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Renata Kopečná
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Praha, 2014







Prohlášeńı:
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Abstract:

The quark-gluon plasma (QGP) is a newly-discovered form of matter, where quarks

and gluons are asymptotically free. Although it was predicted to behave as a gas, its

behavior meets the requirements of almost perfect fluid behavior. Our goal is to study

its properties via so-called anisotropic flow.

QGP is produced in high-energy nuclear collisions, observed in facilities such as

Relativistic Heavy Ion-Collider (RHIC) or Large Hadron Collider (LHC). This form of

deconfined matter is very similar to the matter produced in the first microseconds after

the Big Bang.

The flow anisotropy reflects the initial energy density fluctuations, due to the low

shear viscosity, leading to better knowledge of the initial state of collision. Furthermore,

it can help us better understand the evolution of the collision.

The aim of this thesis is to introduce collective flow, its anisotropies and methods

used to estimate the flow. Moreover, we study its properties via mathematical models

and present our work with Monte Carlo model DRAGON.

Key words: Quark-Gluon plasma, heavy-ion collisions, transverse flow anisotropies,

elliptic flow, DRAGON



Název práce:
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Abstrakt:

Kvark-gluonové plazma (QGP) je nedávno objevená forma hmoty, v ńıž jsou kvarky

a gluony asymptoticky volné. Původně se předpokládalo, že se QGP bude chovat jako

plyn, nicméně výsledky naznačuj́ı, že QGP je kapalinou. Naš́ım ćılem je zkoumat

vlastnosti tohoto plazmatu pomoćı anizotropíı toku.

QGP je produkováno při vysokoenergetických jádro-jaderných srážkách. Tyto srážky

jsou pozorovány ve vědeckých zař́ızeńıch jako je relativistický těžko-iontový collider

RHIC nebo velký hadronový urychlovač LHC. Tato forma hmoty je velmi podobná té,

která byla př́ıtomná v prvńıch mikrosekunách po Velkém Třesku.

Analýza toku může d́ıky malé smykové viskozitě QGP napovědět mnohé o p̊uvodńıch

fluktuaćıch hustoty energie, což vede k hlubš́ım znalostem p̊uvodńıch podmı́nek. Stejně

tak pomoćı toku můžeme zkoumat i vývoj samotné srážky.

Ćılem této práce je popsat kolektivńı tok, jeho anizotropie a metody, jimiž se kolek-

tivńı tok zkoumá. Dále jej studujeme pomoćı Monte Carlo modelu DRAGON, jehož

výsledky prezentujeme v závěru práce.

Kĺıčová slova: Kvark-gluonové plazma, těžko-iontové srážky, anizotropie př́ıčného toku,

eliptický tok, DRAGON
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Introduction

High-energy heavy ion collisions provide a unique tool to investigate many topics of present

physics. We can study the equation of state of nuclear matter, properties of quark-gluon

plasma or its transition back to hadrons. We speak about ultrarelativistic particles, meaning

their speed is almost the speed of light, leaving their Lorentz factor γ � 1. This means the

velocity bigger than 0.95c. Heavy ions are nuclei much heavier than proton or neutron.

Flow in heavy ion collision is a collective motion of the system. It can be described by

the correlation between the space and momentum in the particle production. We usually

distinguish longitudinal flow and transverse flow. Longitudinal flow is fluid motion in the

direction of the beam axis, while transverse flow is the motion transverse to the beam axis.

Transverse flow evinces azimuthal anisotropies. Its axially symmetric part is called radial

flow. The anisotropies are a powerful tool to investigate the properties of quark-gluon plasma,

since they are caused by the anisotropies in the initial conditions, which propagate in the

medium.

In the first part we introduce basic facts about quark-gluon plasma and hydrodynamic

basics, where we focus on its impact on theory of quark-gluon plasma. We describe the

process of transformation from quark-gluon plasma to free-streaming hadrons. Also, we

discuss experimental evidence of the existence of quark-gluon plasma.

The second section describes collective flow, its properties and measurements, done at

experimental devices RHIC and LHC, comparing them to theoretical calculations. We focus

on elliptic flow and its relation to higher-order differential flows.

In chapter Measurements we discuss difficulties we have to deal with while measuring

collective flow and its anisotropies. Several methods for the determination of collective flow

are described and compared. Also, we discuss the contribution to flow that does not originate

in initial anisotropies in the energy distribution. For illustration, we present several results

obtained mainly at the LHC.

Last chapter introduces our work on a toy model. Our task was to construct a toy model

12



of a profile of the azimuthal angle distribution by using a Monte Carlo algorithm to produce

pions with certain transverse momentum. Next step was to compute the nth differential flows

using correlations and histogram. In this section, we describe production of non-uniform

distribution using random number generators with uniform distribution. Next, the model

DRAGON [1] is introduced and it is used as a source of data for our nth differential flows

analysis.

13



1 INTRODUCTION TO QUARK-GLUON PLASMA

1 Introduction to quark-gluon plasma

First predictions of quark-gluon plasma (QGP) appeared in the 1970’s. The existence of

ultra-dense matter with deconfined quarks and gluons (this means that they are free to move

over distances larger than size of a hadron) was predicted owing to the theory of asymptotic

freedom, formulated in 1973 by David Gross, Frank Wilczek and David Politzer. Exploring

new phenomena by distributing high energy or high nuclear matter density over a relatively

large volume [2] was first discussed at Bear Mountain workshop in 1974 by T. D. Lee and

G. C. Wick [3].

The idea of using heavy-ion collision to explore this new state of matter, named Quark-

gluon plasma by E. Shuryak, appeared first in 1980 at the workshop ”Statistical Mechanics

of Quraks and Gluons” in the Center for Interdisciplinary Research at Bielefeld University,

Germany. Later, the improvement of relativistic hydrodynamic theory made it possible to

investigate the QGP further [3].

1.1 Quark-gluon plasma

Quark-gluon plasma (QGP) is very dense state of matter expected to be present few mi-

croseconds after the Big Bang. Nowadays, it is present in the first fm/c during high-energy

heavy-ion collisions. Due to the analogy with the expansion of hot universe, these collisions

are called Little Bangs.

The name plasma comes from the similarity with classic plasma, where neutral atoms are

changed into ions and free electrons. In QGP, the energy density is extremely high, hadrons

are so close to each other that they are dissolved into deconfined colored degrees of freedom,

quarks and gluons, carrying color charge - red, green and blue. Chiral symmetry is restored.

QGP comes into existence when the temperature is high enough, reaching critical tem-

perature Tc, depending on baryon chemical potential. It is illustrated in fig. 1, the critical

temperature is denoted by the green hatching. Black lines are denoted in the picture, they

represent chemical and thermal freeze-out. The arrow from the SPS chemical freeze-out to

14



1.1 Quark-gluon plasma

thermal freeze-out indicates isentropic expansion. However, there is a discussion about the

value of Tc even for zero chemical potential. Lattice calculations indicate a value about 160

MeV, however, it differs from paper to paper.

Figure 1: QGP phase diagram, depending on tem-

perature T and baryon chemical potential µB.

Taken from [4].

RHIC measurements of quark-gluon

plasma quantitatively agree with almost

perfect fluid hydrodynamics. This leads

to the ascertainment that QGP is a

strongly coupled liquid system [5]. One

of the most significant properties is its

low shear viscosity η/s, where s is the

entropy density. At lower limit, its value

appears to be approximately ~/4π [5].

This property allows us to study the

QGP phase from the anisotropic flow:

the low viscosity implies small energy

dissipation, leading to the possibility of

studying the original energy distribu-

tion.

Low viscosity is not an extraordinary property. Experiments with very cold liquid helium

(temperature below 4.2 K for 4He) evince zero viscosity. However, the entropy density s is

also zero [6], so the ratio η/s is not defined. This property of QGP and its consequences are

discussed more in section 1.1.2.

This dense matter, produced in Little Bangs, is expanding and cooling down, allowing the

formation of hadrons. The transition from QGP to a hadronic gas is called hadronization.

This late hadronic state, after the quarks and gluons are combined back into hadrons, behaves

more like a gas and needs to be described by transport simulation [5].

Transport simulation is, as the name suggests, a simulation using the transport theory.

Transport theory studies the exchange of mass, momentum and energy. It uses tools from

15



1 INTRODUCTION TO QUARK-GLUON PLASMA

mechanics, electromagnetism, hydrodynamics or thermodynamics. It agrees well with exper-

imental data for non-equilibrium situations, finite size effects of non-homogeneous N-body

phase space and for collective dynamics [7].

1.1.1 Hydrodynamics

Hydrodynamics can be successfully used for the description of the initial QGP phase when

the matter is deconfined. The fireball acts like a small drop of hot liquid. Now we will briefly

present several pieces of knowledge regarding hydrodynamics. Most of it can be found in any

textbook concerning fluid mechanics, our main source is [8].

Every non-perfect liquid has viscosity. In this case, there are two types: bulk ζ and shear η

viscosity. Shear viscosity acts against shearing flows. One can imagine it by putting the liquid

between two plates, moving in opposite directions. For more viscous liquids, the force needed

to move those plates is bigger than for less-viscous liquids, for non-viscous liquids, no force

is needed. For example, this viscosity is bigger for oil than for water. In addition to that a

fluid can evince internal friction while expanded or compressed. This property is expressed

by bulk viscosity. It is related to the ’compressibility’ of the fluid. In a simplified way,

bulk pressure acts against the expansion (i.e. for expanding fluid it is negative), while shear

pressure acts against flow anisotropies - it tends to erase differences in expansion rates [5].

Main characteristic of perfect fluid is zero shear and bulk viscosity.

We will assume some fluid with density ρ = ρ(x, y, z, t), pressure p = p(x, y, z, t) and the

velocity distribution ~v = ~v(x, y, z, t), which fully determine the fluid. The coordinates x,y,z

and t refers to a point in space-time, not to a particle in the fluid!

