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Introduction

Learning machines have wide field of use. They are used in physics, medicine, biology,
economy, etc. Many different algorithms already exist for every possible problem such as
optimisation, regression or classification. Algorithms that can deal with huge number of
dimensions are required in biomedicine and learning algorithms for prediction of markets
are often used in economy. This paper is focused on utilisation for plasma physics. In
plasma physics, particularly in tokamak,learning algorithms are used for long time because
physicists have to deal with huge amount of data to process. The learning algorithms
can help in postprocessing to identify interesting events or classify data according some
criterions. During the postprocessing phase it is possible to use ability of the algorithms
to learn from new data and thus improve classification or regression.

Next great advantage of some learning machine algorithms is fast predictive phase. Thanks
to this property, learning machines can be used for real-time systems, for example real-
time tomography [1], real-time L-H mode transition detection [2, 3], real-time plasma
disruptions detection [4]. Advantage of learning machines is faster processing compared
the regular analysis like the tomography. On the other hand, learning machines are not
able to reliably extrapolate the training data and thus if observed problem is significantly
different from the training data, the prediction can be useless.

This paper is mainly focused on the postprocessing phase and massive data analyses. Two
databases will be used as the data source: database of breakdowns on tokamak GOLEM
and database of disruptions on tokamak JET. Both databases are approximately similar
in number of samples and number of variables. The main difference is that GOLEM clas-
sification is binary and JET classification is multiclass. The aim was to add probabilities
to the databases and predictions. This can be used to identify outliers and also probabil-
ity prediction of individual phenomena in plasma could be used as input for some more
advanced methods such as Bayesian networks.
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Chapter 1

Learning Algorithms Background

1.1 Basic Properties of Learning Machines

Before introducing various algorithms, it is necessary to define some of the key differences
among them. The number of different learning machines is huge and only some groups
are used in this paper:

• Regression, Classification: If the data labels can take values only from a small set
than the goal of machine learning is to predict which group the data belong to. On
contrary, in case of continuous labels the aim is to perform regression. However, this
two cases are basically very similar and some learning algoriths can do both.

• Supervised, unsupervised, semisupervised: If learning machines are trained on data
labelled by expert, then it is called supervised learning. If the data are not labeled
then it is called unsupervised learning. The unsupervised learning algorithms can for
example detect separated groups or can be used for detection of outliers if there is
only one group. However, the unsupervised learning is commonly much less reliable
then the supervised. It is possible to use a combination so-called semisupervised
learning, where some data are labelled by expert and some data are unlabeled.
The unlabeled values are classificated according to the labelled data. Finally, newly
labeled data are used to following learning.

• Online or offline learning: Online learning means that each newly predicted value is
used to improve model. On the other hand, offline learning means that only one set
of training points is used and once the algorithm is trained then the model is used
only for predictions. Usually, the sparse models are faster for prediction however
there are usually slow in learning while dense models, i.e Nearest neighbours, are
fast in learning and thus can be used for online learning but are slow in prediction.
Only offline learning is used for purposes of this work.

• Generative or discriminative models: Discriminative models are usually better for
data classification, because they focus mainly on the features that distinguish the
groups. On contrary, generative models are focused on the main characteristics of
the datasets and are able to generate new data points with the same properties as
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the original set. Generative models are usually easier and thus faster to fit and they
can be trained for each class separately. The advantage of the discriminative models
is easy possibility to use different preprocessing of the input vector φ(x) [5] (sec.
1.3).

• Fully observed or partially observed: Partialy observed means that the training data
have unknown variables in some dimensions. The training on partially observed data
is much more problematic. Generally, it can be done only for generative models,
where the missing values are replaced by the most probable ones. However, also the
discriminative models ware trained on partially observed data [6].

1.2 Probabilistic Learning

This section introduces basic methods of probabilistic learning that will be used in this
work. In this secion were used sources [7, 8, 9, 10, 11, 12]

Learning machines, used in this paper, belongs to the group of supervised learning. The
input vectors are denoted xi and the observed values are denoted ti .

The regression function that assign ti to xi can be arbitrary but because of computation
reasons a combination of non-linear functions is usually searched

y(x,w) =
M∑

m=1
wmφm(x) = wT φ (1.2.1)

The parameterised function consists of sum of non-linear basis functions φ(x) and the
parameters of model wm are generally called weights. The assumptions of this form gives
enough flexibility and allows to use many optimisation algorithms described in this paper.

Learning machines that are based on probability classification usually use a few common
approaches to learn their parameters from data.

Prevalent approach is maximum-likelihood (ML). The goal of the ML is to identify the
most probable parameters. This is also often called frequentist model. If the model is
defined as conditional probability distribution (CPD) than it can be written as P (y|Θ) =∏N

i=1 P (ym|Θ), where ym are the observed values and Θ are computed parameters. The
goal is to maximize the probability of the model

Θ̂ML = arg max
Θ

(P (y|Θ))

the log-likelihood for the observed data is

Θ̂ML = arg max
Θ

N∑
m=1

logP (ym|Θ) (1.2.2)

ML is widely used because of simple computation and also often an analytical solution
exists. For example, the least squares method is the analytical solution for Gaussian
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distribution. The minimised error E for least-squares (ML) solution of regression is

E = 1
2

N∑
n=1

[
tn −

M∑
m=1

wmφm(xn)
]2

(1.2.3)

If Φ is defined as Φmn = φm(xn) then the maximum likelihood wML is

wML = (ΦT Φ)−1ΦT t (1.2.4)

The maximum likelihood has many interesting asymptotic properties for large number of
samples. For example consistency: if the number of samples tends to infinity then the ML
probability converges to the true value.

Disadvantages are problems for low number of samples or high number of free parameters.
In this case, the ML can reach overfitting [9]. This can be mitigated by a minor change
in the eq. (1.2.2) to include a prior belief P (Θ) on the parameters

Θ̂MAP = arg max
Θ

P (y|Θ)P (Θ) = arg max
Θ

(logP (y|Θ) + logP (Θ)) (1.2.5)

This is called maximum a posteriori MAP solution. This assumption can avoid the over-
fitting, on the other hand, it can introduce new problems through the apriori information.

