “canonical” gvK
coupling constants of Eq. (8) and with gσK = 2.433 to yield BK− = 100 MeV in 16O+1K−

as in Fig. 5. The dotted curve stands for the 16O density in the absence of K̄ mesons.

The nucleon-density distribution ρN(r) and the K̄-density distribution ρK̄(r) are shown

in Fig. 6 for 16O+8K−, 16n+8K̄0, and 8n+8K̄0. We note that ρN and ρK̄ are normalized

to the number of nucleons and number of antikaons, respectively. The K̄ couplings were

chosen such that the 1K− configuration in 16O is bound by 100 MeV, as in Fig. 5. For
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comparison, we also present the density distribution ρN for 16O without K̄ mesons. Owing

to the substantial K̄ density ρK̄ in the nuclear center, the central nuclear density ρN(0)

in all three systems with 8 K̄ mesons is about 2-3 times larger than the central nuclear

density ρ0 in 16O for κ = 0. The situation is particularly pronounced in 8n+8K̄0, with

the same central density ρN(0) as in the systems with 16 nucleons + 8K̄. Furthermore,

the 8n+8K̄0 system is compressed substantially in comparison with the other multi-K̄

systems, judging by the radial extension of ρN and ρK̄ in both panels of Fig. 6. The

relatively high value ρK̄(0) ∼ 5ρ0 for this system does not introduce complications due to

possible overlap between antikaons, because the mean-square radius of K− is less than half

of the corresponding quantity for the proton [30, 31].
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Figure 7: Neutron single-particle spectra in 16O (center) 16O+4(8)K− (right) and
8n+4(8)K̄0 (left), calculated in the NL-SH RMF model with gσK = 2.433 chosen to yield
BK− = 100 MeV in 16O+1K−.

Given the compressed nuclear densities plotted in Fig. 6, we show in Fig. 7 the calculated

neutron single-particle energy levels in 16O, in 16O+κK− and in 8n+κK̄0 multi-K̄ nuclei

for κ = 4, 8. The K̄ couplings are the same as in Figs. 5 and 6, again chosen to ensure

BK− = 100 MeV in 16O+1K−. The 1s1/2 and 1p3/2 levels undergo increasingly attractive

shifts on varying κ in these multi-K̄ systems. Particularly strong is the downward shift

of the 1s1/2 level, by about 70 MeV in 16O+8K− and by about 130 MeV in 8n+8K̄0. In
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contrast, the 1p1/2 neutron level is pushed up by about 10 MeV in the 16O+κK− systems

as a result of a gradually increasing spin-orbit splitting which reaches 43 MeV for κ = 8

(recall that it is 7 MeV for κ = 0 using NL-SH). The 1p1/2 neutron level is weakly bound

in the exotic 8n+κK̄0 systems for 1 < κ < 6, getting more bound with κ as shown in the

figure for these systems. The 1p spin-orbit splitting becomes as large as 56 MeV in the

exotic 8n + 8K̄0 system which exhibits the largest single-particle level splittings in this

figure. Here the 1p1/2 neutron level, too, undergoes attraction.

It is worth mentioning that exotic multi-K̄0 configurations that contain no protons

lie high in the continuum of “nonexotic” multi-K̄ nuclei that are based on nuclear cores

with protons and neutrons. Figure 8 shows the calculated total binding energy B[A,Z, κK̄],

Eq. (7), assuming for simplicity gρK = 0, for three sequences of multi-K̄ nuclei. To illustrate

the relationship between “exotic” and “nonexotic” configurations, we take the 16n+8K̄0

configuration, specifically in its lowest isospin I = 4 state, and replace successively K̄0+n

pairs by K−+p pairs until 16O+8K− is reached. This is demonstrated by the empty

triangles along the vertical dotted line that connects the initial and final configurations.

Both initial and final configurations have identical quantum numbers B = 8, Q = 0, I = 4,

so they are commensurate. Therefore, although K̄ mesons are capable of stabilizing purely

neutron configurations, these exotic configurations do not compete energetically with multi-

K̄ nuclei based on nuclear cores along the nuclear valley of stability.

4 Summary

In the main part of this work, we studied several dynamical aspects of multi-K̄ nuclear

states within RMF methodology. In particular, we discussed in detail the saturation pat-

tern of K̄ separation energies and nuclear densities on increasing the number of antikaons

embedded in the nuclear medium. Saturation was demonstrated to be a robust feature of

multi-K̄ nuclei. The saturated values of BK̄ , for “natural” values of meson-field coupling

constants were found generally to be below 200 MeV, considerably short of the threshold

value ≈320 MeV needed for the onset of kaon condensation under laboratory conditions.

We conclude, consistently with our earlier conjecture [16], that K̄ mesons do not provide

the physical “strangeness” degrees of freedom for self-bound strange dense matter.

We first explored contributions of specific meson mean fields to the K̄ separation energy

BK̄ . Saturation of BK̄ emerged for any boson-field composition that includes the domi-

nant vector ω-meson field, using the “minimal” SU(3) value suggested by the leading-order
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Tomozawa-Weinberg term of the meson-baryon effective Lagrangian. Moreover, the contri-

bution of each one of the vector φ-meson and ρ-meson fields was found to be substantially

repulsive for systems with a large number of antikaons, reducing the K̄ separation en-

ergy as well as lowering the threshold value of number of antikaons required for saturation

to occur. In contrast, the Coulomb interaction and the addition of a hidden-strangeness

scalar σ∗-meson field have little effect on the binding energy balance and on the pattern of
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saturation.

We also verified that the saturation behavior of BK̄ is qualitatively independent of the

RMF model applied to the nucleonic sector. The onset of saturation was found to depend

on the atomic number. Generally, the heavier the nucleus is, the more antikaons it takes

to saturate their separation energies.

The saturation phenomenon found for the K̄ separation energy is also reflected in the

nucleon and antikaon density distributions, with the assertions made above remaining valid.

The saturation of the nuclear density in multi-K̄ nuclei manifests itself in the behavior of

the K̄ effective mass distribution in the nuclear medium. We stress that in the case of

antikaons the concept of nuclear matter is far from being realized even in such a heavy

nucleus as 208Pb. Specifically, the reduction of m∗̄
K

(r) on adding K̄ mesons is pronounced

only within a small region around the nuclear center.

In the second part of this work, we studied exotic configurations consisting exclusively of

neutrons and K̄0 mesons. We demonstrated that a finite number of neutrons can be made

self-bound by adding few K̄0 mesons, with the resulting nuclear configurations more tightly

bound than ordinary nuclei. Saturation of BK̄0 was found for these exotic configurations

too. Yet, these exotic configurations consisting exclusively of neutrons and K̄0 mesons lie

high in the continuum of the less exotic multi-K̄ configurations based on nuclear cores

along the nuclear valley of stability.

In conclusion, over a wide range of variations our calculations do not indicate any

precursor phenomena to kaon condensation in self-bound strange nuclear systems.
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[20] N.V. Shevchenko, A. Gal, J. Mareš, Phys. Rev. Lett. 98, 082301 (2007).
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Abstract

Relativistic mean-field calculations of multi-K̄ hypernuclei are performed by adding

K− mesons to particle-stable configurations of nucleons, Λ and Ξ hyperons. For a given

hypernuclear core, the calculated K̄ separation energy BK̄ saturates with the number of

K̄ mesons for more than roughly 10 mesons, with BK̄ bounded from above by 200 MeV.

The associated baryonic densities saturate at values 2 − 3 times nuclear-matter density

within a small region where the K̄-meson densities peak, similarly to what was found for

multi-K̄ nuclei. The calculations demonstrate that particle-stable multistrange {N,Λ,Ξ}
configurations are stable against strong-interaction conversions Λ→ NK̄ and Ξ→ NK̄K̄,

confirming and strengthening the conclusion that kaon condensation is unlikely to occur

in strong-interaction self-bound strange hadronic matter.

1 Introduction

Quasibound nuclear states of K̄ mesons have been studied by us recently in a series of

articles [1, 2, 3, 4], using a self-consistent extension of nuclear relativistic mean-field (RMF)

models. References [1, 2, 3] focused on the widths expected for K̄ quasibound states,

particularly in the range of K̄ separation energy BK̄ ∼ 100 − 150 MeV deemed relevant

from K−-atom phenomenology [2, 5] and from the KEK-PS E548 12C(K−, N) missing-mass

spectra [6] that suggest values of Re VK̄(ρ0) ∼ −(150 − 200) MeV. Such deep potentials

are not reproduced at present by chirally based approaches that yield values of Re VK̄(ρ0)

of order −100 MeV or less attractive, as summarized recently in Ref. [7]. For a recent

overview of K̄N and K̄-nucleus dynamics, see Ref. [8].

The subject of multi-K̄ nuclei was studied in Refs. [3, 4], where the focal question con-

sidered was whether or not kaon condensation could occur in strong-interaction self-bound

nuclear matter. Yamazaki et al. [9] argued that K̄ mesons might provide the relevant

physical degrees of freedom for reaching high-density self-bound strange matter that could
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then be realized as multi-K̄ nuclear matter. This scenario requires that BK̄ beyond some

threshold value of strangeness exceeds mKc
2 + µN − mΛc

2 & 320 MeV, where µN is the

nucleon chemical potential, thus allowing for the conversion Λ → K̄ + N in matter. For

this strong K̄ binding, Λ and Ξ hyperons would no longer combine with nucleons to com-

pose the more conventional kaon-free form of strange hadronic matter, which is made

out of {N,Λ,Ξ} particle-stable configurations [10, 11] (see Ref. [12] for an update), and

K̄ mesons would condense then macroscopically. However, our detailed calculations in

Ref. [4] demonstrated a robust pattern of saturation for BK̄ and for nuclear densities upon

increasing the number of K̄ mesons embedded in the nuclear medium. For a wide range

of phenomenologically allowed values of meson-field coupling constants compatible with

assuming a deep K̄-nucleus potential, the saturation values of BK̄ were found generally to

be below 200 MeV, considerably short of the threshold value of ≈ 320 MeV required for

the onset of kaon condensation under laboratory conditions. Similar results were subse-

quently published by Muto et al. [13]. Our discussion here concerns kaon condensation

in self-bound systems, constrained by the strong interactions. It differs from discussions

of kaon condensation in neutron stars where weak-interaction constraints are operative for

any given value of density. For very recent works on kaon condensation in neutron-star

matter, see Ref. [14], where hyperon degrees of freedom were disregarded, and Ref. [15],

where the interplay between kaon condensation and hyperons was studied, and references

to earlier relevant work cited therein.

In our calculations of multi-K̄ nuclei [4], the saturation of BK̄ emerged for any boson-

field composition that included the dominant vector ω-meson field, using the F-type SU(3)

value gωKK ≈ 3 associated with the leading-order Tomozawa-Weinberg term of the meson-

baryon effective Lagrangian. This value is smaller than in any of the other commonly used

models [4]. Moreover, the contribution of each one of the vector φ-meson and ρ-meson

fields was found to be substantially repulsive for systems with a large number of antikaons,

reducing BK̄ as well as lowering the threshold value of the number of antikaons required

for saturation to occur. We also verified that the saturation behavior of BK̄ is qualitatively

independent of the RMF model applied to the nucleonic sector. The onset of saturation

was found to depend on the atomic number. Generally, the heavier the nucleus is, the more

antikaons it takes to saturate their separation energies. We concluded that K̄ mesons do

not provide a constituent degree of freedom for self-bound strange dense matter.

In the present work we extend our previous RMF calculations of multi-K̄ nuclei into

the domain of multi-K̄ hypernuclei, to check whether a joint consideration of K̄ mesons

114 Selected Publications



together with hyperons could bring new features or change our previous conclusions. This

is the first RMF calculation that considers both K̄ mesons and hyperons together within

finite self-bound hadronic configurations. The effect of hyperonic strangeness in bulk on the

dispersion of kaons and antikaons was considered by Schaffner and Mishustin [16]. More

recently, kaon-condensed hypernuclei as highly dense self-bound objects have been studied

by Muto [17], using liquid-drop estimates.

The plan of the article is as follows. In Sec. 2 we briefly outline the RMF methodology

for multi-K̄ hypernuclei and discuss the hyperon and K̄ couplings to the meson fields used

in the present work. Results of these RMF calculations for multi-K̄ hypernuclei are shown

and discussed in Sec. 3. We conclude with a brief summary and outlook in Sec. 4.

2 Model

2.1 RMF formalism

In the present work, our interest is primarily aimed at multiply strange baryonic systems

containing (anti)kaons. We employed the relativistic mean-field approach where the strong

interactions among pointlike hadrons are mediated by effective mesonic degrees of freedom.

In the following calculations we started from the Lagrangian density

L = B̄ [iγµDµ − (MB − gσBσ − gσ∗Bσ∗)]B
+ (DµK)† (D µK)− (m2

K − gσKmKσ − gσ∗KmKσ
∗)K†K

+ (σ, σ∗, ωµ, ~ρµ, φµ, Aµ free-field terms)− U(σ)− V (ω),

(1)

which includes, in addition to the common isoscalar scalar (σ), isoscalar vector (ω), isovec-

tor vector (ρ), electromagnetic (A) fields, and nonlinear self-couplings U(σ) and V (ω), also

hidden strangeness isoscalar σ∗ and φ fields that couple exclusively to strangeness degrees

of freedom. Vector fields are coupled to baryons B (nucleons, hyperons) and K mesons via

the covariant derivative

Dµ = ∂µ + i gωΦ ωµ + i gρΦ
~I · ~ρµ + i gφΦ φµ + i e (I3 + 1

2
Y )Aµ , (2)

where Φ = B and K, with ~I denoting the isospin operator, I3 being its z component, and

Y standing for hypercharge. This particular choice of the coupling scheme for K− mesons

ensures the existence of a conserved Noether current, the timelike component of which can
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then be normalized to the number of K− mesons in the medium,

ρK− = 2(EK− + gωK ω + gρK ρ+ gφK φ+ eA)K+K−,
∫

d3x ρK− = κ, (3)

and serves as a dynamical source in the equations of motion for the boson fields in matter:

(−∇2 +m2
σ)σ = gσBB̄B + gσKmKK

+K− − ∂

∂σ
U(σ)

(−∇2+m∗2σ )σ∗= gσ∗BB̄B + gσ∗KmKK
+K−

(−∇2 +m2
ω)ω = gωBB

†B − gωKρK− +
∂

∂ω
V (ω)

(−∇2 +m2
ρ)ρ = gρBB

†I3B − gρKρK−
(−∇2 +m2

φ)φ = gφBB
†B − gφKρK−

−∇2A = eB†(I3 + 1
2
Y )B − e ρK− .