1.1.1.1 Ideal fluid

First, we consider ideal non-relativistic fluid. This means there is neither shear nor bulk

viscosity. Several equations are valid:

Equation of continuity:
∂ρ

∂t
+ ρ∇~v + ~v · ∇ρ = 0 (1)

16



1.1 Quark-gluon plasma

The equation of continuity basically says that the ’amount’ of fluid entering the system is

equal to that leaving the system. We define mass flux density ~j = ρ~v, representing the mass

of fluid flowing through an area perpendicular to ~v.

Euler equation:
∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p (2)

This equation originates from the properties of a non-compressible fluid. It represents motion

of a fluid caused by the pressure gradient. Since in ideal fluids thermal conductivity vanishes;

ds/dt = 0, where s is entropy over mass, we get an ’entropy equation of continuity’:

∂(ρs)

∂t
+∇(ρs~v) = 0 . (3)

We call ρs~v the entropy flux density1. Motion described by the eq. (3) is called isentropic.

For these fluids, the velocity circulation around a closed contour is constant in time.

For ~v = ~v(x, y, z, t) = const., using Euler’s equation, relation dU = TdS − pdV + µdn

and the definition of enthalpy:

H = U + pV ⇒ dH = TdS + V dp+ µdn (4)

we obtain Bernoulli’s equation:
v2

2
+ w = const. , (5)

where w denotes enthalpy per unit mass.

Furthermore, we define energy flux density as ρ~v(v
2

2
+w) and momentum flux density ten-

sor as Πik = pδik+ρvµvk. These quantities represent the energy and momentum arrangement

in fluid.

1In the case of relativistic fluid, s usually denotes entropy density.
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1 INTRODUCTION TO QUARK-GLUON PLASMA

1.1.1.2 Viscous fluid

For viscous fluid, we need to add the shear and bulk viscosity ’factors’ η and ζ to the equations

above. The momentum flux density acquires the form:

Πik = pδik + ρvivk − σ′ik = −σik + ρvivk . (6)

The term σ′ik is called viscous stress tensor and can be expressed by the equation

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi
− δik

3

2

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

. (7)

The physical reason for this equation is following; the shear viscosity contributes to the

fluid motion only when there is a force causing the friction, hence the first term. From

the definition of momentum flux density for perfect fluids it is obvious that for ~v = const,

σ′ik = 0, σ′ik depends on velocity derivation in all terms. Moreover, there is no friction in

the case of rotating fluid with constant angular velocity: the term ∂vi/∂xk+∂vk/∂xi vanishes.

Navier-Stokes equation: This equation describes the motion of non-ideal fluids. In an

inertial frame of reference, the equation is:

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ η∆~v +

(
ζ +

η

3

)
∇ (∇ · ~v) + ~f , (8)

~f represents forces affecting the fluid (e.g. gravity or electrical field). We assume that the

shear and bulk viscosities are constant through the fluid. Worth mentioning is the fact that

for incompressible fluid we obtain ∇~v = 0.

All the equations above are applicable only for the non-relativistic fluids. Some modifi-

cations are required in order to express these terms in the relativistic case.

1.1.1.3 Relativistic fluid

For simplicity, we will focus on ideal fluid. First, we need to write down the energy-momentum

four-tensor for the fluid in motion. In local rest frame, where the fluid is at rest and Pascal
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1.1 Quark-gluon plasma

law is true (pressure is the same in all directions and it is perpendicular to the fluid’s surface),

we obtain:

T µν =


ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (9)

T 00 = T00 is the energy density, denoted as ε, T 0j/c = −T0j/c is the momentum density,

multiplied by c2 it represents the energy flux density, T ij = Tij is momentum flux density

tensor. It is worth reminding that p denotes pressure, not momenta. Transformation of

the tensor into some frame of reference is simple; all we need is the fluid’s four-velocity

uµ = γ(1, ~v):

T µν = wuµuν − pgµν , (10)

where w is enthalpy function per volume, g is a metric tensor with g00 = 1 and g11 = g22 =

g33 = −1, other components are zero.

The law of conservation of energy and momentum can be expressed as:

∂T νµ
∂xν

= 0 (11)

Combined with the law of conservation of a quantum number, using flux four-vector nµ = nuµ,

we obtain the equation of continuity:
∂nµ

∂xµ
= 0 . (12)

Worth mentioning is the fact that time component of the flux four-vector is the density and

other three components form a 3-D flux vector. This applies only for conserved quantum

number, in our case we need to consider formation and annihilation of particles. Moreover,

using eq. (10) and considering ideal fluid, we may write

∂(suµ)

∂xµ
= 0 , (13)
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1 INTRODUCTION TO QUARK-GLUON PLASMA

where suµ represents the entropy flux.

We insert the form (10) into eq. (11) and apply the projector ∆µν = uµuν − gµν on both

sides of the equation. The projector ∆µν prokects to the direction perpendicular to uµ. This

leasd to the Euler equation:

wuν
∂uµ
∂xν

=
∂p

∂xµ
− uµuν

∂p

∂xν
(14)

In case of the isentropic flow, we can obtain Bernoulli’s equation:

γw

n
= const. , (15)

For viscous thermal-conductive relativistic fluids, we need to re-write the energy-momentum

tensor reflecting shear and bulk viscosity τµν = τµν(η, ζ). Moreover, the particle flux den-

sity vector has to depend on thermal conductivity κ and chemical potential µ2 by factor

νµ = νµ(κ, µ):

T µν = wuµuν − pgµν + τµν ,

nµ = nuµ + νµ .
(16)

Even in this case, the conservation of energy-momentum tensor and the equation of

continuity are relevant. We define uµ by the condition that in the proper frame the tensor

T µν acquires the same form as in eq. 10, when no dissipative effects are present

τµνu
ν = 0 ,

νµu
µ = 0

(17)

Using relativistic chemical potential (from eq. (4) → µ = (w− Ts)/n) and Gibbs-Duhem

equation (19), we obtain entropy flux density:

sµ = (suµ)− µ

T
νµ . (18)

2Not to be confused with the time-space coordinate.
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1.1 Quark-gluon plasma

Gibbs - Duhem equation represents the changes of chemical potential:

ndµ = V dp− SdT . (19)

Interesting is the heat conductivity of relativistic fluid. In principle, it is an energy flux

without a particle flux. Zero particle flux is expressed as nuα + να = 0 resulting in energy

flux density:

cT 0α =
cwνα
n

=
κnT 2

w2

∂

∂xα

(µ
T

)
(20)

For the same reson, the energy flux acquires the form:

− κ
(
∇T − T

w
∇p
)
. (21)

This means that the thermal conduction heat flux depends not only on the gradient of

temperature, as we may find natural (for non-relativistic case w ' nmc2, so the ∇p is

omitted), but it also depends on the pressure gradient.

1.1.2 Estimation of shear and bulk QGP viscosity

Despite the success of the description of QGP by perfect-fluid dynamics, the QGP evinces

viscosity. It has to be very small, otherwise the perfect-fluid dynamics would not approxi-

mately agree with measured data. The question is how small the viscosity is. Estimation of

the viscosity is crucial for understanding the event-by-event fluctuations of initial conditions

converted into anisotropic flow. This section refers to [5].

As mentioned in the section 1.1, the lower limit for specific shear viscosity η/s is estab-

lished, using strongly coupled quantum field theories, as 1/(4π) [5], assuming c = ~ = 1. The

reason why we focus on the ratio η/s and not just η is very simple: η/s is dimensionless

quantity. For the same reason, we focus on the specific bulk viscosity ζ/s. Moreover, we

use scaled relaxation times Tτζ and Tτη instead of relaxation times τζ , τη. Relaxation time

is the time required for the system to return to local thermal equilibrium. We also consider
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1 INTRODUCTION TO QUARK-GLUON PLASMA

the expansion rate θ = ∂µu
µ much smaller than τ−1

ζ,η . This requirement guarantees that the

fireball is kept in local thermal equilibrium during the expansion.

Assuming small or zero net baryon number, the effects of heat conductivity can be omit-

ted. This assumption works for LHC or RHIC energies.

Small viscosity implies small dissipative effects. This means that initial fluctuations are

not erased during the freeze-out stage and survive in the form of anisotropic flow.

Flow is produced due to the pressure gradient ∂µp. The crucial function for hydrodynamic

evolution is c2
s = c2

s(ε). The relation ε = ε(T ) is not necessarily required. However, T depends

on microscopic composition and is required for the estimation of final particle production from

fireball.

The heat conductivity in QGP is not very explored. Considering leading-order calcu-

lations, the obtained viscosity or heat conductivity is too large to result in such a large

anisotropic flow. The numerical estimation of η and ζ from QCD (quantum chromo-dynamics)

is computationally expensive, so far the results have too large statistical errors.

Very interesting results come from the AdS/CFT correspondence, also called gauge theory

- gravity correspondence. This theory originates in the string theory and it was first intro-

duced by Juan Maldacena in 1997. The full name is Anti-de-Sitter/Conformal field theory

correspondence. It uses the correspondence between five dimensional spaces with quantum

gravity and four-dimensional gauge theory using non-Abelian Lie groups [9]. It establishes

η/s = (4π)−1 and ζ/s = 2/3− 2c2
s. QCD results for η/s are bigger than those obtained from

AdS/CFT, while for ζ/s they are smaller.

Combining all the calculations, including heat conductivity, η/s has a minimum near Tc,

while ζ/s reaches maximum near Tc.

Another possibility is, of course, to estimate η and ζ from experimental data. As discussed

later in section 1.2.3, since the initial energy density in the collision area is not homogeneous,

any interaction inside the fireball causes anisotropic flow. When the pre-hydrodynamic stage

is connected with the energy-momentum tensor (9), the correlations between particles are

transformed into non-vanishing flow anisotropies. Since the viscosity is small, these initial
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1.1 Quark-gluon plasma

flow anisotropies survive hydrodynamic stage and the final spectra is strongly dependent on

the initial conditions.