Again, for Gaussian distribution and Gaussian prior, the ML has an analytical solution. If
the expected noise is Gaussian with variance σ2 and the prior distribution over parameters
w is

p(w|λ) = N (0, λ−1I) =
M∏

m=1

(
λ

2π

)1/2

exp
(
−λw2

m/2
)

(1.2.6)

then the MAP solution of least squares method is

wMAP = (ΦT Φ + σ2λI)−1ΦT t (1.2.7)

where constant λ is called ridge regression parameter. This parameter must be selected
according to some other knowledge, for example cross-validation, see Section 3.1.

However, MAP is still only a small step toward the full Bayesian probability. If the proba-
bility distribution over parameters and noise in data is Gaussiam as in the MAP solution,
it is theoretically possible to integrate out (marginalise over) the unknown parameters
w, λ, σ and obtain posterior distribution from Bayes’ rule

posterior = likelihood× prior
normalisation (1.2.8)

Distribution over parameters w is

p(w|t,x, λ, σ2) = p(t|w,x, λ, σ2)p(w|λ)∫
p(t|w,x, λ, σ2)p(w|λ)dw

(1.2.9)
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p(w|λ) = N (0, λ−1I) (1.2.10)

then the final analytical solution of the posterior for the Gaussian example is [10]

p(w|t, λ, σ2) = N (µ,Σ) (1.2.11)

where the mean µ and covariance matrix Σ denote

µ = (ΦT Φ + λσ2I)−1ΦT t (1.2.12)
Σ = σ2(ΦT Φ + λσ2I)−1 (1.2.13)

It is obvious that the mean value is identical to the MAP solution because the prior over
weights have no bias. The advantage is the knowlenge of the whole posterior distribution
over weights w. Moreover, it is possible to apply the Bayesian rule (1.2.8) and the posterior
prediction distribution can be obtained directly. This is important because usually the
new predictions are the expected result

p(t∗n|x, λ, σ2) =
∫
p(t∗n|w,x, σ2)p(w|λ)dw (1.2.14)

The prediction (1.2.14) is independ of the training data because the distribution p(t∗n|w,x, σ2)
already includes the information. Solution of the previous equation can be again found in
closed-form. After marginalisation the distribution over the weights w the final prediction
1.2.14 is independent of the weight vector w and also the predicted value is known with
its probability distribution.

One problem of the previous derivation is the assumption of the Gaussian distribution of
the values tn around the true function. It is not possible to find an analytical solution for
other distributions. Thus it cannot be used for classification, see Section 2.2, it is only
used for regression.

The previous equation can be also used to predict distribution over the model parameters

p(w, λ, σ|t) = p(t|w, σ)p(w|λ)p(σ2)∫
p(t|w, σ)p(w|λ)p(σ2)dwdλdσ2

but this equation usually cannot be solved analytically even for Gaussian distrubution.
However, numerical integration can be used, i.e the Monte-Carlo method [10].

1.3 Kernel Based Methods

Before introducing some important machine learning algorithms, it is necessary to mention
so called kernel trick. The basic principle of the data classification is separation of two
groups by a hyperplane. When the hyperplane is known then the classification is done by
a simple substitution inputs x into the formula of the trained hyperplane

10



y(x) = wT φ(x) + b (1.3.1)

where y(x) is the distance from the hyperplane, w is the normal vector of the hyperplane,
φ(x) is a non-linear regular feature space mapping. The classification dependends on the
sign of eq. (1.3.1).

This is the basic principle of all methods used in this paper, i.e Support vector machine,
Relevant vector machine, Logistic sigmoid regression, Neural networks and many others.
However, there exists a way how to improve this approach, if the training data points, or
some subset of them, is used also in the prediction phase, then these data points are called
support vectors and each of the support vectors are centers of kernel functions. This can
be done only if the learning machine model (1.3.1) can be estimated in dual representation
also called method of potentials:

k(x,x′) = φ(x)T φ(x′) (1.3.2)

This kernel is a scalar product and in the simplest case of mapping φ(x) = x the result is
kernel k(x,x′) = xT x called linear kernel. The idea of the kernel methods is simple. If the
learning method can be estimated using the scalar product kernel 1.3.2, then the scalar
kernel can be replaced by some different type of kernel. Some basic types of kernels are
in thr following table

k(x,x′) = xTx′ Linear kernel (1.3.3)
k(x,x′) = (xTx′ + 1)M Polynomial kernel of M degree (1.3.4)
k(x,x′) = exp(‖x− x′‖2/2σ2) Gaussian kernel (1.3.5)

The purpose of the kernel is to estimate the similarity of vectors x,x′.

The linear kernel is a basic example of usage of the kernel method. Suppose that the
normal vector w from eq. (1.3.1) can be expressed as a linear combination of a subset
from training points w = ∑n

i=1 αixi
T , then

y(x) =
n∑

i=1
αixi

T x + b

with non-linear mapping φ(x) it can be rewritten

y(x) =
n∑

i=1
αiφ(xi)T φ(x) + b

and finally after the kernel substitution

y(x) =
n∑

i=1
αik(x,xi) + b
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Figure 1.1: Difference between linear kernel (left) and RBF kernel (right). Prediction was
done by Support vector machine algorithm. Points in circles are support vectors, both
methods use the same dataset.

Advantage of the kernels is possibility to use of more general shapes of border (fig. 1.1)
compared to nonkernel methods without significant increase of computational complexity
[9]. Disadvantage is that there is no analytical equation of the border except the case of
the linear kernel. The knowledge of the normal (weight) vector w of the linear hyperplane
can be used to determine dependence of the model on different features, assuming that
values in different dimensions were properly normalised (see Section3.4).

