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Abstrakt

Ćılem této práce je poskytnout přehled o reakci fotoprodukce podivnosti a zpravit

čtenáře o posledńım vývoji v této problematice. Fotoprodukce kaon̊u na protonech je

studována jak v rezonančńı oblasti, kde je použ́ıván izobarický model a hybridńı model

Regge-plus-resonance, tak i nad touto oblast́ı s využit́ım modelu Regge-plus-resonance.

Nukleonové rezonance se spinem 3/2 a 5/2 a hyperonové rezonance se spinem 3/2, které

hraj́ı d̊uležitou úlohu při popisu dat, mohly být nově zahrnuty v našich modelech d́ıky

zavedeńı konzistentńıho popisu formulovaného V. Pascalutsou. Odhalili jsme, že hyper-

onové rezonance se spinem 1/2 a 3/2 spolu s Bornovskými členy značně přisṕıvaj́ı k části

amplitudy tvoř́ıćı pozad́ı. Volné parametry v našich modelech byly určeny fitem na ex-

perimentálńı data pocházej́ıćı zejména z kolaboraćı CLAS, LEPS a GRAAL, přičemž

jsme vybrali dvě verze izobarického modelu, BS1 a BS2, a jednu verzi modelu Regge-

plus-resonance. Všechny modely popisuj́ı rozumně experimentálńı data v kinematických

oblastech, kde byly fitovány volné parametry model̊u. Navzdory tomu, že fotoprodukce

kaon̊u se odehrává v tzv. třet́ı rezonančńı oblasti, kde existuje mnoho rezonančńıch

stav̊u, celkový počet rezonanćı zahnrutých v jednotlivých modelech (15 či 16 v izobar-

ických modelech BS1 a BS2 a 10 ve fitu s modelem Regge-plus-resonance) je srovnatelný

s množstv́ım rezonanćı zahnrutých v jiných modelech. Sada vybraných nukleonových

rezonanćı se nav́ıc částečně překrývá se sadou nukleonových rezonanćı, které byly identi-

fikovány v Bayesianské analýze za pomoci modelu Regge-plus-resonance.

Kandidát je spoluautorem vypočetńıho kódu k modelu Regge-plus-resonance, se kterým

provedl řadu fitovaćıch procedur ke stanoveńı jeho volných parametr̊u a vybral dvě vari-

anty vhodné k diskusi a daľśım výpočt̊um. Následně se stal spoluautorem nových ampli-

tud pro izobarický model a model Regge-plus-resonance, do kterých byla nově zahrnuta

výměna baryonových rezonanćı s vyšš́ım spinem v konzistentńım formalismu, a při fi-

továńı volných parametr̊u pomohl vybráńım vhodných rezonanćı sestavit nové izobarické

modely BS1 a BS2 a nový fit s modelem Regge-plus-resonance a diskutoval vlastnosti

těchto model̊u.





Abstract

The aim of this work is to provide a deep overview of the strangeness photoproduction

reaction and report on recent progress in this field. The kaon photoproduction on the

proton is studied either in the resonance region, using an isobar model, or in the resonance

region and beyond, exploiting a hybrid Regge-plus-resonace framework. The higher-spin

nucleon, spin-3/2 and spin-5/2, and hyperon, spin-3/2, resonances have been included in

the model utilizing the consistent formalism by Pascalutsa and they were found to play

an important role in data description. The spin-1/2 and spin-3/2 hyperon resonances in

combination with the Born terms were revealed to contribute significantly to the back-

ground part of the amplitude. The free parameters of the models were fitted to new

experimental data from CLAS, LEPS, and GRAAL collaborations, and two versions of

the isobar model, BS1 and BS2, and one version of the Regge-plus-resonance model were

chosen. All models provide a reasonable overall description of the data in the kinematic

regions where the free parameters were adjusted. Even though the kaon photoproduction

takes place in the third-resonance region with many resonant states, the total number of

included resonances, 15, 16, and 10 in the BS1, BS2, and RPR models, respectively, is

quite moderate and it is comparable with amounts of resonances in other models. The sets

of chosen nucleon resonances, moreover, overlaps well with the set of the most probable

contributing states determined in the Bayesian analysis with the Regge-plus-resonance

model.

The candidate is a coauthor of a computational code for the Regge-plus-resonance

model, which was exploited to determine the free parameters of the model, two variants

of which were then discussed and may be used for further calculations. Subsequently, the

candidate helped derive the new amplitude for isobar and Regge-plus-resonance models,

including the exchange of high-spin baryon resonances in the consistent formalism. In the

following fitting procedures of both models, the candidate chose the resonances appropri-

ate for a reasonable data description, which led to the creation of new isobar models BS1

and BS2 and the new RPR fit, and discussed the properties of these new fits.





Prohlášeńı
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Preface

In this work, we deal with the production of kaons on nucleons in the energy range of

several GeV. This process is suitable for gathering important information about baryons

and their resonance spectrum and interactions in hyperon-nucleon systems arising from

QCD. The models based on the tree-level approximation of perturbation theory of the

effective hadron Lagrangian are a suitable tool for investigation of this process. The free

parameters in the Lagrangian are determined by fitting observable quantities, such as

cross section, polarization, etc., on the experimental data.

As it is strongly believed that the electromagnetic particle production will bring much

deeper insight into the structure of hadrons, it is an important and very promising field

of study. Although there are many ways of studying the particle production, the most

challenging processes are kaon photo- and electroproduction, since the electromagnetic

part of the process is well understood.

Models for kaon photo- and electroproduction are either based on quark degrees of

freedom or one takes hadrons as basic building blocks. We deal with the latter class of

models and we have constructed a new isobar model for K+Λ photoproduction off the

proton. Moreover, we have created our version of Regge-plus-resonance model where the

background part of the amplitude is given in a much less complicated way in comparison

with isobar models. Therefore, the plurality of models we deal with gives us a unique

opportunity to study and understand the reaction dynamics.
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Preface

The work is organized as follows. In the first chapter, properties of nuclei with non

zero strangeness are briefly revealed and the strangeness production process is presented

along with a short overview of history of its investigation either experimentally or theo-

retically. In the second chapter, the formalism which we use is outlined with kinematics

and observables. The two subsequent chapters deal with properties of isobar and Regge-

plus-resonance models which we use in our work and a discussion of many important

features of both models can be found therein. In the fifth chapter, the procedure of fit-

ting the free parameters is described in detail and in chapter six we discuss results of our

work and compare the outcomes with experimental data. The seventh chapter summa-

rizes our achievements and shows perspectives for the future work on this modern and

very interesting field of physics. This work is replenished with four appendices providing

detailed information on contributions to the invariant amplitude, Regge trajectories and

propagators, and gauge invariance and showing experimental data which are at hand.

Since we want to increase the readibility of this work, we do not include many techni-

calities to the body of this work. However, an interested reader may find a vast majority

of formulae in the appendices.
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Chapter 1

Introduction

In the past century, the community of physicists made not a step but a great leap towards

the theory of everything. They were successful in describing three out of four forces of

nature: gravity, electromagnetism, and weak force. The recent detection of gravitational

waves confirmed predictions of the general theory of relativity and brought a brand new

perception of the universe. Quantum Electrodynamics (QED), a tool used to describe the

electromagnetic interaction, became the most accurate physics theory in its predictions.

Moreover, it was showed that the electromagnetic and weak interaction can be viewed as

only one force and it was dubbed electroweak force.

Quantum Chromodynamics (QCD), the theory behind the strong interaction which is

responsible for keeping nuclei together, is as effective as QED when it is used to depict

the behaviour of quarks (the building blocks of which the nucleons are made of) and

gluons (the mediators of the strong force) at very high energies. A reason for this is a

phenomenon called asymptotic freedom: the coupling constant αs of QCD decreases as

the interaction energy increases. Unfortunately, in the low-energy region due to the large

value of αs, it is not possible to use perturbation theory in QCD and the problems simply

become extremely difficult to solve.

21



1. Introduction

Basically, there are two ways to get out of this problem: one can either use lattice

QCD or insert appropriate effective degrees of freedom. The former approach allows to

compute numerically the analytically incalculable problems of QCD in discretised space-

time. Alternatively, the latter approach makes use of the fact that hadrons present

themselves as objects with different properties depending on whether they are observed

at low- or hard-energy scale. This contrast has led to the creation of hadrodynamics

where the low-energy phenomena of the strong interaction are described with the help of

mesons and baryons. Since both mesons and baryons are objects with internal structure

in QCD, unlike the quarks and gluons, their inner structure is parametrized by means of

a form factor. In this work, we employ the effective degrees of freedom.

During last decades, production of pseudoscalar mesons on nucleons revealed as a

suitable tool for studying baryons and their resonant states and it is strongly believed

that the analysis of the production processes can bring a deeper insight into this field

of study. Production of the Λ and Σ hyperons on nucleons and nuclei induced by the

electron beam provides supplemental information about properties of baryons and their

behaviour in nuclei. Besides the study of the reaction mechanism, a correct description

of the elementary production on nucleons is important for minimizing uncertainties in

calculations of the excitation spectra for electroproduction of hypernuclei. What is more,

photoproduction of kaons on nucleons offers new possibilities to study electromagnetic

and strong interactions, which are not available in pion or η meson photoproducion. This

is caused by a new degree of freedom, strangeness, which shifts the internal symmetry of

the process considered from SU(2) to SU(3). Due to the problematic behaviour of the

QCD in the low-energy region, strangeness photoproduction requires a hadrodynamical

approach where the hadrons are described by effective fields.

There is another issue which makes the kaon photoproduction worth of studying.

Constituent quark model (CQM) [24] predicts far more excited nucleon states around

2 GeV than what was observed in the pion production experiments or πN scattering.

These states have been, therefore, called “missing resonances” and they are supposed to

play an important role in the pionless channels where they have higher branching ratio.

All this makes the strangeness production one of the most promising field of study for

the experimentalists as well as for the theoreticians.
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1.1. Basic Properties of Hypernuclei

1.1 Basic Properties of Hypernuclei

The strange quark, that introduces an SU(3)-flavour dimension to the traditional nuclear

physics, comprises, in combination with u and d quarks, various strange hadrons. The

strange hadrons, hyperons, are not affected by the Pauli principle and can, therefore,

penetrate deep inside the nucleus, creating a hypernucleus - a long-lived multibaryonic

system (10−10 s) with non zero strangeness. Among hypernuclei, the most studied and

well-known are Λ hypernuclei where a Λ hyperon replaces a nucleon of the nucleus (sim-

ilarly two Λ hyperons might engage with a nuclear core, forming the so-called double

Λ hypernuclei). Whereas Λ hypernuclei are stable at the nuclear time scale (10−23 s to

10−20 s), Σ-hypernuclear excitations are relatively narrow with widths at the order of a

few MeV and the strong conversion ΣN → ΛN reaction which occurs in nuclei makes

these nuclear states very difficult to observe [15, 42].

A survey of hypernucleus production mechanism and structure provides us with in-

dications on the still highly ambiguous interactions of two hyperons (Y-Y) or a hyperon

and a nucleon (Y-N), which can shed light on the role of strange quarks in the dynamics

of the low- and intermediate-energy baryonic systems, as well as effective field theory

approaches encoding the basic ingredients of QCD at low energies. This is of paramount

importance in modern physics since neither Y-N nor Y-Y strong interaction can be fully

determined from the scattering experiments (only the central part is determined in this

way, while no information is gathered for the spin-dependent part). Furthermore, hy-

pernucleus weak decay is the only tool which can shed light on the strangeness-changing

weak baryon interactions [15].

Hypernuclear experimental studies have been performed by hadron-induced reactions,

(K−, π−) or (π+,K+), with limited energy resolution. The experimental knowledge can

be improved utilizing the electroproduction of strangeness, which is characterized by a

large momentum transfer (q ≥ 350 MeV/c) and strong spin-flip terms even at zero kaon

production angles. Moreover, virtual photons can excite both natural and unnatural

parity, low and high-spin hypernuclear states, including also the states with a deeply

bound Λ hyperon. In the hadron-induced reactions, the elementary production of the

Λ hyperon happens on the neutron, whereas in the case of electromagnetic production,

the production of K+Λ occurs on the proton, which makes it possible to investigate

hypernuclei not available in other reactions, e.g. 12
Λ B. A comparison of the spectra of
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1. Introduction

mirror hypernuclei can then provide useful information on the charge asymmetry of forces

between hyperon and nucleon [43].

The models on strong and weak interactions have a direct connection with astrophysics

as they can serve as inputs when one scrutinizes the composition and macroscopic prop-

erties (e.g. mass and radius) of compact stars (such as supernovae and neutron stars),

their stability and thermal evolution [98]. What is more, interactions embracing hyper-

ons are also pertinent in the physics of heavy-ion collisions whose main purpose is the

examination of the nuclear equation of state, the possible phase transition from hadronic

matter to a quark-gluon plasma and the modification of hadron properties in dense strong

interacting matter.

Since the hypernuclei can provide us with very useful information on distinct fields of

contemporary physics, it is of paramount importance to study their production. In order

to do that, it is essential to have a reliable elementary operator at hand, which can be

further used in the electromagnetic production of strangeness on nuclei, i.e. study the Λ−

N interactions and hypernuclei physics. In this work, we deal with an elementary process

of strangeness production, namely with production of K+Λ particles. Nonetheless, the

extension of models describing elementary production towards production of hypernuclei

can be accomplished straightforwardly.

1.2 Strangeness Production Processes

There are several ways of producing the strangeness and the information can therefore

be gathered from a wide variety of experiments. The production of particles with non

zero strangeness in the final state can be achieved through experiments involving meson-

nucleon initial states, with the help of reactions with hadron beams, e.g. n(π+,K+)Λ

and n(K−, π−)Λ, or in the photo- and electroproduction reactions.

The two-body reactions that lead to a great deal of experimental information on

production of Λ hyperons are the following:

1. The strangeness exchange reaction

K− +N → Λ + π,

where the strangeness is transferred from the incident meson to the baryon in the

final state. This process is exploited mainly in the K− + n→ Λ + π− charge state
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1.2. Strangeness Production Processes

and its cross section is at the order of mb. However, the luminosity of this process

is low and, therefore, the production role of this reaction is small.

2. The pion induced process

π+ + n→ K+ + Λ,

known as a strangeness creation, proceeds by the generation of a ss̄ pair by the

incident meson.

3. The electromagnetic production of strangeness, where a strange quark-antiquark

pair has to be produced, has much lower cross section in comparison with other

processes mentioned: it is at the order of hundreds of nb (the luminosity can be,

however, increased significantly using a high intensity electron beam, e.g. CEBAF

in the Jefferson Lab, USA). On the other hand, the inclusion of a strange quark-

antiquark pair in the reaction opens up an additional degree of freedom and it is

believed that some of the “missing resonances” have a specific strong coupling into

these “strange channels”. In the electroproduction process

e+ p→ e′ +K+ + Λ

the virtual photon has, besides the transverse polarization component, also a longi-

tudinal part and, therefore, offers the possibility of varying the energy and momen-

tum transfers independently [32]. The electroproduction process can be formally

reduced to an investigation of the binary process of a photoproduction by virtual

photons

γV + p→ K+ + Λ,

as the electromagnetic coupling constant is small enough to justify the one-photon

approximation.

Although the largest count rates are obtained in the hadronic processes, the use of

an electromagnetic probe is still advantageous, as the electromagnetic ingredients in the

reaction amplitude can be directly expressed in the context of the Quantum Electrody-

namics, the well-established theory of electromagnetic interactions. Therefore, gathering

information about the nucleon spectrum is far easier from the electromagnetically induced

reactions than from the reactions induced by hadrons.
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1. Introduction

Theoretical approaches to the electromagnetic production of strangeness can be, in

general, divided into two distinct categories. In parton-based models, the quark-gluon

structure of the interacting hadrons is explicitly included in the reaction dynamics. As the

strange quarks are absent in the initial state, the production process is forced to make a

connection to the quark sea. In these models, resonances are implicitly included as excited

states and, therefore, the number of free parameters is relatively small. A further merit

of this approach is a natural description of the internal structure of hadrons, which has

to be modelled phenomenologically utilizing form factors in the isobar models. However,

the quark models for the electromagnetic production of kaons are overly complicated for

their further use in calculations of hypernucleus electroproduction and, apart from the

region of very high energies, where QCD processes can be solved perturbatively, quarks

and gluons do not represent the ideal building blocks in hadron reaction models.

On the other hand, hadrodynamical approaches consider the interacting hadrons as

the basic degrees of freedom of the effective field theory. In such an approach, the hadrons

are treated as effective particles with specific properties. In the lowest order, the reaction

mechanism proceeds through the exchange of intermediate states (i.e. resonances).

In the sequel of this section, we will summarize the basic properties of various ap-

proaches exploited for the study of photo- and electroproduction of strangeness.

Constituent Quark Model

In its long history, the Constituent Quark Model (CQM) has gathered a number of

achievements. In the framework of this model, the spectra of mesons and baryons, as

well as their strong, electromagnetic, and weak decays have been treated.

This model is in a closer connection with QCD than other models based on the

hadronic degrees of freedom. It needs a smaller number of parameters to describe the

data; in fact, it contains only a few coupling constants which are related together and

there is no need to introduce the resonances, since they emerge naturally from the model

as excited states of the system. The quark models, therefore, presume explicitly the ex-

tended structure of hadrons, which was found to be important for a reasonable description

of the photoproduction data. In the quark model, we usually restrict the description to

the non relativistic one.
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1.2. Strangeness Production Processes

The survey of nucleon spectroscopy has arrived at a very important topic that points

at the subtle interplay between CQM and QCD. By definition, the CQM depicts the

nucleon as a bound state of three constituent quarks, and has predicted a substantial

number of “missing” light baryons that have not been experimentally proven so far. On

the one hand, the constituent quarks might not represent the proper degrees of freedom,

and the quark-diquark models, which contain fewer degrees of freedom, may be more

convenient for the description of baryons. On the other hand, these missing states in fact

do exist but manifest themselves in different reaction channels [24].

In addition, the concept of chiral symmetry can be exploited to include pseudoscalar

mesons as the Goldstone bosons in the phenomenological quark model [122, 123], creating

a chiral quark model. This model makes use of the low-energy QCD Lagrangian and the

resonances in the s and u channels are treated in the framework of the quark model; the

t-channel contributions are limited by the duality hypothesis, which reduces the number

of free parameters even further and, in principle, there is only one parameter of each

isospin channel [123].

Chiral Perturbation Theory

The concepts of chiral symmetry may be utilized to build up a chiral effective meson-

baryon Lagrangian in the gauge-invariant chiral unitary model [14]. The chiral effective

Lagrangian is exploited to derive the interaction kernel in the Bethe-Salpeter equation

which then generates resonances dynamically. Thus, the importance of particular reso-

nances can be studied without their explicit inclusion [14].

Attempts were also made to calculate the kaon-hyperon photoproduction process in

the threshold region in the framework of the chiral perturbation theory [105]. However,

as it is limited to energies from threshold to approximately 100 MeV only, this approach

cannot describe physics higher in the resonance region. Contributions originating from

resonances with spin higher than 3/2, therefore, cannot be reproduced as the majority of

these states lie beyond the energy region where Chiral Perturbation Theory works.

Coupled-Channel Analysis

Generally, the meson-baryon rescattering processes among hadrons in the final state, so-

called final-state interactions, connect various channels of the production process. For
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1. Introduction

instance, the reaction channels γp → K+Λ and γp → π+n are, due to the final-state

interaction, coupled together and one should include both of them in order not to break

the condition of unitarity. Although the single-channel models, such as the isobar model,

describe the available experimental data well, the coupled-channel effects caused by the

intermediate states, such as πN , are ignored. However, the sequence γN → πN → KY

may be substantial in kaon photoproduction, as the γN → πN amplitudes are much

larger than the direct amplitudes γN → KY [26].

In the coupled-channel models [8, 62, 99], the rescattering effects in the meson-baryon

final-state system are included, since their contribution may induce changes at the level

of 20% on total cross sections [26]. Among existing studies of kaon photoproduction, the

effects of coupled channels have been examined within two different approaches. Kaiser et

al. [68] applied a coupled-channel approach with chiral SU(3) dynamics to study pion- and

photon-induced meson production near the KY threshold. On the contrary, Feuster and

Mosel [39] used a K-matrix method to investigate photon- and meson-induced reactions,

including γp→ K+Λ. Moreover, Chiang et al. presented another coupled-channel model

and discussed the significance of coupled-channel effects [26].

Unfortunately, the models face the problem of missing experimental information on

some transition amplitudes, e.g. K+Λ→ K+Λ. These unknowns have to be parametrized

somehow and then fitted to data from all considered channels.

1.3 Historical Background

The commencement of both theoretical and experimental study of kaon photo- and elec-

troproduction was given in the year 1957 when Caltech [38] and Cornell [102] laboratories

published the p(γ,K+)Λ cross-section data gathered at their electron synchrotrons. There

were a number of data collected on the kaon photoproduction (Caltech, Cornell, etc.) but

only a few experiments were carried out on the electroproduction (DESY, Cambridge).

The modelling of kaon photoproduction processes started in 1960s by the pioneering

works of Kuo [63] and Thom [109] who wrote a kaon photoproduction operator using

Feynman diagrams for the Born terms and partial-wave amplitudes for the resonances.

For the sake of the limited electron energies available at that time, only the kinematical

region close to threshold (i.e. from threshold up to photon lab energy of 1.4 GeV) could

be probed.
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1.3. Historical Background

Further theoretical work by Adelseck et al. [2] was ignited through subsequent ex-

periments in the 1970s and 1980s which were performed in Bonn [13], Tokyo [41] and

in the USA. Adelseck et al. identified a number of changes from the earlier operator

obtained by Thom when less data were available and their model laid the corner stone

of a wide-spread theoretical framework for electromagnetic strangeness production: the

isobar model. Nonetheless, since the pioneering work of Thom, the isobar models were

among the first models capable of describing the kaon photoproduction in the resonance

region.

In the year 1998, the SAPHIR collaboration, working at the electron stretcher ring

ELSA in Bonn, released the first experimental data of high precision for all three reaction

channels on the proton target [110, 45], i.e.

γ + p −→ K+ + Λ, (1.1a)

γ + p −→ K+ + Σ0, (1.1b)

γ + p −→ K0 + Σ+, (1.1c)

covering the photon lab energy from the threshold up to 2 GeV. These data sets renewed

the concern of the theoretical community for seeking the missing resonanes.

The reaction (1.1a) is by far the most studied one, both experimentally and theoreti-

cally, although a non negligible part of the existing data base suffers from inconsistencies

within the reported accuracies. There are less investigations of the reaction (1.1b) and

the process (1.1c) has up to the mid-nineties received very little attention because of

experimental difficulties in identifying the particles in the final state.

There is much less experimental data available on the production processes off the

neutron – owing to the weak binding of deuteron, it is ideally suited as an effective

neutron target. To our knowledge, there are only two data sets for the n(γ,K+)Σ and

n(γ,K0)Λ reaction channels available. The results of the LEPS collaboration [69], which

have been gathered through a quasi-free kaon photoproduction off a deuterium target,

include differential-cross-section and beam-asymmetry data at forward kaon angles, i.e.

for cos θc.m.K ≥ 0.65 in the energy range 1.5 GeV ≤ Elabγ ≤ 2.4 GeV. Moreover, using

photons on a target of liquid deuterium, CLAS collaboration [6] produced a large set of

n(γ,K+)Σ− data on differential cross section for a broad energy range. A liquid deuterium

target was exploited by Tsukada et al. [111] at the Laboratory of Nuclear Science of
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Tohoku University in Japan as well in order to accomplish an investigation of n(γ,K0)Λ

process, which may provide invaluable information on the strangeness photoproduction.