Combining with the effect of blue shift (see 1.2.1) the bulk viscosity causes the final pT

spectra to fall more steeply. However, shear viscosity tends to make them flatter. This also

means that it is not easy to separate shear and bulk viscosity in measurements.

We could measure shear viscosity by increasing the magnitude of transverse flow while

decreasing its anisotropies. This method reflects the shear viscosity present during the whole

time of the presence of fireball. The problem is that there is no way to do so. We can

also establish it by establishing the deviation δf from the final phase-space distribution

f = f(x, p) = f0(x, p) + δf(x, p). This method reflects only the viscosity present in the

final hadronization. The disadvantage here is that this approach is reliable only for pT . 2

GeV. Focusing more on shear viscosity (it affects fireball evolution more than bulk viscosity),

smaller δf provides better results.

Final pT spectra are also affected by the fact that heavier particles’ blueshift is bigger

than that for light particles. This leads to a flattening of pT spectra at lower values. It means

that any η/s estimation is strongly dependent on the chemical composition at freeze-out used

in every model of fireball. To eliminate these effects, the pT spectrum is compared to charged

hadron vn(pT ), where vn is nth differential flow, discussed in section 2. Illustration of flattened

spectra is in fig. 2. The figure depicts pT spectra from up to 2 GeV for pions (10 centrality

bins) and protons (5 centrality bins) produced at Au-Au collisions at
√
sNN = 200 GeV,

done by PHENIX and STAR experiments. The data are compared to theoretical calcula-

tions of viscous hydrodynamics for 3 different shear viscosities and for ideal fluid. The pion

spectra decreas on the momentum interval 2 GeV/c by factor of ∼104, while proton spectra

decreas by factor of ∼10. This flattening is more visible at LHC energies than at RHIC

energies. However, not all the differences between protons and pions come from flow; many

hadrons arise later in decays of unstable resonances, contributing to low pT . The spectra

are also influenced by decoupling temperature; lower decoupling temperature means lower

mean transverse momentum. On the other hand, stronger flow means higher 〈pT 〉, thereby
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1 INTRODUCTION TO QUARK-GLUON PLASMA

increasing the apparent temperature.

To sum up, for determination of shear and bulk viscosities both azimuthally averaged

transverse momentum spectra and azimuthal anisotropies are needed. For η/s = 0.08 and

ζ/s = 0.04, Glauber model initial condition, predictions agree well with measured data from

STAR and PHENIX collaborations.
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Figure 2: pT spectra for pions and protons produced at Au-Au collisions at 200 A GeV and

its comparison to hydrodynamic prediction. Taken from [5].
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1.2 Evolution of the collision

We will assume high-energy heavy-ion collision. During this collision, small drop of very

hot and dense matter called fireball is created. At the beginning, the QGP is produced. As

the temperature decreases, hadronization is observed - a phase transition from deconfined to

confined matter. Later, there is the chemical freeze-out - hadronic chemical equilibrium is no

longer maintained. After chemical freeze-out, hydrodynamics starts to break down. During

all this stages, the drop of matter is called fireball. Final step is the thermal freeze-out -

change from strongly coupled system to a free-streaming system. In this section, we discus

all the stages in more detail.

Worth mentioning is the pressure gradient. The fireball is produced in vacuum. At the

surface of the fireball the pressure is clearly smaller than inside. This pressure gradient ∂p/∂ε

is responsible for generating the flow. The system tends to flow in the direction of the lowest

pressure.

1.2.1 Blue shift

Figure 3: Blue shift illustration.

Taken from http://snap.lbl.

gov/science/darkenergy.php.

As well as we observe red-shift while studying distant bod-

ies, like stars, that are traveling ’from us’, blue-shift is

present in the case of studying the body traveling ’towards

us’. The reason why we observe this phenomenon is very

simple: the body emits waves with certain wavelength.

As the body is traveling to observer, the wavelength is

’shrinked’. It is the famous Doppler effect: as well as the

sound of speeding motorcycle is higher and after passing

us it gets deeper, the wavelength of observed particle is

shorter as it travels towards the detector. This fact has to

be taken into account when counting final pT spectra. The pT spectrum is affected by the

wavelength, since de Broglie wave’s wavelength is λ = h/p, h is Planck constant.
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1 INTRODUCTION TO QUARK-GLUON PLASMA

1.2.2 Hadronization

Hadronization at the highest RHIC energy and at LHC is a cross-over. There is no precise

temperature at which this transition happens, it is rather smooth and fast.3

In other words, there is no discontinuity in the energy density as a function of temperature.

An example is shown in fig. 4. The figure presents result from lattice QCD simulation. The

computation considered various species of quarks, most realistic data is for 2+1 flavours: two

light (up and down) and one heavy quark (strange). The contribution from charm quarks

is not that significant, as well as from top and bottom, because of their mass. The arrows

indicate typical temperatures reached at SPS, RHIC and LHC [10]. It is clear that there is

no sharp edge around critical temperature Tc, that would be present in a phase transition.

The blue arrow indicates the Stefan Boltzmann limit of the energy density. It corresponds

to gas-like behavior of QGP. However, measurements clearly do not match this behaviour, it

seems that energy density scaled by T 4 does not increase significantly in the area above 200

MeV.

Hadronization can be also described as a change of the number of degrees of freedom.

Under normal conditions, pion gas has 3 degrees of freedom. Above the critical temperature,

there are 40 - 50. Since energy density, pressure and entropy are proportional to degrees of

freedom, the rapid change in the energy density can be understood as a change of numbers

of degrees freedom [10].

1.2.3 Freeze-out

Freeze-out is the transition from interacting system to non-interactiong system. There are

two parts of this transition; first, chemical freeze-out, followed by thermal freeze-out [11]. Af-

3Another type of transitions are phase transitions. First-order transitions are transitions, whose first
derivatives of Gibbs potential (G = U + pV − TS) are discontinuous in the point of transition. Second-
order transitions have first derivative continuous, but the second derivatives are discontinuous. Higher order
transitions are defined accordingly. Most common are first-order transitions, for example transition from
ice to water. During the transition a certain amount of heat is released, proportional to the jump in the
discontinuity of the derivative, there is a change of volume. Second-order transition does not evince heat
release or change in volume, an example is magnetization in ferromagnetic materials. Higher-order transitions
are not observed even though they are theoretically possible.
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Figure 4: The energy density ε as a function of temperature scaled by T 4 from lattice QCD.

Taken from [10].

ter thermal freeze-out, the momenta of particles remain constant, frozen, except for several

weak decays. The motivation for studying this phenomenon deeper is simple: hadrons ob-

served after freeze-out carry information about the initial conditions. One can compare it to

the microwave-radiation in the early universe: the radiation decoupled much later than nucle-

osynthesis took place. However, the anisotropies in density distribution, leading to formation

of stars and galaxies, can be today observed in the microwave background [11], [12].

1.2.3.1 Chemical Freeze-out

Chemical freeze-out occurs when the inelastic collisions between different species of hadrons

become too slow to maintain chemical equilibrium. It occurs before the thermal freeze-

out. Usually, the cross-section of inelastic collisions is smaller then the cross-section of

elastic collisions. As the system cools down, there is not enough energy to maintain inelastic

collisions while the elastic ones are still present. Hence, the chemical equilibrium between

different hadron species is disrupted, and the final hadron yield is constant. However, the

baryon-antibaryon annihilation is still present.

This phenomenon occurs at temperature Tchem ≤ Tc. Below this temperature, in order

to keep chemical composition unchanged, it is important to assign different non-equilibrium
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1 INTRODUCTION TO QUARK-GLUON PLASMA

chemical potential µ = µ(T ) to each one of the hadronic species, since the final momentum

distribution is affected by them [5].

Since the system is in equilibrium during the chemical freeze-out, we may apply statistical

approach [11].

1.2.3.2 Thermal Freeze-out

Simply said, the thermal (or kinetic) freeze-out is a transition from strongly coupled system

to free-streaming system. The description of the system by hydrodynamics is no longer

possible [5].

This transition is caused by the expansion of the fireball: the expansion is faster than

time needed for the particles with mean free path λmfp to collide with each other. As the

density of the fireball decreases, the mean free path of the particles increases. This collision

time is denoted τcoll and is determined as following:

τcoll ∼
1

σn
.

The expansion timescale is determined by:

τexp ∼
1

∂µuµ
,

where σ is average cross-section, n denotes particle density, uµ is four-velocity.

It follows that after thermal freeze-out the momentum distribution of particles remains

constant. The state when the particles fly freely to detectors is called free-streaming.

The condition τcoll ≥ τexp implies different thermal freeze-out temperature for particles

with different average cross-sections. However, as the expansion is very fast, the kinetic

freeze-out is also very fast. Usually, the thermal freeze-out is considered happening at fixed

temperature Tf . This condition of constant temperature is very handy, since it defines a

three-dimensional hypersurface in Minkowski space [11].
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1.2 Evolution of the collision

1.2.3.3 Cooper-Fry formula

For the fluid element, the number of particles contained in the volume dV with equilibrium

distribution feq(Ep), Ep denoting energy of the particle, is simply calculated by:

dN = dVµ

∫
pµ
d3p

Ep
feq(pαu

α) , (22)

where the four-velocity uµ is in the rest frame trivially equal to (1, 0, 0, 0) and where we denote

dV µ = dV uµ. The last assumption, however, is not applicable during the freeze-out stage.

The reason is connected with the nature of the fireball: particles are emitted just from the

surface of the fireball in the space-time. Therefore, for the total particle yield the integration

over dV µ is not applicable. Instead, the hypersurface Σ is used. We get Cooper-Fry formula:

N =

∫
d3p

Ep

∫
dΣµ(x)pµf(x, p) . (23)

The calculation of the four-vector dΣµ is discussed in detail in [11].