The next challenge is to choose the kernel suitable for the training data. The choice of the
kernel and its parameters is often more important than the choice of the learning machine
algorithm (see fig. 1.1). Typically, it is recommended [13] to use the linear kernel first.
It usually gives the most stable results and has no kernel parameters to be tuned. The
next advantage is more stable classification in high dimensional space when the number of
samples is comparable with the number of dimensions. Gaussian and polynomial kernels
are more flexible; on the other hand, the flexibility can lead to overfitting. If the number
of dimensions is low and number of samples is much higher than dimension, then the
Gaussian kernel is usually used. But it is necessary to determine the correct kernel pa-
rameter σ that corresponds to the size of the kernel. Usually, cross-validation introduced
in the next section is used.
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Chapter 2

Learning Machines

This work is mainly focused on the classification models that can also give the prediction
probability conditioned on the observed data. The knowledge of the probability can help
to determine incorrect values in the database (outliers) or can be used as feeding data
for more advanced methods such as Bayesian networks that can connect many different
prediction sources together and get some new information from the database.

The problem of probability predicting is ill-conditionality of this problem. Therefore,
outliers and noise in the learning data can significantly influent the probability in case of
small learning dataset.

2.1 Logistic Regression

Logistic regression is a simple classification method based on data regression by a logistic
sigmoid. It is basically a transformed ordinary linear regression

y(x,w) = σ

(
M∑

m=1
wmφm(x)

)
(2.1.1)

The only difference is transformation of output by sigmoid function σ(x) = 1/(1+exp(x)).
The reason for sigmoid shape can be obtained from Bayesian theorem for class C1

p(C1|x) = p(x|C1)p(C1)
p(x|C1)p(C1) + p(x|C2)p(C2)

where C1, C2 are classes of data, after substitution

a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

the probability can be rewritten

p(C1|x) = 1
1 + exp(a) = σ(a)
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for multiclass model, the probability can be written as

p(Ck|x) = p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

= exp(ak)∑
j exp(aj)

where ak = ln(p(x|Ck)p(Ck)). This function is called softmax function.

The logistic regression searches probability of class C1 in shape

p(C1|x) = y(φ(x)) = σ(wT φ(x))

This principle is not used only for transformation of linear regression, it is used frequently
used for transformation regression problem to classification. The same principle can be
used, i.e. Neural networks or Relevance vector machines.
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Figure 2.1: Logistic regression in 1D classification. Black points are training data, red
points are predicted probability. Y-axe corresponds to probability.
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Figure 2.2: Logistic regression in 1D classification using full Bayesian approach. Black
points are learning data, red points are predicted probability with blue errorbars. Y-axe
corresponds to probability.
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The joint probability of the observed data for labels t ∈ {0, 1} and outputs are yn =
σ(wT φ(xn)) can be estimated as

p(t|w) =
N∏

n=1
ytn

n (1− yn)1−tn

This “regression” problem (fig. 2.1) can be optimalised directly via maximum likelihood
with iterative reweighted least squares [9, 12]. Disadvantages of this direct approach is
possible overfitting if the data sets are linearly separable. In this case, the sigmoid gets
infinitely steep in feature space. This can be prevented by adding some apriori assumption
and finding the MAP solution. And the next problem is that it is originally nonkernel
method.

The overfitting problem can be solved under assumption of a prior Gaussian distribution
over weights w

p(w) = N (0, λ−1I)

The problem can be transformed to a standard optimisation MAP problem similar to the
ridge regression in eq. (1.2.5).

In case that it is needed to use kernel, it is possible to define output y similarly to SVM
machines (sec. 2.3)

y(x) =
N∑

n=1
wnk(x,xn) + b

The output of the logistic regression is probability that the observed data x are in class
Ck : p(x|Ck), but it is even possible to obtain precision of this prediction (fig. 2.2) if
Bayesian rule and Laplace approximation of probability distribution is used. More details
can be found in [9, 12].

2.1.1 Regularisation Methods for Logistic Regression

The loss function penalizing different values of model parameters w is used in two basic
versions, so called L1-regularisation and L2-regularisation. These regularisers can be used
generally but in this paper are used only for Logistic regression.

• L2-regularisation are ordinary least squares with assumption that distribution over
parameters w is Gaussian N (0, λ−1I). The L2-regulariser was already used in the
introduction Section 1.2

L(w) = 1
N

N∑
i=1

(yi − σ(wT xi))2 + λ‖w‖2
2

• L1-regularisation is basically similar, only there is L1-norm for model parameters
w.
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L(w) = 1
N

N∑
i=1

(yi − σ(wT φ(xi)))2 + λ‖w‖1

This model has an important property. If λ is sufficiently large, some of the param-
eters gets equal to zero and it leads to a sparse model very similar to the Relevance
vector machine called Sparse logistic regression [12].

2.2 Relevance Vector Machine – RVM

Relevance vector machine is a probabilistic algorithm based on Bayesian rule. It was de-
veloped [7] to reach advantages of Support vector machine (Section 2.3) such as sparse
model, kernels and to remove disadvantages like no native probability output and addi-
tional model parameters C or ν. Another advantage is that the model is usually much
sparser than SVM model and thus the prediction can be faster (fig. 2.4)

RVM for data regression is basically derivated in Section 1.2, the main different to the
logistic sigmoid are hyperparameters λi for each of the weight parameters wi instead of
single λ. The final marginal likelihood (evidence)

p(t∗n|t,x,λ, σ2) =
∫
p(t∗n|w,x, σ2)p(w|λ)dw (2.2.1)

Now, only the hyperparameters λi and σ2 must be determined. It can be obtained from
the type II maximum likelihood method eq. (3.2). Complete derivation is in [10]. The most
important property of RVM is that some parameters λi are almost infinitely peaked at
zero and thus corresponding kernels can be removed. This is called ARD prior – Automatic
Relevance Determination and it results to a very sparse model. The remaining vectors are
called Relevance vectors .