Over the last decade, the database for the p(γ,K)Y process was replenished with

high-precision data for p(γ,K+)Λ and p(γ,K+)Σ0 reactions from the CLAS [17, 82, 83],

SAPHIR [44], LEPS [51, 108, 121], and GRAAL [66, 67] collaborations. Experiments

at MAMI-C exploiting the Crystal Ball calorimeter [61] have provided us with several

hundreds of differential-cross-section data on K+Λ and K+Σ0 photoproduction, reveal-

ing particularly the behaviour at backward kaon angles where the data had been scarce.

Moreover, SAPHIR collaboration has provided another analysis of the p(γ,K0)Σ+ chan-

nel [64]. However, beyond the resonance region (i.e. for Elabγ ≥ 4 GeV) a limited number

of p(γ,K+)Y data are available. For the channel with K+Λ in the final state, 72 data

exists, including 56 differential-cross-section data [16], 9 beam-asymmetry data [94], and

7 hyperon-polarization data [118]. The number of available data for K+Σ0 production

is even smaller: there are 48 differential-cross-section data [16] and 9 beam-asymmetry

data [94].

The electroproduction process was measured in the late seventies [19, 10, 11]. Addi-

tional experimental data on the electroproduction processes p(e, e′K+)Λ,Σ0 were pro-

vided at Jefferson Lab [25, 86, 7]. The present research of the electroproduction of

strangeness plays an important role also at Mainz Microtron (MAMI). With the help

of the Kaos spectrometer for kaon detection, they have performed cross-section measure-

ments of the p(e, e′K+)Λ,Σ0 reactions at low-momentum transfers, which may be used

to distinguish between effective-Lagrangian models for photo- and electroproduction of

strangeness [4].

The theoreticians made a great deal of work in the last decades. In 1990, Adelseck

and Saghai [3] made a profound analysis of the p(γ,K+)Λ differential-cross-section data

up to 1.4 GeV, reproducing the differential and total cross section, hyperon polarization

and polarized target data well. On the other hand, they used spin-1/2 nucleon and

hyperon resonances only and some authors criticised that Adelseck and Saghai analyzed

only cross-section data and their fit is, therefore, not sensitive to the relative magnitudes

and phases of the transversity amplitudes [120].

Few years later, while extending their photoproduction model parametrization beyond

the photon lab energy Elabγ of 1.4 GeV, Williams et al. [119] found baryon resonances with
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spin higher than 1/2 to be necessary to describe the photoproduction data in this energy

region. Moreover, they also extended the use of duality as they represented high-spin s-

and u-channel resonances with a few low-lying t-channel resonances. The restriction to a

small number of N∗’s, however, can reproduce only gross features of the data as the details

are given mainly by an interplay between many resonant states. Another approach was

published by Mart et al. [76], discussing the constraints on coupling constants through

photoproduction of Σ mesons.

Subsequently, David et al. [32] followed the work of Adelseck and Saghai [3], extended

it to higher energies and for the first time included nucleon resonances with spin up to

5/2. In order to achieve a set of resonances which contribute to the process with the

highest probability, they evaluated a huge number of models, originating from various

combinations of about 30 considered resonances, and generalized their approach to study

simultaneously all photoproduction and radiative capture reactions (introduced via the

crossing symmetry). Their model provided a first comprehensive description of both

photo- and electroproduction of K+Λ, K+Σ0, and K0Σ+ and was called Saclay-Lyon.

The work of SAPHIR collaboration [110], published in 1998, clearly envisaged that the

total p(γ,K+)Λ cross-section data set is not characterized by a smooth energy dependence

above the peak in the threshold region. On the contrary, the data displayed a structure

at the total energy of approximately 1.9 GeV.

In a further study of kaon photoproduction, Mart and Bennhold [74] closely inves-

tigated the energy region of 1.9 GeV, where a broad peak in the cross-section data is

seen, and exposed a “missing” D13(1875) resonance to be responsible for a creation of

such a bump (we will come back to the concept of missing resonances later on). Another

key feature in this model is the inclusion of a hadron form factor which introduces inner

structures in hadron and helps reduce the overly strong contributions of Born terms. In

addition, they have included energy-dependent widths along with partial branching frac-

tions in the resonance propagators, which approximately account for unitarity corrections.

This model is available for calculations online [75].

Since an unrealistically large contribution of the Born terms manifested to be a serious

shortcoming of isobar models, another model, with three variants for treating contribu-

tions of background terms, was created at the University of Ghent [57].
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A lot of work on the photo- and electroproduction of both K+Λ and K+Σ0 [79] from

protons as well as on photoproduction of kaons on deuterons has been done by Maxwell.

In the case of photoproduction of K+Λ on protons, he has studied model dependencies

in these reactions, exploring the treatment of the spin-3/2 resonance propagator and the

prescription exploited for the widths of resonances [80]. He has also examined the effects

of relaxing the SU(3)-symmetry constraints on the Born contributions [93]. Moreover,

he has investigated the electroproduction of K+Λ on proton, discussing constraints on

electromagnetic form factors incorporated at the photon vertices in order to extend the

photoproduction process to electroproduction [81].

Last but not least, there came a Regge approach, suitable for a study of high-energy

region, replenished with nucleon states in order to give predictions of the resonance region

as well. The idea of modelling the high-energy amplitude by means of Regge-trajectory

exchanges in the t channel was proposed by Levy et al. [65]. Subsequently, Guidal et

al. [46, 47, 48] exploited the same techniques to study the forward kaon photoproduction,

criticising the work of Levy et al. for using the notion of (over)absorption to explain

the experimental data, which leads to gauge-invariance violation and creates dips in the

differential cross section at larger values of −t which are not observed in the experi-

ments. Further work, particularly the extension of the model towards the resonance

region through inclusion of N∗ states, has been done by researchers at the University of

Ghent. Their approach, dubbed Regge-plus-resonance model, treats background terms in

a completely different way in comparison with the isobar model [29].

Since this should be only an overview of the historical path that led us to this work, the

interested reader may find much more detailed description of various models in Sections

3.1 and 4.2.
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Chapter 2

Formalism

2.1 Kinematics

In the one-photon-exchange approximation, the electroproduction reaction can be con-

sidered as the electron scattering on the target proton through the exchange of a single

virtual photon, resulting in the kaon, hyperon, and scattered electron in the final state.

The dynamics can be in this case separated into a lepton and hadron part of the process.

The lepton part occurs on a so-called lepton plane which is determined by the direction of

electron propagation before and after the scattering. The hadron plane, where the hadron

part takes place, is set by the direction of propagation of the photon and kaon. The planes

are tilted with respect to each other by an angle ϕK . This situation is schematically de-

picted in Figure 2.1. Whereas the lepton part of the electroproduction reaction is usually

depicted in the laboratory frame with a stationary nucleon, the hadron part of the process

is considered in the center-of-mass frame. For photoproduction, the photon is on shell

and there is thus no lepton plane, which leads to a significant simplification.

The kinematic quantities which are involved in the photoproduction reaction,

γV (k) + p(p) −→ K+(pK) + Λ(pΛ), (2.1)

are shown in the Figure 2.1. In the case of photoproduction, we work in the center-of-mass
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2. Formalism

Figure 2.1: A definition of reference frames for leptonic and hadronic part of the
p(e, e′K)Y process is shown together with kinematic variables. The photoproduction
reaction occurs only at the hadronic plane.

frame and the four-momenta are given as

k = (E∗γ ,
~k∗), pK = (E∗K , ~p

∗
K)

p = (E∗p ,−~k∗), pΛ = (E∗Y ,−~p∗K),
(2.2)

where E∗i =
√
m2
i + |~p∗i |2 for i ≡ p,K,Λ and E∗γ = |~k∗|. All of these momenta can form

Mandelstam variables

s = (p+ k)2 = (pK + pΛ)2 (2.3a)

t = (pK − k)2 = (pΛ − p)2 (2.3b)

u = (pΛ − k)2 = (pK − p)2, (2.3c)

which in the photoproduction fulfil the following relation

s+ t+ u = m2
p +m2

K +m2
Λ. (2.4)

From the energy-conservation relation,

E∗γ +
√
m2
p + E∗2γ =

√
m2
K + |~p∗K |2 +

√
m2

Λ + |~p∗K |2, (2.5)

it is easy to see that the kaon momentum |~p∗K | is defined as a function of the incoming

photon energy E∗γ . The reaction dynamics, therefore, depends only on the center-of-mass

kaon scattering angle θc.m.K (see Figure 2.1) and the energy of incoming photon. Since the

incoming photon energy is measured in the laboratory frame, the experimental outcomes

are commonly delivered as a function of Elabγ rather than E∗γ .
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2.2 Observables

In the electroproduction

e(k1) + p(p)→ e(k2) +K+(pK) + Λ(pΛ),

the transition amplitude in the one-photon exchange approximation is a product of the

matrix elements of the hadron Jµ and lepton lµ = e ū(k2)γµu(k1) currents mediated by

the photon propagator

Mfi =
1

k2
lµ Jµ(k2, s, t, u) , (2.6)

where k = k1 − k2 is the four-momentum of virtual photon and s, t, and u are the

Mandelstam variables defined in (2.3). The conservation of the hadron and lepton currents

implies Jµkµ = lµkµ = 0. The matrix element of the hadron current can be therefore

decomposed into the linear combination of six covariant gauge-invariant contributions

Jµεµ =

6∑
j=1

Aj(k2, s, t, u) ū(pΛ) γ5Mj u(p) , (2.7)

where Mj are explicitly gauge-invariant operators

M1 = (6k 6ε− 6ε 6k)/2, (2.8a)

M2 = p · ε− k · p k · ε/k2, (2.8b)

M3 = pΛ · ε− k · pΛ k · ε/k2, (2.8c)

M4 = 6εk · p− 6kp · ε, (2.8d)

M5 = 6εk · pΛ− 6kpΛ · ε, (2.8e)

M6 = 6kk · ε− 6εk2, (2.8f)

and εµ is the polarization vector of the virtual photon. The M1 operator can be recast

to the form M1 = 6 k 6 ε − k · ε = k · ε− 6 ε 6 k, which may be convenient for casting the

amplitude to the compact form of Equation (2.7). The scalar amplitudes Aj(k2, s, t, u)

contain contributions from the considered tree-level Feynman diagrams. Their expressions

for various types of particle exchanges are given in Appendix A. In the photoproduction

case (k2 = 0), there are only four terms in the decomposition (2.7) [3].

In the calculations which involve also a non relativistic input, e.g. the calculation

of the hypernucleus production cross sections [23] with non relativistic wave functions
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of the nucleus and hypernucleus, one also needs a more convenient representation of the

Lorentz invariant matrix element (2.7) in terms of the two-component-spinor amplitudes

known as the Chew, Goldberger, Low, and Nambu (CGLN) amplitudes [3, 32, 104]. These

amplitudes are, however, also widely used in calculations of observables in the elementary

process. In the c.m. frame, the Lorentz invariant matrix element (2.7) can be written as

Jµεµ = χ+
Λ F χp (2.9)

where χp and χΛ are the Pauli spinors and

F = f1 ~σ · ~ε− if2 ~σ · ~̂pK ~σ · (~̂k × ~ε) + f3 ~σ · ~̂k ~̂pK · ~ε

+ f4 ~σ · ~̂pK ~̂pK · ~ε+ f5 ~σ · ~̂k ~̂k · ~ε+ f6 ~σ · ~̂pK ~̂k · ~ε.
(2.10)

Here ~̂k = ~k/|~k|, ~̂pK = ~pK/|~pK |, ~σ are the Pauli matrices, and ~ε is the spatial compo-

nent of the virtual-photon polarization vector. The CGLN amplitudes, fi(k
2, s, t, u), are

expressed via the scalar amplitudes Aj

f1 = N∗[−(W −mp)A1 + k · pA4 + k · pΛA5 − k2A6], (2.11a)

f2 = N∗
|~k||~pK |

(E∗Λ +mΛ)(E∗p +mp)
[(W +mp)A1 + k · pA4 + k · pΛA5 − k2A6], (2.11b)

f3 = −N∗ |
~k||~pK |

E∗p +mp
[A3 + (W +mp)A5], (2.11c)

f4 = N∗
|~pK |2

E∗Λ +mΛ
[A3 − (W −mp)A5], (2.11d)

f5 = N∗
|~k|2

E∗p +mp

[
A1 −

1

k2
[(k2 + k · p)A2 + k · pΛA3]− (W +mp)(A4 +A6)

]
, (2.11e)

f6 = N∗
E∗γ |~k||pK |

(E∗Λ +mΛ)(E∗p +mp)

{
A1 −mpA4 +

k · pΛ

E∗γ
A5

+
(E∗p +mp)

E∗γk
2

[(k2 + k · p)A2 + k · pΛA3]− (W +mp)A6

}
,

(2.11f)

where W =
√
s and E∗p , E∗Λ, E∗K , and E∗γ are the c.m. energies of the proton, hyperon,

kaon and photon, respectively. The normalization factor reads

N∗ =

√
(E∗Λ +mΛ)(E∗p +mp)

4mΛmp
. (2.12)

The triple-differential cross section for electroproduction of unpolarized hyperon with

unpolarized electron beam and target is obtained as

d3σ

dEe′dΩe′dΩc.m.K

= Γ

[
σT + εσL + εσTT cos 2ϕK +

√
2εL(ε+ 1)σLT cosϕK

]
, (2.13)
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where ϕK , Γ, ε and εL are the angle between the lepton and hadron planes, the virtual-

photon flux factor, and the transverse and longitudinal photon polarization parameters,

respectively [104]. The response functions σT and σL describe the cross sections for the

unpolarized and longitudinally polarized photon beam, respectively, while σTT stands

for the asymmetry of a transversally polarized photon beam. The last term containing

σLT describes the interference effects between the longitudinal and transverse components

of the photon beam. Note that σT and σTT correspond to the cross section and beam

asymmetry in the photoproduction process, respectively. The response functions in terms

of the CGLN amplitudes read as follows

σT =C Re

{
|f1|2 + |f2|2 − 2f1f

∗
2 cos θK

+ sin2 θK

[
1

2
(|f3|2 + |f4|2) + f1f

∗
4 + f2f

∗
3 + f3f

∗
4 cos θK

]}
,

(2.14a)

σL =C Re
{
|f̃5|2 + |f̃6|2 + 2f̃5f̃

∗
6 cos θK

}
, (2.14b)

σTT =C Re

{
1

2
(|f3|2 + |f4|2) + f1f

∗
4 + f2f

∗
3 + f4f

∗
3 cos θK

}
sin2 θK , , (2.14c)

σLT =− C Re

{
(f1 + f4)f̃∗6 + (f2 + f3)f̃∗5 + (f3f̃

∗
6 + f4f̃

∗
5 ) cos θK

}
sin θK , (2.14d)

where we have defined the linear combinations

f̃5 =f1 + f3 cos θK + f5, (2.15)

f̃6 =f4 cos θK + f6 (2.16)

and the normalization factor C is given as

C = (~c)2 α

4π

mΛ|~pK |
|~k|W

. (2.17)

The general expression for the electroproduction cross section considering all three pos-

sible types of polarization can be found in Ref. [70]. Here we give the single-polarization

observables P , Σ, and T and the double-polarization observables Cx, Cz, Ox, and Oz

which we use in the analysis and which in terms of the CGLN amplitudes read

P = −Im[2f∗1 f2 + f∗1 f3 − f∗2 f4 − (f∗2 f3 − f∗1 f4) cos θK − f∗3 f4 sin2 θK ] sin θK , (2.18)

Σ = −Re[(|f3|2 + |f4|2)/2 + f∗2 f3 + f∗1 f4 + f∗3 f4 cos θK ] sin2 θK , (2.19)

T = Im[f∗1 f3 − f∗2 f4 + cos θK(f∗1 f4 − f∗2 f3)− f∗3 f4 sin2 θK ] sin θK , (2.20)
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Cx = −Re[−|f1|2 + |f2|2 + f∗2 f3 − f∗1 f4 + (f∗2 f4 − f∗1 f3) cos θK ] sin θK , (2.21)

Cz = −Re[−2f∗1 f2 + cos θK(|f1|2 + |f2|2)− sin2 θK(f∗1 f3 + f∗2 f4)], (2.22)

Ox = Im[f∗2 f3 − f∗1 f4 + cos θK(f∗2 f4 − f∗1 f3)] sin θK , (2.23)

Oz = −Im[f∗1 f3 + f∗2 f4] sin2 θK , (2.24)

where P , Σ and T stands for hyperon polarization, beam asymmetry (see also Equa-

tion (2.14c)) and target polarization, respectively.

In the laboratory frame, the CGLN amplitudes read

F1 = N

[
− (k · pΛ) + k0mΛ

EΛ +mΛ
A1 + k0mpA4 + (k · pΛ)A5 − k2A6

]
, (2.25a)

F2 = N
|~k||~pK |
EΛ +mΛ

A1, (2.25b)

F3 = N
|~k||~pK |
EΛ +mΛ

[A1 −A3 − (EΛ +mΛ − k0)A5], (2.25c)

F4 = N
|~pK |2

EΛ +mΛ
[A3 − k0A5], (2.25d)

F5 = −N |~k|2

EΛ +mΛ

{
A1 +

1

k2
[mpk0A2 + ((k · pΛ)− k2)A3]

+ (EΛ +mΛ − k0)(A6 −A5)

}
,

(2.25e)

F6 = N
|~k||~pK |
EΛ +mΛ

{
1

k2
[mpk0A2 + ((k · pΛ)− k2)A3] + k0(A5 −A6)

}
, (2.25f)

where all momenta are in the lab frame, EΛ and k0 are the energies of the Λ hyperon and

virtual photon, respectively. The normalization factor N is

N =

√
EΛ +mΛ

2mΛ
.
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Chapter 3

An Overview of the Isobar Model

In the isobar model, the starting point in modelling the photo- and electroproduction

processes is a description in terms of hadron degrees of freedom. The amplitude is, thus,

constructed from an effective meson-baryon Lagrangian as a sum of tree-level Feynman

diagrams which represent the s-, t-, and u-channel exchanges of the hadrons in the ground

state (the Born terms) and various resonances (the non-Born terms); see Figure 3.1. In

this approach, we neglect the higher-order contributions which account for, e.g. the

rescattering effects. It is only the exchange of nucleon resonances that makes a resonant

structure in the observables. Since the corresponding poles of the other diagrams are far

from the physical region, they contribute to the background part of the amplitude only

and do not give rise to peaks in the energy dependence of the cross section. The isobar

model works well in the near-threshold and resonant region involving photon lab energy

from threshold up to approximately 2.5 GeV.

Unlike the pion or η-meson photoproduction, there exists no dominant resonance in

photoproduction of kaons. Therefore, one has to take into account a priori more than 20

resonances with mass ≤ 2 GeV. This leads to a huge number of possible configurations

of resonances which should be investigated [3, 32, 35], still resulting in a large number

of models describing the data reasonably well (i.e. with a small χ2). In order to reduce
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this large number of models, one imposes constraints to acceptable values of the KΛN

and KΣN coupling constants and relates them to the well-known πNN value by means

of the SU(3) symmetry [3, 32, 57].

The SU(3) flavour symmetry, which governs the baryon and meson multiplets can

be used to establish relations between various meson-baryon-baryon coupling constants

connecting different processes (e.g. production of π, η and K). Furthermore, these

relations allow one to connect the coupling constants of the up-down sector to the coupling

constants of the strange sector. Using the convention of de Swart [107], in the case of

the unbroken SU(3) symmetry one can derive relations for the KΛN and KΣN coupling

constants

gKΛN =− 1√
3

(3− 2αD)gπNN , (3.1a)

gKΣN =(2αD − 1)gπNN , (3.1b)

where αD is the fraction of symmetric coupling in the πNN vertex. Taking the αD value

of 0.644 ± 0.006 and the experimental knowledge of g2
πNN/4π = 14.4, the values for the

KΛN and KΣN coupling constants can be determined. Due to the substantial difference

between the mass of the proton and the mass of the Λ hyperon (which originates in

interchanging an up quark with a strange quark), it is known that the SU(3) symmetry

is not exact but it is violated at the level of 20%. Thus, the relations (3.1) are not exact

and one obtains the following ranges for the coupling constants

−4.4 ≤ gKΛN√
4π
≤ −3.0, 0.8 ≤ gKΣN√

4π
≤ 1.3. (3.2)

In order to ensure regularity for the tree-level invariant amplitude in the physical

region, the poles corresponding to the resonances are shifted to the complex plane, mR →

mR − iΓR/2, introducing the decay width ΓR which accounts for a finite lifetime of the

resonant state. The Feynman propagator can then be written as

1

6q −mR + iΓR/2
=

6q +mR − iΓR/2

q2 −m2
R + imRΓR + Γ2

R/4
,

and various approximations are assumed in various isobar models. In the Saclay-Lyon

and Ghent models the following approximation is exploited

6q +mR

q2 −m2
R + imRΓR

, (3.3)
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Figure 3.1: The tree-level contributions to the p(γ,K+)Λ amplitude are shown. The
Born terms with an exchange of a hadron in its ground state and the non-Born terms
with nucleon-, kaon-, and hyperon-resonance exchanges are shown in the upper and lower
rows, respectively. The t- and u-channel diagrams and the s-channel Born term contribute
to the background part since the energy-momentum conservation prevents their poles
from being reached in the physical region. Only the s-channel non Born term produces
resonant structures in the observables.

while in the Kaon-MAID model and in Ref. [104] the Feynman propagator reads

6q +mR − iΓR/2

q2 −m2
R + imRΓR

. (3.4)

In the tree-level approximation, the decay widths can, to some extent, mimic dressing

of the propagator. In most of the isobar models, the widths are assumed to be constant

parameters, and the Breit-Wigner values suggested in the Particle Data Tables are used.

In order to approximately account for unitarity corrections in the single-channel approach,

the energy-dependent widths for the nucleon resonances were used in the Kaon-MAID

model. The energy dependence of ΓR is given by a possibility of a resonance to decay

into various open channels. In this work, we use the approximation (3.4) with constant

decay widths.

One of the characteristic features of the kaon photoproduction process described by

an isobar model is too large a contribution of the Born terms to the cross sections which

largerly overshoots the data. This non physically large strength of the Born terms has

to be reduced in order to get a realistic description of the cross sections and other ob-

servables allowing an analysis of the resonant content of the amplitude. We can achieve
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3. An Overview of the Isobar Model

Figure 3.2: Cross-section prediction of SL model is shown in dependence on total energy
W for various kaon angles θc.m.K in the forward hemisphere. The solid, dotted, and dashed
lines represent the full SL model and outcomes of SL model with no hyperon and nucleon
resonances, respectively. The calculation with no hyperon resonances illustrates the re-
quirement of reducing the Born terms; in SL model, the hyperon resonances are employed
for this purpose.

this by introducing the form factors into the strong vertices (hadron form factors in this

case) [74] or by exchanges of several hyperon resonances [32] or by a combination of both

methods [57, 59]. In our model, we exploit both the implementation of hadron form fac-

tors and the exchange of hyperon resonances. Needless to say, the choice of the method

strongly affects the dynamics of the model. Note that the problem with too large a con-

tribution of Born terms is not present in the Regge-plus-resonance model [29, 30, 31] since

in this approach the background is modelled in a different way (for a detailed description

see Chapter 4).