(4)

These dynamically generated intermediate fields then enter the Dirac equation for baryons,

[−iα ·∇+ β (MB − gσBσ − gσ∗Bσ∗) + gωBω + gρBI3ρ+ gφBφ+ e
(
I3 + 1

2
Y
)
A
]
B = εB

(5)

and the Klein-Gordon equation for K− mesons,

[−∇2 − E2
K− +m2

K + ΠK− ]K− = 0, (6)

with the in-medium K− self-energy,

ΠK− =− gσKmKσ − gσ∗KmKσ
∗ − 2EK−(gωKω + gρKρ+ gφKφ+ eA)

− (gωKω + gρKρ+ gφKφ+ eA)2.
(7)

Hence, the presence of the K̄ mesons modifies the scalar and vector mean fields entering the

Dirac equation, consequently leading to a dynamical rearrangement of the baryon config-

urations and densities that, in turn, modify the K̄ quasibound states in the medium. This

requires a self-consistent solution of these coupled wave equations, a procedure followed

numerically in the present as well as in our previous works. In the present work, for the

sake of simplicity, we have suppressed the imaginary part of ΠK− arising from in-medium

K− absorption processes except for demonstrating its effect in one example. Note that,

for the range of values BK− & 100 MeV mostly considered here, the effect of Im ΠK− was
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Table 1: K̄ and K− separation energies, BK̄ and BK− , respectively, calculated statically
(in MeV) for a single antikaon 1s state in several nuclei, using the NL-TM nuclear RMF
parametrizations (TM2 for 12C and 16O, TM1 for 40Ca and above) and vector SU(3) cou-
pling constants, Eq. (10). The difference BK− − BK̄ is due to the K− finite-size Coulomb
potential.

12C 16O 40Ca 90Zr 208Pb
BK̄ 44.8 42.7 49.8 54.5 53.6
BK− 49.0 47.6 59.2 69.4 76.6

found to be negligible (see Fig. 1 of Ref. [4]).

2.2 Choice of the model parameters

To parametrize the nucleonic part of the Lagrangian density (1) we considered the standard

RMF parameter sets NL-SH [18] and NL-TM1(2) [19], which have been successfully used

in numerous calculations of various nuclear systems.

In the case of hyperons the coupling constants to the vector fields were fixed using

SU(6) symmetry. For Λ hyperons this leads to

gωΛ =
2

3
gωN , gρΛ = 0, gφΛ =

−√2

3
gωN . (8)

The coupling to the scalar σ field, gσΛ/gσN = 0.6184 (0.623) for the NL-SH (NL-TM) RMF

model, was then estimated by fitting to measured Λ-hypernuclear binding energies [20].

This essentially ensures the well depth of 28 MeV for Λ in nuclear matter. The coupling

of the Λ hyperon to the scalar σ∗ field was fixed by fitting to the measured value ∆BΛΛ ≈
1 MeV of the uniquely identified hypernucleus 6

ΛΛHe [21]. For Ξ hyperons, SU(6) symmetry

gives

gωΞ =
1

3
gωN , gρΞ = −gρN , gφΞ = −2

√
2

3
gωN . (9)

Because there are no experimental data for Ξ(Λ)-Ξ interactions, we set gφΞ = gσ∗Ξ = 0 to

avoid parameters that might lead to unphysical consequences and that, in addition, are

expected to play a minor role (in analogy to the small effect, of order 1 MeV for BK− ,

found upon putting gφΛ and gσ∗Λ to zero, and as is demonstrated below in Fig. 7 within

a different context). The coupling to the scalar σ field was then constrained to yield

an optical potential Re VΞ− = −14 MeV in the center of 12C [22]. This corresponds to

gσΞ = 0.299gσN for the NL-TM2 RMF model.
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Finally, for the antikaon couplings to the vector meson fields we adopted a purely

F-type, vector SU(3) symmetry:

2gωK = 2gρK =
√

2gφK = gρπ = 6.04, (10)

where gρπ is due to the ρ→ 2π decay width [7]. (Here we denoted by gV P the VPP electric

coupling constant gV PP .) Using this “minimal” set of coupling constants to establish cor-

respondence with chirally based approaches, we calculate the single antikaon 1s separation

energies BK̄ and BK− listed in Table 1. These separation energies are lower roughly by

25 MeV than those anticipated from K̄N−Σπ coupled-channel chiral approaches [7], most

likely because the K? vector-meson off-diagonal coupling is not included in the standard

RMF formulation. The missing attraction, and beyond it, is incorporated here by coupling

the antikaon to scalar fields σ and σ∗. SU(3) symmetry is not of much help when fixing

the coupling constants of scalar fields. Because there still is no consensus about the mi-

croscopic origin of the scalar σ field and the strength of its coupling to K̄ mesons [23, 24],

in this work we fitted gσK to several assumed K− separation energies BK− in the range

of 100 − 150 MeV for a single K− meson in selected nuclei across the periodic table, as

implied by the deep K−-nucleus potential phenomenology of Refs. [2, 6]. Furthermore,

for use in multistrange configurations, the coupling constant to the σ∗ field is taken from

f0(980)→ KK̄ decay to be gσ∗K = 2.65 [16]. The effect of the σ∗ field was found generally

to be minor. For a more comprehensive discussion of the issue of scalar couplings, see our

previous work [4].

2.3 Inclusion of the SU(3) baryon octet

We considered many-body systems consisting of the SU(3) octet N,Λ,Σ, and Ξ baryons

that can be made particle stable against strong interactions [10, 11]. The energy release

Q values for various conversion reactions of the type B1B2 → B3B4 together with phe-

nomenological guidance on hyperon-nucleus interactions suggest that only the conversions

Ξ−p→ ΛΛ and Ξ0n→ ΛΛ (for which Q ' 20 MeV) can be overcome by binding effects. It

becomes possible then to form particle-stable multi-{N,Λ,Ξ} configurations for which the

conversion ΞN → ΛΛ is Pauli blocked owing to the Λ orbitals being filled up to the Fermi

level. For composite configurations with Σ hyperons the energy release in the ΣN → ΛN

conversion is too high (Q & 75 MeV) and, hence, it is unlikely for hypernuclear systems

with Σ hyperons to be particle stable.
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3 Results and discussion

In Refs. [3, 4] we studied multi-K̄ nuclei, observing that the calculated K− separation en-

ergies as well as the nuclear densities saturate upon increasing the number of K− mesons

embedded dynamically in the nuclear medium. This saturation phenomenon, which is qual-

itatively independent of the applied RMF model, emerged for any boson-field composition

containing the dominant vector ω-meson field which acts repulsively between K̄ mesons.

Because the calculated K− separation energies did not exceed 200 MeV, for coupling-

constant combinations designed to bind a single K− meson in the range BK− ∼ 100− 150

MeV, it was argued that kaon condensation is unlikely to occur in strong-interaction self-

bound hadronic matter. In this section we demonstrate that these conclusions hold also

when adding, within particle-stable multistrange configurations, large numbers of hyperons

to nuclei across the periodic table.

3.1 Multi-{N,Λ, K−} configurations

Figure 1 presents 1s K− separation energies BK− in 16O+ηΛ+κK− multi-K−Λ hypernuclei

as a function of the number κ of K− mesons for η = 0, 2, 4, 6, and 8 Λ hyperons, calculated

in the NL-SH model for two values of gσK (gσK = 0.233gσN and 0.391gσN) chosen to produce

BK− = 100 and 150 MeV, respectively, for η = 0, κ = 1. In addition, the lower group of

curves with BK− < 60 MeV corresponds to gσK = 0. The figure illustrates saturation of

BK− with the number of antikaons in multi-Λ hypernuclei. There is an apparent increase of

BK− (up to 15%) when the first two Λ hyperons fill the 1s shell. Further Λ hyperons, placed

in the p shell, cause only insignificant variation of BK− for small values of κ. However, the

effect of the 1p3/2-shell hyperons increases with the number of antikaons, and for κ = 8 it

adds another 5− 10 MeV to BK− . The separation energy BK− remains almost unaffected

(or even decreases) by the next two Λ hyperons placed in the 1p1/2 shell. The figure thus

suggests saturation of the K− separation energy also with the number η of Λ hyperons

in the nuclear medium. When the K− coupling to the σ field is switched off, gσK = 0,

the K− separation energy assumes relatively low values, BK− . 50 MeV, and decreases

as a function of κ when Im ΠK− is considered (solid lines). In this case, the effect of

K− absorption is not negligible as illustrated by the dot-dashed line showing BK− for

Im ΠK− = 0. The effect of Im ΠK− 6= 0 for BK− > 100 MeV in the upper groups of curves

is negligible and is not shown here or in all subsequent figures.

It is worth noting that η = 8 is the maximum number of Λ hyperons in our calculation
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that can be bound in the 16O nuclear core. In some of the 16O + ηΛ + κK− allowed

configurtions, 1p1/2 neutrons became less bound than 1d5/2 neutrons because of the strong

spin-orbit interaction. (This occurs, e.g., for η = 0 when κ ≥ 5 or for η = 8 when

κ ≥ 3.) However, the total binding energy of the system was found always to be higher

for configurations with 1p1/2 neutrons. Consequently, the standard shell configurations of

oxygen are more bound and are thus energetically favorable.

The saturation of BK− upon increasing the number of Λ hyperons in multi-K−Λ hy-

pernuclei based on a 16O nuclear core holds also when going over to heavier core nuclei.

Figure 2 shows the 1s K− separation energy BK− in 208Pb + ηΛ +κK− multi-K−Λ hyper-

nuclei as a function of both the number κ of K− mesons and η of Λ hyperons, calculated in

the NL-TM1 model for gσK = 0.133gσN such that BK− = 100 MeV for η = 0, κ = 1. For
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Figure 1: (Color online) The 1s K− separation energy BK− in 16O + ηΛ + κK− as a
function of the number κ of antikaons for several values of the number η of Λ hyperons,
with initial values BK− = 100 and 150 MeV for η = 0, κ = 1, calculated in the NL-SH RMF
model. The solid (dot-dashed) lines with open symbols correspond to gσK = 0 including
(excluding) Im ΠK− .
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Figure 2: (Color online) The 1s K− separation energy BK− in 208Pb + ηΛ + κK− as a
function of the number κ of antikaons for several values of the number η of Λ hyperons,
with initial value BK− = 100 MeV for η = 0, κ = 1, calculated in the NL-TM1 RMF
model.

any given number η of Λ hyperons, BK− saturates with the number κ of K− mesons, reach-

ing its maximum value for κ = 12. Morever, BK− increases with the number of hyperons

up to η = 20, when it reaches its maximum value BK− ≈ 110 MeV for κ = 12, and then

starts to decrease with η. Consequently, in the Pb configurations with 100 Λ hyperons and

more than 5 K− mesons, K− mesons are even less bound than in configurations with no Λ

hyperons. The decrease of BK− with η beyond η = 20 is apparently related to a depletion

of the central nuclear density in the presence of a massive number of hyperons in outer

shells, as confirmed by some of the subsequent figures, because BK− is greatly affected by

the central nuclear density.
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3.2 Multi-{N,Λ,Ξ, K−} configurations

When building up baryonic multi-{N,Λ,Ξ} configurations with maximum strangeness for

selected core nuclei, we first started by filling up Λ hyperon single-particle states in a given

nuclear core up to the Λ Fermi level. Subsequently, we added Ξ0 and Ξ− hyperons as long

as the reaction [AN, ηΛ, µΞ]→ [(A− 1)N, ηΛ, (µ− 1)Ξ] + 2Λ was energetically forbidden

(here, [...] denotes a bound configuration). Finally, we checked that the inverse reaction

[AN, ηΛ, µΞ] → [(A + 1)N, (η − 2)Λ, (µ + 1)Ξ] is kinematically blocked as well. These

conditions guarantee that such {N,Λ,Ξ} multistrange configurations are particle stable

against strong interactions, decaying only via weak interactions.

Clearly, the amount of Ξ hyperons bound in a given system depends on the depth −VΞ

of the Ξ-nucleus potential. We adopted a value for gσΞ that gives V Dirac
Ξ = VS + VV =

−18 MeV, corresponding to a depth of −V Schr.
Ξ ' 14 MeV for use in the Schroedinger

equation [22]. For comparison, in some cases we also considered V Dirac
Ξ = −25 MeV.

The 16O core can accommodate up to η = 8 Λ hyperons in particle-stable configurations,

and the 16O + 8Λ system admits many more, of order 40 K− mesons. However, we have

not found any energetically favorable conversion ΛΛ → ΞN in 16O + ηΛ + κK− systems.

Therefore, Ξ hyperons are not part of any particle-stable multistrange configurations built

upon the 16O core. While checking the energy balance in heavier systems with 40Ca,
90Zr, and 208Pb nuclear cores, we found particle-stable configurations: 40Ca + 20Λ + 2Ξ0,
90Zr + 40Λ + 2Ξ0 + 2Ξ−, and 208Pb + 106Λ + 8Ξ0 + 18Ξ−. We then embedded several

K− mesons in these configurations and studied density distributions and binding energies

in such multi-K− hypernuclear systems. Figure 3 demonstrates the calculated 1s K−

separation energy BK− in 40Ca + 20Λ + 2Ξ0 + κK−, 90Zr + 40Λ + 2Ξ0 + 2Ξ− + κK−, and
208Pb + 106Λ + 8Ξ0 + 18Ξ− + κK− as a function of the number κ of K− mesons. For

comparison, in the case of the 208Pb core, we also present calculations done excluding Ξ

hyperons but keeping the same number, η = 106, of Λ hyperons. A decrease of BK− upon

adding hyperons (Ξ in this case) is noted, in line with the trend observed and discussed

for Fig. 2 above.

