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emise lze např́ıklad detekovat výskyt předpokládaných jev̊u jako jsou
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výtrysky částic (jety). Detekce malých oblast́ı se zvýšenou četnost́ı
nabitých částic (domény) na pozad́ı několika tiśıc daľśıch vzniklých
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Preface

Chiral symmetry, an important symmetry of the strong interaction, exhibits an interesting
behaviour. In the standard conditions it is spontaneously and explicitly broken. This
means neither the Hamiltonian, nor its ground state posses the symmetry. But when the
energy density is large enough (e.g. during an ultra-relativistic heavy ion collision), the
symmetry could be restored. Many theoretical physicist believe there is a possibility that
the system could (after it cools down) return to another state, than it is common for regular
vacuum. A region of pseudo vacuum is formed. This state would be unstable and would
come over to the vacuum-like state.

Such a transition would be followed by an emission of low momentum pions, which
would be more probably charged, than neutral. These pion domains are being called
Disoriented Chiral Condensate. Their detection could give us useful information about
some proprieties of the QCD vacuum.

Unfortunately, DCC domains’ detection is quite complicated. Special analytical meth-
ods have been developed during past years for this purpose. An example is the multi-
resolution wavelet analysis (sometimes refered as the “wavelet analysis”), which has been
used e.g. in the image processing before. Another method is represented by the multi-
resolution Lorentz analysis (sometimes refered as the “multi-resolution analysis”). I will
present here various simulations which will show us the abilities (and also disabilities) of
this method.

There have been several DCC searching experiments since 1990’s, but without any
major success. However, this year LHC at CERN should become fully operational, giving
us opportunities to study via the experiments ALICE, ATLAS, CMS and LHCb nuclear
collisions at enormous energies, far beyond the capacities of all contemporary colliders.
Especially the detector ALICE could give us the answer, if the DCC exists or not.
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Chapter 1

Physics Around the Disoriented
Chiral Condensate

1.1 Chiral Symmetry

1.1.1 Introduction

Chiral symmetry is an important symmetry of the QCD Lagrangian in the limit of van-
ishing quark masses and is associated with the strong interaction. However, as we know,
quarks are not massless. Thus it’s only an approximate symmetry. But its application still
yields meaningful results, because masses of the two lightest quarks (u,d) are small in com-
parison with hadronic scales. Interesting feature of the chiral symmetry is its spontaneous
breakdown. This means that while the Hamiltonian possesses the symmetry, its ground
state does not. An important consequence of the spontaneous breakdown of a symmetry is
the existence of a massless mode, the so called Goldstone boson. In our case, the Goldstone
boson is identified with the pion.

Under specific conditions (very high temperature), the chiral symmetry can be re-
stored. This means that both the Hamiltonian and it’s (high temperature) state possess
the symmetry. After the symmetry restoration, there are no Goldstone modes present.
Thus the pions will become as heavy as hadrons (if the matter is still confined). Later,
while the system is cooling down, the symmetry spontaneously breaks once again. These
are the conditions, when the disoriented chiral condensate can be formed up.

1.1.2 Symmetries

A very nice concept of the chiral symmetry is described in [5]. This section is a short
summary of the cited article.

Lagrangian formulation has one advantage. Symmetries of the Lagrangian lead to
conserved quantities - currents. For example, we know from classical mechanics that space
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invariation of the Lagrange function leads to conserved momentum, time invariation implies
energy conservation.

Imagine a transformation of the fields

Φ→ Φ + δΦ (1.1)

Let the Lagrange function is invariant under the transformation (1.1)

L(Φ) = L(Φ + δΦ) (1.2)

This can be rewritten as
0 = L(Φ + δΦ)− L(Φ) (1.3)

We can expand the (1.3) to the first order in δΦ

0 =
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ(∂µΦ) (1.4)

Using this equation together with Hamilton’s principle of the lowest action and Lagrange’s
equations of motion yields

0 = ∂µ

(
∂L

∂(∂µΦi)
δΦi

)
(1.5)

This means that the quantity

Jµ =
∂L

∂(∂µΦi)
δΦi (1.6)

is a conserved current (∂µJµ = 0) for possible fields Φi.

Let’s take a look what happens with the Lagrangian of two-flavours massless fermions.
It is given by

L = iψ̄i∂µγ
µψi (1.7)

Now consider the transformation

ΛV : ψ → e−i
~τ
2
~Θψ '

(
1− i~τ

2
~Θ

)
ψ (1.8)

where ψ is now a spinor
(
u
d

)
and ~τ are usual Pauli isospin matrices. Transformation ΛV of

the ψ̄ is

ψ̄ → ei
~τ
2
~Θψ̄ '

(
1 + i

~τ

2
~Θ

)
ψ̄ (1.9)

It holds

iψ̄∂µγ
µψ → iψ̄∂µγ

µψ − i~Θ
(
ψ̄i∂µγ

µ~τ

2
ψ − ψ̄~τ

2
i∂µγ

µψ

)
= iψ̄∂µγ

µψ (1.10)

8



consequently the Lagrangian L is invariant under the transformation ΛV and the associated
conserved current (“vector current”) is equal to

V a
µ = ψ̄γµ

τa

2
ψ (1.11)

Let me realise another transformation, ΛA

ΛA : ψ → e−iγ5
~τ
2
~Θψ '

(
1− iγ5

~τ

2
~Θ

)
ψ (1.12)

and ψ̄ → e−iγ5
~τ
2
~Θψ̄ '

(
1− iγ5

~τ

2
~Θ

)
ψ̄ (1.13)

The transformation of Lagrangian reads

iψ̄∂µγ
µψ →iψ̄∂µγµψ − i~Θ

(
ψ̄i∂µγ

µγ5
~τ

2
ψ + ψ̄γ5

~τ

2
i∂µγ

µψ

)
=iψ̄∂µγ

µψ

(1.14)

where we used anti-commutation relation γµγ5 = −γ5γµ. In other words, the Lagrangian
is invariant under the transformation ΛA too. The conserved current is now called “axial-
vector current”

Aaµ = ψ̄γµγ5
τa

2
ψ (1.15)

As we can see, the Lagrangian of massless fermions, or more generally, the massless QCD
is invariant under the transformations ΛV and ΛA. This Lagrangian’s invariations are what
is called the “Chiral symmetry”1). But the situation will change if we introduce a mass
term

δL = −m(ψ̄ψ) (1.16)

The Lagrangian is now still invariant under the transformation ΛV , but for ΛA we get

ΛA : m(ψ̄ψ)→ m(ψ̄ψ)− 2im~Θ

(
ψ̄
~τ

2
γ5ψ

)
(1.17)

Then L is not invariant under the axial transformation. Therefore ΛA is not the exact
symmetry, if the fermions (quarks) have a finite mass. However, at least masses of the
u and d quarks are (compared to the constant ΛQCD ' 200MeV ) very small. Thus the
symmetry can be understood as an approximate symmetry. One would also expect that
in this case the axial current will be only partially conserved.