These hypersurfaces are three-dimensional and can be parametrized by coordinates (φ,ζ,η‖):

t = [τi + d(φ, ζ, η‖) sin ζ] cosh η‖ ,

z = [τi + d(φ, ζ, η‖) sin ζ] sinh η‖ ,

x = d(φ, ζ, η‖) cos ζ cosφ ,

y = d(φ, ζ, η‖) cos ζ sinφ .

(24)

In these equations, φ is the azimuthal angle in the plane x-y, η‖ is the spacetime rapidity.

From the equations we simply get proper time τ , initial time for the hydrodynamic stage

initial proper time τi and transverse distance r:

τ − τi =
√
t2 − z2 − τi = d(φ, ζ, η‖) sin ζ ,

r =
√
x2 + y2 = d(φ, ζ, η‖) cos ζ .

(25)

The parameter d(φ, ζ, η‖) is the distance between the hypersurface point (φ, ζ, η‖) and the
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1 INTRODUCTION TO QUARK-GLUON PLASMA

spacetime point (τ = τi, x = 0, y = 0). We focus on this parameter because, usually, the

curves of freeze-out are functions of parameter ζ. If d is independent of φ, in other words

d = d(ζ, η‖), the hypersurface is cylindrically symmetric. Using same argumentation, d inde-

pendent on η‖ is boost-invariant. Therefore, we will concentrate on d exclusively dependent

on ζ, leaving us with boost-invariant cylindrically symmetric freeze-out hypersurface.

After using the parametrization of rapidity y, transverse mass mT =
√
m2 + p2

T and

four-momenta pµ = (mT cosh y, pT cosφp, pT sinφn,mT sinh y) we can obtain dΣµp
µ needed

in equation (23) in terms of dφ, dζ and dη‖.

For boost-invariant systems, following the same technique, we obtain six-dimensional

particle distribution at freeze-out. For details see [11].

Figure 5: Freeze-out curves in t-r

space. Taken from [11].

The equation (23) gives the momentum distribu-

tion:

Ep
dN

d3p
=

∫
dΣµ(x)pµf(x, p) . (26)

Considering particles in local thermodynamic equilib-

rium, instead of f(x, p) we can use feq(p
αuα), since

we need the energy in fluid’s rest-frame. Thus, the

equilibrium distribution function is:

feq(p
αuα) =

1

(2π)3

[
exp

(
pαuα − µ

T

)
− δ
]−1

, (27)

where δ = 1, −1 or δ → 0 for Bose-Einstein, Fermi-

Dirac or Boltzmann statistics, respectively. This substitution leads to particle distribution:

Ep
dN

d3p
=

1

(2π)3

∫
dΣµ(x)pµ

[
exp

(
pαuα − µ

T

)
− δ
]−1

. (28)

An illustration of the freeze-out hypersurfaces can be seen in fig. 5. Dashed and dotted

lines denote curves including both space-like and time-like part, solid lines denote presence

of time-like part only.
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1.3 Experimental evidence

First data suggesting the existence of QGP were gathered at SPS, CERN [13]. Later, results

from all four experiments at RHIC facility, were very auspicious, as well as the newest data

from experiments at LHC [10].

Since the detection of such a short time interval as fm/c is impossible, several indirect

methods of observation of QGP are used. The main indicator is the transverse flow, in

particular elliptic flow, discussed in section 2.2, and the quenching of jets.

Partons propagating through dense deconfined medium lose more energy than those

traversing confined medium. This leads to a suppression of jets, studied by inclusive spectra

and two-particle azimuthal correlation. Convincing results were achieved at STAR experi-

ment at RHIC [14]. Series of measurements of p+p, d+Au and Au+Au collisions at
√
sNN

= 200 GeV, made in the same detector, were analyzed and they suggest formation of a dense

deconfined medium.

1.3.1 Nuclear modification factor

Hadron production in d+Au and Au+Au is compared to p+p hadron production via nuclear

modification factor :

RAB(pT ) =

d2N
dηdpT

TAB
d2σpp

dηdpT

, (29)

where AB indicates collision of nuclei A and B, σpp is the cross-section of p-p collision and

TAB is the nuclear overlap function. Nuclear overlap function is defined as

TAB(~b) =

∫
d2sTA(~s)TB(~s−~b) , (30)

where ~b is impact parameter, TA is nuclear profile function defined:

TA(~s) =

∫
dzρA(~s, z) . (31)
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1 INTRODUCTION TO QUARK-GLUON PLASMA

Figure 6: Nucleon-nucleon collision. ~sB rep-

resents the vector between the nucleus center

and its nucleon. Taken from [11].

ρA(~s, z) denotes nuclear density distribution;

the probability of finding a nucleon in a nu-

cleus with the mass A, dependent on z-axis

coordinate z and vector ~s, connecting the nu-

cleon with the centre of the nuclei. Illustra-

tion of vector ~sB is in the fig. 6. It is dis-

played in the plane transverse to the z-axis.

~b denotes impact parameter. Practically, the

nuclear overlap function TAB stands for the

number of binary collisions.

If the nuclei acted as a set of neutrons

and protons, colliding without the creation of the dense matter, one would expect the RAB

factor for Au-Au collision to be approximately one, because the nucleons would react without

significantly affecting each other. RAB = RAB(pT ) for central and minimum-bias d+Au

collisions at
√
sNN = 200 GeV, presented in fig. 7, reflects the absence of hot and dense

medium, whilst the RAB for central Au+Au collisions is highly suppressed and its value is

around 0.5. The deviation from one for d+Au collisions is mainly caused by so-called Cronin

effect. This enhancement of RAB is visible for both d+Au and Au+Au collision in the pT area

around 2 GeV. It is assumed it is caused by multiple scattering effect. Before the particles in

the nuceli produce low-pT particles, they gain pT from interactions with particles from the

other nuclei. This gained pT is reflected in the final particle spectrum. Furthermore, the

Au+Au collisions with larger impact parameter show similar behaviour as p+p and d+Au

collisions, indicating that the dense medium is not created in peripheral collisions.

1.3.2 Jet quenching

One of the main indicators of QGP is jet quenching. Jet is a collimated hadron shower,

produced from high-energy quarks and gluons. Due to color confinement, quarks cannot be

observed individually, but always in a quark-antiquark pair (meson) or as a group of three
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Figure 7: Nuclear modification factor RAB = RAB(pT ) comparison for d+Au and Au+Au

collisions at
√
sNN =200 GeV. The minimum-bias data are shifted 0.1 GeV to the right for

better illustration. Error-bars show the normalization uncertainties. Taken from [14].

quarks (baryon)4. When quark is hit by another particle hard enough to be separated from

hadron, the confinement forces the quark to create mesons or baryons.

Due to the momentum conservation, there are two-jet or three-jet events. The overall

jet momentum and the flight direction is the same as the momentum of the leading particle.

Two-jet events come from quarks, third jet, if present, originates from a gluon.

Figure 8 shows the comparison of two-particle azimuthal correlation 1/Ntrigger
dN

d(∆φ)
de-

pendence on ∆φ of p+p minimum-bias and central Au+d and Au+Au collision. High pT

triggering was used, meaning that if there was at least one high-pT hadron, the event was

used in the analysis. Ntrigger is number of such particles. Hence, the quantity 1/Ntrigger
dN

d(∆φ)

denotes the number of particles normalized by the number of jets.

The data are presented without the pedestal contribution and without the elliptic flow.

The peak around ∆φ = 0 is present for all three kinds of collisions. However, the peak for

∆φ = π is highly suppressed for central Au+Au collisions. As mentioned before, due to

momentum conservation, two jets in opposite directions are produced. The fact that they

4Recent measurements indicate the possibility of existence of a tetraquark, particle consisting of two quarks
and two antiquarks.
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Figure 8: Comparison of two-particle azimuthal correlation for central d+Au collision to p+p

and central Au+Au collisions. Taken from [10]5.

are not detected indicates the second jet has to travel through present very dense medium.

Considering high pT particle production suppression in central Au+Au collisions, it follows

that QGP is produced in Au+Au and is absent in d+Au collisions.

5First appeared in [14], however, this version from [10] is more illustrative.

34





2 COLLECTIVE FLOW

2 Collective flow

Initial conditions in heavy-ion collisions fluctuate from event to event. It turns out that

anisotropies in the collective flow are reflected in the particle momentum distribution related

to the reaction plane. It can give us information about the initial conditions and about

the early evolution of the system, since they are developed mainly in the first moments

during the collision [16]. However, the collisions are not symmetric and ideal, there are

quantum fluctuations, the initial nuclei geometry varies from event to event, even for fixed

impact parameter the initial energy density is anisotropic, QGP is not an ideal fluid. All

these effects cause flow anisotropies. Those anisotropies are most significant for non-central

collisions. Studying them can provide an insight into QGP properties [17].

Flow is developed during all the stages as discussed in section 1.2. It is a strong evidence

of applicability of the almost ideal fluid dynamics. Also, it provides information about the

collision evolution and about the initial conditions. As mentioned in the section 1.2, flow is

generated by the pressure gradient. It is greater at the surface of the fireball, but there are

hotter and colder spots also in the fireball, resulting in stronger anisotropies.

The anisotropies are pT dependent; for pT lower than 3 GeV, hydrodynamics is applicable.

For intermediate transverse momentum, pT ∈ 〈3, 6〉GeV, flow is smaller for mesons and bigger

for baryons. Considering pT above 8 GeV, the flow is highly dominated by effects caused

later in the collision evolution, not by initial conditions anisotropies. The flow is expected to

be dominated by high-energy partons. They suffer from big energy loss, caused by radiation

and collisions itselves. This loss depends on the thickness of the hot and dense medium they

have to transverse. If the system is asymmetric, the energy loss is also asymmetric, leading

to azimuthally anisotropic pT distribution [18].