The calculations shown in Fig. 3 were performed within the NL-TM1 nuclear RMF

scheme using values of gσK = 0.211gσN (40Ca) and 0.163gσN (90Zr), which yield BK− = 100

MeV for a singleK− nuclear configuration with η = µ = 0, where µ denotes the number of Ξ

hyperons. The figure demonstrates that the saturation of K− separation energies, observed

for multi-Λ hypernuclei in Figs. 1 and 2, holds also when Ξ hyperons are added dynamically

within particle-stable configurations and that the heavier the system is, the larger number
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Figure 3: (Color online) The 1s K− separation energy BK− in 40Ca, 90Zr, and 208Pb with
ηΛ + µΞ + κK− as a function of the number κ of antikaons, with initial value BK− =
100 MeV for η = µ = 0, κ = 1, calculated in the NL-TM1 RMF model.

κ of antikaons it takes to saturate BK− . It is worth noting that in all cases BK− does not

exceed 120 MeV. Finally, the two curves for a 90Zr nuclear core in Fig. 3 (using diamond

symbols) show the sensitivity to the value assumed for the Ξ hyperon potential depth,

the standard −V Dirac
Ξ = 18 MeV, and a somewhat increased depth −V Dirac

Ξ = 25 MeV,

illustrating the tiny effect it exercises on BK− that is noticeable only for κ < 12.

A deeper Ξ potential supports binding of more Ξ hyperons in a given multi-Λ hypernu-

cleus. For V Dirac
Ξ = −18 MeV, only 2Ξ0 and 2Ξ0 + 2Ξ− hyperons were found to be bound

in 40Ca + 20Λ and 90Zr + 40Λ, respectively. However, for V Dirac
Ξ = −25 MeV it is possible

to accommodate up to 8Ξ0 + 2Ξ− hyperons in 40Ca + 20Λ and 8Ξ0 + 8Ξ− hyperons in
90Zr + 40Λ. Figure 4 presents the 1s K− separation energy BK− in multi-K− hypernuclei
40Ca + 20Λ + 8Ξ0 + 2Ξ− + κK− and 90Zr + 40Λ + 8Ξ0 + 8Ξ− + κK− as a function of the

number κ of K− mesons, calculated in the NL-TM1 model for V Dirac
Ξ = −25 MeV, using

values for gσK such that BK− = 100 MeV in 40Ca + 1K− and in 90Zr + 1K−. The figure

A.3. Multi-K̄ Hypernuclei 123



1 5 10 15 20
κ

100

105

110

115

120

125

B
K

−  (
M

eV
)

40
Ca+20Λ+8Ξ0+2Ξ−+κK

−

90
Zr+40Λ+8Ξ0+8Ξ−+κK

−

Figure 4: (Color online) The 1s K− separation energy BK− in 40Ca and 90Zr with ηΛ +
µΞ + κK−, for V Dirac

Ξ = −25 MeV, as a function of the number κ of antikaons, with initial
value BK− = 100 MeV for η = µ = 0, κ = 1, calculated in the NL-TM1 RMF model.

illustrates that the saturation of the K− separation energy occurs also in baryonic systems

with three species of hyperons, Λ, Ξ0, and Ξ−, reaching quite large fractions of strangeness

[|S|/B = 0.57(0.8) for a Ca(Zr) core]. We note that the separation energy BK− barely

exceeds 120 MeV in these cases too.

We also studied the rearangement of nuclear systems induced by embedding hyperons

and K− mesons. Figure 5 presents the evolution of the density distributions in Zr after first

adding 40Λ+4Ξ hyperons (top panel) and then 10 K− mesons (bottom panel). The nucleon

density ρN in 90Zr is denoted by a dotted line. The relatively weakly bound hyperons

with extended density distributions (dashed line, solid diamonds) attract nucleons, thus

depleting the central nucleon density ρN (dashed line, circles). Adding extra 10 K− mesons

to the hypernuclear system induces large rearrangement of the baryons. The K− mesons,

which pile up near the origin (solid line, squares), attract the surrounding nucleons and

hyperons. Consequently, the densities ρN and ρY (solid lines, solid circles and diamonds,
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Figure 5: (Color online) Density distributions in 90Zr + 40Λ + 2Ξ0 + 2Ξ− + κK−, for
κ = 0 (top panel) and κ = 10 (bottom panel), with BK− = 100 MeV for η = µ = 0, κ = 1,
calculated in the NL-TM1 RMF model. The dotted line corresponds to the nucleon density
ρN in 90Zr. The densities ρΛ (open diamonds) and ρN (open circles) in 90Zr + 40Λ + κK−

are shown for comparison.

respectively) increase considerably in the central region. The resulting configuration 90Zr+

40Λ + 2Ξ0 + 2Ξ− + 10K− is thus significantly compressed, with central baryon density ρB

exceeding the nuclear density in 90Zr by a factor of roughly 3.

For comparison we present in Fig. 5 also the Λ hyperon (ρΛ, open diamonds) and

nucleon (ρN , open circles) density distributions calculated in 90Zr + 40Λ + κK− for κ = 0

and 10 K− mesons. The removal of the 1s-state Ξ hyperons from the primary baryonic

configuration 90Zr + 40Λ + 2Ξ0 + 2Ξ− affects considerably the hyperon density distribution

ρY in the central region of the nucleus, this effect being magnified by the presence of
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K− mesons. In contrast, the nucleon density ρN remains almost intact. For κ = 10, Ξ

hyperons appear to repel nucleons from the center of the multi-{N, Y, K̄} system, much

like Λ hyperons do.

3.3 Multi-{N,Λ,Ξ, K+} configurations

The K+-nucleus potential is known to be repulsive, with VK+ ≈ 30 MeV at central nuclear

density [5]. Schaffner and Mishustin [16] suggested that the presence of hyperons could

lead eventually to a decrease of the repulsion that K+ mesons undergo in nuclear matter

so that the K+ potential might even become attractive. Here we studied the possibility

of binding K+ mesons in hypernuclear matter, neglecting for simplicity dynamical effects

arising from coupling K+ mesons to the hypernuclear system. The K+-nucleus potential

was constructed simply by applying a G-parity transformation to the corresponding K−

potential, choosing gσK such that it produces BK− = 100 MeV in the given core nucleus.
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Figure 6: (Color online)The K+ static potential in 16O+ηΛ−νp, calculated in the NL-SH
RMF model.
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Figure 6 shows the radial dependence of the real part of the static K+ potential in

various hypernuclear systems connected with 16O. The dotted line shows the repulsive K+

potential in 16O for comparison. The figure indeed shows that the repulsion decreases, from

roughly 30 MeV down to roughly 20 MeV with the number of Λ hyperons added to the

nuclear core, but the K+ potential remains always repulsive in 16O+ηΛ systems. Searching

for a K+ bound state in hadronic systems we also calculated the K+ potential in more

exotic multistrange hypernuclei AZ + ηΛ− νp, where several protons are removed from the

nuclear core in an attempt to increase the |S|/B ratio and to reduce Coulomb repulsion.

Figure 6 indicates that such removal of protons from 16O has a sizable effect on the shape of

the K+ potential, which may result in a shallow attractive pocket. However, the attraction

is insufficient to bind a K+ meson in these hadronic systems. Our calculations confirmed

that the above conclusion holds also in heavier hypernuclear configurations based on Ca,

Zr, and Pb cores.

In heavier nuclei, where it becomes possible to accommodate also Ξ hyperons in addition
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Figure 7: (Color online) The K+ static potential in 90Zr + ηΛ + µ(Ξ0 + Ξ−), calculated in
the NL-TM1 RMF model.
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to Λ hyperons, the K+ repulsion may be further reduced. This is demonstrated in Fig. 7

for a 90Zr nuclear core. However, this reduction is insufficient to reverse the repulsion

into attraction. The figure also shows that the hidden strangeness couplings (chosen to be

giΞ = 2giΛ, i = σ∗, φ) have no effect whatsoever on the reduction accomplished by the

presence of Ξ hyperons.

Finally, we searched for K+ bound states in nuclei sustained by K− mesons. The

presence of deeply bound K− mesons makes the K+ potential immensely deep (more than

100 MeV in 16O + 8K−). Hovever, because the K− mesons are concentrated at the very

center of the nucleus, the K+ potential is of a rather short range of about 1 fm. As

a result, we found only very weakly bound K+ states (by 1 MeV) in multi-{N, Y,K−}
configurations. A more careful treatment of K+K− dynamics near threshold is necessary

before coming to further conclusions, but our conclusion is not at odds with recent studies

of the I = 1/2, Jπ = 1/2+ KK̄N system [25, 26].

4 Summary and conclusions

In this work, the RMF equations of motion for multi-K̄ hypernuclei were formulated and

solved for self-bound finite multistrange configurations. The choice of coupling constants of

the constituents – nucleons, hyperons, and K̄ mesons – to the vector and scalar meson fields

was guided by a combination of accepted models and by phenomenology. The sensitivity

to particular chosen values was studied. The results of the RMF calculations show a

robust pattern of binding-energy saturation for K̄ mesons as a function of their number

κ. Compared to our previous RMF results for multi-K̄ nuclei [4], the added hyperons

do not bring about any quantitative change in the BK−(κ) saturating curve. The main

reason for saturation remains the repulsion induced by the vector meson fields, primarily

ω, between K̄ mesons. The SU(3)V values adopted here for gvK , Eq. (10), provide the

“minimal” strength for gωK out of several other choices made in the literature, implying

that the saturation of BK−(κ) persists also for other choices of coupling-constant sets, as

discussed in Ref. [4]. The repulsion between K̄ mesons was also the primary reason for

saturation in multi-K̄ nuclei, both in our previous work [4] and in Ref. [13].

The saturation of BK− with typical values below 200 MeV, considerably short of what

it takes to replace a Λ hyperon by a nucleon and a K̄ meson, means that K̄ mesons do not

compete favorably and thus cannot replace hyperons as constituents of strange hadronic

matter. In other words, K̄ mesons do not condense in self-bound hadronic matter. The
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baryon densities of multi-K̄ hypernuclei are between (2− 3)ρ0, where ρ0 is nuclear-matter

density. This is somewhat above the values obtained without K̄ mesons, but still within

the density range where hadronic models are likely to be applicable.

Our conclusion of no “kaon condensation” is specific to self-bound finite hadronic sys-

tems run under strong-interaction constraints. It is not directly related to the Kaplan-

Nelson conjecture of macroscopic kaon condensation [27], nor to hadronic systems evolving

subject to weak-interaction constraints, such as neutron stars. Yet, this conclusion has been

challenged recently by Muto [17] who uses the liquid-drop approach to claim that multi-K̄

hypernuclei (termed by him “kaon-condensed hypernuclei”) may provide the ground-state

configuration of finite strange hadronic systems at densities about 9ρ0. Of course this

high value of density for kaon-condensed hypernuclei is beyond the range of applicability

of hadronic models, because quark-gluon degrees of freedom must enter in this density

range. His calculation also reveals an isomeric multistrange hypernuclear state, without K̄

mesons, at density about 2ρ0 which is close to what we find here within a RMF bound-state

calculation. The appearance of a high-density kaon-condensed hypernuclear bound state in

Muto’s calculation might be just an artifact of the applied liquid-drop methodology, which

does not provide an accurate substitute for a more microscopically oriented bound-state

calculation.

The role of K− strong decays in hadronic matter was played down in the present

calculation of multi-K− hypernuclei because our aim, primarily, was to discuss and compare

(real) binding energies of strange hadronic matter with and without K− mesons. The width

of deeply bound K− nuclear configurations was explored by us in Refs. [1, 2, 3], concluding

that residual widths of order ΓK− ∼ 50 MeV due to K−NN → ΛN,ΣN pionless conversion

reactions are expected in the relevant range of binding energy BK− ∼ 100 − 200 MeV.

This estimate should hold also in multi-K− hypernuclei where added conversion channels

are allowed: K−NY → ΛY,ΣY , K−NΛ → NΞ, and K−ΛY → ΞY . We know of no

physical mechanism capable of reducing substantially these widths, and therefore we do

not anticipate multi-K− nuclei or multi-K− hypernuclei to exist as relatively long-lived

isomeric states of strange hadronic matter which consists of multi-{N,Λ,Ξ} configurations.
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[4] D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 77, 045206 (2008).
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1Nuclear Physics Institute, 25068 Řež, Czech Republic
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Abstract

A self consistent scheme for constructing K− nuclear optical potentials from subthresh-

old in-medium K̄N s-wave scattering amplitudes is presented and applied to analysis of

kaonic atoms data and to calculations of K− quasibound nuclear states. The amplitudes

are taken from a chirally motivated meson-baryon coupled-channel model, both at the

Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms

potentials are characterized by a real part −ReV chiral
K− = 85±5 MeV at nuclear matter den-

sity, in contrast to half this depth obtained in some derivations based on in-medium K̄N

threshold amplitudes. The moderate agreement with data is much improved by adding

complex ρ- and ρ2–dependent phenomenological terms, found to be dominated by ρ2 con-

tributions that could represent K̄NN → Y N absorption and dispersion, outside the scope

of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The

effects of p-wave interactions are studied and found secondary to those of the dominant

s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed

and systematic studies of K− quasibound nuclear states are presented.

1 Introduction

A key issue in studying in-medium K− meson interactions concerns the strength of the

attractive K− nuclear potential [1]. Related topical questions involve (i) the underlying

free-space K̄N interaction and whether or not it can realistically support K− nuclear

clusters (see Ref. [2] for a recent review), and (ii) the role of K− mesons in multistrange self-

bound matter [3] and in compact stars [4]. An order of magnitude estimate of the nuclear

potential VK− is provided by the leading-order (LO) Tomozawa-Weinberg (TW) vector

term of the chiral effective meson-baryon Lagrangian [5] which in the Born approximation

gives

VK− = − 3

8f 2
π

ρ ≈ −57
ρ

ρ0

(in MeV), (1)
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where ρ is the nuclear density, ρ0 = 0.17 fm−3, and fπ ≈ 93 MeV is the pion decay constant.