1As “chiral symmetry” is often branded only the axial-vector symmetry, because what makes the chiral
symmetry important are just the special properties of the axial-vector symmetry. I will try to distinguish
these terms in the text properly.
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1.1.3 Chiral Symmetry Breaking

Motivation

First, let me define the pionic field and the sigma field, which are representing the pions
and the sigma particle.

~π ≡ iψ̄~τγ5ψ

σ ≡ ψ̄ψ
(1.18)

Under ΛV the pionic field transforms as

~π → ~π + ~Θ× ~π (1.19)

Other words, it is rotated in the isospin space by the angle Θ. Thus the vector transfor-
mation is nothing else but the isospin rotation. The conserved current can be identified
with the isospin current, which is (as we know from experiments) in the strong interaction
really conserved.

On the other hand for ΛA it can be shown that it reads

ΛA : ~π → ~π + ~Θσ (1.20)

and analogically

σ → σ − ~Θ~π (1.21)

This means under the axial-vector transformation the pi and sigma mesons are rotated
into each other.

We have seen that ΛA is a symmetry of the QCD Lagrangian (and Hamiltonian). Thus
one could expect that mesons which can be rotated into each other by this transformation
should have the same masses. However this is actually not our case. Mass of the π meson is
approximately 140MeV. Mass of the sigma meson is expected to be about 400-1200MeV2).
Such a big mass difference cannot be explained by the small symmetry breaking caused
by the non-vanishing quark masses. Does it mean the axial symmetry is a nonsense? No,
there are pieces of evidence (weak pion decay, so-called Goldberger-Treiman relation [5][6],
and others) that the axial symmetry is a symmetry of the strong interaction and must be
present somehow. So is there any solution? Yes, it is: the spontaneous breakdown of
the symmetry.

2According to the Particle Data Group. Till now, sigma meson wasn’t discovered. If it exists, it will
probably be a wide resonance with full width Γ = 600-1000MeV.
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Spontaneous Symmetry Breaking

A symmetry is spontaneously broken, if it doesn’t realise itself in the Hamiltonian’s ground
state. This situation can be clearly demonstrated on an example from the classical me-
chanics. Imagine a parabolic cone (or a hemisphere) with a small ball tumbling inside.
Such a potential has its minimum (and its ground state) just in the middle. This potential
is obviously symmetric towards rotations around the z axis. That is how an unbroken
symmetry looks like. Now consider another situation: a potential shaped like a Mexican
hat with a ball placed on the top of it. The symmetry is unbroken, but the system is
not in the ground state. As soon as possible the ball will (due to the gravitation force,
in this “classical mechanics example”) roll down (to the ground state) to whatever side.
The ball is in the middle no more and the rotational symmetry has been spontaneously
broken. However, the symmetry has still an influence on the system. Rotations around
the z-axis (moving the ball inside the valley) cost us no energy. These motions can be
identified as rotational excitations and - as we have said - they are not energy-consuming.
On the other hand, the radial excitations (moving the ball up to the hill) do us cost some
energy. Following pictures should be illustrative enough.

Figure 1.1: Rotationally invariant potential with unbroken symmetry

Let’s return to the axial-vector symmetry now. We have shown that one expects
the axial-vector symmetry to be spontaneously broken. So how would look an analogical
picture to Figure 1.2 like? It’s quite straightforward. We just replace the axis x and y by
the fields σ and ~π 3). In this picture, the ΛA transformation corresponds to the rolling of

3Actually, there should be 3 axes representing ~π (instead of one), but a 5-D graph is not easy to
illustrate...

11



Figure 1.2: Spontaneous symmetry breaking

the ball inside the valley. For example, moving the ball from point [2,0] to point [0,2] could
represent a transformation from the σ-state to one of the ~π-states.

The ground state now lies in the “valley”, not in the centre ([0,0]). Hence one of the
fields σ and ~π must have nonzero expectation value. It has to be the σ-field since it carries
the quantum numbers of the vacuum. Consequently, the scalar quark condensate 〈q̄q〉 will
have a finite, non-vanishing value.

In this scheme, pionic states are only rotational excitations of the sigma state. As
we have said, these excitations cost no energy. Therefore the pions should be massless.
On the other hand, since excitations in the sigma direction are radial excitations, they are
massive.

A general theorem - called the Goldstone Theorem - exists showing that whenever a
continuous symmetry is broken spontaneously, massless particles appear in the spectrum of
the theory. The resultant massless particles are called Goldstone particles. Thus pions are
the Goldstone bosons of spontaneously broken chiral symmetry. In the real world, however,
pions have some finite mass and are denotated as the pseudo-Goldstone bosons. How can be
achieved these proprieties? It can be acquired by adding an explicit symmetry breaking
term. Don’t get confused - explicit breaking is a different effect than spontaneous breaking!
What it is and what it brings will be discussed in the following section.

1.1.4 Explicit Symmetry Breaking and Linear Sigma Model

The linear sigma model (LSM) has its roots in the early 1960’s. The Lagrangian which
we will start with has to be Lorentz-scalar and invariant under the both ΛA and ΛV
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transformations. In equations (1.19), (1.20) and (1.21) we have convinced ourselves that
the ~π-field is invariant neither under ΛV nor ΛA transformation. Also the sigma field isn’t
invariant under the axial-vector transformation. However, for the squares of the fields one
gets

ΛV : ~π2 → ~π2

σ2 → σ2 (1.22)

and

ΛA : ~π2 → ~π2 + 2σΘiπi

σ2 → σ2 − 2σΘiπi
(1.23)

If we sum these squares, we will obtain

ΛA,ΛV :
(
~π2 + σ2

)
→
(
~π2 + σ2

)
(1.24)

It means we have found a term which is invariant under the transformation ΛV and ΛA as
well. What more, it is a Lorentz-scalar. So we have found a good base for our Lagrangian.
After a few steps (for more detailed description see e.g. [5]) one gets the final form of the
Lagrangian

L =iψ̄∂µγ
µψ − gπ

(
iψ̄γ5~τψ~π + ψ̄ψσ

)
− λ

4

(
π2 + σ2 − f 2

π

)2
+

1

2
∂µπ∂

µπ +
1

2
∂µσ∂

µσ
(1.25)

with pion-nucleon coupling constant gπ and sigma-field’s finite vacuum expectation value
fπ:

fπ = 〈σ〉 (1.26)

The third term, namely

V =
λ

4

(
π2 + σ2 − f 2

π

)2
(1.27)

is a pion sigma potential (“Mexican hat”) which is responsible for the finiteness of the 〈σ〉.
As we can see, there are no explicit mass terms for the pi- and sigma-field in (1.25). But
they could arise from an interaction with 〈σ〉. What are we going to do now is to introduce
small fluctuations of the sigma- and pi-field around the ground state4) and to expand the
potential (1.27) in them.