We study these anisotropies via azumithal distribution of particles. Common approxima-

tions is expanding it to Fourier series [11]:

dN

dyd2pT
=

dN

2πpTdydpT

[
1 +

∞∑
n=1

2vn cos(n(Φ− ΦRP ))

]
. (32)
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2.1 Directed flow

Notation is usual: N is number of particles, pT indicates transverse momentum, y rapidity, Φ

is particle’s azimuthal angle relative to the reaction plane, ΦRP is reactions plane azimuthal

angle. The reaction plane is theoretically defined as a plane made up by the beam axis and

the impact parameter [16]. The vn coefficients are nth differential flows. The average over pT

and y gives us integrated flow.

Considering non-central collision, the odd differential flows can be neglected due to sym-

metry: the matter expansion in the transverse plane has approximately an elliptic shape.

Sum over many particles should give these odd coefficients zero.

2.1 Directed flow

The 1st differential harmonics represents the deflection of incoming particles in the nuclear

collisions. The particles from the overlap region are deflected in opposite directions. This

deflection happens very early in the collision. Hence, this quantity is a good probe for the

early time of the collision.

Directed flow strongly depends on the collision energy. For lower energies, v1 linearly

rises as a function of rapidity. However, with increasing energy, the directed flow begins to

decrease, it even becomes negative. With further increasing of energy, v1 rises again. The

predictions for very high energies suggest it becomes negative once again [16]. There are

several possible causes of this phenomenon. Hydrodynamic approach it explains by the QGP

phase transition.

Measurements done at RHIC for Au-Au and Cu-Cu collisions evince several interesting

characteristics. For illustration, we present directed flow of charged hadrons as a function

of pseudorapidity η for centrality bin 30 - 60% in the fig. 9. Solid and dashed curves are

polynomial fits. The AMPT calculations are presented only for one side of pseudorapidity for

better comprehension. AMPT model is a multiphase transport model. The AMPT predicts

that directed flow is bigger for heavier particles.

First, the change of sign is not observed. Directed flow simply decreases with increasing

pseudo-rapidity. Second, it seems that directed flow is not dependent on colliding nuclei.
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Figure 9: RHIC measurements compared to the AMPT prediction of directed flow. Taken

from [16].

Gold is approximately three times heavier than copper. Furthermore, for fixed rapidity, the

directed flow decreases with the energy.

2.2 Elliptic flow

The 2nd differential flow is called elliptic flow. It is considered one of the proofs of QGP

existence. If QGP was not produced, particle distribution would be spherical. Elliptic

flow originates from several things. First, it is the size of the fireball that depends on the

fluctuations of initial state. Part of it emerges from the hadronic phase. These contributions

are smaller for higher collision energies. If the collision was totally symmetric and there

was no scattering, the elliptic flow should be zero. However, small spatial anisotropies are

present. Initial geometry is usually expressed by eccentricity ε:

ε =
〈y2 − x2〉
〈y2 + x2〉

. (33)
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The brackets represents average taken over some distribution, usually it is energy density.

z represents beam direction, x impact parameter and y is perpendicular to both of them. This

spatial anisotropy is converted into pressure gradient leading to flow. If eccentricity is small,

elliptic flow should be proportional to it, regardless to the chosen weight [16]. However, this

approach assumes perfect-fluid properties of QGP and does not reflect all initial anisotropies.

Instead, participant eccentricity was recently introduced [17]:

εpart =

√
(〈y2〉 − 〈x2〉)2 + 4〈xy〉2

〈y2〉+ 〈x2〉
. (34)

Obviously, from the coordinate system, 〈x〉 = 〈y〉 = 0

At low energies, v2 can be negative. This is called squeeze-out and it is caused by spectators

- nucleons not participating in the collision. These nucleons shadow the expansion in the plane

perpendicular to the beam. At high energies, this phenomenon is not important anymore:

relativistic approach becomes applicable. The nuclei are contracted, they gain pancake shape

- the transverse size of nuclei is much bigger than longitudinal. Moreover, the time needed

for the creation of elliptic flow is much bigger than the passing time. Hence, there is not

enough space nor time for the spectators to influence the elliptic flow.

For illustration, we present the very first measurements of elliptic flow dependent on the

ratio of charged hadron multiplicity to maximum observed multiplicity done at RHIC in

fig. 10.

2.3 Higher harmonics

The 3rd differential flow is called triangular flow. As mentioned above, the main contribution

of v3 are symmetry fluctuations. Moreover, it is not significantly affected by the centrality,

proving its origin is in the initial geometry [18]. The 4th differential flow is called quadran-

gular flow. Deeper studying of the higher order differential flows began recently at LHC [19].

So far, the focus is mainly on pentagonal, v5, and hexagonal, v6, flows. Due to shear vis-

cosity, anisotropies in the expansion velocity tend to vanish. Therefore, higher harmonics
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Figure 10: First STAR measurements of elliptic flow. Blue boxes represent hydrodynamic

predictions. Taken from [16].

are significantly suppressed with increasing n. It leads to big uncertainties for establishing

higher-order harmonics.

Comparison of v2 - v6 for eight centrality classes is in the fig. 11. All the flows increase

up to 3 GeV then they decrease. The flow is present even in the most central collisions,

meaning it is not related only to centrality. All the flows are positive even for the highest

pT (including statistical uncertainties). This phenomenon is connected with the transition of

collective anisotropies to jet-path anisotropies.
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Figure 11: ATLAS v2 − v6 versus pT measurements for charged particles produced in Pb-

Pb collisions with
√
sNN = 2.79 TeV for eight centrality classes. Shadowed bands denotes

systematic uncertainties. Taken from [20].
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Figure 12: Comparison of pT -averaged vn for ultra-central Pb-Pb collisions. Taken from [21].

Very interesting results can be obtained by studying ultra-central collisions. Figure 12

shows results from CMS experiment at LHC for central (centrality up to 5%) and ultra-central

Pb-Pb collisions at
√
sNN = 2.79 TeV [21]. In ultra-central collisions, the flow anisotropy

caused by the collision non-centrality vanishes. Hence, obtained results are strongly con-

nected with initial state fluctuations. The figure illustrates very strong v2 and v3 dependence

on centrality. The errors here are denoted by yellow boxes (systematic) and by error-bars

(statistical). Interesting fact is that for the most central collisions (0 - 0.2 %) v2 ≈ v3. One

would expect that v2 > v3 due to shear viscosity. This indicates omitting bulk viscosity or

higher-order non-linear terms in relativistic transport equation is not a good assumption.

However, any theoretical calculation has not successfully reproduced this data yet.
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3 Measurements

As mentioned in the previous section when discussing eq. (32), measurements of azimuthal

anisotropies in the collective flow is complicated by the fact that it is impossible to establish

the impact parameter b. Moreover, the position of nucleons in the nuclei fluctuates event-by-

event, so the impact parameter does not provide enough information about initial conditions.

In this section, we will discuss mathematical methods used for approximating or substituting

the reaction plane, its advantages and disadvantages. Main sources are [16] and [22].

3.1 Computing methods

Figure 13: Reaction plane and par-

ticipant plane definition. Taken

from [16].

Even though direct obtaining of reaction plane is im-

possible, event-by-event analysis of the data can pro-

vide us good results. This fact leads to simple con-

clusion: only rotationally invariant quantities can be

measured. Usually, the focus is on two or many par-

ticle correlation. This provides the information about

the particle relation and makes computation of har-

monic flows possible.

The reaction plane defined in eq. (32) is measur-

able only assuming smooth symmetrical matter dis-

tribution. For better approximation, symmetry plane

Ψn is introduced6. This plane is determined by partic-

ipating nucleons, usually being referred to as participant plane. It fluctuates event-by-event,

due to different initial conditions in every collision. This plane is determined such that sine

terms in the Fourier decomposition (eq. (32)) vanish. Graphic illustration can be seen in

fig. 13. There is a big difference between obtained v
(RP )
n from theory via reaction plane and

v
(PP )
n obtained via participant plane; for example v

(PP )
2 > v

(RP )
2 .

6Note that Ψn is n-dependent, in contrast to eq. (32).
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Hence, the obtained vn is not precisely the nth coefficient in eq. (32). We define flow vector

einΨn and orientation angles Ψn

vne
inΨn(pT , η) ≡

∫ 2π

0
dφ dN

dφdpT dη
einφ∫ 2π

0
dφ dN

dφdpT dη

(35)

and the average vector flow magnitude vn together with average direction Ψn

vne
inΨn(pT , η) ≡

∫ 2π

0
dφdηdpT

dN
dφdpT dη

einφ∫ 2π

0
dφdηdpT

dN
dφdpT dη

. (36)

These definitions secure that for a symmetric collision all odd harmonics in Fourier decom-

position vanish [17].

Taking into account N particles, the statistical uncertainty is about ' 1/
√

2N . Since

one-event calculations result in uncertainty even bigger than 50%, many events have to be

somehow averaged a weighted [17]. Now, we will present several methods how to do so.

3.1.1 Event plane method

This method uses estimation of the reaction plane - event plane. It is defined as the direction

of maximum final-state particle density. Because of initial fluctuations, eq. (32) is slightly

modified: we introduce event plane angle for every nth harmonic Ψn:

dN

dΦ
∝ 1 +

∞∑
n=1

2vn cos [n(Φ− Ψn)] , . (37)

It is applicable for estimating Ψ2 - Ψ6.

First, event flow vector
−→
Qn = (Qn,x, Qn,y) is defined as

Qn,x =
∑
j

wj cos(nΦj) = | ~Qn| cos(nΨn) ,

Qn,y =
∑
j

wj sin(nΦj) = | ~Qn| sin(nΨn) .
(38)
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The sum goes over all particles, Φj denotes lab azimuthal angle. The coefficients wj are

jth’s particle weight, depending on rapidity y. For odd harmonics, wi(y) = wi(−y). The

coefficients wj are chosen as an approximation of the nth differential flow. At low transverse

momentum, up to 2 GeV, vn ∼ pT . Hence, usual choice for wj is pT .