This attraction is doubled, roughly, within chirally based coupled-channel K̄N–πΣ–πΛ

calculations that produce dynamically a K̄N quasibound state loosely identified with the

Λ(1405) resonance [6]. Deeper potentials, in the range Re VK−(ρ0) ∼ −(150–200) MeV

are obtained in comprehensive global fits to K−-atom strong-interaction shifts and widths

by introducing empirical density dependent effective K−N amplitudes [7, 8, 9, 10]. Such

strongly attractive potentials are expected to generate K− nuclear quasibound states which

could prove relatively narrow once the strong transition K̄N → πΣ becomes kinematically

forbidden for binding energies exceeding about 100 MeV, as conjectured by Akaishi and

Yamazaki [11]. Experimentally, we mention the K− quasibound signals claimed for K−pp

[12, 13] at and below the πΣN threshold. However, these reported signals are quite broad,

at variance with the underlying physics. In contrast to the indications of a deep K−

potential, considerably shallower potentials, ReVK−(ρ0) ∼ −(40–60) MeV, are obtained for

zero kinetic-energy kaons by introducing self energy (SE) contributions to the in-medium

K−N threshold scattering amplitude, within a self-consistent procedure that includes in

particular the potential VK− thus generated [14, 15].

In a recent Letter [16] we reported on new, self consistent calculations of K− quasibound

states that lead to deep K− nuclear potentials, considerably deeper than the ‘shallow’ po-

tentials deduced in Refs. [14, 15]. The basic idea is to identify the K−N subthreshold

energy domain required for the construction of VK− . For kaonic atoms, essentially at the

K− nuclear threshold, this was explored during the 1970s by Wycech [17], Bardeen and

Torigoe [18] and Rook [19] who noted the dominance of the subthreshold K̄N quasibound

state Λ(1405) in causing the in-medium K̄N scattering amplitude to become more at-

tractive as one goes to subthreshold K−N energies. In our Letter [16] we applied this

idea, introducing a new self consistency requirement, to a comprehensive study of kaonic

atoms that uses scattering amplitudes derived from a chirally motivated coupled channel

meson-baryon Lagrangian [20]. Here we expand on these recent calculations to provide

more details on derivation, systematics and results. In addition to the next to leading-

order (NLO) model CS30 used in the Letter, in the present work we report on a new LO

model TW1 fitted to the new SIDDHARTA values of shift and width of the 1s state in

the K− hydrogen atom [21]. The paper is organized as follows: in Sec. 2 we describe a self

consistent scheme of handling in-medium subthreshold K−N scattering amplitudes used

in the construction of VK− . In Sec. 3 we discuss the derivation of in-medium scattering

amplitudes in both models TW1 and CS30. Some details are relegated to an Appendix.
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In Sec. 4 we discuss kaonic atom calculations, and in Sec. 5 we discuss calculations of K−

nuclear quasibound states. Sec. 6 concludes the work with a brief summary of the main

results.

2 Handling K−N subthreshold amplitudes

In the single-nucleon approximation, the K− potential in nuclear matter of density ρ is

given in terms of the in-medium K−N scattering amplitude FK−N ,

VK− = − 2π

ωK
(1 +

ωK
mN

) FK−N(~p,
√
s; ρ) ρ, (2)

where FK−N(~p,
√
s; ρ → 0) reduces to the free-space two-body K−N c.m. forward scat-

tering amplitude FK−N(~p,
√
s) and the nucleon energy EN is approximated by its mass

mN in the kinematical factor in front of FK−N . Here, ~p is the relative K−N momentum

and s = (EK + EN)2 − (~pK + ~pN)2 is the Lorentz invariant Mandelstam variable s which

reduces to the square of the total K−N energy in the two-body c.m. frame. In the labora-

tory frame, EK = ωK . Before constructing VK− for use in actual calculations, we need to

prescribe how to interpret in Eq. (2) the two-body arguments ~p and
√
s of the in-medium

scattering amplitude. For s-wave amplitudes, the momentum dependence arises through

the magnitude p of the relative momentum ~p which near threshold is approximated by

~p = ξN~pK − ξK~pN , ξN(K) = mN(K)/(mN +mK). (3)

Averaging over angles, the square of ~p assumes the form

p2 → ξNξK(2mK
p2
N

2mN

+ 2mN
p2
K

2mK

). (4)

For
√
s we note that ~pK + ~pN = 0 in the two-body c.m. system, but ~pK + ~pN 6= 0 in

the nuclear laboratory system which nearly coincides with the K−–nucleus c.m. system.

Averaging over angles yields (~pK +~pN)2 → (p2
K +p2

N). Near threshold, neglecting quadratic

terms in the binding energies BK = mK − EK , BN = mN − EN , we have

√
s ≈ Eth −BN −BK − ξN p2

N

2mN

− ξK p2
K

2mK

, (5)
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where Eth = mN + mK . To transform the momentum dependence into density depen-

dence, the nucleon kinetic energy p2
N/(2mN) is approximated in the Fermi gas model by

TN(ρ/ρ0)2/3, with TN = 23.0 MeV, and the K− kinetic energy p2
K/(2mK) is identified in

the local density approximation with −BK − Re VK−(ρ), where VK− = VK− + Vc and Vc

is the K− finite-size Coulomb potential. Under these approximations, Eqs. (4) and (5)

become

p2 ≈ ξNξK [2mKTN(ρ/ρ0)2/3 − 2mN(BK + Re VK−(ρ))], (6)

where both terms on the r.h.s. are positive for attractive VK− , and

√
s ≈ Eth −BN − ξNBK − 15.1(

ρ

ρ0

)2/3 + ξKRe VK−(ρ) (7)

(in MeV), where all the terms following Eth on the r.h.s. are negative, thus implementing

the anticipated downward energy shift into the K−N subthreshold energy region. Eq. (7)

is used in most of the bound state applications below as is, although we also checked the

effect of implementing gauge invariance through the substitution
√
s → √s − Vc. Gauge

invariance often is not implemented in the solution of the free-space Lippmann-Schwinger

equations of underlying chiral models simply because its effects on the two-body meson-

baryon system are negligible.

We note that the K− nuclear potential VK− appears as an argument in expressions (6)

and (7) for p2 and
√
s, respectively, which in turn serve as arguments in expression (2) for

this same VK− . This suggests to calculate VK− self consistently within a scheme in which

the downward energy shift into the K−N subthreshold energy region is density dependent

and is controlled by the outcome self-consistent VK−(ρ). In the corresponding sections

below we elaborate on the self consistency scheme which is applied to the solution of the

wave equation satisfied by in-medium K− mesons.

3 In-medium K̄N amplitudes

The synergy of chiral perturbation theory and coupled channel T -matrix resummation

techniques provides successful description of K̄N interactions at low energies [2]. In our

approach we employ chirally motivated coupled-channel s-wave potentials that are taken
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in a separable form,

Vij(p, p
′;
√
s) =

√
1

2ωi

Mi

Ei
gi(p)

Cij(
√
s)

f 2
π

gj(p
′)

√
1

2ωj

Mj

Ej
, gj(p) =

1

1 + (p/αj)2
, (8)

with Ei, Mi and ωi denoting baryon energy, baryon mass and meson energy in the c.m.

system of channel i. The coupling matrix Cij is determined by chiral SU(3) symmetry.

The parameter fπ ∼ 100 MeV represents the pseudoscalar-meson decay constant in the

chiral limit, and the inverse range parameters αi are fitted to the low energy K̄N data.

The indices i and j run over the meson-baryon coupled channels πΛ, πΣ, K̄N , ηΛ, ηΣ

and KΞ, including all their appropriate charge states. Details of the free-space version of

this model are given in Ref. [20]. Here we summarize its essential points with emphasis on

in-medium modifications.

The chiral symmetry of meson-baryon interactions is reflected in the structure of the

Cij coefficients derived directly from the Lagrangian. The exact content of the matrix

elements up to second order in the meson c.m. kinetic energies was specified already in

Ref. [22]. In practice, one often considers only the leading order TW interaction [5] with

energy dependence given by

Cij(
√
s) = −CTW

ij (2
√
s−Mi −Mj)/4. (9)

The structure constants CTW
ij are listed in Ref. [23]. We note that this relativistic pre-

scription differs from the one adopted in models derived from a chiral Lagrangian for-

mulation for static baryons [20, 22] and expanded strictly only to second order in meson

energies and quark masses. There, the energy dependence form (2
√
s −Mi −Mj) is re-

placed by (ω′i + ω′j) where the primed meson energies ω′j include a relativistic correction:

ω′j = ωj + (ω2
j − m2

j)/(2M0), with mj denoting the meson mass in channel j and where

M0 is the baryon mass in the chiral limit. In principle, approaches based on different

formulations of the chiral Lagrangian should give identical results for physical observables.

However, this is true only when one sums up an infinite series of relevant Feynman dia-

grams to all orders in q, and need not hold at a given perturbative order. In other words,

models based on different Lagrangian formulations, or models that differ from each other

in prescribing how to treat terms beyond leading order, may give within reasonable limits

different predictions for physical observables.

The scattering amplitudes corresponding to the separable potentials (8) are also of a
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separable form

Fij(p, p
′;
√
s) = gi(p)fij(

√
s)gj(p

′), (10)

with the same form factors gi(p) and gj(p
′), and where the reduced scattering amplitude

fij is given explicitly by

fij(
√
s) = − 1

4πf 2
π

√
MiMj

s

[
(1− C(

√
s) ·G(

√
s))−1 · C(

√
s)
]
ij
. (11)

Here the meson-baryon propagator G(
√
s) is diagonal in the channel indices i and j. When

the elementary K̄N system is submerged in the nuclear medium one has to consider Pauli

blocking and self energies (SE) generated by the interactions of mesons and baryons with

the medium. Thus, the propagator G(
√
s) and the reduced amplitudes fij(

√
s) become

dependent on the nuclear density ρ. The intermediate state Green’s function is calculated

as

Gi(
√
s; ρ) =

1

f 2
π

Mi√
s

∫

Ωi(ρ)

d3~p

(2π)3

g2
i (p)

p2
i − p2 − Πi(ωi, Ei, ~p; ρ) + i0

. (12)

Here ~pi is the on-shell c.m. momentum in channel i and the integration domain Ωi(ρ) is

limited by the Pauli principle in the K̄N channels. Included in the denominator of the

Green’s function (12) is the sum Πi of meson and baryon self energies in channel i. In par-

ticular the kaon SE ΠK = 2ωKVK− , which serves as input in Eq. (12) and therefore also in

Eq. (11) for the output reduced amplitude fK−N , requires by Eq. (2) the knowledge of this

same output fK−N . This calls for a self consistent solution of the in-medium reduced scat-

tering amplitudes fij(
√
s, ρ) as was first suggested by Lutz [24]. In the present calculation,

following Ref. [15], the baryon and pion self energies were approximated by momentum

independent potentials V = V0 ρ/ρ0 with real and imaginary parts of V0 chosen consis-

tently from mean-field potentials used in nuclear structure calculations and in scattering

calculations, respectively. Specifically, we adopted V π
0 = (30− i10) MeV, V Λ

0 = (−30− i10)

MeV, V Σ
0 = (30− i10) MeV and V N

0 = (−60− i10) MeV.

The free parameters of the separable-interaction chiral models considered in Ref. [20]

and in the present work were fitted to the available experimental data on low energy K̄N

interactions, consisting of K−p low-energy cross sections for elastic scattering and reactions

to the K̄0n, π+Σ−, π−Σ+, π0Λ and π0Σ0 channels (as listed in Ref. [22]). In addition, the

accurately determined K−p threshold branching ratios γ, Rc, Rn [25] provide a rather

strict test for any quantitative model. Another stringent test is provided by the recent

SIDDHARTA measured values ∆E1s and Γ1s of the K−–hydrogen atom 1s level shift and

138 Selected Publications



Table 1: K−p threshold observables calculated in several free-space LO coupled-channel
chiral models. The K−–hydrogen atom 1s shift ∆E1s and width Γ1s (in eV) marked by
asterisks were obtained from the calculated K−p scattering length by means of a modified
Deser-Trueman relation [26] and are compared to the SIDDHARTA measured values [21].
The K−p threshold branching ratios γ, Rc, Rn are from Ref. [25]. The last two columns list
the calculated I = 0 S-matrix pole positions z1, z2 (in MeV) on the [−,+] second Riemann
sheet of the complex energy plane.

∆E1s Γ1s γ Rc Rn z1 z2

TW1 323 659 2.36 0.636 0.183 (1371,−54) (1433,−25)
JOORM [27] 275∗ 586∗ 2.30 0.618 0.257 (1389,−64) (1427,−17)

HW [28] 270∗ 570∗ 1.80 0.624 0.225 (1400,−76) (1428,−17)

exp. 283 541 2.36 0.664 0.189 – –
error (±) 42 111 0.04 0.011 0.015 – –

width [21].

In the present work we focus on a separable-interaction LO chiral model marked TW1,

constructed by fitting just two parameters to the data, fπ = 113 ± 2 MeV for the PS

meson decay constant and α = 701 ± 20 MeV for the common inverse range parameter,

both within one’s theoretical expectations. Some characteristics of the TW1 model in

comparison to other LO models are listed in Table 1. These LO models include only the

leading TW interaction [5], with interchannel couplings given by Eq. (9). Also listed in

the table are the positions z1, z2 of the two I = 0 S-matrix poles that reside on the second

Riemann sheet [−,+] of the complex energy manifold, where the signs are those of the

imaginary parts of the c.m. momenta in the πΣ and K̄N channels, respectively. Their

origin may be traced to poles in decoupled I = 0 channels, a πΣ resonance pole z
(0)
1 and

a K̄N quasibound state pole z
(0)
2 . The πΣ–K̄N interchannel coupling moves the poles

away from their zero-coupling position, the precise full-coupling position exhibiting some

model dependence. It is remarkable that all the LO TW models listed in the table are in

close agreement on the position of the upper pole z2. This agreement is spoiled when NLO

corrections that require additional low energy constants to be fitted to the experimental

data are included in the interchannel couplings. In contrast, the position of the lower

pole z1 exhibits model dependence already in TW models. Generally, it is located much

further away from the real axis than the pole z2. The pole z2 is usually relegated to the

subthreshold behavior of the K−p amplitude and to the Λ(1405) resonance observed in the

πΣ mass spectrum in K̄N initiated reactions. Nuclear medium effects on the poles z1, z2

are discussed in the Appendix.
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In Fig. 1 we show the energy dependence of the reduced elastic scattering amplitudes

fK−p and fK−n in model TW1 in free space and for two versions of in-medium modifications

(marked ‘with’ and ‘without’ SE). Recall that fK−p = 1
2
(f I=0
K̄N

+ f I=1
K̄N

) is affected by the

subthreshold I = 0 Λ(1405) resonance, whereas fK−n = f I=1
K̄N

is not affected. Indeed, the

free-space amplitudes, in dashed lines, exhibit a marked difference between K−p and K−n,

with the former amplitude showing a typical resonance structure. The pronounced peak

in Im fK−p and the change of sign in Re fK−p point to the existence of a quasibound state

generated by the I = 0 K̄N interaction closely below the K−p threshold. In contrast,

the pure I = 1 K−n amplitude displays hardly any energy dependence besides a smooth

and slow decrease of the imaginary part upon going to subthreshold energies where phase

space cuts it down. The free-space K−n interaction is weakly attractive and its in-medium

renormalization, given by the other curves on the right-hand panels, is rather weak and

exhibits little density dependence, in clear distinction to the in-medium effect on the K−p

amplitudes shown on the left-hand panels. Here, in-medium Pauli blocking moves the K−p

free-space resonance structure to higher energies, as demonstrated by the dot-dashed lines

(marked ‘without SE’) in the left panels of the figure which correspond to nuclear matter

density ρ0 = 0.17 fm−3. The TW1 results obtained here with Pauli blocking fully agree

with those obtained long ago by Waas, Kaiser, Weise [6] and which are recoverable upon

switching on their parameter set in our chiral formulation. In contrast, a very different

pattern was presented by Ramos and Oset [14], most likely due to their on-shell treatment

of the intermediate state propagator and the inclusion of a ”nucleon hole” term.