Another ambiguity in construction of the gauge-invariant Lagrangian arises from a

coupling in the KΛN vertex which can be either pseudoscalar- or pseudovector-like [52,

53]. While the former makes the total contribution of the Born terms gauge invariant, the

use of the latter coupling requires introducing a contact term even with no hadron form
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factors inserted. The role of these couplings was investigated in the threshold region [72]

and it was concluded that both couplings can describe the KΛ photoproduction data

equally well. In this work, however, we have used the pseudoscalar coupling as in the

most of isobar models.

3.1 Variants of the Isobar Model

Since the photoproduction process occurs in the so-called third-resonance region, where

a plenty of resonances exist and none of them seems to be dominant in K+Λ photo-

production, there is a number of versions of the isobar model. The most successful in

the data description and the most frequently cited are Saclay-Lyon, Kaon-MAID and

Ghent models. Moreover, the latter one inspired the researchers at Ghent University to

the development of a brand new approach coined Regge-plus-resonance model which is

of interest in this work as well. In this section, the main ideas of aforementioned iso-

bar models will be given. In all of them, the non consistent formalism for exchanges of

high-spin fields, which leads to a propagation of lower-spin components (for details see

Chapter 3.2), is used.

Saclay-Lyon model

Saclay-Lyon (SL) model [32] provided a first extensive description of photo- and elec-

troproduction of K+Λ, K+Σ0, and K0Σ+ in the energy range from threshold up to

photon lab energy of 2.1 GeV as well as radiative kaon capture reactions. An astute

reader may notice that David et al. show in their work some results beyond the energy of

2.1 GeV. However, the models were obtained by fitting the data up to roughly 2.1 GeV

and, therefore, the outcomes beyond this energy region are merely predictions shown so

as to investigate the behaviour of different models at higher energies.

In addition to Born terms (exchanges of the proton, K+, Λ, and Σ particles in their

ground state), this model includes the exchanges of vector (K∗(890)) and axial-vector

(K1(1270)) mesons in the t channel as well as exchanges of hyperon resonances (Λ(1407),

Λ(1670), Λ(1810), and Σ(1660)) in the u channel. The structures in the resonance region

are modelled by the addition of nucleon resonances (P11(1440), P13(1720), and F15(1680))

in the s channel. Moreover, the Saclay-Lyon model includes no hadron form factors and
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3. An Overview of the Isobar Model

their effects are, to some extent (i.e. helping reduce the large Born-term contributions),

simulated by the presence of hyperon resonances, see Figure 3.2. Among the strangeness

production models, the Saclay-Lyon model was the first one to include nucleon and ∆

resonance contributions with spin up to 5/2 [34].

In the beginning, David et al. started with the set of spin-1/2 resonances chosen

by Adelseck and Saghai in their analysis [3] and added resonances with higher spin.

Subsequently, they performed an evaluation of a huge number of models taking into

account various combinations of about 30 possible baryon resonant states and described

the sensitivity of various observables on the inclusion or omission of particular resonances.

The resulting model is the only configuration fulfilling the criteria of acceptably low χ2’s

for all channels under study, agreement with the SU(3)-symmetry constraints for the

two main coupling constants gKΛN and gKΣN , predictivity power, and a simple reaction

mechanism.

Cross-section predictions of SL model for kaon angles in the forward hemisphere are

shown in Figure 3.2. The omission of hyperon resonances in the u channel leads to

a gross overestimation of cross-section data, whereas the nucleon s-channel resonances

subtly replenish contributions of other parts of the amplitude in order to give the full

model.

Kaon-MAID model

Mart and Bennhold [74] have constructed an isobar model for kaon photoproduction

called Kaon-MAID (KM) with calculational interface available online [75]. Since the

amplitude of this model is not unitary by construction, the nucleon resonance propagator

is replenished with an energy-dependent width which accounts for unitarity corrections.

In order to regularize too large a contribution of Born terms, hadron form factors are

implemented. This leads to a strong suppression of the electric part of the s-channel

Born term which results in a bump in the cross-section prediction for small kaon angles,

approximately for θc.m.K of 30◦, and the total energy higher than W = 1.9 GeV.

Besides the Born terms (exchanges of proton, K+, Λ, and Σ particles in their ground

state), the exchanges of vector (K∗(890)) and axial-vector (K1(1270)) mesons in the

t channel build up the background of Kaon-MAID model. The resonant part of the

amplitude is modelled by exploiting the s-channel S11(1650), P11(1710), and P13(1720)
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3.1. Variants of the Isobar Model

Figure 3.3: Cross-section prediction of KM model is shown for various kaon angles in the
forward hemisphere. The solid, dotted, dashed, and dash-dotted lines represent the pre-
dictions of the full KM model and of the model with P11(1710), P13(1720), and D13(1895)
resonances omitted. The importance of D13(1895) resonance for a satisfactory description
of the peak around W of 1.9 GeV is demonstrated in this way.

nucleon resonances. Moreover, in order to describe the broad peak in the SAPHIR [110]

cross-section data around 1.9 GeV, Mart and Bennhold performed a number of fits with

several states predicted by the constituent quark model [24] in this energy region, allowing

the fit to determine the mass, width and coupling constants of the resonances. While all

of the examined resonances proved to reproduce the structure around the considered

energy and reduced the χ2 value, only the D13(1895) state was predicted to have also

significant photocouplings [74]. Thus, they identified the structure seen in the data with

the D13(1895) state predicted by the quark model and added this state to their model.

However, the reproduction of the visual peak in the total cross-section should not be

interpreted as a steadfast evidence for the occurence of the given missing resonance.

The behaviour of the KM model for various fixed kaon angles is shown in Figure 3.3 and

its predictions are compared with several data sets. Note that the KM-model parameters

were not adjusted to any of the CLAS data as these data were not available at the time
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3. An Overview of the Isobar Model

of formation of KM model. Apparently, the presence of nucleon resonances is important

for the model in order to give a trustworthy correspondence with experimental data.

Omitting a resonance leads to a drop in the cross-section prediction, which strongly

suggests the importance of the resonance for the particular kinematic region. For instance,

the KM model with no P11(1710) or P13(1720) is not able to capture the first peak in the

cross section, while leaving out the D13(1895) resonance leads to a failure in reproducing

the second peak of the cross-section data at W around 1.9 GeV, see Figure 3.3. Moreover,

since this model was proposed in the energy range from the threshold up to the total

energy W of 2.2 GeV, the cross sections diverge beyond this energy region, which is well

apparent in Figure 3.3.

Ghent Isobar Model

In this work, close attention have been paid to the determination of the background part of

the amplitude, which consists of Born terms and vector and axial-vector meson exchange

in the t channel. Three different options of balancing the Born terms, which on their own

predict the cross section being a few times the measured one, were investigated. As a first

scheme, Janssen et al. [57] introduced hadron form factors which are a well-known tool

for reducing the strength stemming from the Born terms. Considering the hadron form

factors, the best fits were obtained with values of the cutoff parameter which approach an

imposed underlimit of 0.4 GeV, making the hadron form factor extremely soft. Despite

the good agreement with the data reached in this scheme, the magnitude of cutoff masses,

being as small as the kaon mass, is doubtful [57].

A second variant was to introduce hyperon resonances in the u channel which interfere

destructively with the Born terms and in this way reduce their contributions. In this

option, considering the large value of coupling constants for Λ(1800) and Λ(1810) hyperon

resonances included, Janssen et al. argued that these two hyperon resonaces may be

interpreted as effective particles accounting for a larger set of hyperon resonances which

participate in the process [57].

A third option was based on ignoring the limits for the main coupling constants,

gKΛN and gKΣN , which leads to smaller values of these coupling constants than what is

expected on the basis of the broken SU(3) flavour symmetry. They showed that all tech-

niques considered result in a fair agreement of the model calculations with the available
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Nickname Particle Mass [MeV] Width [MeV] Jπ Status
K∗ K∗(892) 891.66 50.8 1−

K1 K1(1270) 1272 90 1+

N1 P11(1440) 1430 350 1/2+ ****
N3 S11(1535) 1535 150 1/2− ****
N4 S11(1650) 1655 150 1/2− ****
N8 D15(1675) 1675 150 5/2− ****
N9 F15(1680) 1685 130 5/2+ ****
N5 D13(1700) 1700 150 3/2− ***
N6 P11(1710) 1710 100 1/2+ ***
N7 P13(1720) 1720 270 3/2+ ****
P5 F15(1860) 1860 270 5/2+ **
P1 P11(1880) 1870 235 1/2+ **
P4 D13(1875) 1875 220 3/2− ***
P2 P13(1900) 1900 500 3/2+ ***
P3 F15(2000) 2050 198 5/2+ **
M1 D13(2120) 2120 330 3/2− **
L1 Λ(1405) 1405 50 1/2− ****
L2 Λ(1600) 1600 150 1/2+ ***
L3 Λ(1670) 1670 35 1/2− ****
L4 Λ(1800) 1800 300 1/2− ***
L5 Λ(1810) 1810 150 1/2+ ***
L6 Λ(1520) 1519.54 15.6 3/2− ****
L7 Λ(1690) 1690 60 3/2− ****
L8 Λ(1890) 1890 100 3/2+ ****
S1 Σ(1660) 1660 100 1/2+ ***
S2 Σ(1750) 1750 90 1/2− ***
S3 Σ(1670) 1670 60 3/2− ****
S4 Σ(1940) 1940 220 3/2− ***

Table 3.1: Meson and baryon resonances which can be included in a description of the
p(γ,K+)Λ process. For each resonance, the mass, width, spin, parity, and status are
shown. Entries are from Particle Data Tables 2014 [88] except for the P2 width which
was taken from the Bayesian analysis of the Ghent group [35].

experimental data. Nonetheless, they concluded that the various ways of treating the

background part heavily influence the extracted information about the resonances.

This model comprises the same resonances as the Kaon-MAID model, i.e. S11(1650),

P11(1710), P13(1720), and D13(1895). In one of the considered variants, they introduced

also hyperon resonances in the u channel, namely Λ(1800) and Λ(1810). Moreover, the

P13(1900) has been suggested as the alternate one to the D13(1895) found in [74].
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3. An Overview of the Isobar Model

3.2 Resonances with Spin 3/2 and 5/2

In the description of the p(γ,K+)Λ process, there are a number of baryon resonances

which can contribute either to the resonant or non resonant (background) part of the

amplitude. Many of them are of spin 3/2, 5/2 or even higher. In this work, we restrict

our analysis only to nucleon resonances with spin 3/2 and 5/2, since higher-spin nucleon

resonances have mass higher than 2 GeV, where there is no apparent resonant structure

in the data, and to hyperon resonances with spin 3/2. Among these states, the one of

highest importance is most probably the D13(1875) whose couplings tend to be very large

in comparison with other resonances; the role of other high-spin states is rather in their

subtle interplay with other terms creating the resonance pattern in cross sections. In the

background part of the amplitude, the only high-spin contributions which we consider are

the exchanges of spin-3/2 hyperon resonances in the u channel (see Table 3.1).

The Rarita-Schwinger (R-S) description of high-spin fermion fields includes non phys-

ical degrees of freedom connected with their lower-spin content. If the R-S field is off

its mass shell, the non physical parts may participate in the interaction, which is then

called “inconsistent”. Almost two decades ago, Pascalutsa proposed a new consistent

interaction theory for massive spin-3/2 fields [90], where the interaction is mediated by

the spin-3/2 modes only. The consistency of the theory is ensured by the invariance of

the spin-3/2 interaction vertices under the local U(1) gauge transformation of the R-S

field. This scheme was generalized to arbitrary high spin by the Ghent group [116] and

is used in this work.

The R-S propagator of the spin-3/2 field in terms of the spin-projection operators

is [91]

Sµν(q) =
6q +mR

q2 −m2
R + imRΓR

P (3/2)
µν − 2

3m2
R

(6q +mR)P
(1/2)
22,µν +

1

mR

√
3

(
P

(1/2)
12,µν + P

(1/2)
21,µν

)
,

(3.5)

where P
(3/2)
µν projects on the spin-3/2 states

P (3/2)
µν = gµν −

1

3
γµγν −

6qqνγµ + qµγν 6q
3q2

, (3.6)

and P
(1/2)
12,µν , P

(1/2)
21,µν , and P

(1/2)
22,µν project on the spin-1/2 sector

P
(1/2)
22,µν =

qµqν
q2

, P
(1/2)
12,µν =

qρqνσµρ√
3q2

, P
(1/2)
21,µν =

qµq
ρσρν√
3q2

, (3.7)

where σρν = i
2 [γρ, γν ].
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The gauge invariance of the strong, K(pK) ΛN∗(q), and electromagnetic, N∗(q) p γ(k),

couplings [90] generates the transverse interaction vertices

V Sµ (KΛN∗) =
f

mKmR
ελµαβ γ5 γ

α qλ pβK , (3.8)

and

V EMν (N∗pγ) =
i γ5

mR(mR +mp)
qτ [ g1Fτν + g2 ( γτγ

σFνσ − γνγσFτσ) ] , (3.9)

where Fµν = kµεν − εµkν , ε0123 = 1, and

V Sµ qµ = V EMν qν = 0 . (3.10)

Then it is obvious from Eqs. (3.5) and (3.7) that this property removes all non physical

contributions of the spin-1/2 sector to the invariant amplitude. Moreover, one sees in

Equation (3.6) that the pole term in P
(3/2)
µν also vanishes which makes it possible to

include into the model the hyperon exchanges with the spin 3/2 in the u channel (see

below).

In general, for arbitrary high spin n + 1/2 (n = 1, 2, . . .), the transversality of the

interaction vertices prevents the momentum-dependent terms in the propagator from

contributing, allowing us to write the R-S propagator in the consistent theory only by

means of the projection operator onto the pure spin-(n+ 1/2) state [116]:

Sµ1···µn,ν1···νn(q)→ 6q +mR

q2 −m2
R + imRΓR

P
(n+1/2)
µ1···µn,ν1···νn(q). (3.11)

The gauge invariance of the interaction results also in a relatively high-power momen-

tum dependence in the invariant amplitude, which rises with rising spin of the R-S field

as ∼ q2n [116]. For the spin-3/2 field it is apparent from Eqs. (3.8) and (3.9) that the

momentum dependence is ∼ qλqτ , see also (A.39) for the s-channel invariant amplitude.

In the case of a contribution of spin-5/2 nucleon resonance, the invariant amplitude can

be schematically written as

MN∗(5/2)
NBs ∼ q4 6q +mR

q2 −m2
R + imRΓR

P(5/2)
µν,λρ(q)O

µν,λρ
5/2 , (3.12)

where P(5/2)
µν,λρ(q) projects onto the spin-5/2 state [116] and Oµν,λρ5/2 stands for the remaining

structure in the strong and electromagnetic vertices, see (A.50).

This strong momentum dependence from derivatives in the gauge-invariant vertices

regularizes the amplitude, but it also causes non physical structures in the energy de-

pendence of the cross section, which needs to be cut off especially above the resonance
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region. Therefore, the hadron form factors with a higher, spin-dependent energy power in

the denominator and with relatively small values of the cutoff parameter in comparison

with standard hadron form factors are used in the RPR model [116, 35]. We have, there-

fore, also carefully investigated this property in our isobar approach considering various

forms of the hadron form factor, see Subsection 3.4 below.

Note that after the substitution
√
s→ mR the propagator used in the SL model [32]

equals that in Equation (3.5). The interaction Lagrangians in the SL model, constructed

as the most general form invariant under the so-called point transformation [85], lead

in general to an inconsistent description. Moreover, this point-transformation invariance

adds three more free parameters, the off-shell parameters, to each spin-3/2 resonance [85,

57, 59, 60]. Using the consistent formalism in our approach we have avoided this additional

uncertainty in the model.

3.3 Resonant Contributions

Nucleon Resonances

For a selection of a set of baryon resonances that preferably describe the world p(γ,K+)Λ

data, one has to perform thousands of fits assuming all acceptable resonance combina-

tions. To our knowledge, such a robust analysis has been performed by Adelseck and

Saghai [3], further extended by the Saclay-Lyon group [32] and by the Ghent group [35]

which used more sophisticated technique in the data analysis based on a Bayesian infer-

ence method. Another data analysis in the multipole approach was performed by Mart

and Sulaksono [78] who considered resonances with spin up to 9/2 with 93 free parame-

ters performing the χ2 minimization fits to CLAS, LEPS and SAPHIR data. The Ghent

group made the Bayesian analysis of a huge number of nucleon resonance combinations

and selected two sets of resonances with the highest evidence values. We have chosen

one of these solutions, RPR-2011A [35], as a starting point in our analysis. The corre-

sponding resonances are N3, N4, N7, N9, P1, P2, P3, and P4 (see Table 3.1 for notation).

Furthermore, we have replenished this set with a few other nucleon resonances, such as

D15(1675), D13(1700), P11(1710), and F15(1860). As a result, the last two N∗’s are in-

cluded in our best fits, BS1 and BS2, since they lead to a decrease of χ2 and improve the

description of data. As we limit ourselves to the K+Λ channel only, there is no need to
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introduce ∆ resonances which cannot decay to K+Λ because of isospin conservation.

The four-star resonance N3 [S11(1535)], which is of crucial importance for the de-

scription of η-meson photoproduction, lies below the K+Λ threshold, but its coupling

to the K+Λ channel is possible because of its large width and predicted strong coupling

to the strangeness sector. In the Bayesian analysis with the RPR model, this resonance

was found to contribute with a moderate probability [35], while in the isobar model its

coupling strength to the K+Λ channel was found to be quite small [73].

In the KM and Ghent isobar models, the N4, N6, and N7 established resonances were

chosen along with the missing resonances P4 [D13(1875)] and P1 [P11(1880)]. In the SL

model [32] for the K+Λ electroproduction, only the well established nucleon resonances

N1, N7, and N8 were selected. The older RPR model, RPR 2007 [29, 30, 31], selected

N4, N6, N7, P2, and P4 nucleon resonances. The resonances N1, N6, and N8 were

excluded in the new Bayesian analysis, whereas N4 and N7 and the missing P1, P2, and

P4 resonances were confirmed. Note that, due to large decay widths of most resonances,

their contributions overlap each other, which results in interference among many states.

This makes the analysis of the resonance content of the invariant amplitude arduous and,

even though high-quality data are available, this survey still brings uncertain outcomes

(i.e. there are several possible solutions which describe the data equally well).

In the past, nucleon resonances P3 and P5 were regarded merely as a one state. How-

ever, the Particle Data Group [88] decided recently to consider them to be two separate

states. Since both of these states have only two-star status, they are not included in the

PDG Summary Tables.

Kaon Resonances

In many studies, the vector K∗ and pseudovector K1 meson resonances were found to

be important in the data description [32, 119] and are used in all realistic isobar models.

We have, therefore, included them in the basic set of resonances. Let us remind that

these two states together with the kaon are the lowest poles in the K+ and K∗ Regge

trajectories contained in the Regge [47] and RPR [29, 35] models, which also corroborates

the importance of these states.
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Hyperon Resonances

The exchanges of hyperon resonances in the u-channel contribute to the background

and were not included in some isobar models, e.g. in the KM model. They can play,

however, an important role in the dynamics as shown in the SL [32] and Ghent isobar [57,

59] models. Particularly, they can compensate the non physically big contributions of

the Born terms. Moreover, their presence can significantly improve description of data

reducing the χ2 and shift the value of the hadron cutoff parameter to a harder region [77].

Formerly, mainly the spin-1/2 hyperon resonances were included in the models with

inconsistent description of the spin-3/2 baryons. To our knowledge, the only attempt to

include a spin-3/2 hyperon resonance in the isobar model was done by the Saclay-Lyon

group in Ref. [85], the version C of the SL model. The reason for this limitation was

that the pole in the u = q2 variable, which appears in the invariant amplitude from the

projection operator P(3/2)
µν of the propagator (3.5), lies in the physical region (u = 0)

causing a divergence of the amplitude with the inconsistent interaction. In the consistent

formalism, the pole term does not contribute owing to the transversality of the interaction

vertices, Equation (3.10), and regularity of the amplitude,

V EMµ (N∗p γ)
6q +mR

u−m2
R + imRΓR

1

3u
( 6q qνγµ + qµγν 6q) V Sν (KΛN∗) = 0, (3.13)

leaving only non zero contributions from the momentum independent terms in the pro-

jection operator (3.6). It is therefore safe to include the spin-3/2 hyperon resonances with

relatively small masses, see Table 3.1, which are expected to be important in describing

the background.

Here we have considered only the spin-3/2 Λ and Σ well established four- or three-star

resonances as reported in the Particle Data Tables 2014 [88] (Table 3.1): Λ(1520) 3/2−

(L6), Λ(1690) 3/2− (L7), and Λ(1890) 3/2+ (L8), with the branching ratios to NK̄ 45%,

20-30%, and 20-35%, respectively; Σ(1670) 3/2− (S3) and Σ(1940) 3/2− (S4) with 7-13%

and < 20%, respectively.

3.4 Hadron Form Factors

Apart from reduction of the Born terms the hadron form factor can also mimic the internal

structure of hadrons in the strong vertices which is neglected in the hadrodynamical

approach. However, there is still an ambiguity in the selection of a form of the hadron form
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factor - one can choose among dipole Fd, multidipole Fmd, Gaussian FG, or multidipole-

Gaussian shape FmdG [116]:

Fd(x,mR,ΛR) =
Λ4
R

(x−m2
R)2 + Λ4

R

, (3.14a)

Fmd(x,mR,ΛR, JR) = F
JR+1/2
d (x,mR,ΛR), (3.14b)

FG(x,mR,ΛR) = exp[−(x−m2
R)2/Λ4

R], (3.14c)

FmdG(x,mR,ΛR, JR,ΓR) = F
JR−1/2
d (x,mR,mRΓ̃R)FG(x,mR,ΛR), (3.14d)

where mR, JR, ΛR, and x ≡ s, t, u stands for the mass and spin of the particular

resonance, cutoff parameter of the form factor, and Mandelstam variables, respectively.

Moreover, it is required to introduce a modified decay width

Γ̃R(JR) =
ΓR√

21/2JR − 1,
(3.15)

which depends on the spin of the resonance and leads to preserving the interpretation of

the resonance decay width as the full width in half maximum (FWHM) of the resonance

peak [116].

Since the high-power momentum dependence of the amplitude leads to a substantial

growth of the resonance contribution to the cross section, it is needed to introduce a

hadron form factor to refine this behavior. In fact, the form factor should ensure that the

resonant diagram does not contribute far from the mass pole of the exchanged particle.

Unfortunately, a cutoff-value dependence is introduced with the form factor into the cross

section. In Figure 3.4, we demonstrate the dependence of the contribution of a particular

resonance with spin 5/2 in the s-channel using the dipole (3.14a), multidipole (3.14b),

Gaussian (3.14c), and multidipole-Gaussian (3.14d) form factors on various values of the

cutoff parameters. The use of the dipole form factor leads to enlarging the tail of the

resonant peak whereas the Gaussian form factor creates an artificial cutoff-value depen-

dent peak while the actual resonant peak contributes only as its shoulder. Introducing the

spin-dependent form factor, multidipole or multidipole-Gaussian, makes the effect moder-

ate even for larger values of the cutoff parameter. Using the latter form factor makes the

contribution almost independent of the cutoff value producing the real resonance pattern

in the cross section (see Figure 3.4).

