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Abstrakt:

První část práce popisuje hlavní teoretické myšlenky dějů obsažených v procesu urychlování
iontových svazků laserem, jako je například laserová absorpce či nejběžnější urychlovací
mechanismy (jmenovitě TNSA nebo RPA režimy). Následně práce pokračuje výkladem
chování nabitého částicového svazku v magnetickém poli solenoidu. Rovněž se soustřeďuje
na dynamický popis svazku v solenoidu a interpretuje teorii svazkové emitance. Obsažen je
také popis transformace z kartézských do cylindrických souřadnic. Hlavním přínosem práce je
vytvoření programu (v MATLABu), který nalézá souřadnice bodů trajektorie nabité částice
(nebo celého částicového svazku) v magnetickém poli solenoidu a současně uvažuje emitanci
svazku. Program přispívá k části Zachycení & Selekce v plánovaném zařízení ELIMED
beamline, které bude v provozu v rámci projektu ELI-Beamlines. ELIMED se bude soustředit
na budoucí aplikace, například laserem řízenou hadronovou terapii, která je diskutována
na závěr práce, a to jak s fyzikálním, tak s medicínským odůvodněním.
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Abstract:

The first part of the work describes the basic theoretical concepts of processes involved
in laser driven ion acceleration, such as laser absorption and the most common acceleration
mechanisms (namely TNSA and RPA regimes). The thesis continues with describing
the behaviour of charged particle beams in a solenoid magnetic field. It also focuses on beam
dynamics in a solenoid and interprets theory about beam emittance. Moreover, the needed
information about transformation from a Cartesian coordinate system to a cylindrical one
is included. The main part of this work is the development of a matlab program which can
compute the trajectory coordinates of a charged particle (or the whole particle beam)
in a solenoid magnetic field taking into account the beam emittance. In fact, the program
contributes to the Capturing & Selection section in the layout of the ELIMED beamline,
which will be operational at ELI-Beamlines. ELIMED will focus on future application,
e.g. laser driven hadrontherapy as dicussed in the final part of the thesis with both clinical
and physical rationale.
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Introduction

The plasma state is considered as the fourth state of matter and his abundance in the universe
(mainly because of stars) makes extremely important the production of plasmas in laboratory.
Among various technique to produce this state of matter in laboratory, laser plasma physics is
a field of big interest because of its implications in basic science, thermonuclear fusion, astro-
physics, material science, particle acceleration, medicine, etc. Several tens of MeV ions can be
accelerated from a plasma produced by a high intensity, short laser pulse. Very strong electric
fields can be sustained in plasma, thus generating large charge displacement and, in turn, accel-
eration gradients in very short distances (typically few tens of micrometers). Many application
of laser driven ion beams are foreseen, e.g. triggering and control of nuclear reactions, produc-
tion and probing of warm dense matter, fast ignition of fusion targets, etc. Medical laser-driven
hadrontherapy is one of the most attractive application, in fact, the great advantage of pro-
tons/ions is associated with the delivering of the most of their energy at the end of their path
during the propagation in tissues, differently from electron and X-rays. This characteristic,
known as energy release in the Bragg peak, allows to treat only the tumor cells and not to dam-
age the healthy surrounding tissue. Although several hadrontherapy facilities based on con-
ventional accelerators are operational worldwide, laser-driven hadrontherapy centers are still
not widely present due to the high costs associated with a standard with standard accelera-
tors, complex beam transport and shielding systems, large gantries. A future hadrontherapy
center based on laser driven acceleration could be very compact and cost-effective. Neverte-
less, currently such a system does not fit with the strict radiological requirements (ion energy,
ion dose, etc.). Moreover, beside technical aspects, the biological consequences of short ion
bunches associated with ultrashort laser pulses have to be better understood.
One of the current limitation of laser driven ion sources is the characteristic large divergence
of such beams. Thus, this is one of the issue to be solved. The goal of this thesis work is
to propose a simple method for reducing the divergence of a proton beam accelerated by lasers
through the use of magnetic solenoids.
The first part of the thesis deals with basic concepts of high intensity laser matter interac-
tion and ion acceleration mechanisms, as well as charged particle motion in solenoid magnetic
fields and definition of typical particle beam parameters. The original contribution is shown
in the third chapter through the description and the results of a developed matlab program
calculating trajectories of laser accelerated ions in a solenoid field. Potential applications are
discussed in the final part of the work.