The effect of combined Pauli blocking and hadron SE on the K−p amplitude is shown by

the solid lines (marked ‘with SE’) in Fig. 1. The real part of the amplitude remains positive

(attractive) in the whole energy range, in agreement with phenomenological analyses of

kaonic atoms [7], while the peak of the imaginary part moves back to approximately where

it was in the free-space amplitude. The most striking feature of the model is the sharp

increase in the real part of the amplitude when going to subthreshold energies, caused

mainly by the introduction of kaon self energy in the propagator (12) which is responsible

for moving the resonant structure related to the Λ(1405) back below the K̄N threshold.

Consequently, the K−p interaction becomes much stronger at energies about 30 MeV

below the K−p threshold with respect to its strength at threshold. This feature is missing

in the in-medium calculations of Ref. [14] which get substantially different results than

ours already when only Pauli blocking is accounted for.

Although the simple LO TW1 model was used to demonstrate the nuclear medium
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Figure 1: (Color online) Energy dependence of the c.m. reduced amplitudes fK−p (left
panels) and fK−n (right panels) in model TW1. The upper and lower panels refer to the
real and imaginary parts of f , respectively. Dashed curves: free space, dot-dashed: Pauli
blocked amplitude (without SE) at ρ = ρ0, solid curves: including meson and baryon self
energies (with SE) at ρ = ρ0.

effect on the K−p interaction in Fig. 1, the same pattern is obtained within the NLO CS30

model of Ref. [20]. This is demonstrated in Fig. 2 where in-medium ‘with SE’ K−p reduced

scattering amplitudes generated in these two models are compared to each other at ρ = ρ0.

The differences between the two sets of curves are seen to be minute.

To end this section we show in Fig. 3, for model TW1, the reduced scattering amplitude

corresponding to the interaction of K− mesons with symmetric nuclear matter,

fK−N(
√
s, ρ) =

1

2
[ fK−p(

√
s, ρ) + fK−n(

√
s, ρ) ], (13)

where fK−N(
√
s, ρ = 0) ≡ fK−N(

√
s). The free-space amplitude fK−N(

√
s), for ρ = 0, is

marked by dashed lines. Its imaginary part peaks about 15 MeV below the K̄N threshold,

and its real part rapidly varies there from weak attraction above to strong attraction below

threshold. While fK−N(
√
s) at and near threshold is constrained by data that serve to

determine the parameters of the chiral model, the extrapolation to the subthreshold region

may suffer from ambiguities depending on the applied model [2]. Also shown in Fig. 3
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Figure 2: (Color online) Energy dependence of the in-medium c.m. reduced amplitude
fK−p at nuclear matter density ρ0 in models TW1 (solid lines) and CS30 (dashed lines).
The calculations include Pauli blocking and self energies.

are two versions of in-medium reduced amplitudes fK−N(
√
s, ρ = 0.5ρ0). One version, in

dot-dashed lines (marked ‘without SE’), implements Pauli blocking in the intermediate

K̄N states for ρ 6= 0. The resulting fK−N exhibits a resonance-like behavior about 20 MeV

above threshold, in agreement with Ref. [6]. The other in-medium version, in solid lines

(marked ‘with SE’), adds self consistently meson and baryon self energies in intermediate

states, as explained earlier. The resulting in-medium fK−N is strongly energy dependent,

with a resonance-like behavior about 35 MeV below threshold. Similar results are obtained

at full nuclear matter density ρ0 = 0.17 fm−3. We note that whereas the two in-medium

reduced amplitudes shown in the figure are close to each other far below and far above

threshold, they differ substantially at and near threshold. This applies also to the full

amplitudes FK−N , Eq. (10), since the form factors g(p) remain the same in the transition

from free-space to in-medium separable amplitudes. At threshold, in particular, the real

part of the ‘with SE’ amplitude is about half of that ‘without SE’, corresponding to a

depth −Re VK−(ρ0) ≈ 40 MeV, in rough agreement with Ref. [14].
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Figure 3: (Color online) Energy dependence of the c.m. reduced amplitude fK−N (13) in
model TW1 below and above threshold. Dashed curves: in free-space; dot-dashed curves:
Pauli blocked amplitude at 0.5ρ0; solid curves: including meson and baryon self energies
at 0.5ρ0.

4 K− atom calculations

Strong interaction level shifts and widths in kaonic atoms have been for decades a source

of precise data on the K− nuclear interaction near threshold. Particularly instructive are

so-called ‘global’ analyses when data for many nuclei across the periodic table are being

analyzed together, usually with the help of optical potentials which are related to the

nuclear densities [10]. This type of analyses could reveal characteristic features of the

interaction which, in turn, reflect on the underlying K−N interaction in the medium, for

example, its energy and density dependence. It was shown already in 1993 [7] that with

density-dependent empirical amplitudes within a ‘tρ’ approach to the optical potential, very

good fits to the data were possible. Depths of the real potential were close to 180 MeV

whereas fixed-t models achieved inferior fits and the resulting potentials were half as deep.

Later predictions of in-medium chiral models at threshold [14] presented depths of only

50 MeV for the real potential at full nuclear density. This wide span of values has been

termed the ‘deep vs. shallow’ controversy in kaonic atoms [29]. While attention has been
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focused on depths of the potentials, little attention was paid to the other empirical finding

[7], namely, that the best-fit real potentials were not only deep but also ‘compressed’

relative to the corresponding nuclear densities, with r.m.s. radii smaller than the nuclear

r.m.s. radii. This feature means that the real part of the underlying K−-bound nucleon

interaction increases with density, and it is shown below to be in line with the density

dependence of the chiral model in-medium amplitudes employed in the present work.

4.1 Wave equation

The choice of K− wave equation follows naturally from the in-medium dispersion relation

ω2
K − ~p 2

K −m2
K − ΠK(~pK , ωK , ρ) = 0, (14)

where ΠK(~pK , ωK , ρ) = 2(ReωK)VK− is the self energy (SE) operator for a K− meson with

momentum ~pK and energy ωK [30]. The Klein-Gordon (KG) dispersion relation (14) leads

in hadronic atoms applications to a KG equation satisfied by the K− wavefunction [10]:

[∇2 − 2µ(BK + Vc) + (Vc + BK)2 + 4π(1 +
A− 1

A

µ

mN

)FK−N(~p,
√
s; ρ) ρ ] ψ = 0. (15)

Here, µ is the K−-nucleus reduced mass, BK = BK + iΓK/2 is a complex binding energy,

including a strong interaction width ΓK , and Vc is the K− Coulomb potential generated

by the finite-size nuclear charge distribution, including vacuum-polarization terms.

4.2 s waves

The first application of the scheme presented in Sec. 2 for handling K−N amplitudes below

threshold was to global analyses of strong-interaction effects in kaonic atoms. The data

base was the same as in Ref. [7] with 65 data points for targets from 7Li to 238U. In

solving the KG equation (15), the ~pK momentum dependence of FK−N was transformed

into density and energy dependence according to Eq. (6). Furthermore, proton and neutron

densities were handled separately, replacing FK−N(
√
s, ρ)ρ(r) by an effective amplitude

F eff
K−N(

√
s, ρ)ρ(r) = FK−p(

√
s, ρ)ρp(r) + FK−n(

√
s, ρ)ρn(r), (16)

with ρp and ρn normalized to Z and N , respectively, and Z+N = A. Two-parameter Fermi

distributions (2pF) were used for both densities, with ρp obtained from the known charge
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distribution by unfolding the finite size of the charge of the proton. For ρn averages of the

‘skin’ and ‘halo’ forms of Ref. [31] were chosen with the difference between r.m.s. radii

given by rn − rp = (N − Z)/A − 0.035 fm. The reduced amplitudes fK−p and fK−n were

evaluated at
√
s given by Eq. (7), where the atomic binding energy BK was neglected with

respect to BN ≈ 8.5 MeV. A similar approximation was made in Eq. (6) for p2 when using

the form factors g(p) of Eq. (10). The K−-nucleus potentials were calculated by requiring

self consistency in solving Eq. (7) with respect to Re VK− , i.e., the value of Re VK−(ρ) in

the expression for
√
s and in the form factors g had to agree with the resulting ReVK−(ρ).

That was done at each radial point and for every target nucleus in the data base.
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Figure 4: (Color online) Density dependence of the in-medium ‘without SE’ CS30 self
consistent subthreshold amplitude F eff

K−N for Ni.

It is instructive to start by inspecting the effective amplitudes Eq. (16) obtained in

the above self consistent procedure. Figure 4 shows effective amplitudes for K− on Ni,

calculated from the CS30 ‘without SE’ K−N amplitudes, with and without the
√
s →√

s − Vc substitution discussed in Sec. 2. The increase of Re F eff
K−N(ρ) with density over

the nuclear surface region combined with the decrease of Im F eff
K−N(ρ) are the underlying

mechanisms behind the compression of the real part and inflation of the imaginary part

of best-fit density-dependent phenomenological potentials [7]. Similar results for CS30

amplitudes that include SE were shown in Ref. [16]. Although there are differences in

details between the various models, the geometrical implications are robust. The decrease

of ImF eff
K−N with increasing density is unreasonably rapid, originating from the one-nucleon
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Figure 5: (Color online) Left: K−-nuclear potentials for K− atoms of Ni. Dashed curves:
derived self-consistently from in-medium CS30 amplitudes; solid curves: plus phenomeno-
logical terms from global fits; dot-dashed curves: purely phenomenological DD potentials
from global fits. Right: the same as on the left, but with the substitution

√
s→ √s− Vc

in F eff
K−N(

√
s, ρ).

nature of the CS30 amplitudes, where, as seen in Fig. 3 for the similar TW1 amplitude,

the imaginary part practically vanishes around 80 MeV below threshold. We note that

multi-nucleon absorption processes which become increasingly important at subthreshold

energies are not included in the present approach. Since strong-interaction effects in kaonic

atoms are dominated by the widths, the deficiency in the imaginary part of the amplitudes

must be reflected when comparing predictions with experiment. This is indeed the case

with χ2 per point of about 10.

Figure 5 shows, as representative examples, several K−–Ni potentials based on the

CS30 ‘without SE’ amplitudes, within the self consistent procedure described above. As a

reference, the curves marked DD represent the best fit purely phenomenological density-

dependent potentials [7] with χ2 = 103 for 65 data points. The potential marked CS30

is without any adjustable parameters and it differs substantially from the DD reference

potential. Nevertheless its real part of −85 MeV is twice as deep as the shallow potential

(not shown here) of Ref. [32] which results from threshold values fK−N(Eth, ρ), without
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Figure 6: (Color online) K− nuclear real and imaginary potentials for K− atoms of Ni.
Dashed curves: derived self-consistently from in-medium TW1 amplitudes; solid curves:
plus phenomenological terms from global fits; dot-dashed curves: purely phenomenological
DD potentials from global fits.

going subthreshold. Figure 5 also demonstrates the effect of adding adjustable ρ and ρ2

terms to the CS30-based potentials, resulting in best-fit potentials V CS30+phen.
K− with χ2 of

around 130–140 for 65 points, very close to χ2 values achieved with a fixed-t approach.

It is seen that the resulting ‘CS30+phen.’ potentials are close to the DD ones and we

note that the additional terms, both real and imaginary, are dominated by ρ2 terms which

are required by the fit procedure and which are likely to represent K̄NN absorptive and

dispersive contributions, respectively. Similar results hold for in-medium TW1 amplitudes,

such as shown in Fig. 3. The resulting TW1 K− nuclear potentials are shown in Fig. 6,

exhibiting remarkable similarity to the CS30 K− nuclear potentials of Fig. 5. We note that

the addition of phenomenological terms lowers the resulting χ2 to as low a value as 124 for

65 data points.

On first sight the additional ‘phen.’ terms appear large in comparison with the one-

nucleon based CS30 and TW1 potentials, particularly if one considers values of the po-

tentials near the nuclear center. However, strong interaction effects in kaonic atoms are

sensitive mostly to potential values near the nuclear surface [29], about 3.5 to 5 fm in the
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examples shown. It is seen from the figures that over this range of radii the phenomenolog-

ical part of the imaginary potential is of the order of 30% of the starting values, consistent

with the fraction of multi-nucleon absorptions estimated from experiments in emulsion and

bubble chambers [33]. By the same token one may safely conclude that the data imply

real potentials of depths 80–90 MeV near the half-density radius. Finally a significant

observation is that when the CS30 or the TW1 amplitudes are taken at threshold, then the

additional phenomenological potential is no longer dominated by ρ2 terms. In particular,

negative imaginary ρ2 terms are obtained, thus defying a two-nucleon absorption interpre-

tation. The emerging phenomenology is similar to that for Vπ− in pionic atom studies where

theoretically motivated single-nucleon contributions are augmented by phenomenological

ρ2 terms representing πNN processes [34]. More work is required to justify microscopically

the size of the ρ2 kaonic atom contributions suggested by successful V chiral+phen.
K− potentials.