The total amplitude constructed with the help of the effective Lagrangians is gauge

invariant. The resonant amplitudes and the u-channel Born contribution are gauge in-
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Figure 3.4: Contribution of the spin-5/2 resonance with the mass 1800 and width 100 MeV
to the cross section using different form factors. The cutoff-value dependence of the
contribution is shown – the larger the cutoff value Λ, the more pronounced the effect.

variant on their own, the gauge non invariant terms occur in the s- and t-channel Born

contributions, see Eqs. (A.20) and (A.24) in Appendix A. However, these terms cancel

in the sum of these two Born contributions. Unfortunately, while introducing the hadron

form factors, these gauge non invariant terms no longer cancel. The remedy is to intro-

duce a contact term which ensures the gauge invariance [57], see Appendix C for more

details.

The generally accepted cutoff values lie in the range from approximately 0.7 GeV to

3.0 GeV; the lower the cutoff, the stronger the suppression. The values around the lower

limit are considered too soft and the form factors are in this situation regarded as a rather

artificial tool to suppress the Born term contribution. As our analysis showed, obtaining

a harder cutoff value is much easier than a softer one, which we attribute to the presence

of many hyperon resonances in the background.

Values of the cutoff parameters are established when optimizing the model parameters

against experimental data. A single common cutoff value ΛR is assumed for all resonant

diagrams whereas for the background terms another value Λbgr is used.
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Chapter 4

An Overview of Regge and

Regge-plus-resonance Models

4.1 An Overview of the Regge Model

As was pointed out in the section dealing with the isobar model, a major drawback of such

a model is its limited scope in energy. Specifically, a necessary condition for unitarity,

the Froissart bound [40], constituting an upper limit on the high-energy behaviour of

the cross section is not fulfilled in isobar approaches. A realistic inelastic total cross

section is allowed to increase with energy not more than ln2(s/s0), where s0 is a reference

scale conventionally set at 1 GeV. In an isobar model, in contrast, the contribution of

background rises as a positive power of s. This rise can be compensated, up to a certain

energy, by destructive interferences with other resonant and non resonant contributions.

Unfortunately, beyond a few-GeV region, where introducing individual resonances no

longer makes sense, unphysical behaviour develops.

In the late fifties, a high-energy framework coined Regge phenomenology [95] was

developed as an alternative approach to the isobar model. Regge’s starting point was

to consider the partial-wave amplitudes as a function of a complex angular momentum
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4. An Overview of Regge and Regge-plus-resonance Models

variable. Poles of the amplitude in the complex-momentum frame were suggested to

correspond to resonant states which could be classified into several families. The members

of such a family, the Regge trajectory, share identical internal quantum numbers, such as

strangeness and parity.

At the basis of the Regge theory is the fact that, at energies where individual res-

onances can no longer be distinguished, the exchange of entire Regge trajectories pre-

dominates the reaction dynamics rather than the exchange of individual particles. This

high-energy framework applies to the so-called “Regge limit” of extreme forward (in the

case of the t-channel exchange) or backward (for the u-channel exchange) scattering an-

gles, corresponding to small |t| or |u|, respectively. Since the lightest hyperon, the Λ

hyperon, is significantly heavier than a kaon and, therefore, the u-channel poles are lo-

cated much further from the backward-angle kinematical region than the t-channel poles

are from the forward-angle region, the u-channel exchange reggeization, i.e. the pro-

cedure of requiring the Regge propagator to reduce to the Feynman one at the closest

crossed-channel pole, might not lead to good results [29]. What is more, the high-energy

data in the backward-angle region are scarce. Therefore, we have chosen to deal with

t-channel exchange reggeization only.

Since in the vicinity of the t-channel pole the Regge amplitude is assumed to be

identical with the Feynman amplitude for the exchange of the given particle, the Regge

theory, in its simplest form, can be formulated by modifying the isobar model. The process

of reggeization is quite straightforward and goes as follows: one writes the amplitude for

the exchange of the given particle (in the corresponding pole both Feynman and Regge

propagators conincide), then interchanges the Feynman propagator with the Regge one,

1

t−m2
X

→ PXRegge(αX(t)),

and the remnant terms in the amplitude then labels as a Feynman residuum βX . The am-

plitude constructed in this way includes effectively exchanges of all particles represented

by the given trajectory and reads

MRegge(s, t) = βX(t)PXRegge(s, αX(t)). (4.1)

In the case of KΛ production, we reggeize contributions of K+(494) and K∗+(892) am-

plitudes only. For more details on Regge trajectories and propagators see Appendix B.
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4.1. An Overview of the Regge Model

Figure 4.1: The contributions of a Regge part, i.e. kaon trajectories and a gauge-
invariance fixing term (dashed line), and separately of kaon trajectories (dash-dotted
line) and a gauge-invariance fixing term (solid line) to the cross section beyond the res-
onance region. The predictions were made with one of the best results of the fitting
procedure (with χ2/n.d.f. = 2.56). The data stem from the SLAC collaboration [16].

In the approach in terms of Feynman diagrams, it is well-known that the t-channel

kaon exchange diagram alone is not able to satisfy the gauge invariance. In order to

restore gauge invariance, the Regge amplitude for KΛ photoproduction should, apart

from the K+(494) and K∗+(892) trajectory exchanges, also include a contribution from

the electric part of the s-channel Born term (when using pseudoscalar coupling) or from

the electric part of the s-channel Born term and a contact term (when using pseudovector

coupling) [47]. Since we use the pseudoscalar coupling, it is sufficient to introduce the

electric part of the s-channel Born term only. The full amplitude of the Regge model for

the γp→ K+Λ process then reads

MRegge =MK+(494)
Regge +MK∗+(892)

Regge +Mp,el
Feyn × P

K+

Regge × (t−m2
K+). (4.2)
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4. An Overview of Regge and Regge-plus-resonance Models

An anomalous magnetic coupling proportional to σµν is not included because of the

duality hypothesis according to which only all s-channel or all t-channel poles can be

included [29]. A combination of both s- and t-channel contributions may lead to double

counting of poles. Since in the Regge model we take into account all t-channel poles, the

amount of additional poles in the s channel should be reduced to minimum.

Since experimental data in the forward-angle region are scarce, the model predictions

are vital for understanding the reaction dynamics in this area. It is not clear whether

the cross section shall decrease with kaon center-of-mass angle θc.m.K or rather produce

a peak around θc.m.K of 15◦. In the Regge model, there are contributions from kaon

trajectories and the gauge-fixing term only. As it can be seen in Figure (4.1), the con-

tributions of kaon trajectories produce peak behaviour, whereas the contribution of the

gauge-invariance fixing term leads to a decrease in the cross section with kaon angle. The

strength of contributions of the gauge-invariance fixing term and the K+(494) trajectory

is governed by the sole coupling constant, gKΛN , whereas the K∗+ trajectory contributes

in compliance with its coupling constants G
(v,t)
K∗+ . Generally, the smaller is the coupling

constant gKΛN , the more noticeable is the effect of the gauge-invariance fixing term, see

Figure (4.3). Apart from the values permitted by the SU(3)f constraint, we computed

the contributions for values of gKΛN beyond the upper limit as well. As it is seen in the

Figure (4.3), the contributions of both gauge-invariance fixing term and the K+(494) tra-

jectory tend to be almost negligible in this case. Moreover, the addition of the K+(494)

trajectory to the gauge-fixing term seems to lead only to a moderate modification of the

cross section in the region of central kaon angles, i.e. it hardly affects the prediction

behaviour in the very forward-angle region, see Figure (4.3). The same holds also for

the K∗+ trajectory which alters the cross-section prediction by the gauge term slightly,

even though the trajectory predictions on their own change significantly with the coupling

constants G
(v,t)
K∗+ , see Figure (4.4). What is more, the cross-section predictions are almost

independent of the relative sign between the vector G
(v)
K∗+ and tensor G

(t)
K∗+ coupling of

the K∗+ trajectory. In contrast, the magnitude of the K∗+ trajectory couplings is im-

portant: whereas the value of gKΛN creates a decreasing shape of the cross section, the

vector G
(v)
K∗+ and tensor G

(t)
K∗+ coupling of the K∗+ trajectory tend to produce a peak in

the cross section. Therefore, if the contribution of the K∗+ trajectory is strong enough,

its contribution prevails and the peak develops, see Figure (4.2).
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4.1. An Overview of the Regge Model

Figure 4.2: The Regge contribution to the cross section is shown for various values of cou-

pling constants. The values in the legend correspond to gKΛN , G
(v)
K∗+ , and G

(t)
K∗+ coupling

constants, respectively. The dotted, dashed, and dash-dotted lines show the cross-section
prediction as a combination of gauge-fixing term, K+(494), and K∗+ trajectories, whereas
the solid line depicts the contribution of K∗+ trajectory solely.

At this place, we should note that the SLAC data, shown in Figures 4.1 and 4.2 may be

a subject of reanalysis since their comparison with the other data sets, particularly with

CLAS data, reveals their wrong normalization. Although both data sets agree in shape,

the CLAS cross-section data are systematically lower than the SLAC data approximately

by a factor of two [37]. The SLAC data set was, therefore, not used in the fitting procedure

of ours and is used merely as an illustration in the considered figures. Nonetheless, we

presume that the angular dependence, with a peak at θc.m.K of approximately 15◦, will not

change in the reanalysis.

It seems that there is only one way to produce a cross section which decreases with

kaon angle. This can be accomplished through replenishing the kaon trajectories with the

electric part of the Born s-channel term acting as a gauge-fixing mechanism. Moreover,

its contribution must be large enough in comparison with the contribution of the K∗+

trajectory in order to prevent the peak around θc.m.K of 10◦ from appearing in the cross
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4. An Overview of Regge and Regge-plus-resonance Models

Figure 4.3: Contributions of the gauge-invariance fixing term (left), the K+(494) tra-
jectory (centre), and combination of both (right) are shown for various values of the
coupling constant gKΛN . The smaller the coupling constant, the more tangible the effect.
For gKΛN ≥ −3.0, the decrease in the cross section is almost not apparent any more.

section, see Figure (4.2).

The main asset of the Regge model is a reduced number of free parameters to be

adjusted to experimental data. There are only three free parameters: gKΛN and G
(v,t)
K∗+ .

However, at energies well beyond the resonance region (i.e. for Elabγ > 4 GeV), where

these parameters should be fixed by experimental data, there is a limited amount of data

accessible: for the K+Λ channel there are merely 72 data, including 56 differential-cross-

section data [16], 9 beam-asymmetry data [94], and 7 hyperon-polarization data [118].

4.2 An Overview of the Regge-plus-resonance Model

Although the Regge theory is a high-energy tool by construction, it can reproduce the

order of magnitude of the forward-angle pion and kaon photoproduction [29] and kaon

electroproduction [48] observables remarkably well even in the resonance region. Nev-

ertheless, it is evident that a pure non resonant description, such as the Regge model,

cannot be expected to describe the reaction at energies in the resonance region [29].

The cross section near threshold exhibits structures, such as peaks at certain energies,

which might reflect the presence of individual resonances. These are incorporated into

the Regge-plus-resonance (RPR) model by extending the reggeized background with a

small number of resonant s-channel diagrams. For these diagrams, standard Feynman

propagators are assumed where, as in the isobar approach, the resonance finite lifetime
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4.2. An Overview of the Regge-plus-resonance Model

Figure 4.4: Contributions of the K∗+(892) trajectory (left) and the combination of the
K∗+(892) trajectory with a gauge-invariance fixing term (right) are shown for various

values of the coupling constants G
(v,t)
K∗+ determining the behaviour of the K∗+(892) tra-

jectory.

is taken into account through the substitution s−m2
R → s−m2

R + imRΓR in the prop-

agator denominator with the mR and ΓR the mass and width of the propagating state,

respectively.

This connection between the high- and low-energy region is related to the duality

hypothesis which states that the sum of all Regge poles occuring in the t channel through

the exchange of Regge trajectory equals the sum of all resonant contributions in the s

channel [29]. Thus, in order to avoid double counting, we identify only a small number

of dominant resonances and supplement with them the phenomenological background

stemming from pure Regge approach. Since the p(γ,K)Y processes are largely dominated

by background contributions, the few s-channel contributions might be considered rather

as subsidiary corrections and, therefore, the double counting is not expected to be a

significant issue [29].

The greatest merit of the RPR framework, apart from its wide energy range, consists

in its graceful depiction of the non resonant part of the reaction amplitude: only three

free parameters are introduced. The isobar models need a significantly larger number of

free parameters to describe the background part of the amplitude. Typically, isobar back-

ground contribution is comprised of Born terms replenished with K∗(892) and K1(1272)
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4. An Overview of Regge and Regge-plus-resonance Models

exchange diagrams and, in many cases, also with hyperon exchanges in the u channel.

What is more, the matter of unreasonably large strength of the Born terms does not

emerge in the non resonant part of the RPR-model amplitude. As a consequence, no

hadron form factors are introduced for the background terms, which makes another dif-

ference in the reaction mechanism of the isobar and RPR model. This distinction seems

to be of importance particularly for description of the cross section at very small kaon

angles [22]. Moreover, we avoid the inclusion of another free parameter, the background

cutoff parameter.

In order to retain the RPR approach reasonable, the resonance contributions should

vanish in the high-energy region. This is achieved with the help of hadron form factors

which should be strong enough not to allow the resonant terms to contribute beyond the

resonance region. For this purpose, one usually opts for a multidipole or multidipole-

Gaussian shape of the hadron form factor since these two ones fall off with energy much

more sharply than, e.g. the dipole form factor. Therefore, only the Regge part of the

amplitude remains in the high-energy region.

During the fitting procedure, we considered both multidipole and multidipole-Gaussian

shapes of the form factor. The use of the former one leads to a smaller χ2 value than

the use of the latter one. Moreover, the cutoff parameter of the multidipole form factor

acquires a value of around 1.5 GeV whereas when we assume the multidipole-Gaussian

form factor the cutoff parameter is slightly bigger than 2.0 GeV. As it can be seen in the

Figure (3.4), the multidipole shape of the form factor is not as strong as the multidipole-

Gaussian form factor and lets the non physical behaviour, e.g. the second peak in the

cross section, develop. In the high-energy region, however, both form factors act sat-

isfactorily as they do not allow the resonances to contribute far beyond the resonance

region. Since the multidipole-Gaussian form factor is stronger than the multidipole one

by definition, it often obtains a higher value of the cutoff parameter than the multidipole

one in order to suppress the contribution of resonant terms equally. In other words, the

multidipole form factor needs a lower value of the cutoff parameter to behave similarly

to the multidipole-Gaussian form factor with a higher cutoff.

On the contrary, we do not regard a dipole shape of the form factor as a suitable one

for the RPR framework since it cannot reliably suppress the nucleon resonances beyond

the resonance region. Even though the cutoff parameter of the dipole form factor is
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4.2. An Overview of the Regge-plus-resonance Model

chosen as small as 1 GeV (or even smaller), it still produces non physical behaviour and

lets the cross section diverge. Whereas the χ2/n.d.f. values of models assuming a dipole

form factor are comparable with results assuming other form-factor shapes, such models

cannot be used for a dependable prediction of the observables.

In the section dealing with the Regge background, it was pointed out that the gauge-

fixing term is the one which influences the cross-section prediction at the forward angles

most. Little did we say about the resonant contributions which play an important role in

this kinematical region as well. Whereas the contributions of sole nucleon resonances are

almost zero, there certainly occurs destructive interference between resonant and back-

ground terms, which produces cross-section prediction in accordance with experimental

data. Probably the most interesting is the contribution of spin-5/2 nucleon resonances,

which interferes with background terms in such a way that the spin-1/2 and spin-3/2

nucleon resonances constitute merely a soft amendment to the full-model prediction, see

Figure (4.5). While there are non zero contributions of individual amplitude parts at the

forward angles, the contributions of background and nucleon resonances separately are

almost zero at backward angles. Since, unlike the isobar model, there are no hyperon res-

onances in the u channel, which would participate in the amplitude and take care of the

backward-angle region, the model predictions at backward angles are, in all probability,

dominated by interference effects among contributions of resonant terms.

Interestingly, the models coming out of the fitting procedure of ours are able to de-

scribe the cross section reliably not only in the forward-angle region but they depict

backward angles dependably as well. This is achieved mainly through the inclusion of

many nucleon resonances which substitute the hyperon resonances of the isobar model.

Since the interference effects among many resonant terms play a substantial role, we

are not able to select the sole resonance which contributes most. However, when we omit

P1(1870) from the full model, the model fails to reproduce the peak around W of 1.9 GeV,

see Figure (4.6), which indicates this resonance to be a dominant one in the backward-

angle region. Similar but much less pronounced behaviour can be reached when one omits

the N9(1875) resonance. Furthermore, it is apparent that the resonant terms interfere

destructively with the background contribution in the near-threshold region in order to

suppress the peak around W of approximately 1.65 GeV. Subsequently, the N4(1650) may

be of importance as well since its presence leads to a significant drop of the cross-section
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4. An Overview of Regge and Regge-plus-resonance Models

Figure 4.5: Angular dependence of the differential cross section as predicted by the new
RPR fit of ours is shown and compared with data stemming from CLAS 2010 [82]. Con-
tribution of sole background, nucleon resonances, and combination of both is shown as
well.

prediction, see Figure (4.6).

Variants of the Regge and Regge-plus-resonance Approaches

The first simple Regge model for calculation of high-energy K+ photoproduction has

been constructed by Levy et al. [65] using degenerate K∗+(892) and K∗+(1420) Regge

trajectories and the absorption of the low partial waves. However, this approach was

criticised in a subsequent analysis by Guidal et al. [47]. Whereas the model of Levy

et al. is not gauge invariant and creates peaks in the differential cross section at large

−t that are not observed experimentally, Guidal et al. explained that there is no need

to introduce absorption or rescattering effects to describe the data and created a model

which is gauge invariant.

The Regge-plus-resonance model, capable of describing forward-angle K+Λ photopro-

duction from the proton, was first published by Corthals et al. [29]. While restricting
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4.2. An Overview of the Regge-plus-resonance Model

Figure 4.6: The cross-section prediction of the new RPR fit of ours for the very back-
ward angles is shown. Contributions of background, Regge trajectories, and the gauge-
invariance restoring term are shown in comparison with the prediction of the full model
without a particular resonance.

to nucleon resonances with spin no higher than 3/2, they have exploited the p(γ,K+)Λ

data for cos θc.m.K > 0.35 to arrive at values of background and resonant couplings [113].

Besides identifying the “core” set of N∗’s contributing to the process, i.e. S11(1650),

P11(1710), and P13(1720), which can produce good description of the p(γ,K+)Λ dynam-

ics in the region under investigation, they showed that the option of rotating K+ and

K∗+ trajectory phases is not compatible with data in the resonance region [29]. Moreover,

they showed that the inclusion of a new resonance to the core set improves the agreement

with data significantly and, therefore, they supplemented the core set of N∗’s with the

D13(1900) and P13(1900) states, which led to a model coined RPR-2007.

Implementing the consistent formalism for high-spin fermions [115], De Cruz et al. [35]

performed a robust analysis [55] of 2048 model variants resulting from considering various

combinations of 11 N∗’s by computing the Bayesian evidence values against the available

p(γ,K+)Λ data. Interestingly, all of the best models featuring more than two free param-

eters contain at least one of the missing resonances. The two best results of the optimizing
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procedure were coined RPR-2011A and RPR-2011B which appear to be almost equivalent

in p(γ,K+)Λ data description and are able to make fair predictions of p(e, e′K+)Λ pro-

cess [34]. Whereas the former model includes 8 nucleon resonances, namely S11(1535),

S11(1650), F15(1680), P13(1720), P11(1900), P13(1900), D13(1900), and F15(2000), the

latter one is more economical and contains only 5 N∗’s: S11(1535), S11(1650), P11(1710),

P13(1720), D13(1900).
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Chapter 5

The Fitting Procedure in Detail

5.1 Adjusting Free Parameters of the Isobar Model

Since the isobar model is an effective model with the coupling constants and cutoff values

of hadron form factors undetermined, our goal is to fixate these free parameters to the

experimental data during the fitting process.

The free parameters to be adjusted are the coupling constants of the Born terms gKΛN

and gKΣN , the nucleon, kaon, and hyperon resonances and two cutoff parameters of the

hadron form factor. Each spin-1/2 resonance contributes with one parameter whereas

higher-spin resonances as well as kaon resonances contribute with two parameters. As

well as in the well-known Kaon-MAID model, we assume a single cutoff value ΛR for all

resonant (s-channel) diagrams whereas for background terms another value Λbgr is used.

Altogether, the number of free parameters varies from 25 to 30 depending on the number

and spin of considered nucleon and hyperon resonances.

In order to test whether a given hypothetical function describes the given data well,

the χ2 is calculated. The optimum set of free parameters (c1, . . . , cn) for a given set of
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data points (d1, . . . , dN ) is that with the lowest value of χ2. The χ2 is

χ2 =

N∑
i=1

[di − pi(c1, . . . , cn)]2

(σtotdi )2
, (5.1)

where N and n are the number of data points and the number of free parameters, re-

spectively, while pi represents the theoretical prediction of observables (differential cross

section, hyperon polarization and beam asymmetry in our case) for the measured data

point di with the total error given as

σtotdi =
√

(σsysdi
)2 + (σstatdi

)2, (5.2)

where σsysdi
and σstatdi

represent systematic and statistical errors of a given datum, re-

spectively. Whereas systematic errors tend to be strongly correlated within a given data

set, the correlation weakens when one uses several independent subsets. Since we assume

several data sets (see Subsection D), we have adopted the definition (5.2) similarly to the

analysis by Adelseck and Saghai [3]. Some groups, e.g. the Ghent group, use even more

conservative prescription for the total error [35, 36].

In order to obtain the optimum set of parameters, one is forced to minimize χ2 in the

n dimensional space. In the ideal case, χ2 = n.d.f., where n.d.f. = N − n is the number

of degrees of freedom.

The minimization was performed with the help of the least-squares fitting procedure

using the MINUIT code [56]. Since MINUIT uses a non linear transformation for the

parameters with limits, which makes worse the accuracy of the resulting parameter when

it approaches a boundary value, the limits should be avoided if they are not necessary to

prevent the parameters from reaching non physical values. The main coupling constants

gKΛN and gKΣN were kept inside the limits of 20% broken SU(3) symmetry

−4.4 ≤ gKΛN√
4π
≤ −3.0, (5.3a)

0.8 ≤ gKΣN√
4π
≤ 1.3. (5.3b)

In order not to get too soft or too hard form factors, the cutoff parameters of the hadron

form factor were kept inside the limits from 0.7 GeV to 3.0 GeV.

The coupling parameters entering the fitting procedure are always products of the

strong and electromagnetic coupling constants. In order to guarantee a correct dimension
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5.1. Adjusting Free Parameters of the Isobar Model

of the interaction Lagrangians, the coupling constants have to be normalized appropri-

ately. Since the interaction Lagrangian for the spin-3/2 nucleon resonance contains two

derivatives of the R-S field (due to the gauge invariance), the coupling parameters read

(see Appendix A)

G1 =
fg1

m2
RmK(mR +mp)

, (5.4a)

G2 =
fg2

m2
RmK(mR +mp)

. (5.4b)

In the case of spin-3/2 hyperon resonances, mp is replaced with mΛ. Analogously, the

spin-5/2 coupling parameters are normalized as follows (see Appendix A)

G1 =− fg1

16m4
Km

4
p

, (5.5a)

G2 =− fg2

32m4
Km

5
p

. (5.5b)

The high mass powers in the denominator result in very small values of Gi for N∗(5/2)

in comparison with the coupling parameters of lower-spin nucleon resonances.