In this paper, the implementation of RVM in MatLab was used – SparseBayes 2.0 [11]
with a few speed improvements based on usage of sparse matrices.

2.3 Support Vector Machine – SVM

Support Vector Machine is a simple pattern recognition (classification) kernel based
method introduced by Vapnik [14]. SVM is based on searching a hyperplane that sep-
arates two groups of data points. The SVM is kernel based methodsearched bordering
hyperplane should separate the data and the data with the highest distance from the
hyperplane (border). The SVM is kernel based method so the border between the groups
can be very flexible with non-linear mapping of the hyperplane to the feature space but it
is not probabilistic method. But it is possible to add a guess of the prediction probability
[9, 15, 16]. This will be discussed later in the Section 2.3.1.

Maximisation of the distance from the border can be reformulated to maximisation of
term 1/‖w‖ which is equivalent to minimizing ‖w‖2. It results to following constrained
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quadratic optimisation problem

min
w

1
2‖w‖

2 (2.3.1)

with constrains
yi(wT xi + b) ≥ 1 i = 1, ..., N (2.3.2)

It can be improved to allow data points to exceed the border with some penalty. This
principe is called soft margins. New variables ξi must be introduced to measure this
overlapping. And C is constants that controls the trade-off between data overlapping the
border penalty and size of margin.

min
w

1
2‖w‖

2 + C
N∑

i=1
ξi (2.3.3)

with constrains
yi(wT xi + b) ≥ 1− ξi i = 1, ..., N, ξi ≥ 0 (2.3.4)

These equations can be optimised directly but if the kernel representation of this equation
used, the equation must be transformed to its dual representation. The final optimized
equation is

L(a) =
N∑

n=1
an −

1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm)

where L is minimised Lagrangian, an are searched dual parameters, tn are target values
normalised to set {−1; 1}, input vectors xn and k(xn,xm) is value of kernel. Lagrangian
L is minimised with respect to transformed constrains

0 ≤ an ≤ Cn

N∑
n=1

antn = 0

The prediction output of the SVM algorithm is proportional to the distance from the
border

y(x) =
N∑

n=1
antnk(xn,x)

Only vectors xn with nonzero parameters an are used for prediction and these vectors are
called support vectors. Support vectors are always point at the border or exceeding the
border. The rest of the points is ignored after the learning phase, therefore it leads to a
sparse model.

SVM algorithm is not based on a probabilistic model, therefore the only known informa-
tion about uncertainty of prediction is the distance from the hyperplane. But the distance
is normalised to be one for the support vector laying on the border. Hence, the absolute
value of distance from the border does not directly correspond to the uncertainty of the
prediction.
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2.3.1 Different Precision of Data Points

The original version of SVM algorithm expects that all points and also all classes have
the same weight or precision. However, in practice it is not often satisfied.

Often it is needed to train algorithm with data where each group has significantly different
number of members. In this case, the learning machine can completely ignore the smaller
group. It is possible to choose different weights Ci eq. (2.3.3) for each class to prevent
this issue. The weight can be selected as inverse number of data points in classes. The
result is usually worse total classification score but better scores for the smaller group.
Disadvantage can be also worse convergence of SVM algorithm (LinearSVM)

Another common problem is different precisions (errorbars) for each data point. The
easiest solution is to use different weights Ci but now Ci must be different for each point.
The weights can be selected as inverse points precision.

The main advantage of this solution is the fact that the weighting is fully supported
by the LIBSVM library. On contrary, disadvantage is that the algorithm ignores space
distribution of each data point with errorbars. It is not able to use the information about
the space distribution from the errorbars about uncertainty of position of the given point.

The best solution of this problem is usage of the original data from which the errorbars
were obtained. The SVM algorithm can process all the data and get more realistic results.

If the original data cannot be used, for example, they are not accessible or only precision
of the diagnostics is known, another way can be used. Every data point with errobar can
be replaced by a set of artificial points with random Gaussian distribution. Then of each
the Gaussians corresponds to position original point and variance is set according to the
known errorbars. For high number of the artificial data, the properties converge to the
expected behaviour. As the result, the border will correctly reflect the data with errorbar.
Disadvantage of this approach is increased number of training points for SVM algorithm
and therefore decreasing solving speed.

2.3.2 Confidence Region

The main problem connected to probability estimation is determining confidence interval
around border where the prediction of target value can be done with certain probability.
In case of linear kernel, the exact equation of the bordering hyperplane can be found. In
case of other kernels, border can be estimated by appropriate root searching algorithm.

The confidency intervals cannot be solved by SVM algorithm itself but in [15] was proposed
method of fitting the outputs of trained SVM with the logistic sigmoid

p(x|C1) = σ(Ay(x) +B)

where y(x) is distance from border (output of trained SVM algorithm) and values of
parameters A,B are found by cross-entropy. Data used for fitting sigmoid should be in-
dependent of the data used for learning in order to avoid severe overfitting. Advantage
is that this algorithm is already implemented in LIBSVM. LIBSVM uses 5-fold crossval-
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idation [16] instead of new independent data to train the sigmoid, therefore probability
prediction should not be used inside another cross-validation because it significantly delay
the training phase. Moreover, SVM is not designed to estimate probability, therefore the
results can be poor [9].

If is known probability estimations, it is easy to identify points, where the confidence of
prediction is lower than 95%. The result for different size of errorbars is in figures 2.3,
2.4,2.5.
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Figure 2.3: Border and probability distribution of data for binary classification. The orig-
inal data were generated separable by border x = 0 and around each point was added
artifical points with Gaussian distribution with variance σ2 = 1.
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Figure 2.4: Border and probability distribution of data for binary classification. The orig-
inal data were generated separable by border x = 0 and around each point was added
artifical points with Gaussian distribution with variance σ2 = 0.01.