4.3 Adding p waves

Next we turn to the question of whether kaonic atom data support contributions from

a p-wave term in the K−N interaction and, for reference, we first checked the effect of

including such a phenomenological term in a tρ potential. A p-wave term was added to

the simplest tρ s-wave potential as follows [10]:

2µVK−N(r) = q(r) + ~∇ · α(r)~∇ (17)

with q(r) its s-wave part given by

q(r) = −4π(1 +
µ

mN

)b0[ρn(r) + ρp(r)] (18)

and the p-wave part given by

α(r) = 4π(1 +
µ

mN

)−1c0[ρn(r) + ρp(r)]. (19)

Terms proportional to ρn(r)− ρp(r) are neglected here.

Table 2: Results of tρ global fits to kaonic atoms data.

χ2 (N=65) Re b0 (fm) Im b0 (fm) Re c0 (fm3) Im c0 (fm3)
132 0.60 ± 0.05 0.94 ± 0.05 – –
110 0.73 ± 0.09 0.59 ± 0.09 −0.79± 0.32 0.75 ± 0.30
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It is seen from Table 2 that an improved fit to the data is obtained with some of

the absorption shifted from the s-wave term into the p-wave term which is repulsive and,

thereby, the s-wave attraction required to fit the data is enhanced. However, this could also

be just a numerical effect of the χ2 fit process ‘compressing’ the real part of the otherwise

s-wave tρ potential, as noted above.

The empirical p-wave term may be compared, for example, with the K−p p-wave am-

plitude of Weise and Härtle [30] which is dominated by the I = 1 Σ(1385) subthreshold

resonance. Over the energy range between about 1385 MeV and the K−N threshold at

1432 MeV the K−p p-wave amplitude is approximated there by

cK−p =

√
s γ1

s0 − s− i
√
s Γ(
√
s)

+ d (20)

with
√
s0=1385 MeV, γ1=0.42/m3

K , Γ(
√
s) ≈ 40 MeV and a background term d=0.06 fm3.

Considering that cK−n = 2cK−p for an I = 1 dominated amplitude, then for ρp ≈ ρn and

neglecting ρn − ρp terms in the empirical potential, cK−p is to be multiplied by 3/2 in

order to compare with the above c0. Table 3 shows calculated values for a ‘microscopic’

cm0 = (3/2)cK−p obtained for
√
s given by Eq. (7), here applied to Ni.

Table 3: Values of a ‘microscopic’ p-wave amplitude cm0 = (3/2)cK−p [see Eq. (20)] to be
compared with the empirical c0 of Table 2.

ρ/ρ0

√
s (MeV) Re cm0 (fm3) Im cm0 (fm3)

0 1432 −0.09 0.08
0.25 1420 −0.12 0.12
0.50 1404 −0.16 0.25
0.75 1392 −0.06 0.44
1.00 1382 0.10 0.49

It is seen that at threshold the empirical c0 is an order of magnitude too large compared

to its ‘microscopic’ counterpart cm0 . Averaging over subthreshold energies is unlikely to

produce agreement between the two.

The natural next step was to include cK−p of Eq. (20) in the subthreshold evaluation of

the s-wave potential to create also a K−N -based p-wave potential. This was done at each

radial point for the local density and the
√
s obtained self-consistently for the dominant

s-wave potential. Without any adjustable parameters it reduced the CS30-based χ2 from ≈
10 per point to about 6 per point. Including also two scaling factors, for the resonance part

and for the background part of Eq. (20) and searching on these parameters, yielded a scaling
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factor −0.025± 0.029 for the resonance and 3.5± 0.1 for the background, with χ2 ≈ 3 per

point. It means that within the subthreshold approach to the K−N interaction a resonance

term in the p-wave interaction is not required to fit the data. This is consistent with the

first comprehensive phenomenological analysis of K̄N–πY coupled channels by Kim [35],

concluding that the Σ(1385) is definitely not a p-wave K̄N bound state, but rather a πΛ

scattering resonance with very weak coupling to the K̄N channel. This conclusion was

reinforced in a dispersion relation analysis by A.D. Martin [25] in which the K̄N channel

coupled very weakly, compatible with zero coupling to the Σ(1385) resonance. Finally,

the p-wave amplitude cK−p of Eq. (20) was included in the ’CS30+phen.’ fits, where ρ

and ρ2 terms were added to the CS30 potentials. Again the resonance term was found to

vanish and only a small p-wave constant background term was acceptable. It is therefore

concluded that fits to kaonic atom data do not require a resonant p-wave term within the

subthreshold self consistent approach of the present work.

5 Calculations of K− nuclear quasibound states

Quasibound K− nuclear states in several nuclei across the periodic table were calculated in

Refs. [9, 3] within the relativistic mean field (RMF) model for nucleons and antikaons. The

energy independent K− nuclear real potential V RMF
K− was supplemented in these calculations

by a phenomenological ‘tρ’ imaginary potential Im VK− with energy dependence that ac-

counted for the reduced phase space available for in-medium K− absorption. Two-nucleon

absorption terms were also included.

The present formulation differs fundamentally from these previous RMF calculations

in that we use a K− nuclear potential VK− given by Eq. (2) in terms of energy and density

dependent in-medium K−N scattering amplitudes FK−N(~p,
√
s, ρ) generated from a well

defined coupled-channel chiral model. The momentum dependence of FK−N was trans-

formed into energy and density dependence using Eq. (6). The in-medium KG dispersion

relation (14) leads to a bound-state KG equation satisfied by the K− wavefunction which

is written here in the form

[
∇2 + ω2

K −m2
K + 4π

√
s

mN

FK−N(
√
s, ρ)ρ

]
ψ = 0, (21)

where

ωK = mK − BK − Vc , (22)
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BK = BK + iΓK/2 and
√
s is given by Eq. (7) which now also includes the substitution√

s→ √s− Vc:
√
s ≈ Eth −BN − ξN(BK + Vc)− 15.1(

ρ

ρ0

)2/3 + ξKRe VK−(ρ). (23)

Equation (21) differs from the K− atom equation (15) by A−1 correction terms. Since BK

and VK−(ρ) appear through Eq. (23) in the argument
√
s of FK−N (the latter is essentially

VK−), it suggests a self consistency scheme in terms of both BK and VK−(ρ) for solving

the KG equation (21). In order to study the effect of energy and density dependencies

of the argument
√
s of the chiral K−N scattering amplitude FK−N , we first solved the

KG equation in a static approximation, switching off the RMF self consistency cycle that

accounts for the modification of the nuclear density by the strongly boundK− meson and its

effect on the binding energy BK . Self consistency with respect to BK and VK−(ρ), however,

remained operative in the static approximation. Realistic RMF density distributions ρ(r)

of the core nuclei were employed.

Table 4: Binding energies BK and widths ΓK (in MeV) of 1s K− nuclear quasibound
states in several nuclei, calculated using static RMF nuclear densities in Eq. (21) and TW1
chiral amplitudes with (i)

√
s = Eth and (ii)

√
s from Eq. (23), in both in-medium versions

‘no SE’ and ‘+SE’. K−NN → Y N decay modes are excluded. Results of static RMF
calculations of BK , with a K− nuclear interaction mediated by vector mesons only, are
shown for comparison in the last row.

12C 16O 40Ca 90Zr 208Pb
Eth, no SE BK 61.1 57.5 83.4 96.0 104.8

ΓK 149.1 135.9 150.7 151.2 143.9
√
s, no SE BK 40.9 42.4 58.5 69.5 77.6

ΓK 29.4 30.8 23.6 22.4 22.0

Eth, +SE BK (-0.9) 6.4 25.0 39.0 53.4
ΓK (137.6) 120.2 141.8 141.0 129.1

√
s, +SE BK 42.4 44.9 58.8 68.9 76.3

ΓK 16.5 16.2 12.0 11.5 11.3

V RMF
K− BK 49.1 47.7 60.5 69.6 76.8

In Table 4, we list binding energies BK and widths ΓK of 1s K− nuclear quasibound

states obtained by solving Eq. (21) self-consistently in several nuclei across the periodic

table, using in-medium ‘no SE’ and ‘+SE’ TW1 subthreshold amplitudes with argument
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√
s given by Eq. (23) (denoted ‘

√
s’ in the table). These values of BK and ΓK are compared

to those calculated using threshold amplitudes without undergoing self consistency cycles

(denoted ‘Eth’ in the table). The table illustrates the peculiar role of energy dependence

of the K̄N scattering amplitudes. In the ‘no SE’ case, when the in-medium effects consist

only of Pauli blocking, the self consistent calculations with subthreshold amplitudes yield

lower BK values compared to those calculated using threshold amplitudes. In contrast,

in the ‘+SE’ case, when hadron in-medium self energies are included, the self consistent

calculations with subthreshold amplitudes yield considerably higher BK values compared

to those calculated using threshold amplitudes (in which case the 1s state in 12C is even

unbound). It is worth noting that the self consistent calculations of BK give very similar

results in the ‘+SE’ version to those in the ‘no SE’ version, as could be anticipated from the

deep-subthreshold portion of the scattering amplitudes shown in Fig. 1. These BK values

are also remarkably close to those calculated within a static RMF approach for nucleons

and antikaons, when the K− nucleus interaction is mediated exclusively by vector mesons

with purely vector SU(3) F-type couplings, as shown in the last row of Table 4.

The calculated widths displayed in Table 4 represent only K−N → πY decays, ac-

counted for by the coupled-channel chiral model. The widths are very large in both ‘no

SE’ and ‘+SE’ in-medium versions when using threshold amplitudes, and are considerably

smaller in the self consistent calculations using subthreshold amplitudes owing to the prox-

imity of the πΣ thresholds. In this case the ‘+SE’ widths are about half of the ‘no SE’

widths and approximately 10% of those calculated using threshold amplitudes.

The sensitivity of the calculated K− binding energies and widths to the specific form

of the in-medium subthreshold extrapolation of
√
s is demonstrated in Fig. 7. Here, 1s

states in several nuclei are calculated self-consistently in the ‘no SE’ version within the

TW1 model for
√
s = Eth − BK (dotted line),

√
s = Eth − BK − Vc (dashed line),

√
s

of Eq. (23) (dot-dashed line), and for the latter
√
s choice also in the ‘SE’ version (full

line). To lead the eye, each of the four lines connects (BK ,ΓK) values in different core

nuclei using one of the above forms for
√
s. It is seen that the specific form chosen to

extrapolate
√
s has a relatively small effect on the binding energies BK , which vary within

5 MeV for a particular nucleus. In contrast, the widths are reduced significantly from

about 55 ± 10 MeV to 14 ± 3 MeV, when
√
s is shifted further below threshold and the

‘SE’ version which incorporates in-medium hadron self energies is applied.

Figure 8 illustrates the model dependence of K− nuclear quasibound state calcula-

tions by showing binding energies and widths of 1s states in several nuclei calculated
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Figure 7: (Color online) Binding energies BK and widths ΓK (in MeV) of 1s K− nu-
clear quasibound states, calculated by applying self-consistently several prescriptions of
subthreshold

√
s extrapolation with static RMF nuclear densities to in-medium TW1 am-

plitudes (‘no SE’ unless specified ‘+SE’). K−NN → Y N decay modes are excluded.

self-consistently by applying the subthreshold extrapolation
√
s = Eth − BK − Vc [30] to

the TW1 and CS30 in-medium ‘no SE’ amplitudes. It is seen that the K− binding ener-

gies are more sensitive to the applied chiral model than to the form of subthreshold
√
s

extrapolation exhibited in Fig. 7. However, the difference in widths for a given nucleus is

comparable to the differences due to the various forms of subthreshold
√
s extrapolation

shown there. The CS30 model produces higher binding energies and lower values of widths

than in the TW1 model, with a difference of approximately 10 MeV. This systematics is

explained by the stronger downward energy shift induced in CS30 with respect to TW1.

Effects of including a p-wave K̄N interaction assigned to the Σ(1385) subthreshold

resonance are demonstrated in Table 5 within the ‘no SE’ in-medium version of TW1

chiral amplitudes, for two subthreshold
√
s extrapolations: [WH] denotes the form

√
s =

Eth − BK − Vc which was applied by Weise and Härtle [30] self-consistently to chiral K̄N

amplitudes within a local density approximation to calculate K− nuclear 1s quasibound
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Figure 8: (Color online) Binding energies BK and widths ΓK (in MeV) of 1s K− nuclear
quasibound states, calculated by applying self-consistently the subthreshold extrapolation√
s = Eth−BK−Vc [30] with static RMF nuclear densities to the TW1 and CS30 in-medium

‘no SE’ amplitudes. K−NN → Y N decay modes are excluded.

states in 16O and 208Pb; and
√
s corresponds to the energy argument of Eq. (23). For

the p-wave amplitude we adopted the parametrization (20) from Ref. [30], used also in

the previous section on kaonic atoms. The calculated binding energies and widths result

from a delicate interplay between the energy dependent s-wave and p-wave amplitudes.

The effect of p waves is more pronounced in light nuclei where surface contributions are

relatively more important, and it decreases with increasing size of the nucleus. The p-wave

interaction leads to larger (smaller) widths in the [WH] (
√
s) version and increases the K−

binding energies, with the exception of 12C and 16O in the [WH] subthreshold extrapolation

where the substantially increased absorption acts repulsively to reduce BK .

Table 6 presents binding energies and widths of 1s K− nuclear quasibound states in sev-

eral nuclei across the periodic table, calculated self-consistently within in-medium versions

of CS30 chiral amplitudes. The first two sequences denoted [WH] and
√
s illustrate the

role of subthreshold
√
s extrapolation which affects particularly the widths ΓK , in a similar

pattern to that already shown for the TW1 model in Table 5. The next three sequences
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Table 5: Binding energies BK and widths ΓK (in MeV) of 1s K− nuclear quasibound states
in several nuclei, calculated self-consistently using static RMF nuclear densities and the
in-medium ‘no SE’ version of TW1 chiral amplitudes with (i)

√
s = Eth−BK −Vc and (ii)√

s from Eq. (23), without and with p-wave amplitudes. K−NN → Y N decay modes are
excluded.