σ = fπ + (δσ) and π = 0 + (δπ) (1.28)

V =
λ

4

(
(δπ)2 + (fπ + δσ)2 − f 2

π

)2 ' λf 2
π(δσ)2 (1.29)

4These fluctuations are what we see to be the physical sigma (if sigma meson would be ever observed)
and pi mesons
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Terms of the third and higher orders have been neglected in the last step. One can then
identifie the mass of the sigma meson to be

m2
σ = 2λf 2

π (1.30)

Since 〈π〉 = 0 the mass of the pion must be zero. Which is in an agreement with
our previous conclusion that the pions are Goldstone bosons of the spontaneous broken
chiral symmetry. So how to get a non-vanishing mass for the pions? There must act some
additional breaking of the symmetry - the explicit breaking.

Explicit Symmetry Breaking

There is a one big difference between the spontaneous and explicit symmetry breaking.
While in the case of spontaneous symmetry breakdown the Hamiltonian’s ground state is
not symmetric, but the Hamiltonian itself still symmetric is, in the case of the explicit
breakdown also the Hamiltonian is unsymmetric.

Such an explicit symmetry breaking is in the QCD carried out by the quark mass term

δLQCD = −mq̄q (1.31)

If we identify the quark condensate with the sigma-field (as we have done yet earlier), we
can anticipate the breaking term of the LSM to have the following form

δLLSM = εσ (1.32)

with a symmetry breaking parameter ε. Since quark masses (at least u and d) are tiny, we
expect only a small explicit symmetry breaking and hence only small value of the ε. The
potential (1.27) now reads

V =
λ

4

(
π2 + σ2 − V 2

0

)2 − εσ (1.33)

with a new parameter V0 which satisfies V0 = fπ for ε → 0. If the minimum shall still be
at fπ, then V0 has to be

V0 = fπ −
ε

2λf 2
π

(1.34)

Same as before, only the axial-vector symmetry is broken. The vector symmetry stays
unaffected. To get a better notion of what are we speaking about, an explicitly broken
potential is displayed on Figure 1.3. As a result of the introduction of the breaking term,
the mass of the sigma meson has changed a bit

m2
σ =

∂2V

∂σ2
|fπ = 2λf 2

π +
ε

fπ
(1.35)

and so have done the mπ

m2
π =

∂2V

∂π2
|fπ =

ε

fπ
6= 0 (1.36)
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Figure 1.3: Example of an explicit symmetry breaking

Thus for the value of ε we get
ε = fπm

2
π (1.37)

and the mass of the sigma meson becomes

m2
σ = 2λf 2

π +m2
π (1.38)

The pion has now a non-vanishing mass, proportional to the square root of the explicit
symmetry breaking parameter. This was our aim.

At this place I would like to make a final conclusion of the foregoing lines. Small,
but non-vanishing quark masses are source of the explicit axial-vector symmetry break-
ing. Effects of this breaking, however, are small compared to the ones sequent upon the
spontaneous symmetry breaking. Therefore our previous results derived for a system with
spontaneously broken symmetry are still approximately valid and the system’s dynamics
will arise from the spontaneous symmetry breaking. Mass of the sigma meson is lifted a
bit, but what is more important, the π-meson has now a nonzero mass, in agreement with
the experiment.

1.1.5 Non-linear Sigma Model

At the end of this sub-chapter I would like to outline some basic ideas about the non-linear
sigma model. Results of the linear sigma model are at the first sight just what we need, so
why to set up other theories? The problem is that the LSM counts with the existence of an
inconsistent particle - the sigma meson. And, as we said earlier, the σ-meson hasn’t been
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experimentally observed. The non-linear sigma model (NSM) doesn’t demand existence of
such a particle. This feature is achieved by sending the sigma meson’s mass to the infinity.
This can be done by considering infinite coupling constant λ in the potential (1.33). The
“Mexican hat” will in consequence become steeper, with infinitely high walls. In such a
potential, only pionic excitations (around the bottom) are allowed, radial excitations in
the sigma direction are prohibited. The dynamics is now restricted to the bottom of the
“hat” (so called chiral circle) only.

Subsequently the sigma-field disappears from the Lagrangian and the coupling between
pions and nucleons is changed to a iso-vector coupling.

1.2 Disoriented Chiral Condensate

1.2.1 Preliminary

Ultra-relativistic heavy-ion collisions provide sufficient conditions (temperatures over a
“chiral transition temperature“) for chiral symmetry restoration. This means the pion
sigma potential will be shaped as the one showed on Figure 1.1. After some period of
time, when the system cools down, the symmetry is spontaneously broken once again.
Since the beginning of the 1990’s there have been opinions among the physicists that in
such environment a region of pseudo-vacuum with its chiral order parameter tilted from
the vacuum direction could appear. When these regions get in contact with the regular
vacuum they dispose of their superfluous energy by coherent emission of low-energy pions.
These regions are what is called the disoriented chiral condensate (DCC). One anticipates
DCC presence will result in large event-by-event fluctuations of the charged-to-neutral rate
of produced pions. Unfortunately, the DCC domains are expected to be very small, thus
the neutral pion fraction fluctuations will occur only in small phase-space areas. This
makes any eventual detection very difficult.

1.2.2 Theoretical Models

Baked Alaska

In order to get some intuitive understanding of the DCC, we will start this section with the
Bjorken’s original ‘‘Baked Alaska” model5). Let’s have a high-energy heavy ion collision
with high transverse energy deployed in the reaction zone, but with no high-pT jets being
formed. Thus the hadronization time can be quite long (a few fm/c). Most of the energy
is carried out by the primary partons expanding to all directions at nearly speed of light.
This means there is a hot, thin shell surrounding “cold” core. If energy density left inside
the fireball decreases to values of order of tens of MeV/fm3, one can expect that the core

5“Baked Alaska” is a dessert made of ice cream placed in a pie dish lined with slices of sponge cake
or pudding. The entire dessert is then placed in an extremely hot oven for just long enough to firm the
meringue. The meringue is an effective insulator, and the short cooking time prevents the heat from
getting through to the ice cream.

16



area will be similar to ordinary vacuum. However, if everything happens fast enough, the
quark condensate can be rotated from its normal direction, since the energy density is still
sufficient for compensating the effects of the explicit chiral symmetry breaking. After the
outer shell hadronizes, the interior gets into contact with the surrounding vacuum and
the disoriented quark condensate returns to the sigma-direction (from (~π, σ) to (~0, σ)) in
the chiral space, since it’s the direction of the vacuum quark condensate. As a result,
low-energetic pions are being emitted, with strong isospin correlations.

Figure 1.4: DCC evolution phases: a) extremely high temperatures → chiral symmetry
restoration; b) spontaneous breaking, explicit breaking suppressed; c) contact with ordi-
nary vacuum → explicit breaking;

Described scenario is illustrated on Figure 1.4.

Quench Scenario

The hot debris located on the surface of the fireball might be represented as a source of
the long-wavelength pionic excitation associated with the disoriented interior. Rajagopal
and Wilczek [11] have realised that a strong long-wavelength pion field configuration could
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be formed during the out-of-equilibrium chiral phase transition in the context of heavy-
ion collisions. The rapid expansion of the system results in a rapid suppression of initial
fluctuations (quenching) which results in a significant amplification of soft pion modes.