The hyperon coupling parameters tend to be very large compared with coupling pa-

rameters of other resonances. Therefore, we did not take into account results with hyperon

coupling parameters boldly bigger than ten.

The overview of experimental data used in the fitting procedure is given in Ap-

pendix D.

Results of Fitting the Isobar-Model Parameters

While minimizing the χ2 it is important to find a global minimum. Since this task occurs

in a huge parameter space that has a lot of local minima, the result of the fitting procedure

often depends on starting values of the fitted parameters.

Generally, choosing the best solution is not an easy task. The χ2 value is only a

mathematical tool showing the goodness of a fit. However, results with similar χ2 values

can still give rather different predictions of the observables in some kinematic regions.

Therefore, not only thorough inspection of the numerical values of the fitted parameters,

but also a brief check of the predicted observables is welcome.

We have done several hundreds of fits considering various resonance configurations and

different shapes of the hadron form factor. While the set of nucleon resonances chosen in
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the RPR-2011A model provided us with a starting point, we have considered many other

resonant states during the procedure of fitting.

Since one cannot be sure that the detected minimum is the global one, we have selected

several models with similar χ2. The models differ mainly in the choice of nucleon and

hyperon resonances and their coupling constants, cutoff values of the hadron form factor

and the shape of the form factor. Particularly, the smallness of hyperon coupling constants

plays an important role when deciding if the model should be rejected or not. Since the

isobar model is only a tree-level approximation, the couplings larger than one are still

justifiable.

During the fitting procedure, we also tried to slightly modify the mass and width of

several intermediate particles in the ranges provided by the Particle Data Tables 2014 [88]

(or when there were no preferred values). On the one hand, this forced the models to

improve their description of the cross section – particularly the reduction of the width

of P2 resonance from 500 MeV to a value of about 400 MeV or less led to filling up the

second peak in the cross-section data. On the other hand, the modification of the width

of P2 resulted in a growth of the χ2 value and made the description of single-polarization

observables worse.

In order to gain insight into the effect of high-spin resonances on the observables, some

of the fits were performed with the inconsistent formalism for the spin-3/2 and spin-5/2

resonances used in the SL model. Particularly, the fit of the BS2 model (see below) with

the inconsistent formalism led to an enlargement of the χ2 from 1.64 to 1.91, growth of

the cutoff parameter for hadron form factor to almost 3 GeV and decrease of the cross-

section prediction in the forward-angle region. In this fit we omitted the spin-3/2 hyperon

resonance S4. Generally, the use of the inconsistent high-spin formalism results in larger

couplings for spin-5/2 resonances which is due to a different normalization introduced

into the coupling parameters (see Equation (5.5)).

The main asset of the presence of high-spin hyperon resonances is the reduction of

coupling parameters of spin-1/2 hyperon resonances. With no Y ∗(3/2) introduced, the

couplings of Y ∗(1/2) tend to acquire values at the order of ten or even more. While the

Y ∗(3/2) are implemented, the couplings of both Y ∗(1/2) and Y ∗(3/2) are only excep-

tionally bigger than ten.
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In the analysis, we examined the effect of distinct shapes of hadron form factor on

the resonance behaviour. As seen from the definition (3.14), the multidipole form factor

affects the resonance behaviour more strongly than the dipole one. Therefore, introducing

the multidipole form factor generally leads to bigger cutoff parameters for resonances

(Λres ∼ 3 GeV) than considering the dipole form factor (Λres ∼ 2 GeV). Unfortunately,

we were not able to achieve a single result with χ2 < 2 using the multidipole-Gaussian

form factor. This shape of form factor was introduced by the Ghent group in their Regge-

plus-resonance model to strongly suppress the contribution of the nucleon resonances in

the high-energy regime. However, it seems that there is no need for introducing such a

strong form factor in the isobar model.

The predictions of the models with χ2 < 2 were tested in the comparison with the

experimental data. Particularly, the comparison with hyperon polarization data can

reveal a subtle interplay among many resonances. Even though the smallness of χ2

denotes a good agreement of the model prediction with the data, in the kinematic regions

where data are scarce (e.g. forward-angle region) the model predictions can still differ.

The best solutions regarding the smallness of the χ2, values of fitted parameters and

correspondence with data were coined BS1 and BS2. Whereas the model coined BS1 was

obtained using a multidipole form factor, the BS2 model was gained using a dipole shape

of the form factor. Moreover, the mass of the P5 resonance was slightly modified from

1820 MeV in the BS1 model to 1860 MeV in the BS2 model (see Table 5.1 for details).

5.2 Adjusting Free Parameters of the RPR Model

As the Regge-plus-resonance model is an effective model, as well as the isobar model,

there are again a number of free parameters to be adjusted to the experimental data.

However, since the description of background in the RPR model is very different and

much simplier from the one of isobar model, there are much less free parameters in this

case.

The set of free parameters consists above all of parameters of nucleon resonances:

each spin-1/2 resonance introduces one free parameter whereas every spin-3/2 resonance

requires two parameters to be determined. To this set, we add merely three parameters

of background, namely gKΛN and G
(v,t)
K∗+ which govern the strength of the gauge-fixing-

term and K+(494)-trajectory and K∗+(892)-trajectory contributions, respectively. We
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recall that the gKΛN and G
(v,t)
K∗+ parameters are the coupling constants at vertices of the

first materialization of the corresponding trajectories. Furthermore, we introduce only

one free parameter of the hadron form factor: the cutoff parameter for resonant terms.

In total, there are from 20 to 25 free parameters depending on the number and spin of

considered nucleon resonances. As well as in the isobar-model fit, the gKΛN , as the only

parameter this time, was not allowed to vary freely but it was kept within the limits of

Equation (5.3a).

The use of χ2 minimization method, definition of total error and normalization for

coupling constants of high-spin fields are comprehensively given in Section 5.1 and we

will, therefore, skip directly to the outcomes of the fitting procedure.

Results of Fitting the RPR Parameters

Since the study with the RPR model followed the analysis exploiting the isobar approach,

where we have identified two sets ofN∗’s as the most appropriate ones for data description,

we used the nucleonic content of BS models as the starting point in selecting appropriate

resonances for data description using the RPR model. However, this starting set led to

χ2/n.d.f. around 3 (N∗’s from BS1 and BS2 let to χ2/n.d.f. = 3.02 and χ2/n.d.f. = 2.87,

respectively) which still leaves room for improvement. We therefore varied the N∗ content

and also opted for a couple of N∗ states which we have not included in our analysis before;

specifically N∗(2120), N∗(2300), and N∗(2570).

In the RPR approach, we need the N∗’s to vanish beyond the resonance region, which

can be done with the help of strong hadron form factors, particularly with the multidipole-

Gaussian one, Equation (3.14d). Nevertheless, we also examined how other shapes of a

form factor, which are rather weaker than the multidipole-Gaussian one by definition,

tend to suppress the N∗’s above the resonance region. The only one which can substitute

the multidipole-Gaussian form factor and suppress the N∗’s above the resonance region

sufficiently is the multidipole form factor. Apparently, the multidipole form factor with a

cutoff value Λ around 1.5 GeV behaves similarly to the multidipole-Gaussian form factor

with Λ ≈ 2.1 GeV. Provided we use the other shapes of the form factor, i.e. dipole

or Gaussian shape, the strong-momentum dependence in the amplitude of the high-spin

resonance contribution might prevail the cutting behaviour of a form factor and the cross

section then could become divergent in the high-energy domain (this holds for a dipole
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BS1 BS2 KM SL RPR fit
gKΛN −3.00 −3.00 −3.80 −3.16 −3.47
gKΣ0N 1.11 0.80 1.20 0.91 –

GV (K∗) −0.18 −0.17 −0.79 −0.05 −0.20
GT (K∗) 0.02 −0.03 −2.63 0.16 −0.08
GV (K1) 0.28 0.30 3.81 −0.19 –
GT (K1) −0.28 −0.23 −2.41 −0.35 –
G(N1) – – – −0.02 –
G(N3) 0.10 0.17 – – 0.09
G(N4) −0.07 −0.05 −0.13 – −0.07
G(N5) – – – – 0.09
G(N5) – – – – 0.06
G(N6) – −0.05 −0.26 – –
G1(N7) −0.09 −0.07 0.05 −0.04 –
G2(N7) −0.01 −0.0057 0.61 −0.14 –
G1(N8) – – – −0.63 −0.001
G2(N8) – – – −0.05 −0.04
G1(P4) 0.21 0.23 1.10 – 0.05
G2(P4) 0.26 0.26 0.63 – −0.07
G1(P5) −0.04 −0.02 – – −0.01
G2(P5) 0.04 0.02 – – 0.01
G1(P1) – – – – −0.45
G1(P2) 0.11 0.09 – – 0.01
G2(P2) −0.02 −0.01 – – 0.007
G1(P3) −0.0003 −0.0018 – – –
G2(P3) −0.0029 −0.0015 – – –
G1(N9) 0.05 0.03 – −0.63 0.03
G2(N9) −0.05 −0.03 – −0.05 −0.04
G1(M1) – – – – 0.06
G2(M1) – – – – 0.05
G(L1) – 9.67 – −0.42 –
G(L3) – – – 1.75 –
G(L4) −8.39 −11.55 – – –
G(L5) – – – −1.96 –
G1(L6) 0.86 – – – –
G2(L6) −0.09 – – – –
G1(L8) −2.33 – – – –
G2(L8) 0.0033 – – – –
G(S1) −11.58 −8.09 – −7.33 –
G(S2) 15.77 – – – –
G1(S4) −8.32 −0.86 – – –
G2(S4) 0.81 0.18 – – –

Λbgr 1.88 1.94 0.64 – –
Λres 2.74 2.15 1.04 – 1.53

χ2/n.d.f. 1.64 1.64 – – 2.32

Table 5.1: Coupling constants, cutoff values, and χ2 values of the final BS1 and BS2
models and the RPR fit are compared with parameters of the well-known Kaon-MAID
and Saclay-Lyon models.
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form factor with a cutoff parameter even as small as 0.9 GeV). This again indicates the

necessity of introducing a strong form factor so that the observables remain well-behaved

beyond the resonance region. According to the value of χ2, results of the new analysis of

ours slightly prefer the choice of the multidipole form factor with a low cutoff parameter

to the option for the multidipole-Gaussian form factor with the cutoff parameter slightly

higher than 2 GeV.

The best solution which we found is the one with the smallest value of χ2 and in

accordance with experimental data. In this best fit, which we refer to simply as the RPR

fit throughout this work, the resonant content overlaps only partly with that in either

BS models or in the RPR-2011A model (e.g. only six out of ten nucleon resonances are

the same in both cases), the multidipole shape of the form factor is employed and the

χ2/n.d.f. acquires a value of 2.32, see Table 5.1 for details.

In the past, before we derived the formulae for high-spin nucleon resonances in the

consistent formalism, we had performed a fit exploiting the inconsistent formalism for

high-spin N∗’s. At that time, we used the set of five N∗’s which were selected in the

version RPR-2011B [35, 36] of the Ghent RPR model as a starting point in the fitting

procedure and subsequently varied theN∗’s included in the model. We ended up, however,

with the same nucleon resonances which we originally had and the only difference between

results of our analysis and the analysis of the Ghent group is thus the values of coupling

constants. We coined the resulting models RPR-1 and RPR-2 [21, 22] and it is important

to note that they differ in the set of data we used in the fit. Both of the models were

fitted to the cross-section data of CLAS and LEPS collaborations; the RPR-1 model to

data of the whole angular range while the RPR-2 model only to the data in the forward

hemisphere (i.e. θc.m.K < 90◦). The major difference between these two models lies in

the description of the non resonant part of the amplitude since magnitudes and signs

of coupling constants of K+ and K∗+ trajectories vary in both models, which might

be important for predictions of the cross section at very small kaon angles and higher

energies [22]. The RPR-2 model, having positive relative sign between the vector and

tensor coupling constants of the K∗+ trajectory, predicts a steep angular dependence

of the cross section beyond the resonance region. As the subsequent analysis of ours

showed, the magnitude of gKΛN coupling constant might be crucial at small kaon angles

as well: it governs the strength of the gauge-fixing-term contribution which produces (in
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combination with kaon trajectories) either a peak around θc.m.K = 20◦ in the cross section

(for higher values of gKΛN ) or a decreasing cross section with kaon angle (for lower values

of gKΛN ). Note that in the RPR-1 model the gKΛN was allowed to vary freely, which led

to its value of −1.45 being slightly outside of the limits usually imposed on gKΛN .
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Chapter 6

A Study of the p(γ,K+)Λ Process

In this section, we present the new isobar models BS1 and BS2 and the new Regge-

plus-resonance fit for photoproduction of K+Λ and compare their predictions for the

cross section, hyperon polarization, beam asymmetry, and target asymmetry with the

data and results of the older models Saclay-Lyon and Kaon-MAID and the RPR-2011A

model. Note that the numerical results of the Saclay-Lyon and Kaon-MAID models have

been obtained by using our code with the parameters presented in Table 5.1; the results

of the RPR-2011A model originate from the web page [106] where all the RPR models of

the Ghent group are available for calculations.

The nucleon-resonance content of the BS1 and BS2 models almost does not differ, see

Table 5.1. In comparison with the BS1 model, the BS2 model contains only one more

resonance, the P11(1710), with a small coupling constant. The coupling constants of the

other nucleon resonances have the same sign and their values are very similar. This set of

N∗’s significantly overlaps with that suggested by the Ghent group in their RPR-2011A

model [36]. The only difference, except for the P11(1710), is that the two-star resonance

P11(1880) with spin 1/2 in the RPR-2011A was replaced with the almost equal mass

two-star spin-5/2 resonance F15(1860) in our models.
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Figure 6.1: Angular dependence of the cross section is shown for three values of the c.m.
energy. In the forward-angle region, the Saclay-Lyon (solid curve), BS1 (dashed curve),
and BS2 (dash-double dotted curve) models and the new RPR fit predict decreasing
dependence of the cross section. In contrast, the Kaon-MAID model (dotted curve)
predicts a bump around θc.m.K = 30◦. The data are from the CLAS 2005 [17], CLAS
2010 [82], and MAMI [61] collaborations.

Although the set of nucleon resonances, which were revealed as important for data

description in the fitting procedure leading to the creation of BS models, constituted a

starting point in the fitting of RPR parameters, the content of considered nucleon res-

onances markedly differ in isobar and RPR approaches. Only six out of ten N∗ states

included in the RPR fit are included in both BS models as well; these are S11(1535),

S11(1650), D13(1875), P13(1900), D15(1675), F15(1680), and F15(1860) (see Table 5.1).

Interestingly, the coupling constants of S11(1535), S11(1650), and F15(1680) acquire al-

most the same values in all models. Furthermore, the inclusion of D13(2120), which was

suggested as one of the three most dominant N∗ states in the elementary K+Λ photopro-

duction [101], has led to a moderate decrease of the χ2 value and was, therefore, included

in the final set of nucleon resonances in the RPR fit.

More differences between BS1 and BS2 models are observed in the description of the

background. The values of the main coupling constants, gKΛN and gKΣN , and those

for K∗ and K1 exchanges are very similar and the signs are identical except for the

78



Figure 6.2: Angular dependence of differential cross section for various background con-
tributions to the total amplitude. The figure collects calculations with sole Born terms
and their combinations with either kaon or hyperon resonances.

tensor coupling of K∗ which has the opposite sign. In both models the value of gKΛN

is at the upper limit allowed in fitting (5.3a), which suggests a considerable violation

of SU(3) symmetry. A similar result was reached by David et al. [32], the value of

gKΛN in the Saclay-Lyon model is of −3.16, whereas older analyses, e.g. [2, 3], found the

gKΛN near the lower limit of −4.4. Note that the differences in these coupling constants,

particularly gKΣN and G
(t)
K∗+ , might have an impact on the model predictions in the

n(γ,K0)Λ process [21]. This channel may be therefore exploited to distinguish the BS

models.

Needless to say, there is an immense difference in description of background in isobar

and RPR models as the RPR approach assumes exchanges of a whole family of resonant

states instead of exchanges of individual resonances. The gKΛN , which is the only pa-

rameter not allowed to vary freely in the RPR fitting procedure, is near the upper limit

which is in accordance with results obtained with isobar models. We recall the discussion

in Section 4.1 connecting the gKΛN value with the description at small kaon angles which

shows the paramount importance of fine-tuning this coupling constant. The vector and

tensor couplings of the K∗+ are both negative and the vector coupling is more than two
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Figure 6.3: Angular dependence of differential cross section as predicted by various parts
of the amplitude with an emphasis placed on the resonant part is shown.

times bigger than the tensor one (see Table 5.1). The K∗+ trajectory, therefore, creates

a peak in the cross section around 30◦. The behaviour of Regge background depends on

relative signs and magnitudes of gKΛN and G
(v,t)
K∗+ but for the value of gKΛN kept inside

the limit of the broken SU(3)f it generally produces a cross section which decreases with

kaon angle.

Significant differences between BS1 and BS2 models are found in the included sets

of hyperon resonances and their couplings. The BS2 contains only one spin-3/2 hyperon

resonance S4 and three spin-1/2 resonances L1, L4, and S1, whereas BS1 includes three

spin-3/2 resonances L6, L8, and S4 and only one spin-1/2 resonance L4, see Table 3.1 for

notation. The general feature of the presented models and other solutions found during

the fitting procedure is that the coupling strengths of the hyperon exchanges tend to be

relatively large in comparison with the typical values obtained for the couplings of the

nucleon resonances [103]. This experience is similar to that gained in the analyses by the

Saclay-Lyon [32] and Ghent [59] groups on a role of the hyperon resonances in p(γ,K+)Λ.

Note that in version C of the Saclay-Lyon model [85] the only Λ(1890) 3/2+ (L8) resonance

was included in the inconsistent formalism; they concluded, however, that this resonance
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Figure 6.4: Differential cross section in dependence on the c.m. energy W is shown for
various kaon angles in the forward hemisphere of kaon angle θc.m.K . Notation of the curves
is the same as in the Figure 6.1. The data are from CLAS 2005 [17], CLAS 2010 [82],
LEPS [108] and from the publication of Adelseck and Saghai [3]. The LEPS data are for
cos θc.m.K = 0.85 as indicated in the figure.

is not required by the data set available at that time, i.e. before 1998. Reasonable values

of the hyperon couplings, −20 ≤ G(Y ∗) ≤ 20, were therefore used in our analysis as a

criterion for a model selection. These observations suggest that, whereas the current new

experimental data are able to fix relatively well the set of nucleon resonances producing

genuine resonance patterns in the observables, they still cannot determine uniquely the

non resonant part of the amplitude (background). Therefore, one still cannot select a set

of hyperon resonances contributing to the process without ambiguity.

Let us note that, in view of the achieved quality of data description, the total number

of resonances included in BS1 and BS2, 16 and 15, respectively, is quite moderate in

comparison with the older models KM and SL and the recent models by Mart [78, 72]

and Maxwell [81]. In contrast, there are only 8 resonances included in the RPR fit of

ours. This, however, comes as no surprise since the number of hyperon resonances in the

isobar model is substituted for two kaon trajectories in the RPR model.
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Angular dependence of the calculated cross sections in comparison with the CLAS

data is shown in Figure 6.1 for three energies. The RPR fit, BS1 and BS2 models give

very similar predictions which differ from predictions of the other models mainly in the

forward- and backward-angle regions. In the region of small kaon angle, θc.m.K < 40◦,

the new models predict descending angular dependence like the SL model, contrary to

the KM which predicts a very suppressed cross sections for energies W ≥ 2 GeV. In

the backward-angle region, all of the models agree with the KM describing the data

very well. The subtle difference between the BS1 and BS2 model in the description of

backward angles (apparent for W = 1.805 GeV) can be assigned to the sign change of the

tensor coupling of K∗. One may conclude that the RPR fit and BS1 and BS2 models

describe the cross sections in the full angular and considered energy regions very well,

being consistent with experimental data and with each other. Note that the consistency

of the cross sections in the very small kaon-angle region with the results of the SL model

(Figure 6.1) and the fact that these cross sections are dominated by the spin-flip part of

the amplitude could predetermine the new models for successful predictions of the cross

sections in the production of the hypernuclei, like the Saclay-Lyon model [23, 54, 27, 112].

The model dynamics in the small-angle area is driven mainly by the background con-

tributions in which the spin-1/2 hyperon resonances, surprisingly, play a very important

role (Figure 6.2). In spite of their large contribution at backward angles, they give the

largest contribution in the forward-angle region when combined with the Born terms.

On the other hand, the spin-3/2 hyperon resonances combined with the Born terms con-

tribute predominantly in the backward-angle region. The role of kaon resonances is to

suppress the Born-term contributions in the central-angle region.

The spin-3/2 and spin-5/2 nucleon resonances contributing mainly in the central-angle

region are also important in the forward-angle region (Figure 6.3). They contribute in

combination with the background terms. Moreover, they give rather diverse results: the

spin-5/2 resonances raise the cross section making the peak around θc.m.K = 45◦ whereas

the spin-3/2 resonances lead to a decrease of the cross section for kaon angles around 60◦.

In Figures 6.4 and 6.5 we show resonance effects in the energy-dependent differential

cross section for four kaon angles in the forward and backward hemisphere, respectively, as

they are revealed by the data and the models. First, let us note that the resonance pattern

revealed by the CLAS data around W = 1.7 GeV for the forward angles is sharper in
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Figure 6.5: Differential cross section in dependence on the c.m. energy W is shown for
various kaon angles in the backward hemisphere of kaon angle θc.m.K . Notation of the
curves and the data is the same as in Figures 6.1 and 6.4, respectively. The amount of
MAMI data was reduced approximately by a factor of five in order to make the figure
more transparent. Instead of the prediction of Saclay-Lyon model, which does not work
well at backward kaon angles (see Figure 4 in Ref. [103]), we compare predictions of the
new RPR fit (dash-dotted curve) and RPR-2011A model [106] (double dash-dotted curve)
with the rest of isobar models considered in this work.

the CLAS data set from 2010 than in the older one from 2005. The new models predict

conservative cross sections lying in between these data sets preferring rather the older

data. The P11(1710) in BS2 is not strong enough to make the peak around 1.7 GeV

sharper. The older CLAS data set is also favoured by the hybrid RPR-2011A and RPR-

2011B models [35, 36] and the RPR fit which we show in Figure 6.4. Moreover, the

RPR fit is apparently the only model capable of describing the peak around 1.9 GeV in

the forward-angle region. Both new isobar models BS1 and BS2 predict a peak around

1.9 GeV in the central- and backward-angle regions but not at very small kaon angles.

In the forward-angle region some strength is also apparent around W = 2 GeV modelled

by the higher-mass resonances P13(1900), F15(2000), and D13(1875). The strong growth

of the cross section in the threshold region is described by the BS1 and BS2 models

satisfactorily, better than by the Saclay-Lyon model. The RPR fit agrees well with
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the cross-section data from threshold up to energies of several GeV where the nucleon

resonances vanish and the kaon trajectories prevail. However, the RPR fit is not able to

describe the resonance pattern in the cross-section data at larger kaon angles.