Figure 2.5: Border and probability distribution of data for binary classification. The orig-
inal data were generated separable by border x = 0 and around each point was added
artifical points with Gaussian distribution with variance σ2 = 1. Distance between groups
is 6.
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2.4 Testing

Some important algorithms described in previous text are compared on the following
figures. It is important to note a few things. The first, all the predictions are very similar.
It is not so expectable, because the principe of all algorithms is quite different, first two
models are dense (logreg-Bayes, logreg-l2), the rest are sparse, the first (logreg-Bayes) and
the fourth (RVM) use full Bayesian probability, and finally the SVM maximize distance
border instead of some probability fitting. Also, if you compare size of the kernel for
different algorithms, it oscillates from 0.05 to 1.3. And even quite small change in the
cross-validation (see Section 3.1) parameters significantly changes resulting probability
although classification rate stays almost the same.

Testing data were loaded from http://research.microsoft.com/~cmbishop/PRML/webdatasets/
datasets.htm. Data were generated from a mixture of 2 Gaussians. Points in cicles are
support vectors.
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Example of predictions with different learning machines and output of CV.
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Chapter 3

Model Selection

The direct approach to model selection would be to choose the model that gives the best
classification rate on training data according to some loss function. Unfortunately, this
approach does not work, since the most complex model is always choosen, for example
polynomial of the highest degree in regression. This solution has low predictive value and
it is called overfitting. There exist two ways to avoid this problem: the Bayesian way and
the non-Bayesian way.

3.1 Cross-Validation – CV

Crossvalidation (CV) is a non-Bayesian (frequentist) statistical method to avoid overfit-
ting caused by choice of model parameters [17]. The aim of crossvalidation is to generalise
estimated results for an independent data set. Bayesian methods should be able to choose
the model parameters automatically [7]. However, it is valid only for regression (see Sec-
tion 1.2), not for classification. So even for Bayesian methods the kernel parameters are
determined by CV. Also the choice of the correct kernel is either based on some apriori
knowledge or the kernel with best results in CV is used.

A common way to perform CV is to use a grid search in Np-dimensional space for Np

parameters that gives the best prediction. Instead of grid search minimum searching
algorithms can be used but they have problems with local minimums and also the grid
can be easily parallelised to increase speed.

The training data are randomly separated to N fold, usually to 5-fold [12], N−1 folds are
used for training and the last one is used for testing, but many different types of CV exists.
The training process is repeated N-times for different combinations of learning/testing
folds. The result of the CV is the mean classification score for given parameters. It is
possible to use even the knowledge of the variance of the CV mean. So called “S1-rule”
[12] can be used in case of flat bottom (fig 3.1) of the loss function. According to the
S1-rule the best parameter is chosen from the set of parameters, whose score is better
than best score minus one sigma with some apriori knowledge. For example the largest
kernel can be preferred. The parameters from the grid that have the best mean score (or
the best S1-rule) are finally selected.
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The problem of CV is that it is a non-probabilistic (non Bayesian) method and all learning
machines compute probability of predicted data under the assumption that the used kernel
parameter is correct. Thus the probability prediction can be significantly different for
different kernels and their parameters.

In this paper the used apriori knowledge for S1-rule is that larger Gaussian kernel size σ
usually means less complex model. This knowledge usually leads to more reliable predic-
tions.

The second problem of CV is connected to the way how the CV score is computed. So
called loss functions are used to rate success of the models. A common way is to use a
zero-one loss function that returns number of misfited points

L = 1
N

∑
yi 6=ỹi

1

where ỹi is the predicted value and yi is the expected value. If the sizes of classified groups
are not similar, it is better to normalise the loss function in order to prefer the smaller
group

L =
∑
i∈Y

N∑
j=1

yij 6= ỹij

Ni

The problem of this loss function is that it gives no importance to the probability predic-
tion so the results can prefer all prediction near to 50% (binary classification – fig. 3.3).
A better result gives function that penalises predictions according to their probability:

L =
∑

yi 6=ỹi

P (xi|C1) +
∑

yi=ỹi

(1− P (xi|C1)) (3.1.1)

where P (xi|C1) is conditional probablility that data point xi belongs to the first group in
case of binary classsification. This loss function also gives less flat shape of the CV curve
compared to the standard zero-one loss function (fig. 3.1)

3.2 Bayesian Model Selection

The cross-validation has several major drawbacks. The first and the most obvious is the
necessarity to repeat the model training many times to find the best parameters, moreover
the number of points in the grid grows exponentially with number of parameters. The
usage of the grid also implies that the searched parameters are discredited to a finite
number of values. Another problem of CV is estimation of the uncertainty in the selected
parameters. It means that probability given by learning machines is based on assumption
that parameters learned by CV are the only correct values.

A better approach is to use the Bayesian rule (1.2.8) and integrate out model parameters
Θ as is shown in Section 1.2. The total probability p(y|y0, Ck) that vector x is in class Ck
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1. Best values are signed by blue circle.

25



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Method:logreg−L2 Corr=78.0% Par(1):14.38 Par(2):3.36

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Method:logreg−L2 Corr=77.5% Par(1):0.78 Par(2):0.78

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.3: Difference of prediction for optimal parameters selected according zero-one loss
function (left) and loss function based on probability (right). The prediction was done by
L2 Logistic regression.

if y0 are labelled training data, is generally

p(y|y0, Ck) =
∫
p(y|Θ)p(Θ|y0, Ck)dΘ

The term p(y|y0, Ck) is marginal likelihood or sometimes also called evidence for class Ck.

The probability over searched parameters can be estimated directly from Bayes rule

p(Θ|y0, Ck) = p(y|Θ)p(Θ|y0, Ck)∫
p(y|Θ)p(Θ|y0, Ck)dΘ

or it is possible to numerically optimise the likelihood p(Θ|y0, Ck).

In case that distribution p(Θ|y0, Ck) can be solved analytically over some set of parameters
Θi while for other parameters, for example kernel size σ, it cannot be directly solved, then
it is possible to approximate σ by its ML value and use only distribution over the rest
of parameters. This approach is called type-II maximum likelihood approximation and is
used for RVM regression [10].