One can assume that a large amount of energy has been deposited in the collision
zone, corresponding to a very high temperature (above the chiral transition temperature,
Tct ≈ 200 MeV [12]). Due to the rapid expansion, this hot system is being rapidly cooled
down, which results in a strong suppression of the initial thermal fluctuations. Rajagopal
and Wilczek in their work assume an instantaneous quench from above to below the critical
temperature at the initial time. The initial field configurations are sampled from a chirally
symmetric probability distribution with the fluctuations frozen by hand.

Figure 1.5: Power spectrum of the pion field as a function of time (in lattice units) for
a given initial field configuration in the quench scenario. Low-momentum modes are dra-
matically amplified. Picture adopted from [11].

What they found is shown on Figure 1.5 - the pion field power spectra is due to the
far-from-equilibrium initial condition dramatically amplified in low momentum modes.

Due to the very unstable initial state, which was assumed to be formed as a conse-
quence of the rapid expansion, typical pion field configurations exhibit a significant amplifi-
cation and strong long-wavelength pion field develops rapidly. Expansion causes an energy
density drop-off and the dynamics might eventually linearise as the modes stop interacting.
If such a freeze-out happens short enough after the collision, the system may be left in this
strong field configuration and subsequently decay through coherent pion emission. This
provides a microscopic scenario for the DCC formation in heavy-ion collisions.
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1.2.3 DCC Signatures

Probably the most important signature for experimental physics is a different isospin dis-
tribution, e.g. the neutral pion fraction f = π0

π0+π++π−
. Under the normal conditions, pions

are produced in 1:1:1 ratio, thus the neutral pion fraction is Gaussian, strongly peaked at
1/3. In the limit of large N it can be expressed as

p(f) = δ(f − 1/3) (1.39)

Not so in the DCC case.

We will start with an assumption that the state of the system is an isospin singlet
and that all of the pions have same spatial wave functions. At first we will introduce
creation and annihilation operators a†i , ai (where i is an isospin index: 1,2,3) which create
or annihilate relevant pions. Let’s add the condition of normalisation[

ai, a
†
j

]
= δij (1.40)

The isospin operators can be then defined as

Ii = −iεijka†jak (1.41)

It is convenient to work in a basis where I3 is diagonal. Therefore we will go over to the

raising and lowering operators a± = 1√
2

(a1 ± ia2) and a†± = 1√
2

(
a†1 ± ia

†
2

)
. Consequently

I3 = a†+a+ − a†−a− (1.42)

We will also introduce isospin raising/lowering operators

I± = ±
√

2
(
a†±a3 + a†3a∓

)
(1.43)

Now we will construct a iso-singlet multi-pion state |ψ〉 which is an eigenstate of the total
pion number operator. Requirement of I3|ψ〉 = 0 results in condition n+ = n−. Therefore
the total number of pions is an even integer. Thus we can expand

|ψ〉 =
N∑
n=0

C(N)
n (a†3)2n(a†+a

†
−)N−n|0〉 (1.44)

where 2N is the total number of pions, 2n the number of neutral pions, |0〉 is annihilated

by the operators ai, C
(N)
n are coefficients determined from the requirement of I±|ψ〉 = 0.

From the relation I+|ψ〉 = 0 one gets N linear equations for N + 1 unknown coefficients.

Thus all the coefficients can be rewritten in the terms of one unknown coefficient, e.g. C
(0)
n

(The equation I−|ψ〉 = 0 brings no additional conditions).
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Since the operator S† = 2a†+a
†
− − (a†3)2 commutes with the isospin operators Ii, the

state
|ψ〉 = C(0)

n (S†)N |0〉 (1.45)

is a 2N pion iso-singlet and must be the most general such state in which all of the pions
have the same spatial wave function. Hence it is obvious that the possibility of seeing 2n
neutral pions out of 2N total pions in such a state is

P (n,N) =
(N !)222N(2n)!

(2N + 1)!(n!2n)2
(1.46)

For N, n >> 1 one can use the Stirling’s formula and get the following approximate result

P (n,N) ∼
√
N

n
(1.47)

This means the probability distribution of the neutral pion fraction f is approximately
p ∼ 1√

f
. More accurate approach [9] would yeld the following distribution

p(f) =
1

2
√
f

(1.48)

The above-mentioned distribution is strongly non Gaussian. For example, probability that
maximally 10% of produced pions will be neutral is more than 30%. This causes anoma-
lously large event-by-event fluctuations of the π0 fraction.

What other DCC signals can we anticipate? It’s a not-so-easy-to-answer question.
Bjorken mentions in his “DCC Trouble List” [10] the following ones (many of them with a
question mark):

• Excess at low pT

• Clusters with low relative pT

• “Core-less jets”

• Pion clusters of the same charge (Centauro events) ?

• Anomalies in correlation functions

• Anomalous bremsstrahlung ?

• Soft baryon/antibaryon production, via topological obstructions

• Amplification of isospin violation

But as we have said earlier, the most important signal/evidence is the inverse square-
root distribution of the π0 fraction and resulting event-by-event fluctuations.
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1.2.4 Experimental Methods

We know yet what to search, but where and how? Many special methods have been
developed during past years in order to reveal any possible traces of the DCC in high-
energy collisions. These are the most promising ones:

Multi-Resolution Analysis (MRA)

This technique takes an advantage of discrete wavelet transformation (DWT) 6). It let us
to scan the particle distribution at different length scales and subsequently to choose the
one which indicates any eventual domain structures.

Much more place will be dedicated to the MRA in the next chapter, therefore I will
advance to another procedures.

Event-shape Analysis

Event-shape analysis is based on the fact that the DCC presence should lead to an event-
shape anisotropy. If we have two detectors (one for charged pions, the other one for photons
from π0 → γγ decay) covering the same space area, a large number of charged particles
detected by the first detector should be followed by low photon counts on the second
detector in case of presence of a DCC domain.

In terms of the terminology used in flow analysis, a simple distribution of particles
would result in the same flow direction in both detectors, with the flow angle difference
peaking at zero. However, in the events where the neutral pion fraction has been modified
according to the DCC probability distribution, the flow angles will be almost perpendicular
to each other.

When applying on generated/experimental data, one starts with constructing two
sums running over all particles in a given event

X =
∑
i

cos(2φi) (1.49)

Y =
∑
i

sin(2φi) (1.50)

where φi is the azimuthal position of the ith particle. Then the flow angle Ξ is defined as

Ξ = arctan

(
Y

X

)
(1.51)

In an ideal case, the distribution of Ξ is (if the number of events is large enough) uniform
from 0 to π, since the flow direction points randomly in each event. Nevertheless, when
the events are realigned with respect to flow angle, two peaks at 0 and π appear in the
distribution.