In the region of backward angles, where the experimental data are not plentiful, par-

ticularly for large kaon angles and W very close to the threshold, there are two broad

peaks apparent in the cross section. Although the Kaon-MAID model seems to be the

most reliable isobar model in this kinematical region capturing both peaks of the cross

section partially, none of the presented isobar models can, however, capture this be-

haviour reliably. Since the Saclay-Lyon prediction lies below the data from the threshold

up to approximately 2 GeV and then rapidly diverges (see Figure 4 in Ref. [103]) we do

not show it in Figure 6.5 and rather compare our new RPR fit with RPR-2011A model

and other models (the predictions of RPR-2011A were computed using the web interface

StrangeCalc available at [106]). Whereas the BS models tend to produce nearly a plateau

near the threshold, the Regge-based models create several peaks in the cross section. The

magnitude of the RPR-2011A-model prediction agrees well with the data for kaon angles

at cos θc.m.K of −0.2 and −0.4 but this model entirely fails to reproduce the peak in the

cross section slightly below 2 GeV at very backward angles. It seems that the only model

capable of describing this peak is the new RPR fit of ours, which works sufficiently well

also at central kaon angles. This pleasing behaviour is achieved in all probability by the

inclusion of a number of nucleon resonant states which may substitute the hyperon reso-

nances used for a background description in the isobar model. We regard the P11(1880)

and D13(1875) resonances as the most important ones for the model to describe that peak

as the model without these resonances fails to reproduce the data in this region. How-

ever, we cannot claim this with certainty since there are many interference terms among

a number of different resonant states which enter the game and shadow the contributions

of sole resonances. The peak next to the threshold of the process can be assigned to the

contribution of background - this contribution rises from the threshold, reaches its peak

at approximately 1.65 GeV and then falls steadily.

The new isobar models, eligible for the resonance region, describe data well up to

energy W ≈ 2.4 GeV. Above this energy their cross-section predictions systematically

rise, overshooting the data, which is more apparent at forward angles in Figure 6.4 and

which is a well-known feature of isobar models. In the new models, the contributions of
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Figure 6.6: Model predictions of the p(γ,K+)Λ total cross section. For comparison, the
Ghent isobar model (model A) was added as read from Figure 7 in Ref. [57]. Notation
of the rest of the curves is the same as in the Figure 6.1. Data stem from Figure 20 in
Ref. [17].

the nucleon resonances in the s channel are regularized by the strong-enough hadron form

factors as shown in Figure 3.4. The high-energy divergence is therefore created mainly

by the background part of the amplitude. This divergent behaviour, however, differs

for various models: in the Kaon-MAID model, predictions start diverging at forward

angles above 2.2 GeV (the maximum energy for which the model was constructed) but

predictions of the Saclay-Lyon model strongly overshoot the data at backward angles

above 2 GeV. This divergent behaviour of the isobar models is also well seen in the

energy dependence of the total cross section as shown in Figure 6.6. Whereas the KM

model begins to diverge at Elabγ = 2.2 GeV, i.e., beyond its scope, the SL model produces

a divergent behaviour above Elabγ = 1.6 GeV. Note, however, that the KM, SL, and

Ghent models were fitted to the old SAPHIR data and, therefore, slightly underestimate

the current CLAS data (see Figure 20 in Ref. [17]).

In the extreme forward-angle region, the discrepancies between different model pre-

dictions are substantial, especially for Elabγ > 1.5 GeV, see Figure 6.7. The BS1, BS2, and
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Figure 6.7: Predictions of the differential cross section for photoproduction at θc.m.K = 6◦

is shown for several models. The only available photoproduction data point in this region
is from Bleckmann et al [13]. The data points of Brown [19] and E94-107 [71] are for
electroproduction with a very small value of the virtual-photon mass |k2|. Notation of
the curves is the same as in the Figure 6.1.

Saclay-Lyon models predict similar magnitudes of the cross section in the whole energy

range shown, but the Kaon-MAID model reveals a strong reduction of the results for

higher energies due to suppression of the proton exchange by the hadron form factors.

Recall that the BS1 and BS2 models also contain the form factors and that the strength

they predict at small angles is made by another, more complex mechanism – interference

effects of the hyperon resonances with the Born terms and of higher-spin nucleon reso-

nances with the background – discussed above. The energy dependence of the SL result

is quite flat being dominated by the non resonant proton exchange, which is not sup-

pressed in SL, while the BS1 and BS2 models predict two broad peaks at Elabγ = 1.1 GeV

(W = 1.7 GeV) and Elabγ = 1.7 GeV (W = 2 GeV). A double-peak structure is visible

in the RPR-fit prediction as well. This is created by destructive interference of N∗’s and

the background since the Regge trajectories on their own would produce a smooth cross-

section prediction with a very broad peak around Elabγ of 1.5 GeV overshooting the datum

of Bleckmann et al. [13] by a factor of two but being in concert with the electroproduction
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data shown at Elabγ = 2.2 GeV. The RPR-2011A of the Ghent group gives rather a non

resonant character of the cross section for this angle.

It is well-known that for kaon angles smaller than θc.m.K = 25◦ there are almost no

available experimental data. As a consequence, the models cannot be reliably tested in

this region, which increases uncertainties in calculations of the hypernucleus production

spectra [23, 20]. In Figure 6.7, the only datum for photoproduction is that by Bleckmann

et al. [13] at Eγ = 1.3 GeV, which is consistent with all model predictions shown. The

other two data points are from the measurements of electroproduction with almost real

photons, e.g. −k2 = 0.07 (GeV/c)2 for the JLab experiment E94-107 [71], which prefer

predictions of the SL, BS1, and BS2 models. Note that the electroproduction cross

section consists of more parts (see the electroproduction cross-section formula (2.13))

which can, in fact, contribute. Particularly, the longitudinal amplitudes may have a

strong contribution to the cross section. An estimation can be made to determine the

cross section for the unpolarized photon beam σT [71]. The E94-107 datum is then shifted

considerably downwards to roughly σT = 0.38µb/sr, being consistent with predictions of

almost all models shown in Figure 6.7.

The spin observables are very important in fine-tuning the interference among many

different contributions. Plenty of new high-quality data for hyperon polarization and

several tens for beam asymmetry and target polarization are now available. These data

were also used in fitting the BS1 and BS2 models. In Figures 6.8, 6.9, 6.10, 6.11, and

6.12 we compare results of the models with the LEPS, CLAS, and GRAAL data.

In the case of hyperon polarization, the Born terms on their own yield zero contribution

but their interference with other terms appears to be important, especially the interference

with the nucleon resonances. The models were fitted to the hyperon polarization data

from the threshold up to W of 2.225 GeV. In this energy range and mainly in the central-

angle region, the data are captured by the BS1 and BS2 models well. On the other hand,

the Saclay-Lyon and Kaon-MAID models do not even fit the shape of the data (except

for θc.m.K around 90◦ where the structures in data are not so prominent). Note, however,

that these old models were not fitted to the hyperon polarization or beam-asymmetry

data as these data were not available at that time. The CLAS 2010 hyperon-polarization

data set for adjusting the RPR free parameters was used in its entirety, i.e. from W of

1.625 GeV up to 2.835 GeV. The RPR fit can nicely capture the shape of data although
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6. A Study of the p(γ,K+)Λ Process

Figure 6.8: Results for energy dependent hyperon polarization P are shown for several
forward kaon angles θc.m.K . Notation of the curves is the same as in the Figure 6.1. The
CLAS 2010 and CLAS 2004 data originate from Refs. [82] and [83], respectively.

in the backward hemisphere of θc.m.K (see Figure 6.9) it cannot reproduce the peak in the

data such as the BS models do. Note that the CLAS 2004 data [83] were not used in the

fitting procedure of either isobar model or RPR model and serve, therefore, merely for

illustration and comparison.

For photon laboratory energy higher than 1.9 GeV, the BS1, BS2 and Kaon-MAID

models describe the beam-asymmetry data satisfactorily, whereas the Saclay-Lyon model

tends to underpredict the data in the whole energy range. The RPR fit is able to predict

the beam asymmetry very similarly to the BS models and, in addition, works slightly

better at lower energies. Needless to say, the shape of the predicted curve is governed by

the interference among many terms involved in the amplitude, e.g. the Regge background

in the RPR fit describes the data well only up to θc.m.K of 30◦, for θc.m.K > 30◦ it largely

overshoots the data. In the BS models, the background on its own is, similarly to the

background in the RPR fit, able to describe the data for θc.m.K < 30◦, for larger angles it

predicts the beam asymmetry which decreases steadily with kaon angle. It is, therefore,

the addition of N∗ states that leads to a dependable, though not perfect, prediction of the

88



Figure 6.9: Same as Figure 6.8 but for kaon angles θc.m.K in the backward hemisphere.
Notation of the curves is the same as in the Figure 6.1. The CLAS 2010 and CLAS 2004
data stem from Refs. [82] and [83], respectively.

beam asymmetry. Note that the data at lower energies, Figure 6.11, have larger relative

errors and therefore they cannot restrict the model parameters as much as the data for

energies larger that 1.9 GeV.

Whereas the free parameters of BS models and the new RPR model were adjusted

to cross-section, hyperon-polarization and beam-asymmetry data, the GRAAL data on

target polarization were not used. Thus, Figure 6.12 collects merely predictions of these

models. Needless to say, the older isobar models were not fitted to these data as well, since

at that time, there were no GRAAL target-polarization data. However, the Kaon-MAID

model captures the shape of data quite well in the kinematic region shown. The Saclay-

Lyon model tends to overpredict the data at forward angles and at backward angles its

predictions sharply decrease, which is not suggested by data. The new BS models work

well primarily at higher energies and in the hemisphere of forward angles where they

capture the behaviour of data very well. Near the threshold, the BS models do not give

a reasonable description of data, since their predictions are positive whereas the data are

negative (see particularly the BS1-model prediction in Figure 6.12). Similarly, BS-model
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6. A Study of the p(γ,K+)Λ Process

Figure 6.10: Results for the angular dependence of hyperon polarization P are shown for
several c.m. energies W . Notation of the curves is the same as in the Figure 6.1. The
CLAS 2010 and CLAS 2004 data are from Refs. [82] and [83], respectively.

predictions at higher energies and at backward angles are negative while data are positive.

The RPR fit is able to capture only roughly the shape of data and its predictions in some

kinematic regions suffer from the similar imperfection as the predictions of BS models.

The exchanges of the nucleon resonances in the s channel constitute the resonant

structure in the cross section. The effect of a particular resonance strongly depends

on the magnitude and sign of its coupling constants, but this effect is hard to estimate

in the kaon photoproduction due to an overlap of many resonances and occurrence of

the complicated background. In Figure 6.13 we show effects of the nucleon resonances

in the BS1 model on the forward-angle differential cross section. The contributions of a

particular resonance on its own, in its combination with the background, and a prediction

of the full model without the resonance are shown. Comparing the latter with the full

result, one can infer an importance of the particular resonance in this kinematic region.

In the BS1 model, the contribution of the subthreshold N3 resonance is small, as can be

concluded from the relatively small value of its coupling parameter, Table 5.1. However,

N3 significantly lowers, by 20 – 30%, the background contribution, which is important in
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Figure 6.11: Results for the angular dependence of beam asymmetry Σ are shown for
several photon lab energies. Notation of the curves is the same as in the Figure 6.1. The
LEPS data are from Ref. [108] and the errors are statistical only.

the threshold region where it balances the contribution of N4. Omitting this resonance

therefore leads to a growth of the cross section in the threshold region. Similarly, a strong

effect is apparent for the N4, N7, and P2 resonances, where the latter two resonances

affect the cross section rather at larger energies. On the other hand, the influence of the

resonances P3, P5, and N9 on the forward-angle cross section is very small. Their influence

is apparent only for energies above 2 GeV. The contributions of the spin-5/2 resonances

N9 and P5 start to rise sharply around 2.2 GeV, which instigates the introduction of

strong hadron form factors, e.g. the multidipole or multidipole-Gaussian [36]. This effect

is not seen for the P3 resonance because it is shifted to higher energies due to its larger

mass. Since the BS2 model contains, except for the N6, the same nucleon resonances with

very similar values of the coupling parameters, it behaves in a manner similar to the BS1

model.

In Figures 6.14 and 6.15, the predictions of double-polarization observables Cx, Cz,

Ox, and Oz are shown for various kaon angles. Whereas the Cz is large and positive

over the kinematic regions shown in Figure 6.14, the Cx data lie below zero. As both
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Figure 6.12: Angular dependence of the target asymmetry T is shown for several photon
lab energies. Notation of the curves is the same as in the Figure 6.1. The GRAAL data
are from Ref. [67] and the errors are the quadratic sums of statistical and systematic
uncertainties.

observables show similar fluctuations but Cx is typically smaller than Cz, it approximately

holds that Cz ≈ Cx + 1 [100]. Our new models as well as the well-known Kaon-MAID

and Saclay-Lyon models were not fitted to these data sets. Therefore, the figures show

the predictive power of considered models. The Saclay-Lyon model fails to reproduce

the Cz data for larger kaon angles (whereas the data are positive, the model predictions

have the opposite sign). The correspondence between other model predictions and the

Cx and Cz data sets is considerably better: the Kaon-MAID predictions are of the same

sign as the data and the BS models capture even the shape of the data. In the case of

Ox and Oz the concord between model predictions and data is apparently worse since

the data are shifted slightly upwards in all regions in comparison with the predictions

of models, except for Ox at Elabγ of 0.980 GeV where the predictions of models have the

right magnitude. The only other exception is the Saclay-Lyon prediction of Ox at higher

energies where its magnitude is comparable with data. The BS models tend to reproduce

the shape of the Ox and Oz data partly in all regions whilst the Kaon-MAID model
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Figure 6.13: Analysis of the resonant part of the BS1 model. Contributions of background
(dotted curve), included nucleon resonances (double dash-dotted curve), and their combi-
nation with background (dashed curve) to the differential cross section are compared with
the full BS1 model (solid curve) and the BS2 model when omitting a particular nucleon
resonance (dash-dotted curve).

fails to describe the Oz data at Elabγ of 0.980 GeV and 1.222 GeV where its prediction is

negative whereas data are positive.

Our findings on the nucleon resonances agree quite well with the results of the Bayesian

analysis which used the Regge-plus-resonance model [36]. In this analysis, the N3, N4,

and N7 resonances have acquired large relative probabilities, 13, 34, and 99, respectively,

that they contribute to the kaon photoproduction process. Importance of these resonances

was confirmed in our analysis. However, the resonances N9 and P3 were also shown to

contribute significantly; their relative probabilities are 16 and 18, respectively, in the RPR-

based analysis contrary to our findings which we attribute to the smaller energy window

of our analysis (P3 and N9 contribute more at higher energies as shown in Figure 6.13). In

the Bayesian analysis, it was shown that the N5, N6, and N8 resonances are not required
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Figure 6.14: Double-polarization observables Cx and Cz are shown for various kaon angles.
Since none of the models were fitted to the Cx or Cz data, the figure collects merely
predictions of the models. Notation of the curves is the same as in the Figure 6.1 and the
data stem from the CLAS 2005 analysis [18].

to describe the γp → K+Λ data which is also consistent with our conclusions, except

for N6 in the BS2 model with the very small coupling parameter G(N6) = −0.05. The

two-star spin-1/2 resonance P11(1880) (P1) was excluded in our analysis whereas it was

included into the set of probable resonances in the Bayesian analysis with the relative

probability 11. The spin-5/2 state with near mass, N∗(1860) (P5), was assumed in both

new models instead. Note that adding P1 into the models does not improve the χ2 too

much but it raises the number of considered resonances which we tried to keep as small

as possible (according to the principle of the Occam’s razor).

Whereas for description of resonance region, we have isobar and Regge-plus-resonance

model at hand, the only applicable model for the study of the high-energy region is the

RPR model. In this approach, all nucleon resonances, which create the resonance pattern

observed in the resonance region, are supposed to vanish and one is therefore left with

the background part of the amplitude only. This consists of K+ and K∗+ trajectories

supplemented with another term ensuring the gauge-invariance restoration and it is gov-

erned by merely three parameters. A comprehensive description of the Regge background
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Figure 6.15: Double-polarization observables Ox and Oz are shown for various kaon
angles. Since none of the models were fitted to the these data, the figure collects merely
predictions of the models. Notation of the curves is the same as in the Figure 6.1 and the
data stem form the GRAAL analysis [67]. The errors are quadratic sums of statistical
and systematic uncertainties.

together with the term restoring the gauge invariance is given in the Section 4.1 and here

we will therefore focus on the resonant part of the fit with Regge-plus-resonance model.

As it can be read off Figures 6.16 and 6.17, the nucleon resonances really act only in the

resonance region and their contributions vanish beyond W of approximately 2.5 GeV. In

the Figure 6.16, a subtle interplay among various nucleon resonances and the background

part of the amplitude is shown. The background part, consisting of kaon trajectories

solely, can capture the magnitude of the cross section but, for obvious reasons, it cannot

predict the resonance pattern. It is the set of N∗’s, that creates the resonance pattern

with two broad peaks by interfering destructively with the kaon trajectories. Probably the

most perceptible contribution stem from P11(1880), which interfere destructively with the

background terms and, what is particularly interesting, its combination with background

creates a double peak structure in the cross section. On the other hand, omitting the

higher-spin nucleon resonances almost does not change the cross-section prediction of the

full model. Since the contributions of N∗ can hardly be distinguished from one another in
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6. A Study of the p(γ,K+)Λ Process

Figure 6.16: Analysis of resonant part of the new RPR fit in the forward-angle region.
The figure collects predictions of the cross section from various parts of the amplitude
and shows also the interference between background and N∗’s and the effect of N∗’s on
their own. Notation is the same as in the Figure 6.13.

Figure 6.16, the Figure 6.17 shows them grouped according to their spin and with a better

resolution. The spin-1/2 nucleon resonances S11(1535) and S11(1650) are responsible for

the peak in the threshold region, whereas the rest of N∗’s create the peak around 2 GeV.

Interestingly, the majority of the N∗ contributions are shifted from the position of their

poles towards higher energies. This is true also for spin-5/2 nucleon resonances D15(1675)

and F15(1680), which, according to the value of their masses, should contribute rather to

the threshold peak (see Figure 6.17).

What is more, the Figure 6.17 illustrates very nicely the overall situation in the search

for dominant resonances in the K+Λ production. As there are many N∗ states which

can contribute to the p(γ,K+)Λ process and which in many cases overlap each other,
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Figure 6.17: Analysis of resonant part of the new RPR fit for cos θc.m.K = 0.8. The nucleon
resonances shown are put into groups according to their spin.

the interference among their contributions is developed. The interference can either be

constructive (e.g. the second peak in the contribution of N∗(1/2)) or destructive (e.g.

the total contribution of spin-5/2 nucleon resonances in the RPR fit), depending on the

values and signs of coupling constants of the nucleon resonances involved. A sharp reader

may notice that the coupling parameter of S11(1535) is, in its absolute value, larger than

the coupling of S11(1650) and the contribution of S11(1535) should be, therefore, more

significant than the contribution of the S11(1650) resonance in the threshold area (see

Figure 6.17). However, the S11(1535) resonance lies below the threshold and therefore

contributes to the p(γ,K+)Λ cross section only partly. All this makes from the determi-

nation of dominant resonant states in the p(γ,K+)Λ reaction a tantalizing task.
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Chapter 7

Conclusion and Outlook

The purpose of this work was to provide a deep overview of the kaon photoproduction,

since this reaction can provide a novel view on the nucleon excitation spectrum which has

become a cornerstone of modern hadron physics, and to report on latest achievements

that were done in this field of physics. In this concluding section, we summarize the

progress recently made and provide outlook for a future work.

7.1 The Isobar Approach

In this work, we have presented two new isobar models BS1 and BS2 for the description

of the p(γ,K+)Λ process in the energy range from the threshold to W = 2.4 GeV. The

models provide satisfactory description of experimental data in the whole energy region

and for all kaon angles. Their predictions for the cross sections at small kaon angles,

being consistent with the results of the Saclay-Lyon model, suggest that the models can

give reasonable values of the cross sections for the hypernucleus production. Construction

of a new isobar model utilizing new precise data which could be used as an input in the

hypernucleus calculations was one of the aims of this work.

In the construction of the single-channel models based on an effective Lagrangian we

have utilized the consistent formalism by Pascalutsa for description of baryon fields with
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higher spin (3/2 and 5/2 in our case). This formalism ensures that only the physical

degrees of freedom contribute in the baryon exchanges. Moreover, it provides regular

amplitudes which are especially important for the u-channel exchanges allowing the in-

clusion of hyperon resonances with spin 3/2. These resonances were found to play an

important role in description of the background part of the amplitude. They have not

been considered in the older isobar models with the inconsistent formalism, except for

the version C of the Saclay-Lyon model [85].

The set of selected nucleon resonances with spins 1/2, 3/2, and 5/2 contributing

most to the process agrees well with that selected in the Bayesian analysis with the

Regge-plus-resonance model by the Ghent group. We mostly confirm their result on the

structure of the resonant part of the amplitude. The differences for the resonance part,

e.g. different forms of the hadron form factor, stem from the fact that we limit our

analysis only to the resonance region. As for the missing resonances, we confirm the

importance of the P13(1900) and D13(1875) states for a reasonable data description. We

have found, however, that the spin-5/2 state N∗(1860), recently included in the PDG

Tables, is preferable to the spin-1/2 state P11(1880) included in the Bayesian analysis.

Special attention was paid to the analysis of the background part of the amplitude,

which is important for a correct description of the forward-angle cross sections. In the

background, which is a complicated effect of many various contributions in the isobar

approach, the hyperon-resonance exchanges with spin 1/2 and 3/2 together with the

Born terms appeared to be important components in the forward- and backward-angle

regions, respectively. However, the current extensive data set still does not allow one to

select the most significant hyperon resonances in the u channel unambigously.

In the analysis, several forms of the hadron form factors were considered; we have

chosen the dipole and multidipole forms as the most suitable for the data description

exploiting the isobar model. The obtained values of the cutoff parameters, around 2 GeV,

suggest rather hard form factors.

The free parameters of the models were adjusted by fitting the cross section, hyperon

polarization, and the beam asymmetry to new high-quality data from CLAS and LEPS

and to older data. The overall number of resonances in the models, 15 and 16, is quite

moderate in view of complexity of the kaon photoproduction in comparison with π or η

photoproductions.
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7.2 The Regge-plus-resonance Approach

Besides the two new isobar models BS1 and BS2 of ours, we have presented also a new

Regge-plus-resonance fit to the data for the p(γ,K+)Λ process, which is able to give a

reliable description of data from the threshold of the process up to energy of several GeV.

Prior to the fitting procedure, we had introduced the consistent formalism, proposed in

Ref. [90], for exchanges of spin-3/2 and spin-5/2 nucleon resonances as these resonances

apparently play an important role in the resonant part of the amplitude.

Our primary motivation for the work with the hybrid RPR model was its particularly

simple description of background where the Regge kaon trajectories demanding only three

parameters to adjust are introduced. As can be seen from the figures presented in this

work, this prescription is not only elegant, but very powerful since it can capture the

magnitude of the cross section. In order to describe the resonance pattern revealed by

experimental data, we have introduced several resonant states of the nucleon. As the

initial set, we took the N∗’s revealed in the work of De Cruz et al. [36] as the states

with the highest probability of contributing to the p(γ,K+)Λ process and varied them

throughout the procedure. In comparison with the isobar-model fitting procedure, there

were less parameters to optimize (thanks to the simple description of background) and

we had more experimental data at hand (in fact, we used the same data sets as in the

fitting procedure of free parameters of isobar model, but this time we were not restricted

to the resonance region only).

In the analysis, we have paid close attention to the choice of hadron form factor,

exploiting its dipole, multidipole, Gaussian and multidipole-Gaussian shape. We have

revealed the multidipole shape of the hadron form factor as the most appropriate one

since its inclusion leads to a lower value of χ2 than the inclusion of other form-factor

types and its cutoff parameter acquires a reasonable value of approximately 1.5 GeV.