Various literature sources have been used in the thesis. Online available sources (websites,
wikipedia, etc.) have been useful for having an overview of the wide field of interest for this
thesis. Then, scientific articles (mostly not open source) have been essential for a deeper
understanding of specific topics reported in the thesis. Also books have been used (mainly
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"High power laser-matter interaction" by P. Mulser and D. Bauer, and "Essential MATLAB
for engineers and scientists" by B. Hahn and D. Valentine, etc). The first book was primarily
used for drafting the first chapter. The second book was used for familiarizing with the pro-
gramming syntax in MATLAB. Finally websites of prestigious hospitals, research medicinal
centers and appropriate articles about the specific topic served for drafting the last chapter
on potential use of laser driven proton beams for treatment of tumours (e.g. hadrontherapy).

In fact the potential future applications of laser driven ion beams in medicine is the main reason
which motivated me in choosing this topic for my bachelor thesis. Furthermore, the possibil-
ity to give my personal contribution to "Handling and Transport of Laser-Driven Ion Beams"
by theoretical calculation was very interesting to me, especially because it allowed me to work
in the framework of the future ELI-Beamlines facility in the Czech Republic, through the op-
timization of the ELIMED beamline design.
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Chapter 1

Laser driven proton acceleration

The year 2000 was crucial in making the laser driven ion acceleration attractive for appli-
cations. Ions having energies up to a few MeVs had been observed in high-intensity laser
matter interaction experiments considering different targets. Nevertheless, in 2000 an intense
emission of multi-MeV protons from a several microns thick targets (solid, metallic or plastic)
was detected in three independent experiments. Those experiments are described in:

• Maksimchuk et al., 2000 – IL = 3·1018 W cm−2, Np & 109 and Ep = 1, 5 MeV,

• Clark et al., 2000 – IL = 5·1019 W cm−2 Np ∼ 1012 and Ep = 18 MeV,

• Snavely et al., 2000 – IL = 3·1020 W cm−2 Np ∼ 2 · 1013 and Ep = 58 MeV,

where IL, Np and Ep are – laser intensities, number of protons and maximum ion energy
observed. The simple set-up of these experiments can be seen in Fig. 1.1.

Figure 1.1: An artistic view of a typical experiment on proton emission from laser-irradiated
solid targets; [14]

After this period laser driven proton acceleration became more and more interesting for future
applications – laser triggering, nuclear reactions control, production and probing of warm
dense matter, "fast ignition" of Inertial Confinement Fusion targets, cancer treatment etc.
Contrast to electrons and X-rays, protons and light ions deliver the most of their energy
at the end of their path (Bragg peak). This is very convenient for applications in hadrontherapy
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because the particles can pass through healthy tissue without damaging it.
Currently, the mechanisms of laser driven acceleration are being improved to obtain higher
energies per nucleon up to hundreds MeV. New generation of lasers will allow to achieving
much higher intensities than the present ones, thus having the way towards future applications.

1.0.1 Laser beam interaction with matter

A laser pulse can be described by an electromagnetic wave packet which is a solution of Maxwell’s
equations [12]:

∇× ~E = −1

c

∂

∂t
~B, ∇ · ~B = 0, (1.1)

∇× ~B =
4π

c
~j +

1

c

∂

∂t
~E, ∇ · ~E = 4πρ, (1.2)

where ~E is electric field, ~B is magnetic field, ~j is current density, ρ is charge density, c is speed
of light and t is time. In vacuum ρ = 0 and ~j = 0 are valid, because there are no charges
and no currents. This situation will be changed when the laser pulse propagates in material
medium which creates plasma – in this case the sources of both will appear.
Scalar and vector potential Φ, ~A are bounded with electric and magnetic field by following
equations:

~B = ∇× ~A, ~E = −∇Φ− 1

c

∂

∂t
~A. (1.3)

If we consider ∇ · ~A + 1
c
∂
∂tΦ = 0 and rotation identity ∇×∇× ~A = ∇(∇ · ~A) −∆ ~A we can

rewrite Maxwell’s equations in this way:

∇× ~B =
4π

c
~j +

1

c

∂

∂t
~E → ∆ ~A− 1

c2
∂2

∂t2
~A = −4π

c
~j. (1.4)

Another wave equation we can derive very similarly from the microscopic Gauss’s law:

∇ · ~E = 4πρ → ∆Φ− 1

c2
∂2

∂t2
Φ = −4πρ. (1.5)

As we have already discussed for vacuum, the relations ρ = 0 and Φ = 0 are valid, that makes
the condition∇× ~A = −1

c
∂
∂tΦ zero and we get a following relation for electric field: ~E = −1

c
∂ ~A
∂t .