6Also other transformations can be used. Good example is the Lorentz multi-resolution analysis de-
scribed in the next chapter.
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Two detectors (charged particles vs. photons) with the same phase-space coverage will
exhibit the same flow angles in the non-DCC case. Hence the distribution of Ψ = Ξch−Ξγ

will be peaked at 0. On the other hand, if there are some DCC events, in a concrete area
more charged particles will be detected than photons and the flow angles will differ from
each other. Their difference Ψ will not display a peak at 0 anymore. Most probably it will
be peaked at π

2
. It can be shown [14] that this method is sensitive in cases when more than

10% of the events are of DCC-type. Unfortunately, it hasn’t been used on experimental
data yet.

Robust Observables

This method introduces a set of specific observables which are rather insensitive to the
fluctuations of the total multiplicity, thus they are a good probe for the charged-to-neutral
ratio fluctuations. They are also quite insensitive to detector efficiencies. The ith robust
observable is defined as ratio of so-called reduced bivariate factorial moments, however, it
can be shown it is equal to

ri,1 = 2
〈f(1− f)i〉
〈(1− f)i+1〉

(1.52)

In case of a generic pion production (with neutral pion fraction distribution p(f) = δ(f −
1/3)) it reads

ri,1 = 1 (1.53)

for all i’s, because 〈f i〉 = 〈f〉i = (1/3)i. However, in case of an ideal DCC production, one
gets 〈

f i(1− f)j
〉

=
Γ(i+ 1/2)Γ(j + 1)

2Γ(i+ j + 3/2)
(1.54)

and therefore

ri,1 =
1

1 + i
(1.55)

In other words, with the growing i the difference between ri,1(DCC) and ri,1(generic) is
also growing.

This procedure has been developed and used for the DCC search by the MiniMAX
collaboration at the Fermilab.

Φ-measure

Φ-measure of an observable is defined as

Φ =

√√√√√
〈(∑N

i=1(xi − x̄)
)2
〉

〈N〉
−
√

(x− x̄)2 (1.56)

where the sum is running over all particles in one event, x is the value of the given observable
in a given event, x̄ is averaged over all particles and events.
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It can be shown [9] that for non-DCC events (with uncorrelated Ncharged and Nneutral)
the Φ-measure is zero. Nevertheless, events with the ideal DCC production distinguishes
itself with

ΦDCC =

√
4 〈Nπ〉

45
−
√

2

9
(1.57)

1.2.5 Present Status

Despite of the fact that the DCC has been searched for about 15 years, no clear evidence
of its existence has been submitted. This bring us to the question, if the disoriented chiral
condensate exists at all. Actually, no contemporary theory does necessary need the DCC
for its validity. On the other hand, all the unsuccessful attempts are explained by the fact
that any DCC domains would be probably extremely small. These facts imply another
important question. Is the DCC worth of looking for? I hope it is. It could provide us
useful information about the structure of the QCD vacuum and about the chiral phase
transition.
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Chapter 2

Multi-Resolution Analysis

2.1 Multi-Resolution Wavelet Analysis

2.1.1 Description

Wavelet analysis (WA) applies discrete wavelet transformation, known from many other
physical and mathematical disciplines (e.g. image processing), on experimental (or simu-
lated) data in order to gain the ability to scan the particle distribution at different length
scales and then to choose the one which indicates any interesting structures - eventual
DCC domains. Such a procedure is called multi-resolution analysis.

The idea of using the discrete wavelet transformation (DWT) for the DCC search
comes from Huang, Sarcevic, Thews and Wang [15]. They realised that there is a serious
problem with the detection of the DCC. We know yet that the DCC pion probability dis-
tribution is p(f) = 1

2
√
f
, but if there is a large number of uncorrelated domains - which is

actually quite plausible - the total distribution would become Gaussian, no matter what
the original distribution looked like. This arises from the Central Limit Theorem. There-
fore, the phase space has to be scanned locally. And the DWT is the tool which has such
an ability.

DCC domains should be localised in coordinate space. If they develop collective mo-
tion in the course of their time evolution, they should also become localised in momentum
space. Therefore it is convenient to divide the phase-space into small bins ∆η ∆φ (where
eta stands for pseudorapidity and phi for azimuthal angle) and to define π0 fraction f
locally. Since position of a DCC domain is not fixed event-by-event, it is quite useful not
to study the probability distribution p(f) in each bin, but instead to study the probability
of finding f in some particular interval [f1, f2] in all bins of the same size in one event and
to average over all events. Such a probability distribution will of curse depend on the size
of the bin.

The fraction f can be studied as a function of η or φ. In the following text I will
denote it only f(x), where x is a dimensionless variable defined on interval [0, 1], namely
φ/2π or η/(ηmax − ηmin). And the resolution is ∆x. We will divide the space into 2j bins
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by assuming ∆x = 1/2j, where positive integer j satisfies j < jmax for some jmax (most
often jmax = 4). Let’s denote value of f in the kth bin

f jk = f(x = k∆x) (2.1)

Consider a set of the following functions

ϕjk =

{
1 if k/2j ≤ x < (k + 1)/2j

0 otherwise
(2.2)

One can sample the function f like

f (j)(x) =
2j−1∑
k=0

f jkϕ
j
k(x) (2.3)

where the coefficients f jk can be identified with the ones from (2.1). Notice that the
functions ϕjk(x) can be derived from a single function ϕ(x) - so-called mother (or also
scaling) function

ϕjk(x) = ϕ(2jx− k) (2.4)

In our case ϕ(x) = θ(x)θ(1 − x). Hence (2.3) is called mother function representation
of the function f at scale j, the functions f jk are then called mother function coefficients
(MFC’s).

We can go to lower resolution by joining two neighbouring bins 2k and 2k+1 into one
of size 2∆x = 1/2j−1. Thus

ϕj−1
k = ϕj2k + ϕj2k+1 (2.5)

and f j−1
k can be defined as

f j−1
k = 1/2

(
f j2k + f j2k+1

)
(2.6)

The function f(x) can be again resampled

f (j−1)(x) =
2j−1−1∑
k=0

f j−1
k ϕj−1

k (x) (2.7)

The information loss between two scales is encoded in the difference f̃ (j−1)(x) =
f (j)(x)− f (j−1)(x). The latter can be written as

f̃ (j)(x) =
2j−1∑
k=0

f̃ jkψ
j
k(x) (2.8)

where the functions ψjk(x) can be expressed in terms of the functions ϕjk(x).