On the other hand, the multidipole-Gaussian form factor seems to be overly strong by

definition and its cutoff parameter then has a value of 3.0 GeV.

The RPR-fit predictions of observables are in concert with experimental data in the

kinematic regions shown. The behaviour of cross-section predictions at backward angles

where the RPR fit is able to nicely reproduce the peak revealed by data is particularly

interesting.
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7.3 Outlook

The work on the elementary amplitude will continue since it might be very fruitful for

the further work on hypernucleus production: we would like to investigate the excitation

spectra of light hypernuclei such as 3
ΛH, 3

ΛHe, 4
ΛH, and 7

ΛHe. The study of excitation

spectra of light hypernuclei can provide additional knowledge of hypernucleus structure

and shed more light on the long-standing issue of the charge-symmetry breaking term of

the Λ-N interaction.

We would like to extend the model in order to describe photoproduction not only

with a Λ hyperon in the final state but also with Σ hyperons in the final state. On the

one hand, an implementation of ∆ resonances will be needed in this case; on the other

hand, a study of further reaction channels will help better understand the underlying

dynamics. Moreover, we want to deal with the production on deuterium targets. An

extension towards kaon electroproduction, which requires introduction of electromagnetic

form factors and consideration of the longitudinal component of the amplitude, will be

accomplished as well.

Another possibility how to improve the model is to account for the unitarity by making

the widths of the nucleon resonances energy-dependent functions as it was done, e.g. in

the Kaon-MAID model.
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Appendix A

Contributions to the Invariant

Amplitude

We consider the process

γV (k) + p(p)→ K+(pK) + Λ(pΛ) (A.1)

with corresponding four-momenta given in the parentheses. The four-momentum of the

intermediate particle is denoted by q = p + k = pK + pΛ. In the next sections, we

summarize the invariant amplitudes with no hadron form factors. These are introduced in

the manner shown in Appendix C. The electromagnetic form factors are explicitly included

in the Born contributions only. For the rest of the contributions, they are introduced

merely by multiplying the coupling parameter with appropriate electromagnetic form

factor.

Before we start writing out the formulae of various contributions to the amplitude, let

us introduce the convention which we use in our work. The metric tensor has the usual

form of

gµν = diag (1,−1,−1,−1).
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A. Contributions to the Invariant Amplitude

The Pauli matrices are given by

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 , (A.2)

and fulfil following relations

σiσj = iεijkσ
k, [σi, σj ] = 2iεijkσ

k, {σi, σj} = 2δij . (A.3)

The Dirac matrices are defined as 4 × 4 matrices that fulfill the anticommutation

relations

{γµ, γν} = γµγν + γνγµ = 2gµν .

In the four-dimensional Minkowski space, there exist several representations of Dirac

matrices and we choose the standard form which in terms of Pauli matrices reads

γ0 =

 1̂ 0

0 −1̂

 , γj =

 0 σj

−σj 0

 , (A.4)

where j = 1, 2, 3 and 1̂ denotes a 2× 2 unit matrix. With the help of γµ’s we can define

a product

γ5 = iγ0γ1γ2γ3, (A.5)

which obeys the commutation relation

{γµ, γ5} = 0, (A.6)

and has the property of γ†5 = γ5. A tensor σµν is defined as

σµν =
i

2
[γµ, γν ]. (A.7)

We also use the well-known Feynman slash notation, i.e. 6a = aµγ
µ, where a is a four-

vector. The εµναβ denotes the totally antisymmetric Levi-Civita symbol, where ε0123 = 1,

and the electromagnetic tensor reads

Fµν = ∂µAµ − ∂νAµ,

where ∂µ and Aµ are the four gradient and four-vector potential, respectively.

For casting the invariant amplitudes to the compact form of Equation (2.7), espe-

cially in the case of contributions stemming from N∗(3/2) and N∗(5/2) exchanges, it is

convenient to employ a relation

−iεµναβγ5γβ = γµγνγα − gµνγα − gναγµ + gµαγν . (A.8)
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The positive- and negative-energy four-component spinors u(p) and v(p) of an on-shell

particle with four-momentum pµ and mass m are the solutions of the Dirac equation

(6p−m)u(p) = 0, (A.9a)

( 6p+m) v(p) = 0. (A.9b)

For reader’s convenience, we write out also the forms of propagators for exchanges of

various resonances. Spin-0, spin-1 and spin-1/2 propagators are given in the standard

way, which can be found in every proper textbook of quantum field theory, and read

P0 =
1

q2 −m2 + imΓ
, (A.10a)

Pµν1 =
1

q2 −m2 + imΓ

(
−gµν +

qµqν

m2

)
, (A.10b)

P1/2 =
6q +m

q2 −m2 + imΓ
, (A.10c)

where q, m, and Γ are four-momentum, mass and width of the considered resonance,

respectively. In order to account for a finite lifetime of the resonance, we introduce the

width Γ of the resonance in the denominator of the propagator.

The Rarita-Schwinger propagator for particles with spin 3/2 can be written down in

terms of spin-projection operators P
(J)
µν , i.e.

Sµν(q) =
6q +m

q2 −m2 + imΓ
P (3/2)
µν − 2

3m2
( 6q+m)P

(1/2)
22,µν +

1

m
√

3

(
P

(1/2)
12,µν + P

(1/2)
21,µν

)
, (A.11)

where the operator

P (3/2)
µν = gµν −

1

3
γµγν −

6qqνγµ + qµγν 6q
3q2

(A.12)

projects only spin-3/2 states and complies with a relation γµP
(3/2)
µν = P

(3/2)
µν γν = qµP

(3/2)
µν =

qνP
(3/2)
µν = 0. The terms

P
(1/2)
22,µν =

qµqν
q2

, P
(1/2)
12,µν =

qρpνσµρ√
3q2

, P
(1/2)
21,µν =

qµq
ρσρν√
3q2

(A.13)

are projection operators projecting spin-1/2 states [12].
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A. Contributions to the Invariant Amplitude

Propagator of spin-5/2 particles in terms of projection operators reads [116]

Pµν,λρ(q) =

[
6q +m

q2 +m2
P(5/2) − 4

5m2
(6q +m)P(3/2)

11 +
1

m
√

5

(
P(3/2)

12 + P(3/2)
21

)
+

2

5m4
( 6q +m)(q2 −m2)P(1/2)

11 − 1

5m2
( 6q +m)P(1/2)

33

+

√
3

5m2
( 6q +m)

(
P(1/2)

12 + P(1/2)
21

)
−
√

6

5m3
(q2 −m2)

(
P(1/2)

13 + P(1/2)
31

)
−
√

2

5m

(
P(1/2)

32 + P(1/2)
23

)]
µν,λρ

(q).

(A.14)

The projection operators have the form

P(5/2)
µν;λρ(q) =

1

2
(PµλPνρ + PµρPνλ)− 1

5
PµνPλρ

− 1

10
(6 Pµ 6 PλPνρ+ 6 Pµ 6 PρPνλ+ 6 Pν 6 PλPµρ+ 6 Pν 6 PρPµλ),

(A.15a)

P(3/2)
11,µν;λρ(q) =

1

2
(PµλQνρ + PνλQµρ + PµρQνλ + PνρQµλ)− 1

6q2
RµνRλρ, (A.15b)

P(3/2)
22,µν;λρ(q) =

1

10
( 6 Pµ 6 PλPνρ+ 6 Pµ 6 PρPνλ+ 6 Pν 6 PλPµρ+ 6 Pν 6 PρPµλ)− 2

15
PµνPλρ,

(A.15c)

P(3/2)
21,µν;λρ(q) =

1

2
√

5q2
[qλ(6 PµPνρ+ 6 PνPµρ) + qρ(6 PµPνλ+ 6 PνPµλ)] 6q

− 1

3
√

5q2
PµνRλρ 6q = −P(3/2)

12,λρ;µν(q)

(A.15d)

P(1/2)
11,µν;λρ(q) = QµνQλρ, P(1/2)

22,µν;λρ(q) =
1

3
PµνPλρ, P(1/2)

33,µν;λρ(q) =
1

6q2
RµνRλρ,

(A.15e)

P(1/2)
21,µν;λρ(q) =

1√
3
PµνQλρ = P(1/2)

12,λρ;µν(q), (A.15f)

P(1/2)
31,µν;λρ(q) =

1

q2
√

6
RµνQλρ 6q = −P(1/2)

13,λρ;µν(q), (A.15g)

P(1/2)
23,µν;λρ(q) = − 1

3
√

2q2
PµνRλρ 6q = −P(1/2)

32,λρ;µν(q), (A.15h)

with

Pµν(q) = gµν −
1

q2
qµqν , Qµν(q) =

1

q2
qµqν , (A.16a)

Rµν(q) = qµ 6 Pν+ 6 Pµqν = γµqν + γνqµ −
2

q2
6qqµqν . (A.16b)
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A.1 Born s Channel

A.1 Born s Channel

The electromagnetic γpp vertex function reads

V EMµ = F1(k2)γµ +
1− F1(k2)

k2
kµγ · k + i

F2(k2)

2mp
σµνk

ν , (A.17)

where F1(k2) and F2(k2) are the standard electromagnetic proton Dirac form factors,

F1(0) = 1 and F2(0) = κp, where κp is the anomalous proton magnetic moment. In the

strong KΛp vertex, the pseudoscalar coupling is used

VS = igKΛpγ5. (A.18)

The invariant amplitude reads

MBs = ū(pΛ)VS
6p+ 6k +mp

s−m2
p

V EMµ εµu(p), (A.19)

and can be cast into the form (2.7)

MBs = ū(pΛ)γ5

[
A1M1 +A2M2 +A4M4

+A6M6 + gKΛp
k · ε
k2

]
u(p),

(A.20)

where the last term in the brackets is the gauge-invariance breaking term. One then gets

for the scalar amplitudes

A1 =
gKΛp

s−m2
p

(F1 + F2) , (A.21a)

A2 = 2
gKΛp

s−m2
p

F1 (A.21b)

A4 =
gKΛp

s−m2
p

F2

mp
= −2A6. (A.21c)

A.2 Born t Channel

The electromagnetic vertex factor for pseudoscalar mesons K+ reads

V EMµ = F (k2)(2pK − k)µ +
1− F (k2)

k2
(2pK − k) · q qµ, (A.22)

where F (0) = 1. The strong interaction vertex factor is the same as in (A.18). The

invariant amplitude has the form

MBt = ū(pΛ)VS
1

t−m2
K

V EMµ εµu(p), (A.23)
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A. Contributions to the Invariant Amplitude

which can again be cast to the compact form

MBt = ū(pΛ)γ5

[
A2M2 +A3M3 − gKΛp

k · ε
k2

]
u(p), (A.24)

where the last term in the brackets is the same gauge-invariance breaking term as in the

Born s-channel contribution, Equation (A.20), but with the opposite sign. Therefore,

these two terms cancel in the total amplitude of the process and the gauge invariance

remains preserved. There are only two non zero scalar amplitudes

A2 = −A3 = 2
gKΛp

t−m2
K

F. (A.25)

A.3 Born u Channel

The electromagnetic γΛΛ vertex factor has the form

V EMµ = F1(k2)

[
γµ −

kµγ · k
k2

]
+ i

F2(k2)

2mΛ
σµνk

ν , (A.26)

where F1(0) = 0 and F2(0) = κΛ. The strong interaction vertex factor is the same as in

(A.18). The Born u-channel amplitude reads

MBu = ū(pΛ)V EMµ

6pΛ− 6k +mΛ

u−m2
Λ

VS ε
µu(p) (A.27)

and the scalar amplitudes Aj are

A1 =
gKΛp

u−m2
Λ

(F1 + F2), (A.28a)

A3 =2
gKΛp

u−m2
Λ

F1, (A.28b)

A5 =
gKΛp

u−m2
Λ

F2

mΛ
= 2A6. (A.28c)

A.4 Non-Born s Channel: N∗(1/2±) Exchange

The amplitude for this contribution has the form

MN∗(1/2)
NBs = iū(pΛ)gKΛRγ5Γ

6p+ 6k +mR

s−m2
R + imRΓR

× µpR
mp +mR

σµνkνΓεµu(p). (A.29)

In the case of nucleon resonances we have to distinguish resonances with the positive and

negative parity P . This can be done by using Γ in the form

Γ =

1, P = +1

γ5, P = −1

(A.30)
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A.5 Non-Born s Channel: N∗(3/2±) Exchange

The scalar amplitudes are

A1 =
gKΛR

s−m2
R + imRΓR

mR ±mp

mR +mp
µpR, (A.31a)

A4 = ± gKΛR

s−m2
R + imRΓR

2µpR
mp +mR

, (A.31b)

A6 = −1

2
A4, (A.31c)

where the upper (lower) sign corresponds with the case of positive (negative) parity of

the nucleon resonance.

A.5 Non-Born s Channel: N∗(3/2±) Exchange

Free, i.e. on-shell, Rarita-Schwinger field for a particle with spin 3/2 fulfills the Dirac

equation

(i 6∂ −m)ψµ = 0 (A.32)

and conditions γµψ
µ = ∂µψ

µ = 0.

Interaction Lagrangians for strong and electromagnetic vertices for spin-3/2 particle

are adopted from Ref. [90]. The appropriate form of Lint for the strong vertex is

LS =
f

mRmK
εµναβψ̄Λγ5γα(∂µψν)(∂βφ

∗
K)Γ, (A.33)

where ψΛ, ψν , and φK are wave functions of the hyperon, spin-3/2 resonance and kaon,

respectively. We introduce the Γ as defined in (A.30) to distinguish the positive-parity

resonance from the resonance with negative parity. In order to achieve a correct dimension

of Lint, we divided the coupling constant f by masses of the kaon mK and the considered

resonance mR. The interaction Lagrangian for an electromagnetic vertex reads

LEM =
gγpR

mR(mR +mp)
Γ[ψ̄pΘαβ,µνG

αβFµν ]†

=
gγpR

mR(mR +mp)
Γ[2(1 + 2a1)(∂αψ̄β)ψpFαβ

− a1(∂αψ̄β)γβγ
σψpFασ + a1(∂αψ̄β)γαγ

σψpFβσ],

(A.34)

where Θαβ,µν = gαµgβν + a1gαµγβγν and Gαβ = ∂αψβ − ∂βψα. Again, a normalization

was introduced to the electromagnetic interaction Lagrangian so that its dimension is

correct.
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A. Contributions to the Invariant Amplitude

The first term in the lowest line of (A.34) cancels the projection operators of spin-1/2

which are present in the Rarita-Schwinger propagator, but vanishes when contracted with

a propagator of spin-3/2 particle (A.12),

P
(3/2)
νβ γβ [q · k 6ε− q · ε 6k] = 0, (A.35)

and therefore does not contribute to the propagation of spin-3/2 mode either. In the

Rarita-Schwinger propagator of spin-3/2 particles, only operators projecting on the spin-

3/2 sector are left, which physically means that solely spin-3/2 particles do propagate.

In the subsequent formulae, we use a shorthand notation for electromagnetic coupling

constants,

g1 ≡ 2(1 + 2a1)gγpR, g2 ≡ a1gγpR. (A.36)

The corresponding vertex factors then read

V Sν =
f

mRmK
Γ εµνλργ5γ

λqµpρK , (A.37a)

V EMβ =
ig1

mR(mR +mp)
Γqα(kαεβ − kβεα)

+
ig2

mR(mR +mp)
Γ {6q(kβ 6ε− 6kεβ)− γβ [q · k 6ε− q · ε 6k]} .

(A.37b)

Both of them vanish when contracted with the four-momentum of the exchanged particle

V Sµ q
µ = V EMν qν = 0, (A.38)

which consequently leads to the cancellation of all spin-1/2 projection operators (A.13)

and the third term in the operator projecting on spin-3/2 modes (A.12). As in the

denominator of that term there is a squared four-momentum of the exchanged particle,

which can be zero in the u-channel, its cancellation enables the use of this formalism for

exchanges of spin-3/2 hyperon resonances as well.

The amplitude of the spin-3/2 contribution reads

MN∗(3/2)
NBs = ū(pΛ) Γ

if

mRmK
εµνλρ γ5 γ

λqµpρK ×
6q +mR

s−m2
R + imRΓR

(
gνβ − 1

3
γνγβ

)
× 1

mR(mR +mp)

(
g1q

αFαβ + g2 6q Fβα γα − g2γβ q
α Fατ γ

τ
)

Γ γ5 u(p),

(A.39)

where g1 and g2 are the electromagnetic coupling constants and f is the strong cou-

pling constant. Casting the amplitude to the compact form (2.7), the individual scalar
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A.6 Non-Born s Channel: N∗(5/2±) Exchange

amplitudes Aj read

A′1 = − G1

3
(q · pΛ ±mRmΛ) q · k +

G2

3
(2s q · pΛ − 3s k · pΛ

+ 2smpmΛ ∓mRmΛ q · k ± 2smRmΛ ± 2mpmRq · pΛ + 2q · pΛ q · k),

(A.40a)

A′2 = G1

[
s k · pΛ ∓mRmp k · pΛ −

1

3
q · pΛ k

2 ∓ 1

3
mRmΛk

2

]
+G2

[
−2s k · pΛ ∓

1

3
mΛmRk

2 +
2

3
k2 q · pΛ

]
,

(A.40b)

A′3 = G1(±mRmp − s)q · k +G2(2q · k − k2)s, (A.40c)

A′4 = G1

[
− 1

3
smΛ +

1

3
(mp ∓mR) q · pΛ ±

1

3
mΛmpmR ±mR k · pΛ

]
−G2

[
−smΛ ∓

1

3
mΛmpmR +

2

3
mp q · pΛ

]
,

(A.40d)

A′5 = ∓G1mR q · k +G2(±mR +mp)s, (A.40e)

A′6 = G1

[
∓ 1

3
mΛmpmR ∓mR k · pΛ +

1

3
mΛs−

1

3
q · pΛ (mp ∓mR)

]
+G2

[
−1

3
mΛs∓

1

3
mΛmpmR +

2

3
q · pΛ (mp ±mR)

]
,

(A.40f)

where the coupling parameters G1 and G2 are given in Equation (5.4) and the upper

(lower) sign corresponds with the case of positive (negative) parity of the nucleon reso-

nance.

Each amplitude A′i, i = 1, . . . , 6, has to be multiplied by the propagator denominator

Ai =
1

s−m2
R + imRΓR

A′i. (A.41)

A.6 Non-Born s Channel: N∗(5/2±) Exchange

In general, a wave function of spin-(n+ 1/2) particle has a form

Ψµ1...µn = γν1 . . . γνnGµ1...µnν1...νn . (A.42)

For a particle with spin 5/2 we then have

Ψµν = γαγβGµν,αβ , (A.43)

where Gµν,αβ is a gauge-invariant field for the spin-5/2 theory and reads [116]

Gµν,αβ = − ∂µ∂νψαβ − ∂α∂βψµν

+
1

2
(∂µ∂αψνβ + ∂µ∂βψνα + ∂ν∂αψµβ + ∂ν∂βψµα).

(A.44)
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A. Contributions to the Invariant Amplitude

With the help of the relation Gµν,αβ = Gµν,βα and the formulation of Gµν,αβ , the wave

function (A.43) can be recast to

Ψµν = γαγβGµν,αβ =
1

2
(γαγβ + γβγα)Gµν,αβ = gαβGµν,αβ

= gαβ
(
− ∂µ∂νgαλgβρ − ∂α∂βgµλgνρ +

1

2
∂µ∂αgνλgβρ

+
1

2
∂µ∂βgνλgαρ +

1

2
∂ν∂αgµλgβρ +

1

2
∂ν∂βgµλgαρ

)
ψλρ.

(A.45)

For the exchange of N∗(5/2), we use the consistent formalism [116] and the interaction

Lagrangian of the strong vertex then reads

LS =
f

m4
K

ψ̄ΛΓΨµν∂
µ∂νφ∗K . (A.46)

Inserting the spin-5/2 wave function of the form (A.45), the strong vertex factor is

V Sλρ = − f

m4
K

Γ[(pK · q)2gλρ + q2pKλpKρ − 2q · pk qρpKλ]. (A.47)

The interaction Lagrangian of the electromagnetic interaction is given as

LEM = − g1

(2mp)4
Ψ̄αβγν∂

αψpF
νβΓ− ig2

(2mp)5
Ψ̄αβ∂ν∂

αψpF
νβΓ (A.48)

and the electromagnetic vertex factor can be easily derived as

V EMστ = [q · p qβgστ + q2gβτpσ − q · p qτgβσ − qβqτpσ]

×
[

g1

(2mp)4
(6kgαβ − kβγα) +

g2

(2mp)5

(
k · p gαβ − kβpα

)]
Γ.

(A.49)

Provided we lay both vertex factors around the full propagator of the spin-5/2 particle,

non physical lower-spin components vanish. Thus, only spin-5/2 particle really propa-

gates.

The amplitude for the N∗(5/2±) exchange reads

MN∗(5/2)
NBS =− f

m4
K

ū(pΛ)γ5Γ q2pµKp
ν
K

6q +mR

s−m2
R + imRΓR

× Pµν,λρ(q) q2 pλ
[

g1

(2mp)4
γα F

αρ +
g2

(2mp)5
pα F

αρ

]
Γu(p).

(A.50)

Casting the amplitude to the compact form (2.7), the scalar amplitudes then read

A′1 = G1

{
∓QpΛpQkpΛ

± 1

5
QpΛpΛ

Qkp −
1

5
QkpΛ

(B q · p+ Cmp)

+
1

5
QpΛp[2Cmp + (2s− q · k)B]

}
− G2

5
QpΛpCk · p,

(A.51a)

124



A.6 Non-Born s Channel: N∗(5/2±) Exchange

A′2 = G1

{
±QpΛp(k

2q · pΛ − 2sk · pΛ)∓ 1

5
QpΛpΛk

2(q · p+ s)

− 1

5
[∓2q · pΛ k · pΛ q · ks± k2(q · pΛ)2(q · k + s) + 2smRmΛk · pΛq · k

−mRmΛk
2q · pΛ(q · k + s) + Cmpk

2q · pΛ]− 1

5
QpΛpk

2B

}
+G2

{
(mR ±mp)QpΛpD −

1

5
(mR ±mp)k

2q · pQpΛpΛ

+
1

5
(sk · pΛ − k2q · pΛ)(Bmpq · k − Ck · p)−

1

5
QpΛpBmpk

2

}
,

(A.51b)

A′3 = G1

{
± sQpΛp(2k · p+ k2)− 1

5
s[(2k · p q · k − k2q · p)B −mpk

2C]

}
+G2

{
s(mR ±mp)k · pQpΛp −

1

5
sk · p(Bmpq · k − Ck · p)

}
,

(A.51c)

A′4 = G1

{
1

5
(mR ∓mp)q · kQpΛpΛ

−AQpΛp

+
1

5
{q · pΛ[Bmpq · k + C(2k2 + k · p) + 2smRk · pΛ]± 2k · pΛs

2mΛ}

− 1

5
QpΛp[mΛ(mRmp ∓ 3s) + (3mR ∓mp)q · pΛ]

}
+G2

{
± 1

5
k2q · pQpΛpΛ ∓DQpΛp +

1

5
DE − 1

5
QpΛp[mRmΛ(k2 ∓ s)

+ q · pΛ(mRmp ∓ k2)± s(q · pΛ −mΛmp)]

}
,

(A.51d)

A′5 = G1

{
s(±mp −mR)QpΛp −

1

5
s(Bmpq · k − Ck · p)

}
+G2

{
± sk · pQpΛp +

1

5
Esk · p

}
,

(A.51e)

A′6 = G1

{
AQpΛp −

1

5
q · p(±mp −mR)QpΛpΛ

− 1

5
q · pΛ(Bmpq · k − Ck · p)

− 1

5
QpΛp[mΛ(±s−mRmp) +A]

}
−G2

{
± q · pΛ k · pQpΛp

± 1

5
q · p k · pQpΛpΛ

+
1

5
q · pΛ k · pE +

1

5
QpΛpB k · p

}
,

(A.51f)

where the coupling parameters G1 and G2 are given as in Equation (5.5) and

A = q · pΛ(±mp −mR), (A.52a)

B = ± q · pΛ −mΛmR, (A.52b)

C = ± smΛ −mR q · pΛ, (A.52c)

D = k2 q · pΛ − s k · pΛ, (A.52d)
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A. Contributions to the Invariant Amplitude

E = mp C − q · pB, (A.52e)

where the upper (lower) sign corresponds with the case of positive (negative) parity of

the nucleon resonance.