The event plane angle is defined:

Ψn =
arctan 2(Qn,x, Qn,y)

n
, (39)

where arctan2 is two-argument arctan, defined by the equation

ϕ = arctan 2(x, y) . (40)

Notation is simple; x, y are cartesian coordinates of some 2D vector ~v = (x, y), ϕ is vector’s

azimuthal angle in the polar coordinate system.

The nth differential flow is then calculated as an average over all particles for fixed rapidity

y and pT bin and for fixed centrality:

vobsn (pT , y) = 〈cos(m(Φj − Ψn))〉 . (41)

Here m denotes the number of correlation, not harmonic number! If n denotes the harmonic,

then m = kn, where k is an integer. For k > 1 the method is called mixed harmonics method,

applied usually at fixed-target experiments or to study higher harmonics. Even though this

approach is more computationally expensive, it eliminates non-flow effects, discussed later

in section 3.2. The number of correlation is handy in the case of measuring e.g. v4 in the

plane Ψ2. However, the self-correlating components are still present; they can be eliminated

by subtracting the ~Qj,n of jth particle from the total ~Qn. Also, since we cannot achieve

unlimited number of particles and events, event plane resolution is defined as

<n = 〈cos [n(Ψn − ΨRP )]〉 . (42)
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Angle brackets, again, denote average over all particles for fixed y and pT . The resolution

of the reaction plane is multiplicity-dependent. The final nth differential harmonics are then

obtained by

vn =
vobsn
<n

. (43)

Since in the equation (41) vn is very centrality-dependent, this equation should be used

for narrow centrality bin. Wider centrality class should be divided in narrow bins and then

weighted by the bin’s multiplicity.

Furthermore, one has to consider the imperfection of detectors. Three methods are

used [16]:

• Φ weighting : Each particle is weighted with the inverse of the azimuthal distribution

of the particles averaged over many events.

• Recentering : The average ~Q is subtracted from the ~Q of each event. This implies final

zero average ~Q. This method is less sensitive to variations in detector’s acceptance.

• Shifting : The Ψn is averaged over many events by Fourier expansion, obtaining the shift

for each event plane angle.

3.1.2 Particle correlations

There are several methods to estimate differential flows that use the relation between pro-

duced particles. The reason is that the anisotropy in the flow, leading to particle correlation.

3.1.2.1 Pair-wise correlation method

This method is based on the Fourier series expansion of the distribution of pairs in their

relative azimuthal angle ∆Φ = Φa − Φb:

dNpairs

d∆Φ
∝ 1 +

∞∑
n=1

2v2
n(paT , p

b
T ) cos(n∆Φ) . (44)

The correspondent values of v2
n are obtained by a fit of the data. Biggest advantage of this

method is its simplicity: no event plane is used. However, the obtained harmonic flow is an
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integrated flow, which is better to compute as an average of differential flow.

If both of the particles are associated with the same flow anisotropy, we obtain

v2
n(paT , p

b
T ) = vn(paT )vn(pbT ) . (45)

3.1.2.2 Two-particle cumulant method

This method is similar to pair-wise correlation method - instead of two-particle distribution

fit, the nth differential flow is counted directly as

vn {2}2 = 〈〈cos [n(φi − φj)]〉pair〉 = 〈un,i, u∗n,j〉 . (46)

Pair-brackets denote an average over all particle pairs (i 6= j). Angular brackets denote an

average over all events. The pairs are selected as a particle in a rapidity bin plus unidentified

hadron [17], un,j is jth particle’s unit flow vector 7;

un = einφ . (47)

This method, due to its simplicity, is widely used [22], [20] ,[17] ,[18]. It can be used assum-

ing negligible nonflow, small event plane pT dependence and mainly approximately constant

flow fluctuations. Of course, none of this is true, but in certain situations it is a reasonable

approximation. Its difference from vn is about 10%. If the chosen particles are both from a

certain centrality bin, the obtained vn is an exact result [17].

3.1.2.3 Scalar product method

In contrast to event plane method, this method preserves the information on the length of

vector
−→
Qn, defined by equation (38). The estimation of nth differential flow is done according

to the following equation:

vn(pT , y) =
〈 ~Qnu

∗
n,j(pT , y)〉

2
√
〈Qa

nQ
b
n〉

. (48)

7Asterisk denotes complex conjugate.
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The indexes a and b denote two subevents. Multiplicity is used as a weight. Notice that

replacing
−→
Qn by its unit vector reduces this method to the event plane method. The statistical

errors are smaller than in the case of event plane method.

3.1.2.4 Multi-particle correlation method

This method uses more than two particle correlations. This method can greatly suppress

nonflow effects. Moreover, this method eliminates the acceptance effects. However, there

are some disadvantages. The statistical errors are bigger. Sometimes, the square of nth

differential flow can be negative, depending on flow fluctuations. Good example can be four-

particle correlation, while using two-particle correlation to eliminate two-particle non-flow

effect:

〈〈un,1un,2u∗n,3u∗n,4〉〉 = 〈un,1un,2u∗n,3u∗n,4〉 − 2〈un,1u∗n,2〉2 = −v4
n{4} . (49)

Double angle brackets denotes the cumulant. Problem is that the statistical errors are greater

than in the case of event plane method and sometimes, the fourth power can be negative due

to fluctuations.

Another modification of this method is using mixed harmonics. This method was used

at RHIC to suppres the nonflow at directed flow measurements. Three-particle correlations

were used:

〈un,1un,2u∗2n,3〉 = v2
nv2n . (50)

3.1.2.5 Lee-Yang Zeros method

This method is basically all-particles correlation method. The origin is rooted in the Lee

and Yang suggestions for detecting liquid-gas phase transition. The main advantage of this

method is its nonflow independence for all orders. The main idea of this method is finding

so-called generating function - a complex function - and its zero-point.

First, we will use the 2nd harmonic flow vector
−→
Q2 projection to an arbitrary laboratory

angle θ:

Qθ
2 =

M∑
j=1

wj cos [2(Φj − θ)] . (51)
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The sum goes over all particles with angles Φj and weights wj. The angle θ is usually

estimated from five equally spaced values in order to minimize the effect of the detector

acceptance. The generating function can be written as

Gθ
2 =

∣∣∣∣∣〈
M∏
j=1

[1 + irwj cos(2(φj − θ))]〉

∣∣∣∣∣ . (52)

r denotes a variable along the imaginary axis of the complex plane. The zero-point of function

Gθ
2, denoted as rθ0, is related to the flow as

v2 = 〈j01

rθ0
〉/M , (53)

where j01 is first root of Bessel function and M denotes multiplicity.

Disadvantage of this method is high computational requirement, since the generating

function has to be calculated for all values of r. The generating function can be also calculated

as

Gθ
2 =

∣∣exp
(
irQθ

2

)∣∣ , (54)

but this approach works well only for v2. Higher harmonics is better to calculate using

eq. (52), since it better suppresses the effect of auto-correlation.

3.2 Nonflow and flow fluctuations

Thorough the previous paragraphs we mentioned nonflow contributions and flow fluctua-

tions. Since all the introduced methods are just approximate and since we cannot measure

everything, we have to take nonflow contribution δn and flow fluctuations σ2
vn into account.

Nonflow is mainly produced by intristic correlations between particles. Considering two

particles, the nonflow contribution δn is defined:

〈cos(n(Φi − Φj))〉 = 〈v2
n〉+ δn (55)
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It is evident that nonflow is not dependent on the reaction plane. It is influenced by jet

production, momentum conservation, Bose-Einstein correlations or resonance decay. Nonflow

effects increase with transverse momentum and with centrality. More central collisions imply

bigger contributions of hard parton collision and stronger radial flow. Data suggest that

nonflow is dominant in collisions with centrality higher than 80% [18]. Its contribution can

be minimized by using rapidity gaps between charged particles or by selecting correlated

particles according to their charge. Nonflow computation gets more difficult with increasing

number of correlated particles. Reminding equations (49) and (50), nonflow is the reason

why multi-particle correlations are used. However, not all the effects can be removed using

multi-particle correlations, and we have to choose the right method according to prevalent

causes of nonflow.

Flow fluctuations σ2
vn are defined as:

σ2
vn = 〈v2

n〉 − 〈vn〉2 . (56)

Main contribution to flow fluctuations are random configurations in the overlapping regions

of colliding nuclei. Even though it is very complicated to measure fluctuations themselves,

it is simple to detect them. Due to the definition (56) and using the correlation method, we

obtain the results directly.

Event plane method dependence on flow fluctuations is more complicated. It depends on

the reaction plane resolution and ranges from v2{EP} = v2{2} = 〈v2〉1/2 to v2{EP} = 〈v〉.

Comparison of different methods used for establishing v2 in respect to event-plane method

is depicted in the fig. 14. The presented data are obtained from
√
sNN=200 GeV Au-Au

collisions. The values are shown for event plane method, method using random and pseu-

dorapidity subevents, for scalar-product method, two- and four-particle cumulant method,

q-distribution and for Lee-Yang Zeroes method using both equations (52) and (54). Different

methods may lead to different results. One has to be careful when choosing the method.
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Figure 14: Comparison of calculation methods for v2/v2{EP} versus centrality. Taken

from [16].