12C 16O 40Ca 90Zr 208Pb
[WH] BK 44.8 45.5 64.1 75.3 82.8

ΓK 63.4 59.4 51.7 46.6 43.8

[WH], +p wave BK 39.7 43.7 69.1 79.9 87.2
ΓK 85.6 73.6 55.5 46.7 44.3

√
s BK 40.9 42.4 58.5 69.5 77.6

ΓK 29.4 30.8 23.6 22.4 22.0
√
s, +p wave BK 46.0 46.0 60.8 71.5 79.4

ΓK 27.5 29.6 22.4 21.3 21.0

exhibit the effects of successively sophisticating the calculations: first, the in-medium ‘no

SE’ amplitudes are dressed by self energies (denoted ‘+SE’), bringing the calculated widths

further down (and marginally so the binding energies); then, the calculations are made dy-

namical (denoted ‘+dyn.’) taking into account the polarization of the nuclear core by the

strongly bound K−, which produces higher binding energies BK and smaller widths ΓK ;

and last, energy dependent imaginary ρ2 terms are added self consistently to simulate two-

nucleon K−NN → Y N absorption modes (denoted ‘+2N abs.’) and their available phase

space [9, 3]. Whereas the binding energies decrease insignificantly, the resulting widths of

order ΓK ∼ 50 MeV become comparable in light nuclei to the binding energies BK .

6 Conclusion

In this work we have used several versions of in-medium K̄N scattering amplitudes con-

structed in a chirally motivated coupled channel separable potential model to derive self-

consistently the K− nuclear potential for several bound state applications. The K̄N

scattering amplitudes exhibit, invariably, a strong energy and density dependence be-

low threshold, which reflects the dominant effect of the Λ(1405) subthreshold resonance.

This is precisely the energy region relevant for the self consistent construction of VK−

for kaonic atoms and for K− nuclear quasibound state calculations. It was found that
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Table 6: Binding energies BK and widths ΓK (in MeV) of 1s K− nuclear quasibound states
in several nuclei, calculated self-consistently using in-medium CS30 chiral amplitudes in the
‘no SE’ version (first two sequences) and in the ‘+SE’ version (last three sequences) for var-
ious subthreshold

√
s extrapolations marked as in Table 5. A combined nucleons+antikaon

RMF scheme is applied dynamically in the last two sequences, and K−NN → Y N decay
modes are included in the last sequence (‘+2N abs.’).

12C 16O 40Ca 90Zr 208Pb
[WH] BK 58.4 58.2 77.0 86.7 95.8

ΓK 52.6 49.8 33.8 33.8 32.8
√
s BK 52.0 53.0 69.7 81.5 89.6

ΓK 19.6 21.6 14.4 13.6 14.0

+SE BK 50.7 52.5 68.2 79.3 86.6
ΓK 13.0 12.8 10.9 11.0 10.9

+dyn. BK 55.7 56.0 70.2 80.5 87.0
ΓK 12.3 12.1 10.8 10.9 10.8

+2N abs. BK 54.0 55.1 67.6 79.6 86.3
ΓK 44.9 53.3 65.3 48.7 47.3

kaonic atoms probe K̄N c.m. energies typically 30–50 MeV below threshold whereas K−

nuclear 1s quasibound states reach considerably lower K̄N subthreshold energies. Thus,

the chiral model versions used in the present work produced potential depths in the range

−Re V chiral
K− (ρ0) ∼ 80–90 MeV in kaonic atoms, and somewhat deeper potentials of depths

100–110 MeV for K− nuclear quasibound states. By comparing the size and shape of our

subthreshold K̄N scattering amplitudes with those of other chiral models, as discussed

for example in Ref. [28], we expect these results to hold generally in any coupled-channel

chiral model constrained by low energy K−p data once our self consistency construction is

applied. The density dependence of the resulting kaonic atom potentials is such that by

adding adjustable phenomenological terms to be determined by fits to the data, the real

part of the potential becomes twice as deep and the imaginary part about three times as

deep due to a ρ2–dominated complex term which could represent K̄NN → Y N disper-

sive and absorptive modifications. These substantial modifications at full nuclear density

represent extrapolations from the nuclear surface region to which kaonic atoms are mostly

sensitive and where such modifications appear more modest. More work is needed to ex-

plain the origin and test the existence of the sizable ρ2 term. Finally, the effects of a

p-wave interaction generated by the Σ(1385) subthreshold resonance are found secondary
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to the effects of the s-wave interaction which is dominated by the Λ(1405) subthreshold

resonance.
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Appendix: In-medium pole trajectories in model TW1

The observed properties of in-medium K̄N interaction may be related to the dynamics

of the Λ(1405) resonance in the nuclear medium. This is demonstrated for model TW1

in Fig. 9 which shows the motion in the complex energy plane of poles related to the

πΣ and K̄N channels upon increasing the nuclear density, including Pauli blocking but

disregarding self energy insertions. The lower half of the energy plane, below the real axis,

corresponds to the [−,+] Riemann sheet standardly referred to as the second Riemann

sheet and accessed from the physical region by crossing the real energy axis in between the

πΣ and K̄N thresholds. The upper half of the energy plane (above the real axis) shows the

[+,−] Riemann sheet, the third Riemann sheet, which does not allow for K̄N quasibound

interpretation of poles located therein. The pole trajectories shown in the figure were

calculated from the free-space pole positions (encircled dots) up to the pole positions at

full nuclear density ρ0. In addition to the two I = 0 poles listed and discussed in Table 1 of

the main text, each of the decoupled πΣ and K̄N channels also exhibits an I = 1 pole, the

one related to K̄N developing into a resonance residing on the [+,−] Riemann sheet and

another one related to a πΣ state residing on the [−,+] Riemann sheet. While the I = 1

pole related to πΣ lies too far from the real energy axis to affect any physical observable,

the one related to K̄N is responsible for the peak structure in the real part of the K−n

amplitude near threshold. However, the Riemann sheet location of this pole denies it of

any quasibound interpretation. The I = 1 poles persist also in the more involved NLO

chiral models discussed in Ref. [20].

As expected, the nuclear medium has no significant impact on the position of poles

related to the πΣ channel. On the other hand, both poles related to the K̄N channel move

to considerably higher energies as the density increases. The I = 0 K̄N pole that affects
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Figure 9: Pole movements on the complex energy manifold due to the increased effect of
Pauli blocking in model TW1. I = 0 pole trajectories are marked by full lines, I = 1 pole
trajectories by dashed lines. Pole positions in free space are encircled and the bullets mark
pole positions for ρ = xρ0 for increments of x between 0 to 1, see text for more details.

The solid triangles denote the K−p and K
0
n thresholds.

most the K̄N scattering amplitude moves as high as about 1475 MeV, almost reaching

the real energy axis. Since the pole is relatively far from the physical region due to the

K̄N branch cut, the scattering amplitude exhibits a cusp instead of a proper resonance

structure (see the dot-dashed line in Fig. 1 of the main text). When kaon self energy is

implemented the pole moves back below the K̄N threshold, residing now in the [+,−]

Riemann sheet. Since it remains relatively far from the physical region, one again gets a

cusp structure as exhibited by the solid line in Fig. 1.
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[32] A. Baca, C. Garćıa-Recio, and J. Nieves, Nucl. Phys. A 673, 335 (2000).

[33] C. Vander Velde-Wilquet, J. Sacton, J.H. Wickens, D.N. Tovee, and D.H. Davis,

Nuovo Cimento 39 A, 538 (1977), and references therein.

[34] M. Ericson and T.E.O. Ericson, Ann. Phys. (NY) 36, 323 (1966). For a recent review

see Ref. [10].

[35] J.K. Kim, Phys. Rev. Lett. 19, 1074 (1967).

160 Selected Publications



Published in Nuclear Physics A 881 (2012) 159

Calculations of K− nuclear quasi-bound states based on chiral
meson-baryon amplitudes

Daniel Gazda and Jǐŕı Mareš
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Abstract

In-medium K̄N scattering amplitudes developed within a new chirally motivated coupled-

channel model due to Cieplý and Smejkal that fits the recent SIDDHARTA kaonic hydrogen

1s level shift and width are used to construct K− nuclear potentials for calculations of K−

nuclear quasi-bound states. The strong energy and density dependence of scattering am-

plitudes at and near threshold leads to K− potential depths −ReVK ≈ 80 − 120 MeV.

Self-consistent calculations of all K− nuclear quasi-bound states, including excited states,

are reported. Model dependence, polarization effects, the role of p-wave interactions, and

two-nucleon K−NN → Y N absorption modes are discussed. The K− absorption widths

ΓK are comparable or even larger than the corresponding binding energies BK for all K−

nuclear quasi-bound states, exceeding considerably the level spacing. This discourages

search for K− nuclear quasi-bound states in any but lightest nuclear systems.

1 Introduction

The study of the interaction of antikaons with baryonic systems, such as kaonic atoms, K−

nuclear clusters or dense strange kaonic matter, is an interesting issue with far-reaching

consequences, e.g. for heavy-ion collisions and astrophysics. The closely related problem

of K− nuclear quasi-bound states is far from being settled, despite much theoretical and

experimental effort in the last decade [1, 2].

Our first studies of K− quasi-bound states in nuclear many-body systems based on an

extended relativistic mean field (RMF) model were focused on the widths expected for K−

quasi-bound states [3]. The subject of multi-K− (hyper)nuclei was studied in Refs. [4, 5, 6]

with the aim to explore whether kaon condensation could occur in strong-interaction self-

bound baryonic matter. In the RMF formulation, the energy independent real K− nuclear

potential was supplemented by a phenomenological imaginary potential fitted to kaonic
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atom data, with energy dependence that accounted for the reduced phase space available

for in-medium K− absorption, including 2-nucleon absorption modes.

Weise and Härtle performed calculations of K− nuclear states in 16O and 208Pb using

chiral-model K̄N amplitudes within a local density approximation [7].

This paper reports on our latest calculations of K− nuclear quasi-bound states within

a chirally motivated meson-baryon coupled-channel separable interaction model [8]. We

apply a self-consistent scheme for constructing K− nuclear potentials from subthreshold

in-medium K̄N scattering amplitudes which was introduced in Refs. [9, 10]. This time, the

K̄N amplitudes are constructed using a recent in-medium coupled channel model NLO30

[11] that reproduces all available low energy K̄N observables, including the latest 1s level

shift and width in the K− hydrogen atom from the SIDDHARTA experiment [12]. We

demonstrate the crucial role of the strong energy and density dependencies of the K−N

scattering amplitudes, leading to deep K− nuclear potentials for various considered versions

of in-medium modifications of the scattering amplitudes. Using several versions of the

chirally motivated coupled-channel model, we demonstrate the model dependence of our

calculations. Moreover, we discuss the effects of p-wave interactions and the K−NN → Y N

absorption modes. Finally, we present binding energies and widths of all K− quasi-bound

states – including excited states – in selected nuclei.

The paper is organized as follows. In Section 2, we briefly describe the model and

underlying self-consistent scheme for constructing K− nucleus potentials from in-medium

subthreshold K̄N scattering amplitudes. In Section 3, we present results of our calculations

of K− quasi-bound states in various nuclei across the periodic table. Conclusions are

summarized in section 4.

2 Model

In this section, we briefly outline the methodology which forms the framework of our

calculations of K− nuclear quasi-bound states. We concentrate only on basic ingrediences

of the model since the details can be found in Refs. [9, 10, 11].

The K− nuclear quasi-bound states are determined by self-consistent solution of the

in-medium Klein–Gordon equation:

[∇2 + ω̃2
K −m2

k − ΠK(ωK , ~pK , ρ)
]
φ = 0, (1)

where ω̃K is complex energy of antikaon containing the Coulomb interaction VC introduced
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by minimal substitution:

ω̃K = ωK − iΓK/2− VC , (2)

with ΓK being the width of K− nuclear state of energy ωK = mK − BK , where BK is the

binding energy of antikaon. The self-energy operator ΠK = 2(ReωK)VK is constructed in a

“tρ” form with the amplitude calculated in a chirally motivated coupled-channel approach:

ΠK(ωK , ~pK , ρ) = −4π

√
s

mN

[
FK−p(

√
s, ~p, ρ)ρp + FK−n(

√
s, ~p, ρ)ρn

]
, (3)

where FK−p(n) is the K−–proton (neutron) in-medium scattering amplitude in a separable

form, ~p is the relative K−N momentum, and
√
s is the K−N total energy. The realistic

proton ρp and neutron ρn density distributions in the core nuclei are taken from relativis-

tic mean-field nuclear-structure calculations. The K−N scattering amplitudes FK−N are

constructed within a chirally motivated coupled-channel separable interaction model [8].

In this work, we applied the latest version NLO30 [11] which reproduces the recent K−

hydrogen 1s level shift and width from the SIDDHARTA experiment [12]. For the sake

of comparison, we applied as well the TW1 model [10, 11] fitted also to the SIDDHARTA

data, and the older CS30 model [8]. It is to be noted that in the TW1 (NLO30, CS30)

model, the effective separable meson-baryon potentials are constructed to match the equiv-

alent amplitudes derived from the chiral effective Lagrangian at leading (next-to-leading)

order, respectively.

When the elementary K−N system is embedded in the nuclear medium of density ρ,

one has to consider in-medium modifications of the scattering amplitude, in particular

Pauli blocking in the intermediate states (this in-medium version is marked ‘no SE’) [13].

The other version (marked ‘+SE’) adds self-consistently meson and baryon self-energies

generated by the interaction of hadrons with the nuclear medium [14, 15].