The terms QpΛp, QkpΛ , QpΛpΛ and Qkp include four-momenta products given by the

general prescription

QXY = sX · Y −X · q Y · q, (A.53)

the notation of four-momenta X and Y is given in Equation (A.1).

Each amplitude A′i, i = 1, . . . , 6, has to be multiplied by the propagator denominator

as in Equation (A.41).

A.7 Non-Born t Channel: K1(1270) and K∗(892) Exchanges

The amplitude for the pseudovector meson K1(1270) (Jπ = 1+) exchange reads

MK1

NBt = ū(pΛ)
g

m
[gαµ k · (p− pΛ)− kα(p− pΛ)µ]

×
(
−gαλ + (p− pΛ)α(p− pΛ)λ/m2

K1

)
t−m2

K1
+ imK1

ΓK1

×
[
fV γλγ5 +

fT
mΛ +mp

(6pΛ− 6p)γλγ5

]
εµu(p).

(A.54)

And the scalar amplitudes Aj are given as

A2 =
−2GT

(mΛ +mp)(t−m2
K1

+ imK1
ΓK1

)
pΛ · k, (A.55a)

A3 =
2GT

(mΛ +mp)(t−m2
K1

+ imK1
ΓK1

)
p · k, (A.55b)

A4 =
GV +GT (mΛ −mp)(mΛ +mp)

t−m2
K1

+ imK1
ΓK1

, (A.55c)

A5 = −A4. (A.55d)

with GV,T = gfV,T /m. The mass scale m is arbitrarily chosen as 1 GeV.

The vector meson K∗(892) (Jπ = 1−) exchange amplitude is

MK∗

NBt = iū(pΛ)
g

m
εµναβkα(pΛ − p)β

×
(
−gνσ + (p− pΛ)ν(p− pΛ)σ/m

2
K∗

)
t−m2

K∗ + imK∗ΓK∗

×
[
fV γ

σ +
fT

mΛ +mp
(6pΛ− 6p)γσ

]
εµu(p).

(A.56)
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The scalar amplitudes are given as

A1 =
GV (mΛ +mp) +GT t/(mΛ +mp)

t−m2
K∗ + imK∗ΓK∗

, (A.57a)

A2 =
2k · pΛGT

(mΛ +mp)(t−m2
K∗ + imK∗ΓK∗)

, (A.57b)

A3 =
−2k · pGT

(mΛ +mp)(t−m2
K∗ + imK∗ΓK∗)

, (A.57c)

A4 =
GV −GT (mΛ −mp)/(mΛ +mp)

t−m2
K∗ + imK∗ΓK∗

, (A.57d)

A5 =
GV +GT (mΛ −mp)/(mΛ +mp)

t−m2
K∗ + imK∗ΓK∗

, (A.57e)

with GV,T = gfV,T /m. As in the pseudovector case, the mass m is arbitrarily chosen to

be 1 GeV.

A.8 Non-Born u Channel: Y ∗(1/2±) Exchange

The non-Born amplitude for the Y ∗(1/2±) exchange is

MY ∗(1/2)
NBu = iū(pΛ)

κΛR

mΛ +mR
σµνkνΓ

× 6pΛ− 6k +mR

u−mR + imRΓR
gKΛ∗pγ5Γεµu(p),

(A.58)

with Γ defined as in (A.30). The scalar amplitudes Aj are then

A1 =
gKΛ∗p

u−m2
R + imRΓR

mR ±mΛ

mR +mΛ
κΛR, (A.59a)

A5 = ± gKΛ∗p

u−m2
R + imRΓR

2κΛR

mΛ +mR
, (A.59b)

A6 =
1

2
A5, (A.59c)

where the upper (lower) sign corresponds with the positive (negative) parity of the reso-

nance.

A.9 Non-Born u Channel: Y ∗(3/2±) Exchange

Interaction Lagrangians for strong and electromagnetic vertices for the exchange of spin-

3/2 hyperon resonance in the u channel are adopted from Ref. [90]. The Lagrangian of

the strong vertex has in the u channel the following form

LS =
f

mRmK
εµνλρ(∂

µψ̄ν)γ5γ
λψp(∂

ρφK)Γ (A.60)
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A. Contributions to the Invariant Amplitude

and the vertex factor is then easily derived as

V Sν =
f

mRmK
Γεµνλργ5γ

λqµpρK . (A.61)

The Lagrangian of the electromagnetic vertex can be recast as

LEM = − g

mR(mR +mΛ)
ψ̄ΛΘαβ,µνG

αβFµνγ5Γ

= − 1

mR(mR +mΛ)
[g1ψ̄Λ(∂µψν)Fµνγ5 + g2ψ̄Λγβγ

σGβαFασγ5]Γ,
(A.62)

where Θαβ,µν = gαµgβν + a1gαµγβγν . The corresponding vertex factor reads

V EMβ =
g1

mR(mR +mΛ)
qα(kαεβ − kβεα)

+
g2

mR(mR +mΛ)
[6q(kβ 6ε− εβ 6k)− γβ(q · k 6ε− q · ε 6k)]γ5Γ.

(A.63)

The amplitude for the Y ∗(3/2±) exchange in the u-channel reads

MY ∗(3/2)
NBu = ū(pΛ) Γ γ5

1

mR(mR +mΛ)

[
g1 q

α Fαβ + g2

(
6q Fβαγα − γβ qα Fαρ γρ

)]
× 6q +mR

u−m2
R + imRΓR

(
gβν − 1

3
γβγν

)
Γ

if

mRmK
εµνλρ γ5γ

λqµpρK u(p).

(A.64)

Casting the amplitude to the compact form, the scalar amplitudes are given as

A′1 = − 1

3
G1q · k (±mRmp + q · p) +

1

3
G2[±5mRmp q · k ± 2mRmpu

+ 2q · p q · k ± 2mRmΛ q · p+ 2u q · p+ 2mΛmpu+ 3u p · k],

(A.65a)

A′2 = G1q · k (±mRmΛ − u) +G2(2q · k u− uk2 ∓ 4mRmΛ q · k), (A.65b)

A′3 = G1

{
1

3
k2(±mpmR + q · p) + p · k (u∓mRmΛ)

}
+G2

[
±4mRmΛ p · k ∓

5

3
mRmpk

2 − 2

3
q · p k2 − 2p · k u

]
,

(A.65c)

A′4 = ∓G1mR q · k +G2[±4mR q · k + u(±mR +mΛ)], (A.65d)

A′5 =
1

3
G1[q · p (±mR −mΛ)∓mRmpmΛ + ump ± 3mR p · k]

+G2

[
±5

3
mRmpmΛ ∓ 4mR p · k −

1

3
ump +

2

3
mΛ q · p∓

4

3
mR q · p

]
,

(A.65e)

A′6 =
1

3
G1[q · p (±mR −mΛ)∓mRmpmΛ + ump ± 3mR p · k]

+G2

[
±5

3
mRmpmΛ ∓ 4mR p · k ∓ 2mR q · p− ump +

2

3
mΛ q · p

]
,

(A.65f)
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A.9 Non-Born u Channel: Y ∗(3/2±) Exchange

where G1,2 are given as in (5.4) with mp replaced by mΛ and the upper (lower) sign

corresponds with the case of positive (negative) parity of the hyperon resonance. Each

amplitude A′i, i = 1, . . . , 6, has to be multiplied by the propagator denominator

Ai =
1

u−m2
R + imRΓR

A′i. (A.66)
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Appendix B

Regge Trajectories and Propagators

At the energies of a few GeV and higher, where no individual resonances can be dis-

tinguished, the dynamics of the process is governed by the exchange of t-channel Regge

trajectories. This choice is motivated by the shape of the KΛ photoproduction cross

section which is peaked on small |t|, i.e. on small kaon angles θc.m.K . This behaviour

indicates a dominant role played by t-channel kaon exchanges.

The Regge trajectories, which are often called after a lightest member (so-called first

materialization) of the particular trajectory, connect spin and mass squared of the ex-

changed particle. When the spins of a set of resonant states are plotted against their mass

squared in a Chew-Frautschi plot, see Figure B.1, it is observed that all Regge trajectories

can be reasonably well parameterized by means of a linear function

αX(t) = αX,0 + α′X(t−m2
X), (B.1)

with mX and αX,0 the mass and spin of the trajectory lightest member X, respectively.

What is more, α′X , which is the slope of the trajectory, happens to be close to an universal

constant for all trajectories and acquires the value of 0.8 GeV2. It is widely believed that

this universal slope of the trajectories reflects the behaviour of the underlying partonic

degrees of freedom of the hadronic spectrum. Trajectory equations for K+(494) and
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B. Regge Trajectories and Propagators

Figure B.1: Chew-Frautschi plot for the two lightest kaon trajectories assumed in our
analysis. The squares and dots represent trajectories with parity +1 and −1, respectively.
Both trajectories are linear to a very good approximation.

K∗+(892) read

αK(494)(t) = 0.70 (t−m2
K), (B.2a)

αK∗+(892)(t) = 1 + 0.85 (t−m2
K∗), (B.2b)

respectively. Note that t = m2
X can never be reached in the physical region of the process

as t is negative in this region.

An efficient way to model trajectory exchanges involves embedding the Regge formal-

ism into a tree-level effective-field model. The amplitude for the t-channel exchange of

a linear kaon trajectory α(t) can be obtained from the standard Feynman amplitude by

replacing the usual pole-like Feynman propagator of a single particle with a Regge one of

the form

Pζ=±1
Regge(s, t) =

(
s

s0

)α(t)
πα′

sin(πα(t))

1 + ζe−iπα(t)

2

1

Γ(α(t) + 1)
, (B.3)

while keeping the vertex structure given by the Feynman diagrams which correspond to

the first materialization of the trajectory.
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While deriving the Regge propagator, one has to differentiate between two signature

parts of the trajectories, ζ = ±1, in order to obey the convergence criteria: ζ = +1

corresponds with the even and ζ = −1 with the odd partial waves. Thus, a summation

over this factor is to be done in the propagator. However, the theory does not allow to

determine the relative sign between the even and odd parts of the trajectory. Therefore,

we end up either with a so-called constant phase, identical to 1, or a rotating phase which

gives rise to a complex factor of exp(−iπα(t)):

1 + e−iπα(t)

2
± 1− e−iπα(t)

2
=

1, constant phase,

e−iπα(t), rotating phase.

In our treatment of KΛ photoproduction, we identify the K+(494) and K∗+(892)

trajectories as the dominant contributions to the high-energy amplitude. Nonetheless,

some groups include into their models also a third kaon trajectory in order to improve

the ability of the model to describe the data. In this regard, there are two candidates

considered: the axial-vector K1(1400) and the vector K∗(1410) trajectories [117].

The corresponding propagators for the K+(494) and K∗+(892) trajectories have the

following form [29]

PK(494)
Regge (s, t) =

(s/s0)αK(t)

sin(παK(t))

πα′K
Γ(1 + αK(t))

 1

e−iπαK(t)

 , (B.4a)

PK
∗(892)

Regge (s, t) =
(s/s0)αK∗ (t)−1

sin(παK∗(t))

πα′K∗

Γ(αK∗(t))

 1

e−iπ(αK∗ (t)−1)

 . (B.4b)

As can be seen from the definition of the Regge propagators, there are poles at non

negative integer values of αX(t), which correspond to the zeroes of the sine function which

are not compensated by the poles of the Γ function. Here comes the interpretation of

the Regge propagator effectively incorporating the exchange of all members of the αX(t)

trajectory. In the physical region of the process under study (with t < 0), these poles

cannot be reached.

The separation of the Regge amplitude into two different signatures is a theoretical

request to ensure convergence, experimentally both trajectories shown in (B.2) coincide

with one another. The residue for the lowest materialisation is, therefore, assumed to be

used for the combined trajectory of both odd and even parity. This assumption is then
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B. Regge Trajectories and Propagators

called degeneracy. Whether a trajectory should be treated as degenerate or non degen-

erate, depends less on the trajectory equations themselves than on the process studied.

It is the structure of the observed cross section that gives a hint whether the degener-

acy is a valid supposition for a given channel or not. Non degenerate trajectories leads

to peaks in the differential cross section because they exhibit so-called wrong-signature

zeroes (these are zeroes of the Regge propagator corresponding to poles of the Γ function

which are not removed by the sine function). On the other hand, a smooth differential

cross section indicates degenerate trajectories [28]. Since no obvious structure is present

in the p(γ,K+)Λ cross-section data for Elabγ ≥ 4 GeV, both the K+(494) and K∗+(892)

trajectories are supposed to be degenerate [29].
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Appendix C

The Gauge-Invariance Restoration in

Isobar Models

The condition of gauge invariance, which is intimately connected with the conservation of

electric charge, belongs to the most important properties of every physical theory dealing

with electromagnetic interactions. In order to fulfil the gauge-invariance condition, the

amplitude as the whole shall obey the current-conservation condition

kµMµ = 0 (C.1)

which holds for every process involving either real or virtual photon with a four momentum

k and polarization vector ε(k).

If we do not include hadron form factors to account for the fact that nucleons are not

pointlike objects, the full amplitude constructed with the help of effective Lagrangians is

gauge invariant (note that the same holds for, e.g. pion photoproduction off the nucleon

[49]). Resonant amplitudes are separately gauge invariant; the Born terms are gauge in-

variant as well, except for contributions of the s and t channel, where gauge non invariant

terms of the form gKΛp(k · ε)/k2 appear, see Equations (A.20) and (A.24). These terms,

however, vanish in the sum of s- and t-channel contributions.
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C. The Gauge-Invariance Restoration in Isobar Models

With the introduction of hadron form factors the gauge non-invariant terms in the s-

and t-channel Born contributions no longer cancel each other and the gauge invariance is

lost. In order to restore it, a contact term of the form

Mcontact =− gKΛpūΛ(pΛ)γ5

[
2pµ+ 6kγµ

s−m2
p

(F̂DW − Fs)

+
2pµK

t−m2
K

(F̂DW − Ft)
]
up(p)εµ,

(C.2)

is introduced. For F̂DW the form

F̂DW = Fs(s) + Ft(t)− Fs(s)Ft(t), (C.3)

introduced by Davidson and Workman [33] is used. In the definition (C.3) it holds

Fs(s = m2
p) = Ft(t = m2

K) = 1 and F̂DW (s = m2
p, t) = F̂DW (s, t = m2

K) = 1 which

prevents the poles in the contact-term contribution (C.2) from being reached.

In the past, a shape of hadron form factor

F̂H = asFs(s) + atFt(t) + auFu(u), (C.4)

proposed by Haberzettl was used [49]. The coefficients in Equation (C.4) fulfil the relation

as + at + au = 1. The most democratic choice for the coefficients is as = at = au = 1/3.
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Appendix D

Available Experimental Data

In general, 16 different quantities can be extracted experimentally in the pseudoscalar

meson photoproduction. These are the unpolarized differential cross section, 3 single-

polarization observables, and 12 double-polarization observables. The spin observables

are not independent, but are constrained by various identities which can be further used

to check the consistency of various measurements.

Many collaborations have measured observables of the processes K+Λ and K+Σ0 in

a large kinematical region even though the number of data is still lower than in the

pion-production channels. A great number of experimental data were published from the

turn of the century by LEPS [51, 108], GRAAL [66, 67], MAMI [61], and particularly

CLAS [17, 18, 82, 83] collaborations. Apart from data published in the last decade, there

are also older high-energy data, e.g. SLAC [16] data, at one’s disposal. Nowadays, one

therefore has around 7000 p(γ,K+)Λ data at hand, an overview of which is given in

Table D.1. Besides a name of the collaboration, year when the data were published, and

number of data in the given set, Table D.1 shows also energy and angular ranges where

the data are available.

If it is possible to determine a polarization of a given particle, one can measure the

asymmetry of the cross section regarding this polarization. Provided there is one particle

137



D. Available Experimental Data

polarized, we define single-polarization observables, which are hyperon polarization P ,

beam asymmetry Σ and target asymmetry T with polarized hyperon, photon and proton,

respectively. Double-polarization observables, which demand information about the spin

of two particles, can be divided into three types referred to as beam-target, beam-recoil,

and target-recoil with photon and proton, photon and hyperon, and proton and hyperon

polarized, respectively.

For a measurement of the hyperon polarization P in kaon photoproduction experi-

ments, a “self-analyzing” property of the Λ hyperon is very useful. The Λ hyperon decays

by means of weak interaction to π−p. Since the proton is preferentially emitted along

the polarization direction of the Λ, the Λ polarization can then be determined from the

angular distribution of its decay products.

The precise measurement of beam asymmetry Σ was accomplished utilizing pho-

ton beams with a high degree of linear polarization in experiments at LEPS [108] and

GRAAL [66] which provided the coverage of the energy range from the threshold up to

1.5 GeV. Another beam-asymmetry data set was published by CLAS collaboration [92],

giving almost three times as many data as the results of the GRAAL collaboration which

serves for a finer structure resolution.

Values for the target asymmetry T have been extracted by the GRAAL collabora-

tion [67] even without a polarized target since this observable can be determined also by

measuring the equivalent double-polarization observable which demands a linarly polar-

ized photon and hyperon aligned perpendicular to the reaction plane [9].

For the photoproduction of K+Y , the most accessible double-polarization observables

are the ones which represent polarized photon and recoiling hyperon. Exact measurements

of both Cx and Cz have been accomplished by the CLAS collaboration [18]. The Ox and

Oz data have been published by the GRAAL collaboration [67].

For adjusting free parameters of the models, we do not use SAPHIR cross section

data since they show discrepancies in comparison with CLAS and LEPS cross section

data, which are consistent with each other as well as internally consistent. Cross-section

data measured by the SAPHIR collaboration are systematically lower than CLAS [82]

and LEPS cross section data, especially in the forward angle region. Simultaneous fitting

on the CLAS and SAPHIR data is possible only if a normalization function depending

on energy is introduced [97].
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There are two different ways of computing the total error. The total systematic error

may be assembled from several partial systematic errors (or the data may stem from

several experiments with various systematic errors). If it is composed of more than ten

partial errors (or if the data set is put together from more than ten different experiments),

the total error is then given

σtot =
√
σ2
stat + σ2

sys.

On the other hand, if the total systematic error is determined by one factor (one data

set) only, we simply add the statistical and systematic errors

σtot = σstat + σsys.

In general, it is possible to determine systematic errors σsys as a sum of partial system-

atic errors σisys squared coming from different sources. Since various sources of systematic

errors do not follow the normal distribution, this approach may lead to underestimate

the total systematic error. There is also an opposite approach which consists in adding

partial systematic errors linearly.

Adjusting the Parameters of Isobar Model

For the determination of free parameters of isobar model, we have selected around 3400

data points originating from CLAS and LEPS collaborations and replenished them with

several tens of data collected by Adelseck and Saghai in their work [3]. To be precise,

we used the CLAS 2005 [17], CLAS 2010 [82], and LEPS [108] cross-section data, CLAS

2010 [82] hyperon-polarization data, and LEPS [108] beam-asymmetry data. Since the

isobar model works well in the resonance region only, we have restricted the CLAS 2010

data sets to the energy range up to 2.355 GeV and 2.225 GeV for the cross-section and

hyperon-polarization data, respectively.

As the CLAS and SAPHIR [44] data are not consistent with each other, particularly

in the forward-angle region which is of paramount interest, we decided not to use the

SAPHIR cross-section data in the analysis. Unfortunately, even the CLAS 2005 [17] and

CLAS 2010 [82] data sets show inconsistency with each other of about one or two standard

deviations in the threshold region for kaon angle less than approximately 60◦.
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Observable No. of data Elabγ [GeV] θK [◦] Collaboration Year

σ 14 (0.95; 2.60) - ABBHHM [1] 1969
24 (0.92; 1.95) - SAPHIR [110] 1998
36 (0.92; 2.60) - SAPHIR [44] 2004
78 (0.95; 2.91) - CLAS [17] 2006

dσ/dΩ 55 5, 8, 11, 16 (1; 45) SLAC [16] 1969
91 (0.93; 1.39) (30; 132) Adelseck [3] 1990
90 (0.90; 2.00) (25; 154) SAPHIR [110] 1998
720 (0.90; 2.60) (0; 180) SAPHIR [44] 2004
1377 (0.94; 2.95) (25; 143) CLAS [17] 2006
54 (1.53; 2.38) (18; 32) LEPS [108] 2006
19 (1.50; 2.37) (0; 36) LEPS [51] 2007

2066 (0.94; 3.81) (27; 120) CLAS [82] 2010
1341 (0.93; 1.44) (66; 143) MAMI [61] 2014

Σ 9 16 (3; 20) SLAC [94] 1979
45 (1.50; 2.40) (0; 53) LEPS [121] 2003
30 (1.55; 2.30) (13; 49) LEPS [108] 2006
4 (1.72; 2.20) (0; 36) LEPS [51] 2007
66 (0.98; 1.47) (30; 140) GRAAL [66] 2007

T 3 (1.10; 1.30) 90 Bonn [5] 1978
66 (0.98; 1.47) (30; 140) GRAAL [67] 2008

P 7 5 (17; 41) DESY [118] 1972
12 (0.91; 2.00) (30; 150) SAPHIR [110] 1998
30 (0.91; 2.60) (0; 180) SAPHIR [44] 2004
233 (0.93; 2.33) (25; 136) CLAS [83] 2004
66 (0.98; 1.47) (30; 140) GRAAL [66] 2007

1707 (0.94; 3.81) (27; 120) CLAS [82] 2010

Cx, Cz 324 (1.03; 2.74) (31; 138) CLAS [18] 2007
Ox, Oz 132 (0.98; 1.47) (31; 143) GRAAL [67] 2008

Table D.1: An overview of available experimental data for the p(γ,K+)Λ process. The
symbols σ, dσ/dΩ, Σ, T and P denote total cross section, differential cross section, beam
asymmetry, target polarization and hyperon polarization, respectively. Cx, Cz, Ox, and
Oz are double-polarization observables.

Tuning the RPR-model Parameters

While fitting the free parameters of the Regge-plus-resonance model, we were not re-

stricted to the resonance region only and we have, therefore, exploited much more data

in comparison with the fitting procedure of the isobar model. Basically, we have used the

same data sets but we utilized all data available therein (i.e. CLAS 2005 [17] and CLAS

2010 [82] data up to Elabγ = 2.95 GeV and W = 2.835 GeV), which gave us around 5300

data in total.
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