ψjk(x) = ϕj+1
2k (x)− ϕj+1

2k+1(x) (2.9)
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The equation (2.8) is now called father function representation with father function co-
efficients f̃ jk (FFC’s), since the functions ψjk(x) can be obtained from a single function
ψ(x) (called father, or sometimes wavelet function). In our case ψ(x) would be equal to
ϕ(2x)− ϕ(2x− 1). For the FFC’s the following relation reads

f̃ j−1
k = 1/2

(
f j2k − f

j
2k+1

)
(2.10)

The basis (2.2) is called Haar basis, since it is derived from the Haar function (Haar
wavelet). This basis is very intuitive, but it has a serious disadvantage. Its mother function
is discontinuous and therefore it cannot be localised in the scale space. Fortunately, modern
mathematics is able to give us the wavelet bases which are well localised in the scale space.
A large group of such wavelets was discovered by Ingrid Daubechies. Widely used is e.g.
the D-4 wavelet [17]. Daubechies mother and father functions are defined as

ϕ(x) =
∑
m

cmϕ(2x−m) (2.11)

ψ(x) =
∑
m

(−1)mc1−mϕ(2x−m) (2.12)

respectively. The Haar wavelet is also a simple Daubechies wavelet, with coefficients c0 =
c1 = 1/2 (other cm’s are zero). Coefficients of the D-4 wavelet are

c0 =
1 +
√

3

4
c1 =

3 +
√

3

4

c2 =
3−
√

3

4
c3 =

1−
√

3

4

All other cm’s are zero.

Application

The question is how to use the DWT in order to find DCC events. We know that the
information about the original (input) function is partially saved in the MFC’s, the rest
of the information (the information loss between two scales) is saved in the FFC’s. Hence
it can be useful to study the MFC and (or) FFC distributions when one is looking for the
DCC.

Authors of [15] made a simulation with 500 random events and 500 DCC-like events
and plotted the distribution of the MFC’s for scales j = 0, 1, 2, ..., 7. In both cases the
distribution was hyperbolical for the finest scale (j = 7) and overcame to the Gaussian for
lower j’s (as one would expect from the central limit theorem). The Gaussian distribution
was narrower and narrower for the lowest j’s. The difference between the random sample
and the DCC sample was in the “speed” with which this change happened. In the DCC
case there was a delay. E.g. the Gaussian distribution at scale j = 0 was in the DCC case
as wide as the one at scale j = 3 of the random sample.
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Figure 2.1: Distribution of the FFC’s obtained from a sample of 500 random events (dashed
line) and 500 DCC-like events (solid line) at various scales. Picture adopted from [15].

For the father function coefficients the situation becomes yet more interesting. The
MFC’s at scale j contain also information from all finer scales. Hence fluctuations at one
scale can be suppressed by other fluctuations at a finer scale. FFC’s include information
only from one scale, since they are the difference of the MFC’s at that scale and one finer
scale. Distributions of the FFC’s for the previously mentioned 500 random and 500 DCC-
like events are plotted on Figure 2.1. Differences between the random events and the DCC
events are clearly visible.

2.1.2 Wavelet Analysis in Particular Experiments

WA98

The WA98 was a general-purpose large-acceptance photon and hadron spectrometer at
the CERN SPS with the ability to measure several global observables in Pb+Pb collisions
event-by-event. The experimental setup is shown on Figure 2.2.

One of the tasks performed on the WA98 was searching for the DCC. During the
experiment photon and charged multiplicities were measured by the Photon Multiplic-
ity Detector (PMD) and Silicon Pad Multiplicity Detector (SPMD) in each event. Also
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the centrality of the collision was determined from the transverse energy measurement
in the Midrapidity Calorimeter (MIRAC). The PMD covered the pseudorapidity region
2.8 < η < 4.4. The SPMD was detecting charged particles in the region 2.35 < η < 3.75.

Figure 2.2: Setup of the WA98 experiment at the SPS. Picture adopted from the WA98
official web site [21].

During one particular analysis [18] the photon fraction

f(φ) =
Nγ−like(φ)

Nγ−like(φ) +Nch(φ)
(2.13)

(as a function of the azimuthal angle φ) was used as the input for the discrete wavelet
transform with the D-4 wavelet bases. Maximal resolution was jmax = 5. The sample
function (2.13) was analysed at different scales (j = 5, 4, 3, 2, 1) and the father function
coefficients were obtained for each scale (j = 4, 3, 2, 1) from the distribution of the sample
function at one higher scale (see equation (2.10)). Distribution of these FFC’s was then
compared with the FFC’s of mixed events and events generated with the VENUS and
GEANT event generators.

Any significant presence of non-statistical localised fluctuations in the data should
increase the rms deviation of the distribution of the FFC’s and could consequently result
in non-Gaussian tails.
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There were three types of mixed events made: minimally, partially and maximally
mixed events.

Maximally mixed events (M1) were constructed by mixing hits in PMD and SPMD
separately, but still satisfying the real event global Nγ−like - Nch correlation. For each
mixed event Nγ−like hits were randomly selected from all γ-like hits from all events and
Nch hits were randomly selected from all charged hits from all events. Such mixed events
should have been most sensitive to the presence of localised fluctuations.

Minimally mixed events (M2) contained hits of the charged particles from one event
and photon hits from another event. These mixed events kept the individual localised
fluctuations in Nγ−like or Nch, but removed event-by-event localised correlated fluctua-
tions between them. Comparison of these mixed events to real ones could have revealed
correlated localised fluctuations between Nγ−like and Nch.

Partially mixed events (M3-γ, M3-ch) were the intermediates between the maximally
and minimally mixed events. They mixed hits from one detector, but contained the struc-
ture of hits in the second detector. By comparison of these events to the real events one
could have seen the localised fluctuations in Nch or Nγ−like separately.

Obtained FFC distributions are shown in Figure 2.3. On the next figure also the rms
deviations of the FFC’s are reprinted.

Figure 2.3: Distribution of the FFC’s for φ divided into 4 and 8 bins. Solid circles represent
experimental data, solid and dashed histograms represent M1 and V+G events respectively.
Picture adopted from [18].

How can be these results interpreted? On Figure 2.3 one can see that the experimental
data make up a FFC distribution with broader tails than the distribution obtained from
generated and M1-mixed events. This can be a signature of some non-statistical fluctua-
tions. However, its shape doesn’t correspond to the one anticipated for DCC-like events.
Also the rms deviations of the experimental data don’t differ too much from those for M1
events. There should be much more significant difference for the DCC-like events. Thus it
is difficult to identify the source of these fluctuations. In this light it comes as no surprise
that the authors of [18] end up their report with the following words: “The interpretation
of the result remains an open question.”
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Figure 2.4: FFC rms deviations for φ divided into 4, 8, 16 and 32 bins.

2.2 Multi-Resolution Lorentz Analysis

2.2.1 Description

Motivation

The wavelet analysis could be a useful method which can help us in searching for the DCC.
However it suffers from a difficulty. When applying the DWT, one have to divide the phase-
space into bins by setting borders between the bins. If a potential DCC domain would be
splitted by these borders, there is a real threat that one won’t be able to reconstruct and
recognise such a domain. Thus the discrete wavelet transform has to be made repeatedly,
each time with various binning, in order to avoid this problem.

The aforementioned inconvenience led V. Petráček [16] to develop another type of the
multi-resolution analysis which would overcome the problem with the binning.

Cauchy-Lorentz Distribution

The method uses of the Cauchy-Lorentz distribution function - therefore I call this
method the multi-resolution Lorentz analysis (MRLA). The basic idea is following: Each
particle hit (position) can be represented as a 2D delta function over the phase-space. But
what if we replace the delta function by a Cauchy-Lorentz function that is only approaching
the delta function? Than we could make operations that are forbidden for delta functions,
like summing up the functions. Such a sum would be greatest for areas where the particles
are close together and their Lorentz functions overlap. Hence size of this sum could point
to a DCC domain presence.