The great advantage of the Bayesian method is the possibility to integrate out the model
parameters w and thus automatically avoid overfitting. It follows the principle of Occam’s
razor.

3.3 Dimension Reduction

It is important to note that even a lot of data do not guarantee that the overfitting
will be avoided. The amount of the data must be measured relatively to the number
of free parameters in the model. Usually the number of free parameters grows with the
dimensionality of the problem and also with the choice of the kernel. The Gaussian kernel
(RBF) is very flexible therefore it provides a huge number of free parameters. The linear
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kernel is less flexible but still, in case of high dimensionality or insufficiency of data,
it can reach overfitting. Another advantage of dimension reduction is possible better
understanding of the physical context if only the most important variables are selected.

One way, how to avoid overfitting, is to use linear kernel and decrease dimensionality of
the problem only to the most significant dimensions (properties of the problem). The only
issue is to find the most relevant properties.

It is possible to perform “pruning” from an apriori knowledge or via learning machines.
Many different algorithms were developed to provide some feature ranking and elimination
[18].

A basic way is to use a single variable classifier and thus to classify individual predictive
power of each dimension separately and choose dimensions with the best score. This
method is called univariate feature selection. It statistically rank differences in distribution
using ANOVA filter1 and identifies the most relevant dimensions; the results are similar to
the linear separation [19, 20]. Advantage of this attitude is good theoretical background,
on the other hand, this can work only for special cases when the data are easily separable.

A bit more advanced method is to separate data by a linear hyperplane. In case that
the data are correctly normalised then dimensions with lower absolute weight w are
less relevant for the linear separation. This can be used to remove the least successful
dimensions. Disadvantage is the expectation of linear separability. Advantage is quite fast
selection compared to i.e. wrapppers described in following text.

Some learning methods can be improved to automaticly remove some dimensions, if l0-
norm or l1-norm of weights w is used in the MAP solution. The l0-norm prefers low number
of non-zero weights. The number of variables (Np = ‖w‖0) can be added as next regu-
larisation term to the optimised error size. But it needs changes in the learning machine
algorithm. In paper [21] a simple method was proposed to solve l0-norm approximately
for the SVM algorithm. The process is the following:

1. Train linear SVM

2. Rescale the input data with their weights w

3. Repeat until convergence

This procedure prunes variables approximately similary to the l0-norm. Although, some-
times is enough to use only l1-norm for example in the L1 logistic regression (Section
2.1).

3.3.1 Wrappers

Wrappers denotes class of powerful method for features elimination regardless the used
learning algorithm. Wrappers are algorithms searching the optimal set of variables in
feature space and propose different combinations of variables according to some loss func-
tion. This loss functions is usually some learning machine algorithm that is trained on the

1Basic statistical analysis of variance
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data proposed by the wrapper and returns a number corresponding to the mean loss of
the testing phase. The learning algorithm is used only as a black box and thus it is easy
to implement such wrapper for many different learning machine algorithms. Therefore,
wrappers use the predictive performance of the learning machines or other ranking algo-
rithms such as ANOVA filter and only need to know how to interpret the result and how
to search in space of all possible subsets of variables. The problem is that checking all
subsets combinations is NP-hard2. For larger datasets it cannot be solved by a brute-force
method and thus many strategies were developed [19]. For example genetic algorithms can
be used [22].

However, usually forward selection and backward elimination algorithms are used. The
basic principle of the forward selection is selection of feature according to their predictive
power. Only the most important features are added to the training subset. On contrary,
the backward elimination algorithm starts with all features and removes dimensions with
the smallest additional information. Advantage of the backward elimination is better resis-
tance to the variable correlation, on the other hand this algorithm is more computationally
demanding.

These algorithms can search in possible subsets of variables, but it is also possible to rank
each dimension (variable) separately according their influence to the total classification
score and, again, remove only the least significant.

Great advantage of the wrappers is their universality and also, compared to the previous
methods, possibility to deal with non-linear feature dependencies if they are supported
by the used learning machine and also easy possibility to handle multi-class problem.
Disadvantage is generally higher demand on the computing power.

3.3.2 Embedded Methods

Some methods have built-in selection of the most relevant features. One example is de-
cision trees algorithm – CART (Classification And Regression Tree). Tree methods need
to decide which feature split the data best and sort layers in the tree according to this.
Disadvantage of the CART method is that it searches only classification performance
separately for each dimension.

3.3.3 Model Validation

The last step of variable elimination is to check if the number of selected dimensions is
optimal or more dimensions should be removed. If pruning leads to better predictive re-
sults (classification score) then the algorithm can continue. But even if pruning decrease
predictive accuracy it still can improve generalisation of the predictions and remove over-
fitting.

One way is to repeatedly randomly permutate labels of the data and perform classification.
The statistical p-value of the original classification is equal to percentage of random
permutations that have higher classification score then the score of the original data. The

2the complexity is higher than polynomial
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Figure 3.4: Histogram of relevance determination using random permutations of labels

final p-value should be almost zero (fig. 3.4) This approach can give only the upper limit
for the number of dimensions and also it can be used only for smaller data sets because
of high demand on computing performance.

The classification success also must be compared relatively to random selection. It means
that classification score 60% for binary classification is worse than 60% for ten classes
classification.

The next problem that must be considered is correlation between dimensions. It is possible
that two dimensions can have good predictive power but the information they add to the
system is redundant. Some feature selection algorithms can choose both these dimensions
although it do not improve total prediction power.

One way to solve this is to use correlation analysis to detect these redundant dimensions.
The second way is to use another elimination algorithm for example the recursive feature
elimination that should completely ignore this problem.

Another interesting method of model validation uses artificial “fake” dimensions with
random Gaussian noise. These dimensions in the training data set are used as a probe.
If weight of some “real” variable is lower or similar to weights of the probes then this
dimension can be removed. This method can be futher improved if random permutation
of a real variable is used as fake variable instead of a Gaussian noise.