Figure 1 illustrates a typical resonance-shape energy dependence of the in-medium

reduced 1 scattering amplitudes fK−N(
√
s, ρ) = 1/2[fK−p(

√
s, ρ)+fK−n(

√
s, ρ)] for nuclear

matter density ρ0 = 0.17 fm−3, corresponding to the interaction of the K− meson with

symmetric nuclear matter. The amplitudes were calculated within the TW1 and NLO30

models and for each of the models, two in-medium versions, ‘no SE’ and ‘+SE’, are shown

for comparison. The pronounced energy dependence of the scattering amplitude appears

crucial in the self-consistent calculations of kaonic nuclear states. In particular, the real

part of the ‘+SE’ amplitudes in both models changes from weak attraction at and above

1FK−N = g(p)fK−Ng(p′), see Ref. [10]
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Figure 1: Energy dependence of the c.m. reduced amplitude fK−N in TW1 and NLO30
models (left: real part, right: imaginary part). Dotted and dashed lines: Pauli blocked
amplitude (‘no SE’) for ρ0 = 0.17 fm−3; solid and dot-dashed lines: including also hadron
self-energies (‘+SE’) at ρ0.

threshold to strong attraction at ∼ 30 MeV below threshold. As a result, the ‘+SE’

and ‘no SE’ amplitudes become close to each other at energies relevant for self-consistent

calculations of kaonic nuclei. While both models give similar imaginary parts ImfK−N for

each in-medium version, they differ considerably (≈ 20%) in real parts of the scattering

amplitudes below threshold. This indicates the extent of the model dependence of the

calculations of K− nuclear quasi-bound states.

The scattering amplitude FK−N in Eq. (3) is a function of K−N c.m. energy
√
s and

relative momentum ~p. For nuclear bound-state applications it is necessary to transform

the two-body K−N arguments into the K̄–nuclear c.m. frame. For the relative momentum

~p we have

~p = ξN~pK − ξK~pN , ξN(K) = mN(K)/(mN +mK), (4)

which upon averaging over angles yields p2 of the form

p2 = ξNξK

(
2mK

p2
N

2mN

+ 2mN
p2
K

2mK

)
. (5)
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Similarly, expanding near threshold energy Eth = mK +mp,
√
s assumes the form

√
s ≈ Eth −BK − VC −BN − ξN p2

N

2mN

− ξK p2
K

2mK

, (6)

where BN stands for the binding energy of nucleon, and the last two terms represent

corrections due to the kinetic energies of nucleon and antikaon. The nucleon kinetic energy

is approximated in the Fermi gas model p2
N/(2mN) = 23(ρ/ρ0)2/3 MeV and the kinetic

energy of antikaon is obtained by means of local density approximation p2
K/(2mN) =

−BK − ReVK , where VK = VK + VC . This finally leads to

p2 ≈ ξNξK

[
2mK 23 (ρ/ρ0)2/3 − 2mN(BK + ReVK(ρ))

]
(in MeV), (7)

√
s ≈ Eth −BN − ξNBK − 15.1

(
ρ
ρ0

)2/3

+ ξKReVK(ρ) (in MeV). (8)

We note that the K− potential VK and the K− binding energy BK appear as arguments

in the expression for
√
s , which in turn serves as an argument for the self-energy ΠK , and

thus for VK . This suggest a self-consistency scheme in terms of both VK and BK for solving

the Klein-Gordon equation (1).

It is to be stressed that the present chiral model of K−–nucleus interaction does not

account for the absorption of K− mesons in the nuclear medium through nonpionic conver-

sion modes on two nucleons K−NN → Y N (Y = Λ,Σ). To estimate the contribution of

two-nucleon absorption processes to the decay widths of K− nuclear states we introduced

phenomenological term into the K− self-energy:

Im Π
(2N)
K = 0.2fY N(BK)W0ρ

2, (9)

where W0 was fixed by kaonic atom data analysis and fY N(BK) is kinematical suppression

factor taking into account reduced phase space available for decay products of K− nuclear

bound states [3].

The present chiral model also does not address the p-wave part of the K−–nucleus

interaction. Since p-waves may play an important role for tightly bound K− nuclear

systems [16] we studied their contribution by adding the self-energy term:

Π
(p)
K = −4π

mN√
s
~∇CK−N(

√
s)ρ · ~∇, (10)

with CK−N p-wave amplitude constrained by the Σ(1385) resonance phenomenology and

A.5. Calculations of K− Nuclear Quasi-Bound States Based on Chiral . . . 165



parametrized following Ref. [7].

3 Results and discussion

We adopted the above methodology to calculations of quasi-bound K− states in selected

nuclei across the periodic table. In most cases, we solved KG equation self-consistently

in a static approximation. For the sake of comparison, we performed also fully dynamical

calculations upon taking into account the polarization of the nuclear core by the strongly

bound antikaon.

Figure 2 shows the K− nuclear potentials for 1s state in Ca at threshold (‘Eth’) and for√
s (Eq. (8)) calculated self-consistently with respect to ReVK and BK , for TW1 amplitudes

(upper panels) and NLO30 amplitudes (lower panels). The relevant values of BK in Ca

and other nuclei are presented in the following figures. It is seen that the subthreshold

extrapolation
√
s is crucial for the depth of VK , calculated using the TW1 amplitude in

both ‘no SE’ and ‘+ SE’ in-medium version. While at threshold the depth of ReVK in the

‘+SE’ case is about half of the depth in the ‘no SE’ case, for
√
s both in-medium versions

give a similar depth -ReVK(ρ0) ≈ 85 − 90 MeV. In the case of the NLO30 model, the

situation is rather different. While the self-consistent calculation is still important for the

depth of ReVK , evaluated using the ‘+SE’ in-medium modification, in the ‘no SE’ case,

the depths of ReVK evaluated at threshold and at
√
s are close to each other. This weak

energy dependence of ReVK has its origin in rather weak energy dependence of the ‘no SE’

NLO30 scattering amplitude below threshold, as shown in Fig. 1. The NLO30 model yields

∼ 20 MeV deeper ReVK than the TW1 model, as could be anticipated from Fig. 1. The

imaginary parts of VK and consequently the widths which represent only K−N → Y N

decays, are considerably reduced in the self-consistent calculations of the subthreshold

amplitudes owing to the proximity of the πΣ threshold (see both right panels of Fig. 2).

The peculiar role of the energy dependence of the K−N scattering amplitudes is illus-

trated for the TW1 model in Fig. 3. Binding energies BK of 1s K− nuclear quasi-bound

states obtained by solving Eq. (1) self-consistently (denoted ‘s1/2’) for several nuclei are

compared with BK calculated using threshold amplitudes (Eth). It is worth noting that

the self-consistent calculations of BK using ‘no SE’ and ‘+SE’ in-medium amplitudes give

very similar results. These BK values are remarkably close to those calculated within a

static RMF approach, when the K−-nucleus interaction is mediated exclusively by vector

mesons with purely vector SU(3) F-type couplings (denoted ‘RMF’) [4]. For comparison,
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we present also binding energies BK calculated self-consistently using the NLO30 ‘+SE’

amplitudes which are more than 10 MeV larger than the corresponding binding energies

calculated using the TW1 amplitudes.

Figure 4 shows the effect of particular hadron self-energies in the intermediate states on

the K− binding energies BK and widths ΓK , calculated self-consistently within the NLO30

model. The widths ΓK are plotted as function of BK for various options of implementation
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Figure 2: K− nuclear potentials in Ca (left: real part, right: imaginary part), calculated
with static RMF nuclear densities and chiral amplitudes (upper panels: TW1, lower panels:
NLO30) at threshold (‘Eth’) and with

√
s, in both in-medium versions: only Pauli blocking

(‘no SE’) and including also hadron self-energies (‘+SE’).
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also hadron self-energies (‘+SE’). Results of static RMF calculations, with a K− nuclear
interaction mediated by vector mesons only, as well as for NLO30 chiral ‘+ SE’ amplitudes
are shown for comparison.

of the self-energies, as indicated in the legend of Fig. 4. The binding energies BK in

all nuclei under consideration differ in all cases by less than 5 MeV and the effect of self-

energies seems to be A independent. Implementation of pion self-energies leads to a sizable

reduction of the widths ΓK in lighter nuclei (C, O). On the other hand, the role of hyperon

self-energies seems to be marginal.

It is to be noted that the calculated widths shown in the figure represent only K−N →
πY decays, accounted for by the coupled-channel chiral model. When phenomenological

energy dependent imaginary ρ2 terms are added self-consistently to simulate two-nucleon

K−NN → Y N absorption modes and their available phase space [3], the resulting widths

of order ΓK ≈ 50 MeV become comparable in light nuclei to the binding energies BK .

Figure 5 illustrates the model dependence of the K− nuclear state calculations by

presenting BK and ΓK of 1s K− states in selected nuclei calculated self-consistently using

various chiral-model scattering amplitudes – TW1, CS30, and NLO30. The CS30 and
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Figure 4: Binding energies BK and widths ΓK of 1s K− nuclear quasi-bound states, cal-
culated self-consistently with static RMF nuclear densities and in-medium NLO30 ampli-
tudes with various hadron self-energies considered in intermediate states (see the legend).
K−NN → Y N decay modes are not included.

NLO30 models yield larger binding energies and lower widths of the nuclear K− quasi-

bound states than the TW1 model. The differences between the chiral models are up to 20

MeV in the binding energies and up to 10 MeV in the widths. The model dependence of

BK and ΓK is thus more pronounced than the effects of self-energies in the self-consistent

calculations of kaonic nuclei.

Figure 6 shows binding energies and widths of K− quasi-bound states – including

excited states – in selected nuclei calculated by applying self-consistently the subthreshold

extrapolations
√
s of Eq. (8) to the NLO30 ‘+SE’ amplitudes. Clearly, the widths of higher

excited states are appreciable, exceeding the corresponding level spacing, even in the case

when 2N absorption is not considered. This leads to considerable overlap of the K− quasi-

bound states even in the lightest nuclei (except Li, where only the 1s K− quasi-bound

state exists). It is to be stressed that the 2N absorption which was not considered here,

adds additional sizable contribution to the widths, particularly of low lying states. Such

large widths thus inevitably obscure experimental study of the K− nuclear quasi-bound
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lated self-consistently with static RMF densities and the ‘no SE’ TW1, CS30 and NLO30
scattering amplitudes. K−NN → Y N decay modes are not included.

states in heavier nuclei.

Table 1 shows, as representative examples, binding energies BK and widths ΓK of

K− nuclear quasi-bound states in Ca, calculated self-consistently using the NLO30 ‘+SE’

Table 1: Binding energies BK and widths ΓK (in MeV) of the K− nuclear quasi-bound
states in Ca, calculated self-consistently using NLO30 ‘+SE’ amplitudes. Dynamical and
static RMF schemes are compared in the first two blocks. Results of a static RMF scheme
including p-wave amplitudes is shown in the third block, and K−NN → Y N decay modes
are included in the last block (‘+2N abs.’).

dynamical static stat. + p wave stat. + 2N abs.
BK ΓK BK ΓK BK ΓK BK ΓK

1s 72.3 14.8 70.5 14.9 73.0 14.8 68.9 58.9

1p 52.8 17.7 50.6 18.0 53.1 17.9 49.2 53.6

1d 30.5 29.2 28.8 30.3 32.1 29.3 27.7 59.7

2s 24.6 30.9 23.9 33.8 26.3 34.2 21.6 67.1
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scattering amplitudes. The results of fully dynamical RMF calculations which take into

account the polarization of the nuclear core by the strongly bound K− meson, are compared

with the static RMF scheme in the first 2 blocks. The dynamical calculations give, in

general, higher binding energies BK and smaller widths ΓK . As could be anticipated,

the polarization effect is A dependent: while it increases BK by ∼ 6 MeV in Li, it is

less than 2 MeV in Ca (shown in Table 1), and in Pb the difference between static and

dynamical calculations is less than 0.5 MeV. Effects of adding a p-wave K−N interaction

assigned to the Σ(1385) resonance are demonstrated within the static RMF scheme in the

third block of the table. The p-wave interaction increases the K− binding energy only by

few MeV, being more pronounced in light nuclei where surface effects are relatively more

important. Nevertheless, even in Pb the p-wave interaction increases BK by ∼ 2 MeV.

Finally, phenomenological energy dependent imaginary ρ2 terms are included to simulate

2N absorption processes K−NN → Y N . Whereas the K− binding energies BK decrease

only slightly, the absorption widths ΓK > 50 MeV become comparable to the binding

energies BK or even much larger in the case of higher K− nuclear quasi-bound states.
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Figure 6: Binding energies BK (left panel) and widths ΓK (right panel) of K− quasi-bound
states in selected nuclei, calculated self-consistently with static RMF densities and the ‘+
SE’ NLO30 scattering amplitudes. K−NN → Y N decay modes are not included.
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4 Conclusions

We performed extensive study of the K− nuclear quasi-bound states within a chirally

motivated meson-baryon coupled-channel separable interaction model. We considered two

in-medium versions of the K−N scattering amplitudes: the ‘no SE’ version which takes into

account only Pauli blocking in the intermediate states, and the ‘+SE’ version which adds

self-consistently hadron self-energies. In addition, we used several versions of the model

to explore model dependence of our calculations. In this contribution, we demonstrate on

few selected examples main results of the calculations with the aim to assess the role of

various ingredients of the approach that influence binding energies and widths of the K−

nuclear states. Energy dependence of the in-medium scattering amplitudes, particularly in

the K−N subthreshold region, is the decisive mechanism that controls the self-consistent

evaluation of corresponding K− optical potentials. While the two in-medium versions

of the K−N scattering amplitudes yield considerably different potential depths ReVK at

threshold, they give similar depths in the self-consistent calculations with the subthreshold

extrapolation of
√
s. The role of hadron self-energies in the self-consistent calculations of

the K− binding energies BK is less pronounced than the model dependence of predicted

BK which amounts to ∆BK ≈ 15 MeV. As for the calculated widths ΓK , the model

dependence and the effects due to the hadron self energies are comparable. The p-wave

interaction generated by the Σ(1385) subthreshold resonance was found to play only a

marginal role.

The widths of low-lying K− states due to K−N → πY conversions are substantially

reduced in the self-consistent calculations, thus reflecting the proximity of the πΣ threshold.

On the contrary, the widths of higher excited K− states are quite large even if only the pion

conversion modes on a single nucleon are considered. After including 2 body K−NN →
Y N absorption modes, the total decay widths ΓK are comparable or even larger than

the corresponding binding energies BK for all K− nuclear quasi-bound states, exceeding

considerably the level spacing.

The above conclusions should discourage attempts to search for isolated peaks corre-

sponding to K− nuclear quasi-bound states in any but very light nuclear systems.
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[8] A. Cieplý, J. Smejkal, Eur. Phys. J. A 43 (2010) 191.
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