For our purposes we will use the Cauchy-Lorentz function of the form

L(j)
k (φ, η) = c · εj|Qk|

ε2
j + (φ− φk)2 + (η − ηk)2

(2.14)
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where c is a scaling constant, φk and ηk specify position of the kth particle in the detector,
|Qk| is absolute value of charge of the kth particle (in units of the elementary charge), εj
is the resolution at current scale j (j = 0, 1, 2, ..., jmax)

εj =
k1

kj2
(2.15)

where k1, k2 are some constants. It is obvious that the constant c determines only height
of the Lorentz function whereas εj determines both the height and width.

Finally, we can sum over all particles and get the result

L(j)(φ, η) =

Nhits∑
k=1

L(j)
k (φ, η) (2.16)

If we set a reasonable threshold, all φ-η areas where L(φ, η) overruns this threshold
will become interesting for us since they can contain possible particle domains.

Like in the section 2.1, one can define a new function F (j) as the difference of functions
L at two adjacent scales.

F (j) = L(j+1) − L(j) (2.17)

Using the terminology of the section 2.1, one can call the function L the mother function
whereas the function F can be called the father function. Once again, the father function
give us the information only about the fluctuations at one scale which makes it more useful.

Let’s return to Equation 2.14 once more. The expression |Q| in the numerator ensures
we encounter only the charged hits whereas the neutral hits are neglected. This is extremely
convenient since the reconstruction of the neutral pions from their decay products (photons)
is much less accurate than the detection of the charged pions. Unfortunately, one can
proceed this way only if the (charged + neutral) hit density is approximately the same in
the whole phase-space. Otherwise areas with the higher particle density would appear as
if there was a larger fraction of charged particles and such an area could be incorrectly
treated as a DCC domain. Therefore the amplitude of the mother function L has to be
rescaled in accordance with the hit density n(φ, η)

L(j)(φ, η) =
1

n(φ, η)

Nhits∑
k=1

L(j)
k (φ, η) (2.18)

2.2.2 Application of MRLA on Simulated Events

I have tested MRLA method on simulated DCC events with various proprieties. Events
(background) have been generated with the PYTHIA 8.1 event generator. DCC domains
were added manually, satisfying the condition (1.48). Obtained data were analysed with
ROOT 5.
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As an input for the analysis the φ and η coordinates of π+, π− and π0 1) hits have been
used. On the output I have obtained 3D histograms of the functions (2.16) and (2.17).
Actually, function (2.16) had to be changed slightly in order to take different hit densities
into account (remember equation (2.18)).

L(j)(φ, η) =

Nhits∑
k=1

c · εj∆k

ε2
j + (φ− φk)2 + (η − ηk)2

(2.19)

where

∆k =

{
+1 for π±

−2 for π0
(2.20)

This ensures that the main value of the mother function (2.19) will be approximately zero
for events with the pions produced in the 1:1:1 ratio. The father function is still obtained
as a difference of two mother functions (2.19) at two adjacent scales.

Non-DCC Case

On Figure 2.5 you can see, how such a histogram looks for a non-DCC event. It is quite

Figure 2.5: Mother function of a non-DCC event at 4 various scales. Coordinates φ and η
are displayed in relative units (for φ 0 = −π rad and 1 = π rad, for η 0 = −6 and 1 = 6).

evident that there are no significant peaks which would imply the presence of a charged
pion domain.

1PYTHIA has been run with “no π0 decay” option turned on. Otherwise π0 hits would have to be
reconstructed from photon hits.
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1 DCC Domain

I have generated the DCC domains in two ways. One way was to only replace the original
(PYTHIA) pions for pions satisfying the condition (1.48) in some small region. Such a
domain has to be large enough in order to ensure that it contains a large number of pions
which exhibit non statistical fluctuations of the neutral fraction. For events with ∼ 400 par-
ticles the domain had to cover at least an area of 0.2x0.1 in relative units2) (other words, the
domain had to contain ∼ 10 particles). This is shown on Figure 2.6. “Detected domains”

Figure 2.6: Mother function (slice in the φ and η plane) of a DCC event and detected
domains at 4 various scales. Red rectangular denotes the real position of the domain.

are areas where the value of L(j) overruns a threshold value (threshold = mean+ k · σ; in
our case k = 2.2). The domain was detected only for higher scales. This means it is not
very significant. The same can be done for the father function (Figure 2.7).

Another way of creating a DCC domain was to add additional pions satisfying the
condition (1.48). For events with ∼ 400 pions the minimal number of added pions was
approx. 60, otherwise the domain was not detected. See Figure 2.8. Unfortunately, the
results are not very convincing.

Much better results have been achieved for 80 additional pions (Figure 2.9,.Figure 2.10,
Figure 2.11, Figure 2.12).

2 DCC Domains

Probably the biggest potential of this method is the ability to detect more than 1 domain
in one event. An example is shown on Figure 2.13 and Figure 2.14. Each domain contains
80 pions, the background is made of ∼ 400 pions. The pictures don’t need any further

2relative units: for φ: 0 = −π rad and 1 = π rad, for η: 0 = −6 and 1 = 6
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Figure 2.7: Father function (slice in the φ and η plane) of a DCC event and detected
domains at 3 various scales. Red rectangular denotes the real position of the domain.

comments

Just for the completeness, there are some values that have been used for the calcula-
tions: εj = 3/2j, the phase space has been divided into a net of 25x25 points, L(j)(φ, η)
has been calculated for each node of this net. This means in each node contributions to
L(j) have been summed up. However, for faster algorithmus and more significant results
not all contributions, but only ones from hits up to the distance d = x · 15 · 1

2j
(where x is

the distance between two nodes, x = 1/25) have been summed up.
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Figure 2.8: Mother function (slice in the φ and η plane) of a DCC event and detected
domains at 4 various scales. Red rectangular denotes the real position of the domain.

Figure 2.9: Mother function of a DCC event at 4 various scales (domain:80 pions, back-
ground: 400).
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Figure 2.10: Mother function (slice in the φ and η plane) of a DCC event and detected
domains at 4 various scales. Red rectangular denotes the real position of the domain.

Figure 2.11: Father function of a DCC event at 3 various scales (domain:80 pions, back-
ground: 400).
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Figure 2.12: Father function (slice in the φ and η plane) of a DCC event and detected
domains at 3 various scales. Red rectangular denotes the real position of the domain.