3.4 Scaling

Kernel learning algorithms are not generally independent of scaling and translation. Some
kernels are invariant to translation, i.e. k(x, x′) = c(x− x′), some kernels depend only on
the magnitude (e.g. radial basis functions – RBF). Linear kernel is not invariant to the
translation or scaling, but the prediction stays the same, if all dimensions are scaled or
shifted with the same number. RBF kernel is invariant to a translation and also scaling
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in case that σ is scaled too as denoted in this equation:

k(ax + b, ax′ + b) = exp(−a2‖x− x′‖2/σ2)

The size of kernel is the only element that depends directly on the scale of inputs x, the
rest of SVM algorithm is independent. This is true only if the scaling constant a is the
same for all dimensions.

It is commonly recommended [9] to rescale data to be more similar in all dimensions.
However, it is important to normalise the training and the testing data with the same
number. Either normalisation in form (xi−max(x))/(max(x)−min(x)) or normalisation
to reach zero mean and standard deviation equal one is usually used used. Latter nor-
malisation is more robust to outliers. In order to completely avoid to outliers problem
it is possible to use robust statistics and median instead if mean and median absolute
deviation instead of standard deviation. The final normalisation would be

X̃k = Xk −mediani(Xi)
mediani(‖Xi −medianj(Xj)‖)

(3.4.1)

If the data have errorbars, it is necessary to scale them too. The purpose of the scaling for
linear kernel is mainly to reach the same importance for all dimensions. On contrary, for
RBF kernel the aim is to achieve similar distance between data points in all dimensions.

The normalisation of the data to unit vectors reduces dimensionality by one since the data
are projected on the unit sphere. This can cause problem in analyses of low dimensional
data.

3.5 Data Preprocessing

Creating good data representation is the art of the learning machines. All learning ma-
chines algorithms described in this paper expects properties as amplitude, therefore all
features must be converted to the intensity. It is also possible to include an apriori knowl-
endge to the feature extraction, i.e. exctract frequency via wavelets transformation, size
of derivation, variation of data or many others features. Also removing outliers from data
and performing data smoothing in case of time depence data can improve the prediction.

It is also possible to use some generic feature extraction methods such as clustering or
singular value decomposition to increase orthogonality of the data.
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Chapter 4

Results

All learning machines described in previous sections were applied on data set based on
database of shots from tokamak Golem but some algorithms for feature elimination were
used only for SVM.

4.1 GOLEM database

The Golem database is used to determine probability of breakdown from parameters that
were set up before the shot. These parameters are

Shortcut Description Range
H2 Enabled H2 filling 0,1
Ub charge of capacitors of magnetic field 0-800 V
Ucd charge of capacitors of current drive 0-1200 V
Ubd charge of capacitors of breakdown field 0-500 V
Ust charge of capacitors of vertical stabilisation field 0-500 V
P pressure of H2 0-250mPa
Tcd delay of current drive trigger to main trigger 0-10ms
Tbd delay of breakdown trigger to main trigger 0-10ms
Tst delay of stabilisation field trigger to main trigger 0-10ms
PreIonisation Preionisation electrode 0,1

The reason, why was used this model, is that it shows many problems described in previous
chapters while the problem can be quite easily analysed because it is less complex.

The first problem was the high number of dimensions and their correlations. It is important
to remove less important dimensions to avoid overfitting. Here, it could be done from
apriori knowledge. The first property H2 filling is necessary condition to make breakdown
thus it can be removed and also all shots when there was breakdown without filling gas,
because it is only a minor unimportant group – outliers.

The next step was to join some dimensions to ensure the independence of variables. In
this case Ub plus Tcd or Ub plus Tbd gives magnetic field in time of maximal current drive
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or breakdown field. Also instead of absolute values of Tcd and Tbd is important only their
time shift, thus only the difference should be used.

Also stabilisation should not have any significant effect on the probability of breakdown
although from tests in this section proved that the affect was quite strong. In this case,
the explanation is quite easy: the stabilisation was used when the aim was to make some
nice plasma. The result is a non-physical correlation, so the stabilisation settings should
be also removed. Totally, only six dimensions from original 10 should rest.

The results of SVM algorithm with RBF kernel before this elimination of features by
apriori knowledge are

Group Precision Recall F1-score CV score NSV NVEC
0 0.834 0.627 0.648 0.338 265 367
1 0.885 0.990 0.467 0.786 230 1064

Total: 0.858
Total SV: 34.591%

Best parameters: C=1000 G=0.005

and after the these changes were the results

Group Precision Recall F1-score NSV

0 0.93 0.67 0.78 302
1 0.91 0.99 0.95 1034

avg / total 0.92 0.91 0.91 1336

It is important to notice two things. The first and the most important is that the dimen-
sions cut-off can lead to worse results in the total precision. This was expected and it even
quite successful result when the dimensionality of the problem was decreased by 40% and
the prediction probability rest almost the same.

The second issue is common property of described learning algorithms; they usually give
worse results to the smaller class. In this case, it was group 0 (no breakdown), because
breakdowns were usually required. Numbers of shots with breakdown were 1034 and shots
without breakdown were only 302. This disproportion should be compensated. The ways,
how to compensate it for SVM, were already described in the section 2.3.1.

Results for the same dataset with the linear kernel and SVM method are much worse.
The total precision decreased to 80% [check] but it is important to notice that value
50% is only random guess. This problem is caused by linear non-separability of the data,
as is shown in Fig. 4.1.

4.2 Random probes

Methods of random probes introduced in Section 3.3.3 was used. Three probes were cre-
ated, the first probe test_1 was random permutation of numbers from 1 to number of
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W
ei

gh
t

0

0,2

0,4

0,6

0,8

1

Variable

Bfield
PreIonize

Pressure

deltaT

Tbd
Tcd

Tst
Ub Ubd

Ucd
Ust

test_1
test_2

test_3

Figure 4.1: Results of univariate feature elimination with ANOVA.

samples, the second test_2 was random permutation of Ub and the last test_3 was ran-
dom permutation of Ucd. These probes should have the weight much lower than the rest
of valid variables.