3.3 Experimental results

Figure 15 reflects measurements of vn = vn(pT ) for all charged particles done by experiment

ALICE at LHC [18]. There were Pb-Pb collisions at
√
sNN=2.76 TeV. It is obvious that

elliptic flow is highly centrality-dependent. As expected, triangular flow is not significantly

centrality-dependent8. There is a clear difference between the results obtained by using

different methods: vn{EP} denotes event-plane method while vn{4} denotes four-particle

cumulant method. It appears that the flow fluctuations are positive for event-plane method,

while for cumulant method they are negative. This effect is more relevant in the area for

pT < 7 GeV. In the case of quadrangular flow, both elliptic and quadrangular symmetry plane

are considered. It is obvious from the figure that v4 evinces strong centrality dependence,

when probed by the correlation with the Ψ2 plane, in contrast to the v4 in the Ψ4 plane,

where the centrality dependence is very weak. This centrality independence suggest strong

8Worth emphasizing is the difference in the vertical axis values between the upper and lower line.
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connection to flow fluctuations.
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Figure 15: ALICE vn = vn(pT ) measurements for unidentified charged particles up to

pT = 20 GeV. The v3 and v4/Ψ2 markers are shifted along the horizontal axis for better un-

derstanding. Boxes are systematic errors, error-bars denote statistical uncertainty. Taken

from [18].

The relation of the relative difference between event-plane method and four-particle cu-

mulant method is represented in the fig. 16. This difference is expressed as√
v2{EP}2 − v2{4}2

v2{EP}2 + v2{4}2
. (57)

For small nonflow, this quantity is proportional to σv2/〈v2〉. For mid-centrality, this ratio

is minimal, while for central collisions it is close to one. Interesting is the fact that for

centrality class higher than 5% the relative flow fluctuations are pT independent. This implies

a common origin of flow-fluctuations. For the most central collisions, the ratio increases from

pT = 1.5 GeV. This indicates the biggest nonflow effects.
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Figure 16: ALICE relative flow fluctuations
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v2{EP}2+v2{4}2 measurements for unidentified

charged particles up to pT = 8 GeV for different centrality classes. Boxes are systematic errors,

error-bars denote statistical uncertainty. Taken from [18].
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4 Toy Model

Our task was to make a toy model for generating a profile of the azimuthal angle distribution,

using Monte Carlo mehtod, to produce 5000 pions of transverse momentum pT = 500 MeV.

Next step was to compute the nth differential flows using correlations and histogram. The

aim of this task was to learn to work in programming languages C, C++, acquire working

knowledge in ROOT, working with random number generators and deeper understanding of

methods discussed in section 3 acquired by their implementation.

I considered differential flows up to the 5th degree. The distribution used for generating

particles is described by eq. (37). For the analzsis of Monte Carlo data we used the event plane

method and correlation method. Moreover, we analyzed the data from the model DRAGON.

4.1 Theoretical background

Normally, Monte Carlo simulation uses a random number generator generating uniformly

distributed numbers in the interval (0, 1〉; denoting x ∼ U(0, 1). However, one usually needs

to produce non-uniform distributions. There are several methods how to do so. The simplest

distributions can be integrated analztically, e.g. exponential distribution. Another possibility

how to create a non-uniform distribution is to use rejection method [23]. This method is very

similar to numerical computation of integrals. Now, we will look at both methods in detail.

4.1.1 Transformation method

This method is based on direct analytic integrations of the desired distribution p(x). Suppose

we are able to generate uniformly the deviate x and that we want to generate distribution

p(y). We apply usual probability transformation from p(x) to p(y):

|p(x)dx| = |p(y)dy| ,

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣ .
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Because x ∼ U(0, 1), we may write

p(y)dy =

∣∣∣∣dxdy
∣∣∣∣ dy .

This immideately leads to

p(y) =

∣∣∣∣dxdy
∣∣∣∣ ,

x = F (y)⇒ y(x) = F−1(x) .

(58)

where F (y) denotes primitive function to p(y). This method is simple and fast. The problem

here arises from the equations (58). Both the integral of p(y) and the inverse function of F (y)

may not be analytically solvable and any approximate method requires more computation

time and is only approximate.

4.1.2 Rejection method

We will assume we need to generate numbers with certain distribution function p(x). We will

choose a comparison function f(x). Its function value is bigger than that of distribution p(x)

value on its whole domain Dp. Of course, Dp ⊂ Df . Then, we uniformly populate the area

below the function f(x), denoting the points x = [u, i]. We compute value of p(u) and f(u).

If i > p(u)
f(u)

, we will reject number u and generate new ones until the condition i < p(u)
f(u)

is

satisfied. The ratio of rejected to accepted numbers is equal to the ratio of the area between

f(x) and p(x) to the area under p(x). An illustration is shown in fig. 17.

The advantage of this method is its simplicity. However, its efficiency highly depends

on the choice of the comparison function f(x). If we can make a good approximation of

the distribution p(x), the count of rejected numbers will be small and this method is very

efficient. On the other hand, such a good approximation does not always exist on the whole

Dp. Bad approximation leads to a large number of rejected numbers, which prolongs the

computation time.

Since the distribution function has to have a maximum, because integration over its

domain gives 1, is positive and continuous, it is always possible to make an upper estimate
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Figure 17: Rejection method illustration. Taken from [23].

by function f(x) = maxx∈Dp{p(x)}, making ’rectangle’ around the desired distribution. The

suitability of this estimation highly depends on the p(x). The problem is that this works

only for distributions that are non-zero at finite interval.

4.2 The program

4.2.1 Particle identification

In our program, we sticked to the Monte Carlo numbering scheme of particle species according

to [24]. Particles are marked by seven digits, positive numbers denotes particles, negative anti-

particles. In principle, the digits reflect spin, flavor and other quantum numbers. Quarks are

denoted by a single digit, leptons and bosons by two-digit numbers, mesons by three-digit

numbers (however, to distinguish same particles in different state, they can have more digits,

as well as baryons) and baryons by four digits.

4.2.2 Random number generator

Since the built-in C++ random number generator is not reliable enough (most significantly, it

is a linear congruential generator), the program uses the random number generator suggested
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by [23]. The structure allows the usage of three different random results: 64-bit unsigned

integer, 32-bit unsigned integer and, most importantly, double-precision float; values 0.0 - 1.0.

4.2.3 pT distribution

The goal is to generate transverse momentum pT and azimuthal angle Φ. The pT distribution

is
dN

dpT
= CpT e

− pT
T , (59)

where N denotes number of particles, T is a parameter. C denotes normalization constant.

In our case, we choose T = 400 MeV.

The reason why it is not possible to use transformation method is following. From equa-

tions (58) and (59):

x = C

∫
dpT pT e

− pT
T = −CT (T + pT )e

−pT
T (60)

The factor C reflects normalization: we generate x ∈ 〈0, 1) and x is dimensionless. In our

case, C = −1/T 2.

The inverse function of x ex is not analytically solvable. It can be expressed in terms of

Lambert function W :

pT (x) = −T
(

1 +W
(x
e

))
. (61)

This function may be approximated by several methods, for instance see [25]. One of the

simplest approaches of computing W (x) is

W (x) = ln

 x

ln

(
x

ln( x
ln(...))

)
 . (62)

This approach is simple, for small number of iterations it is even fast. We chose initial

W0(x), followed by iteration according to Wn+1(x) = ln(x/ ln(Wn(x))). Computation was

done at an ordinary laptop, with Intelr CoreTM i3 Processor with clock speed 2.13 GHz.

However, it was not fully used just for this computation, making the following data good for
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Figure 18: pT histogram using Lambert function (62), computed with 5 iterations, W0 = 0.1.

comparison, not as absolute numbers. For one million generated numbers, this method for

5 iterations takes 0.35 s. For 100 iterations, the needed time rises up to 5.36 s. Moreover,

the reliance of this method strongly depends on the number of iterations. An example is

shown at figures 18, 19, 20 and 21. Figure 18 is an histogram for 5 iterations, the black

line illustrates desired shape of distribution (59), where T = 400 MeV. It is obvious that 5

iterations are not precise enough. However, it can be successfully used for generating higher

pT . The big discontinuity in fig. 18 is caused by the problem in around 2T because of the

limit of eq. (62).

Figures 19 and 20 represents pT distribution computed using Lambert function W with

10 and 20 iterations. The histograms are fitted with function pT exp
(
p0 + pT

p1

)
, p0 is scale-

parameter, p1 should be equal to T . The increasing error of the fit is caused by the width of

the bins; there are 50 bins in the histogram. For 20 iterations, the computing time rises to

1.12 s, making this method slower than the rejection method. The same method, computed
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Figure 19: pT histogram using Lambert function (62) computed with 10 iterations.

with 100 iterations, is shown in the fig. 21. There are 100 bins, the fitted T is acceptable.

As mentioned, the computing time is very long and the precision is not very high.

Another interesting fact is the dependence on W0(x). For higher number of iteration,

choosing some small number (0.1 is sufficient) is an approximation good enough. It does

not significantly affect the resulting distribution, choosing better first-guess slows down the

computation and for 10 iteration the difference is negligible. However, for 5 iterations, using

the Branch-point expansion suggested in [25] only up to the first coefficient leads to much

better results; see fig. 22 in contrast with fig. 18. This one operation does not significantly slow

down the algorithm. However, the distribution still evinces small shift from the distribution

around pT = T .
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Figure 20: pT histogram using Lambert function (62), computed with 20 iterations.
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Figure 22: pT histogram using Lambert function (62), computed with 5 iterations, initial

W0 (x) = 1−
√

2(1 + xe).

4.2.4 Azimuthal angle distribution

The azimuthal angle Φ is generated according to the distribution

dN

d2pT
=

dN

2πpTdpT

[
1 +

∞∑
n=1

2vn cos(n(Φ− Ψn))

]
. (63)

In this case, the rejection method can be used without a problem. Equation (63) depends

on cosine, whose range lies in the interval 〈−1, 1〉. We can even use the ’rectangle’ mentioned

in 4.1.2. Since angles are relevant only in the interval (0; 2π〉, we can generate any angle simply

by multiplying the uniformly distributed x by 2π. Hence, the ratio of rejected to accepted

numbers is acceptable, Na/Ng ' 0.43. Of course, this ration depends on the coefficients vn.