Figure 2.13: Father function of a DCC event with 2 DCC domains at 3 various scales.
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Figure 2.14: Father function (slice in the φ and η plane) of an event with 2 DCC domains
at 3 various scales.
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Chapter 3

ALICE Experiment

3.1 Introduction

A Large Ion Collider Experiment, or just ALICE, is a heavy-ion general-purpose detector
operating at the Large Hadron Collider (LHC) at CERN. The ALICE Collaboration in-
volves more than 1000 members from 109 institutes in 31 countries. Their aim is exploit the
unique physics potential of nucleus-nucleus interactions at LHC energies and to study the
physics of strongly interacting matter at extreme energy densities, where the formation of
a new phase of matter, namely the quark-gluon plasma, is expected. Nuclear collisions at
ultra-relativistic energies will be studied with sensitivity to the most of known observables
in this experiment.

Figure 3.1: The ALICE detector scheme. ITS - Inner Tracking System, TPC - Time
Projection Chamber, PPC - Parallel Plate Chambers (a time-of-flight detector), HMPID
- High Momentum Particle Identification detector, PHOS - Photon Spectrometer. Picture
adopted from [22].
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3.2 Detector Overview

ALICE is a very complicated installation. The main sub-detectors are shown on Figure 3.1.
I will present here only their simple description. More detailed information can be found
e.g. in [24].

3.2.1 ITS

Inner Tracking System (ITS) is the ALICE’s innermost sub-detector system. It contains
2+2+2 layers of silicon pixel detectors (at radii r = 3.9cm and r = 7.6cm), silicon drift
detectors (r = 14, 24cm) and double-sided silicon micro-strip detectors (r = 40, 45cm) with
total area 6.6m. It covers pseudo rapidity range |η| < 0.9 for all vertices in the interaction
diamond. Main purposes of the ITS is secondary vertex reconstruction of charm and
hyperon decays and stand-alone track finding of low-pT particles (down to 20 MeV/c for
electrons). More over it provides momentum reconstruction of the low-energy particles
and their identification (via dE/dx) in the non-relativistic region, it also improves the
momentum resolution at large momenta.

Pixel detectors are unique because of their high granularity and excellent two-track
resolution. Therefore they were used as the innermost layers.

The silicon drift detectors (SDDs) exploit the measurement of the transport time of
charge deposited by a traversing particle to localise the impact point in one dimension,
hence they enhance resolution and multi-track capability at the expense of speed. Thus
they are well prepared for low event rates coupled with high particle multiplicities. The
SDDs will be mounted on linear structures called ladders, each holding 5 detectors for
layer 3, and 8 detectors for layer 4. The layers will be composed of 14 and 22 ladders,
respectively.

The silicon strip detectors (SSD) are necessary for connecting of tracks from the ITS
to the TPC. The detectors can be produced in large quantities in industry which makes
them sufficiently cheap.

3.2.2 TPC

The Time Projection Chamber (TPC) is the main tracking detector of ALICE. It features
large acceptance, which will enable us to analyse individual events and perform charged
particle identification and its momentum and track analysis in the area |η| < 0.9. The
chamber is filled with 90% Ne and 10% CO2. Its tracking efficiency is more than 90%.

3.2.3 TRD

TRD stands for Transition-Radiation Detector. Its goal is the electron identification in
the central barrel with momenta greater than 1 GeV/c, where the pion rejection capability
of the TPC is not sufficient. Information from the high-pT electrons measurement can be
useful in identification of open charm and open beauty production in the collision.
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3.2.4 TOF

In ALICE, there are used two types of time of flight (TOF) systems: Pestov spark counters
and parallel plate chambers. Their main purpose is particle identification in energy region
0.2− 2.5 GeV/c.

3.2.5 HMPID

HMPID, High-Momentum Particle Identification Detector, is designed as a single-arm ar-
ray with an acceptance of 5% of the central barrel phase-space. It provides an inclusive
measurement of identified hadrons for energies pT > 1 GeV/c. It extends the useful range
for π/K and K/p differentiation up to 3 GeV/c and 5 GeV/c respectively. The detector
consists of seven modules of RICHs (Ring Imaging Chernenkov) counters. Low chromacity
C6F14 is used as the radiator.

3.2.6 PHOS

PHOS is an abbreviation of PHOton Spectrometer. It is an electromagnetic spectrometer
with very high resolution. It covers pseudorapidity region −2.4 < η < 2.4 and 100 ◦ in the
azimuthal angle. It consist of two parts: electromagnetic calorimeter (EMCA) and charged
particle veto (CPV) which excludes charged particle from EMCA’s data. PHOS is used
for photon and neutral particle (via photon decay) detection.

3.2.7 FMS

Forward Muon Spectrometer consists of a passive absorber which’s task is to absorb
hadrons and photons, high granularity tracking system of 10 detection planes, large dipole
magnet (with B = 0.7 T) and passive muon filter wall and four planes of trigger chambers.

3.2.8 PMD

Photon Multiplicity Detector measures photon multiplicity and spatial distribution on
event-by-event basis. It provides estimates of transverse electromagnetic energy. PMD is
displaced in the forward region, 360 cm from the interaction point. It covers pseudorapidity
region of 2.3 < η < 3.5.

3.2.9 FMD

Similarly to PMD, Forward Multiplicity Detector (FMD) enable us to study charged parti-
cle multiplicity fluctuations event-by-event. The pseudorapidity regions −3.4 < η < −1.7
and 1.7 < η < 5.1 are covered by the forward multiplicity detector.
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3.2.10 ZDC

Zero-Degree Calorimeter (ZDC) measures the total energy carried out of the collision in
the forward direction. This help us to determine the centrality of the collision, since central
collisions are significant with a large transversal energy release, on the other hand, after
a non-central collision most of the energy is carried away in the forward and backward
direction.

3.2.11 T0 and V0

These two small detectors serve as triggers for the other detectors. Each of them has two
parts working in a coincidence.

3.3 ALICE and DCC

Can the experiment ALICE bring a new light to the DCC scene? Definitely YES, I believe.
ALICE will be studying heavy ion collisions at extremely high (never before reached)

energies per nucleon1). This could provide sufficient conditions for a DCC domain(s) to
form. What more, precise tracking system (ITS+TPC) and particle identification combined
with the FMD and PMD detectors enable to easily apply the sophisticated analytical
methods described in the previous chapter on gathered data.

An optimist would probably predict that it is only a question of a few months2) to
discover the disoriented chiral condensate.

1up to 2.76 TeV/nucleon for Pb-Pb collisions
2written in July 2008
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Summary and Conclusion

I have outlined a basic concept of the chiral symmetry and consequential mechanisms of the
disoriented chiral condensate (DCC) formation. Detection of DCC domains is not trivial.
Therefore two interesting analytical methods (multi-resolution wavelet analysis (MRWA)
and multi-resolution Lorentz analysis(MRLA)) have been introduced. At the end a basic
description of the experiment ALICE has been provided, since it is a plausible candidate
for the discovery of the DCC.

Performed simulations in section 2.2 shows that the multi-resolution Lorentz analysis
is a usable tool for the DCC domain detection. Its great advantage lies in its ability to
detect multiple domains in one event. But like everything new, it has to be adjusted and
tested for the real data. That will be the touchstone.
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Also I would like to thank to Radek Šmákal for his advices and suggestions. Finaly I want
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