Now, take a look at the case of two dimensional waves in x-z plane. Then Ax = ∂ ~A
∂z

and Az = ∂ ~A
∂x , where A = A(x, z). Finally we check the condition ∇ · ~A = 0 by a simple

substitution into the formula – ∇ · ~A = ∂Ax
∂x +

∂Ay

∂y + ∂Az
∂z = 0. Using relation (1.3) and condi-

tions which we get, the electric field is given by free components:

Ex = −1

c

∂

∂t

∂

∂z
A, Ey = 0, Ez =

1

c

∂

∂t

∂

∂t
A. (1.6)

Magnetic field can also be divided into three components, which are given by the relations:

Bx = 0, By =

(
∂2

∂x2
+

∂2

∂z2

)
A, Bz = 0. (1.7)
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If the wave has its intensity high enough, then it interacts with medium (target) and changes
properties of the particles which can move according to the equations of motion. Basically,
it is just a form of the Lorentz equation:

~F = m~̈a =
d~p

dt
, ~F = e( ~E + ~v × ~B) = e ~E +

e

mcγ
~p× ~B, (1.8)

where γ is a relativistic factor and γ =
√

1 + p2

m2c2
.

The relations for total current density ~j(~r, t) and total charge density ρ(~r, t) can be writ-
ten with consideration of Liouville theorem, where f(~r, ~p, t) is phase space density. Accord-
ing to the mentioned theorem the volume in phace space stays constant:

∂f

∂t
+

~p

mγ

∂f

∂~r
+

(
e ~E +

e

mcγ
~p× ~B

)
∂f

∂~p
= 0, (1.9)

then for total current and charge density the following equations are valid:

ρ(~r, t) = e

∫
f(~r, ~p, t)d~p, ~j(~r, t) = e

∫
p

mγ
f(~r, ~p, t)d~p. (1.10)

Further details are in [12].

As a consequence of high intensity laser interaction with matter, plasma is produced. One
of the most relevant plasma parameters is the electron density, which determines the plasma
oscillation frequency ωp. The equality between the electron and critical electron densities ne, nc
is equivalent to the equality between the laser and plasma frequencies ω, ωp. The equations
for nc and ωp are [14]:

ω = ωp ⇔ 2πc

λ
=

√
4πnee2

me
⇒ ne =

meω
2

4πe2
= nc. (1.11)

According to the relation between electron and critical density of the plasma we can divide
the environement in two regions with two different values of the refractive index. The refractive
index n is bounded with densities or frequencies through this simple relation:

n =
√

1− ω2
p/ω

2 =
√

1− n2e/n2c . (1.12)

If the case that ne > nc is valid we are in an overdense region with imaginary values of n.
This means that the laser pulse cannot propagate. On the other hand if ne < nc or ne ' nc is
valid, the refractive index has real values and all the plasma interactions occurs there and we
are in an underdense region.
The relativity case is not so simple, because the refractive index n is non-linear. From [14] we
can write a relation for the relativistic refractive index:

n =
√

1 + 〈~a2〉, (1.13)

where ~a is ratio between electromagnetic energy and electron rest mass energy ~a = e ~A/mec
2.

Brackets mean the average value over the oscillation period.
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The process of plasma penetration by laser is quite complicated because of nonlinearity
in the wave equation and changing of the plasma density profile as a result of radiation pres-
sure. Luckily, this problem can be solved via ponderomotive force as it is discussed in [14].
We only give a simple definition of this here, because we will use this term later [14]: "We refer
to the ponderomotive force as the slowly-varying, effective force describing the cycleaveraged
motion of the "oscillation centre" of a charged particle in an oscillating non-uniform field,
over a time scale longer than the oscillation period." But in our description of ponderomotive
force, the "fast" oscillating components are not included.