We used coefficients up to pentagonal flow: v1 = 0.1, v2 = 0.05, v3 = 0.03, v4 = 0.01 and

v5 = 0.005. Ψn is generated randomly for every event. An example of generated angles is in

the fig. 23. For the sake of illustration, we generated one event with 100000 particles, which
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Figure 23: Azimuthal angle Φ histogram according to eq. (63). Used coefficient are in the

table 1.

1 2 3 4 5
vn 0.1 0.05 0.03 0.01 0.005

Ψn [rad] 3.6349 0.414679 2.04821 5.03192 1.92727

Table 1: Azimuthal angle distribution coefficients

is clearly unrealistic, but provides sufficient statistics to show the features of the distribution.

For better illustration we include histogram in polar coordinates.

4.2.5 Analysis

We produced 5000 events, consisting of 5000 pions, using the methods described above.

For generating pT , we chose the lambert function, computing it as 10 iterations with ini-

tial W0 (x) = 1 −
√

2(1 + xe). We analyzed the data using cumulant method and event

plane method. The results from correlation method are very good. As mentioned in the

section 3.1.2, cumulant method is a good aproximation assuming small pT dependence,

negligible nonflow and constant flow fluctuations. Our program meets all of this require-
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ments. For elliptic flow, there were none negative v2
2. After root extracting, we obtained

v1 = (0.1002± 0.0001), v2 = 0.0496± 0.0001, v3 = 0.0299± 0.0002, v4 = 0.0098± 0.0002 and

v5 = 0.0048± 0.0003. The results are in the fig. 24. As can be seen, the results for v4 and v5

are not very precise. However, due to larger error, it meets our initial parameters.

Results from event plane method are not as good as from cumulant method. However,

as can be seen in fig. 25, modes of the results are close to the desired vn. This is probably

caused by the fact that we did not consider subevents, required for computing event plane

resolution <n, meaning our obtained vn stand for vobsn . Moreover, using pT as a weight in

eq. (38) is a good approximation up to 2 GeV and many of the simulated particles have higher

pT . Moreover, our pT and Φ distributions are not related. The results are suprisingly good

for v5 = 0.0051± 0.0001.

Worth emphasizing is the fact, that obtained directed and elliptic flows are integrated

flows: pT binning results in big statistical uncertanity, since there are not enough produced

particles.

4.3 Program documentation

The program is written in C++. It was written using Unix operating system. It consists

of five header files: nr3, taken from [23], as a source for the random number generator.

Generator itself is defined in generator.cpp. Toy model generator of azimuthal angle and

transverse momentum is stored in toymodel.cpp. Analysis takes place in list.cpp, in

list.h we defined one-way linked list and its basic operations. The main source is main.cpp.

Parameters can be set in the parameters.h. We define the maximum order of Fourier

decomposition Fn, applied both for analysis (analyses all vn up to Fn) and Monte Carlo part.

The output, however, has to be corrected manualy in corresponding functions. The reason

we did so is for simple constriction/extension of the program. We also set the parameter T

in eq. (59), denoted as TT . Furthermore, we define number of generated events (NoEvents)

and number of particles in one event (NoParticles). Moreover, the names of toy model

output, analysis input and output are required. Since we need to analyse vn for different
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Figure 24: Correlation method: v2
1 and v2

2 histogram from 5000 events for toy model produced

pions.
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Figure 25: Event plane method: v1 and v2 histogram from 5000 events for toy model produced

pions.
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particle species, parameter number decides about the type of particles. For future extension,

other numbers can be defined. However, we have to extend also the function id number

in list.cpp. Furthermore, there is parameter LOOP in toymodel.cpp, regarding several

testing functions.

We add makefile for simple compilation. After the launch of the program, user is required

to choose between angle and momentum generation, cumulant method analysis, event plane

method analysis or analysis by both methods. After choosing, control sequence is written,

confirming it by enter.

4.4 DRAGON

DRAGON is a Monte Carlo generator of the final state of hadrons emitted from an ultrarela-

tivistic nuclear collision. The name comes from DRoplet and hAdron GeneratOr for Nuclear

collisions. It is similar to THERMINATOR I and II, but it is extended by the emission

of fireball fragments. Those fragments may arise from bulk viscous force or from spinodal

decomposition. The computation of fragments is based on blast wave model and azimuthally

non-symmetric fireballs. It is written in C++, output is set to standard OSCAR1999 for-

mat, but there are many possibilities how to simply change it. In our case, the output was

number of event, id number of particle according to the standard particle identification [24],

transverse momentum and azimuthal angle. This particular input is required even for our

analysis program.

The probability of generating particle with momentum p for space time point x is given

by the emission function

S(x, p)d4x =
2s+ 1

(2π)3
mT cosh(y − n) exp

(
−p

µuµ
Tk

)
Θ(1− r̃(r, φ))H(η)δ(τ − τ0)dττdηrdrdφ ,

(64)

where s reflects spin degeneration, H(η) reflects space-time rapidity profile of the fireball.

We generated 5000 events with kinetic freeze-out temperature 0.09 GeV, chemical freeze-

out temperature 0.156 GeV. This parameters are motivated by LHC results for Pb-Pb
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collisions. We put zero baryo-chemical potential as well as strangeness potential. The

dN/dy was set as 1500. We stated the flow anisotropy parameter ρ2 as 0.1 and spatial

anisotropy parameter a as 0.95. These parameters define the space anisotropy. Assum-

ing flow velocity uµ = (cosh η cosh ηt, sinh ηt cosφb, sinh ηt sinφb, cosh ηt sinh η), we may write

ηt =
√

2ρ0r̃(1 + 2ρ2 cos(2φ)b), where r̃ =
√

r2 cos2 φ
R2

x
+ r2 sin2 φ

R2
y

. Using mean transverse radius of

the ellipsiodal fireball R, Rx = aR and Ry = R/a. This means that only elliptic flow is

present. Detailed description can be found in [1].

4.4.1 DRAGON results

4.4.1.1 Cumulant method

First, we computed the mean cos(n(ψi−ψj)). We decided to calculate integrated vn, because

of insufficient multiplicity: considering pT bining per 0.5 GeV, the obtained mean value was

smaller than its error.

Best results evince pions. As can be seen, directed flow is very small, final result v2
1 =

(48.1± 0.3)−6 and v2
2 = (2.94± 0.02)10−3, resulting in v2{2} = 0.0654± 0.0002. Results are

in the fig. 26. Interesting are the results for directed flow, DRAGON is desined without its

presence. We expect that non-zero v1 is caused by statistical fluctuations.

Since the number of produced kaons is bigger than for Λ baryons or protons, the ob-

tained results are less influenced by statistical errors. As can be seen in the fig. 27, final

v2
1 = (0.06± 0.01)10−3 and v2

2 = (3.54± 0.03)10−3, resulting in v2{2} = 0.0595± 0.0003

Final obtained integrated v2
1 and v2

2 for protons is in fig. 28. Final v2
1 = (6±3)10−5. More

promising results are those for v2
2. As can be seen in the figure, main contribution of elliptic

flow is around zero, some of it is even below zero. The final obtained v2
2 = (3.40± 0.09)10−3,

resulting in v2{2} = 0.0583± 0.0008.

Similar to protons, the multiplicity of Λ baryons is not sufficient enough to make any

conclusions from the data. Results are in the fig. 29. The final v2
1 = (0.2± 0.1)10−3 and

v2
2 = (3.7± 0.1)10−3, resulting in v2{2} = 0.0608± 0.0008.
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4.4.1.2 Event plane method

We also analyzed the same sample of data using the event plane method. First, we obtained

the mean cos(Ψn − φj), which is denoted as vobsn . Then, we calculated the mean of vobsn and

denoted is as vn: vn = 〈vobsn 〉. As well as in the case of analyzing our generated particles,

we should use the event plane resolution <n, however, obtaining subevents from DRAGON

would be too complex for our analysis. The results are v2 = 0.0307 ± 0.0007 for protons,

v2 = 0.0348±0.0009 for Λ, v2 = 0.0255±0.0005 for kaons and v2 = 0.0230±0.0004 for pions,

as can be seen from the figures 30, 31, 32 and 33, respectively.

4.4.1.3 Comparison of the results

As can be seen in the fig. 34, the results are very different from each other. As well as it can

be seen in the fig. 30, 31 and 32, it is probably caused by the inaccurate establishing of the

v2 from event plane method. Moreover, the nonflow or presence of the resonances may play

its role. The results from event plane method are approximately two times smaller than the

results from cumulant method. We suggest further studying of this phenomenon, for example

by using four-particle correlation method.
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Figure 26: Correlation method: v2
1 and v2

2 from 5000 events for pions.
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Figure 27: Correlation method: v2
1 and v2

2 from 5000 events for kaons.
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Figure 28: Correlation method: v2
1 and v2

2 from 5000 events for protons.
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Figure 29: Correlation method: v2
1 and v2

2 from 5000 events for Λ baryons.
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Figure 30: Event plane method method: v1 and v2 from 5000 events for pions.
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Figure 31: Event plane method method: v1 and v2 from 5000 events for kaons.
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Figure 32: Event plane method method: v1 and v2 from 5000 events for protons.
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Figure 33: Event plane method method: v1 and v2 from 5000 events for Λ baryons.
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4.4 DRAGON

Figure 34: Event plane and cumulant method v2 comparison.
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4 TOY MODEL

Conlusion

In this thesis, we introduced quark-gluon plasma, discussed its hydrodynamical properties

and the experimental evidence of its existence. We focused on collective flow, emphasizing

the elliptic flow. We described several methods of computing flows and we discussed some

of the difficulties one has to deal with during measuring and computing flows. We presented

several of our own results obtained with the help of a toy Monte Carlo model. We introduced

two methods of generating random numbers with desired distribution, compared it using the

example of pT and Φ distributions. Our analysis of the generated data agrees with the initial

parameters. Moreover, we analyzed data produced by DRAGON [1] and discussed these

results.
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