4.3 Univariate feature elimination

The first tested method was univariate feature elimination based on statistical ANOVA
test. ANOVA filter returns weight corresponding to statistical difference between groups
for given variable. Great advantage was almost immediate speed of filtering. Disadvantage
is quite poor performance compared to other methods. The resulting weights are in fig. 4.1.
According to the ANOVA are the random probes one of the most important variables and
on the other hand pressure is negligible. This is significantly different from the expected
results. It is caused because the classes in database are not linearly separable variable.
For example, the breakdown fails for too high pressure and also for too low pressure.

The weights of the random probes could be caused by unsatisfied assumptions of the
ANOVA model, i.e. independence of cases, normality of the residuals, homogeneity –
variance of the groups should be the same.
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Linear SVM Classifier - Weights
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Figure 4.2: Recursive feature elimination with linear SVM. The black bars are weights for
all variables, the red bars are weights for seven the most important variables.

4.4 Recursive feature elimination with linear SVM

The next tested method is based on recursive feature elimination (RFE) with linear sup-
port vector machine, but the results are similar for all described methods with linear
kernel. The solving speed was slower than ANOVA filter but still it took only a few min-
utes. The weights are normalised absolute values of the normal vector of the SVM linear
hyperplane. It is possible to make prediction for all variables and use only n of the most
important or remove only the least important and perform the training and prediction
again. The first way is faster but the second way gives result that should be less affected
by random variable that were removed in previous steps.

The weights for linear classifier are in fig. 4.2. The results are significantly different from
the ANOVA weights. Linear weighting successfully ignored random probes. Also it is
important to note that the weight stayed almost similar during elimination, the only
exception is ∆T variable.

In the following table are basic statistical characteristics of the fitted model. Recall for
the group 0 is very low; it means that linear model almost ignored the smaller group. But
it was expected since the model is not linearly separable.
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Group Precision Recall F1-score CVscore
0 0.77 0.29 0.21 0.39
1 0.80 0.97 0.44 0.78

Total: 0.80

The next step is to use the weights from linear hyperplane estimate the influence of each
dimension.

keys: Bfield PreIon P ∆T Tbd Tcd Ubd Ucd

weights: 0.34 0.34 0.33 0.12 0.08 -0.13 -0.20 0.53

Almost all variables increased breakdown probability with increasing variable size, the
only interesting exception is Ubd. However, the breakdown field should always improve
the chance to reach breakdown. This was some non-physical effect.

4.5 Recursive feature elimination with RBF SVM

This method was also described in Section 3.3.1. The weights correspond to increase of
loss function when the belonging variable was removed. Full crossvalidation was performed
to find the best parameters for each variable combination. It was also possible to use the
results from the crossvalidation to estimate errorbars for the weights. Disadvantage was
that the training (elimination) was very time demanding. The full elimination took almost
1000 h of CPU usage.

The advantage is that it is fully nonlinear method and thus the weights are not biased by
assumption of linear separability.

The results are in fig. 4.3. The results fit very well to the expected behaviour. Weights
of random probes are not zero, but within the errorbars they are correct. Also, on the
contrary to the other method, pressure was determined as very important variable with
magnetic field and current drive. The fact that parameters of stabilisation are not zero
was described in previous text, but still it is quite low. It is also quite interesting that ∆T ,
delay between breakdown and current drive, have no importance although linear SVM
and ANOVA filter predicted quite high importance to this variable.

In Figure 4.4 is order of eliminated variables. The variables eliminated at beginning have
very similar weights, so the order is not important. Interesting is that probe variable
test_3 alive quite long.

Finally, the evolution of predictive probability for each step of RFE algorithm is on fig.
4.5. During the first four steps the prediction is almost constant then the classification rate
decreased although the test_3 variable was still in training set, so it was still overfitting.

The optimal number of variables is five or six, it depends on allowing of Tst, Ust although
they have no real information about probability.
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RFE with nonlinear SVM predictor
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Figure 4.3: RFE with nonlinear SVM predictor
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Figure 4.4: Elimination order of all variables by RFE with nonlinear SVM
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Classification rate - nonlinear RFE
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Figure 4.5: Classification rate for different number of variables with nonlinear SVM

In following table are results for different learning machines when only four dimensions
were used. The differences between the misclassification are not significant for different
machines because random changes between each run can produce different result even for
on type of learning machine. Important property is sparsity of the model. The sparsest
and thus usually the less complex model is the RVM. Interesting is that linear SVM have
less sparse model but it is caused by linear nonseparability of the model and thus by high
misclassification rate.

Machine Total Missfit Main vectors
RBF kernel - 4 dimensions

SVM 0.941 34%
LogReg L1 0.926 100%
LogReg L2 0.959 100%

RVM 0.912 5%
linear kernel - all dimensions

SVM 0.67 46%
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Table 4.1: Cuts through the predicted probability for breakdown on tokamak GOLEM,
the prediction is output of nonlinear SVM algorithm. Black points are shots without
breakdown and white points are with breakdown. Contour lines sign 30% and 80% decision
border. It should be noted that the curve shape is very similar to Paschen’s curve.
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Summary

In this work, learning algorithms based on kernels were successfully tested: Support vec-
tor machine, Relevance vector machine and Logistic regression with L1 and L2 norm.
These algorithms were applied on the database of breakdowns from GOLEM tokamak.
Many methods to improve the classification reliability were introduced and applied to
the dataset. Finally, the best parameters were selected and best pre-processing applied to
obtain the probability of the breakdown.

It is possible to continue in this work by application of the tested principles to some
bigger database. Another possibility to continue is implementation knowledge of data
uncertainty to the learning machines to improve reliability.
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