We can divide interactions between laser pulse and solid target into pure and non-pure ones
depending on pre-plasma generation. In fact a laser pre-pulse (or pedestal) can generate
pre-plasma before the arrival of the main pulse and no genuine laser-solid interaction will
occur.

1.0.2 Hot (fast) electrons

The potential of an electron plasma wave must have certain amplitude to trap a significant
amount of electrons passing through. If the potential is not strong enough, the electrons
will follow straight orbits. If the amplitude becomes bigger, the first particles, with their own
velocity similar to the wave phase velocity vϕ, will be caught. In the region where vϕ increases,
hot electrons take their place in the acceleration mechanisms. In the region where vϕ decreases,
the electrons are trapped again and they give their extra energy back to the wave.
The energy absorbed from a laser pulse is transported by hot (or sometimes called "fast")
electrons, which are driven by the Lorentz force on the surface of the overdense plasma. These
relativistic electrons have "ponderomotive" energy given by the relations [14], [18]:

εp = mec
2(γ − 1) = mec

2
(√

1 + 〈~a2〉 − 1
)

= mec
2

(√
1 + a20/2− 1

)
, (1.14)

a0 = 0, 85

(
I[W cm−2]λ2[µ m]2

1018

)1/2

, (1.15)

a0 is dimensionless amplitude related to the intensity I. The intesity is bounded with the elec-
tric field via the relation I = c〈E2〉/4π.
As we will discuss later in this chapter, hot electrons are crucial for acceleration of protons
and heavy ions.

1.1 High intensity laser absorption mechanisms

Absorption mechanism can be most globaly described via the solution of Vlasov-Maxwell sys-
tem which contains all the effects leading to absorption. Vlasov-Maxwell system of equations
is a description of interactive system consisting of charged particles in plasma which create
a self-consistent collective field. The equations corresponding to this problem are the Maxwell
equations (1.1), (1.2) and relations for total current and charge density (1.10), where the func-
tion f(~r, ~p, t) = fi(~r, ~p, t)− fe(~r, ~p, t) is difference between distribution functions for plasma
ions and electrons. Finally, the system of equations is finalized by Boltzmann Transport
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Equations [42]:

∂fe
∂t

+ ~ve · ∇fe − e
(
~E +

1

c
(~v × ~B)

)
· ∂fe
∂~p

= 0, (1.16)

∂fi
∂t

+ ~vi · ∇fi − e
(
~E +

1

c
(~v × ~B)

)
· ∂fi
∂~p

= 0. (1.17)

There are many very interesting processes that are worth mentioning like anomalous skin
effect, vacuum heating (electrons cross the plasma boundary and return back with high en-
ergy), Resonance absorption or Collisional absorption. Here we will describe only the last two
mechanisms [13].

1.1.1 Resonance absorption (RA)

We assume collective behaviour of plasma, in the sense that long-range forces prevail over short-
range forces. The process of plasma wave excitation over the critical layer is based on non-
locally energy transfer in the plasma by the laser, when a P-polarized light has a component
of the electric field in the laser direction. The critical layer is associated with the critical
density.
In a constant plasma density profile (if we consider only resonance absorption without other
interactions) the laser magnetic field does not undergo any change and the laser beam passes
through without energy deposition. This means that constant plasma density profile in the un-
derdense region can not lead to RA.
The resonance absorption mechanism can change for different plasma density profiles as de-
scribed in [15]. It is necessary to change the computational approach of RA according to the plas-
ma scale length L & laser wavelength ratio λ [15]:

• L
λ ≈ 0 – resonance absorption does not exist here, the plasma density profile is a step
function and the absorption in plasma is described by the Fresnel formulas.

• L
λ � 1 – the profile has a long slow varying form, we can use WKB approximation
("WKB method is a method for finding approximate solutions for partial linear dif-
ferential equations with spatially varying coefficients" [43]). After that the absorption
fraction is:

fRA ≈ ϕ2(τ)/2, (1.18)

where ϕ(τ) is Ginzburg classical function which depends on the angle of incident θ.
The maximum plasma electrostatic field is reached with θ = π

4 . Further details are
reported in [15].

• L
λ � 1 – the profile is too sharp for using the WKB approximation, so we must solve
this problem numerically [15].

1.1.2 Collisional absorption (CA)

Collisional absorption decreases when the laser intensity grows in contrast to Resonance ab-
sorption. This process is based on laser energy transfer to plasma electrons via columbian
interactions (usually ion-electron collisions), that heat the plasma locally. CA causes energy
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damping when the laser propagates through the plasma. The process can be characterized
[15] by the absorption coefficient kabs:

kabs =
νei
c

n2e
nc

√(
1− ne

nc

)−1
, (1.19)

where νei is the collisional frequency between ions and electrons, index e means electron
and c means critical.
Also in the case of CA the transported energy (via electromagnetic field) can be described
according to L− λ ratio [15]:

• L
λ ≈ 0 – step function profile, Fresnel coefficients inform about the quantity of re-
flected/transmitted/absorbed light in the plasma medium

• L
λ � 1 – slowly varying plasma density profile, WKB approximation

• L
λ � 1 – steep plasma density profile, numerical simulations.

1.2 Rear and Front surface acceleration

We can divide ion acceleration mechanisms into two groups, according to in which side
of the target the ions are accelerated from: Rear surface acceleration and Front surface acceleration.
Now we give a brief overview of these two methods. Their basic structure can be seen
in Fig. 1.2.

Figure 1.2: a simple sketch of laser-driven ion acceleration from thin foils; [14]

1.2.1 Rear Surface Acceleration

As we know from section 1.0.2 very intense current of hot electrons can be generated on the front
side of the target. This current may or may not pass through the target. If the hot electrons
reach the rear side of the target they cause an unbalance in charge. For better understand-
ing, we can imagine this as a double layer of positive (ions) and negative (electrons) charges,
which generates an electric field ~Es (sheath electric field). We can write this vector field
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as ~Es = Es ·~n, where ~n is a vector perpendicular to the target surface. Since Es must take back
electrons with typical "temperature" Th, we can describe the spatial extensity of the sheath
Ls of the target via the relation:

eEs ∼
Th
Ls
, (1.20)

where e is elementary charge and Ls can be approximated with the Debye length of the hot
electrons. This approximation comes directly from the definition of Debye length that is
the distance within which a significant charge separation can occur [34] – in other words
the spatial extension of the sheath. Thus, we can write the formula for Ls as follows:

Ls ∼ λDh =

(
Th

4πe2nh

)2

, (1.21)

where nh is density of the hot electrons. If we substitute typical values of Th and nh in (1.21),
we obtain value for electric field Es of about 1010 − 10−11 V · cm−1 [14]. This is an ex-
tremely high field which backholds an important number of escaping eletrons. Due to this field
the atoms on the target rear side will be ionized and accelerated. The direction of the acceler-
ated ions from the rear side is normal to the target (forward acceleration following the direction
of the electric field). Typically energy of about 1−50 MeV can be obtained from the following
relation [14]:

εi ∼ ZeEsLs ∼ ZTh. (1.22)

If we consider (1.14) and assume Th w εp, the energy scales with I
1
2 (see (1.15)).

Since the target can contain hydrogen impurities on its surface, protons can be accelerated
from this layer (target rear side in case of forward acceleration). In fact they are faster
than other ions because of their higher charge-to-mass ratio. This is commonly known
as TNSA mechanism which we will discuss in 1.3.

1.2.2 Front Surface Acceleration

There is also a possibility of developing a significant contribution to acceleration at the front
surface of the target. The main idea is that the intense radiation pressure of the laser pulse
pushes an overdense target inwards, which causes a sharp growth in density profile and changes
the shape of its surface. This process is known as "hole boring".
The approximate relation for velocity vhb of the plasma surface is obtained from balancing
electromagnetic and mass momentum flows [14]:

I/c ∼ ni(mivhb)vhb, (1.23)

where ni is the ion density. Then we can write the formula for the energy per nucleon:

εi =
1

2
mpv

2
hb ∼ I/(Anic). (1.24)

In contrast with the rear surface acceleration we get energy scaling with laser intensity I
instead of I

1
2 , which is clearly a great advantage. The "hole boring" acceleration is considered

as a particular regime of the radiation pressure acceleration (RPA), which will be discussed
in chapter 1.4.
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1.3 Target normal sheath acceleration (TNSA) regime

Target Normal Sheath Acceleration is a process (or a theoretical description) of accelerating
ions from the rear side of the target. This acceleration is possible because of the interaction
of an ultra intense short laser pulse irradiating a thin solid target. In addition, the acceleration
is a consequence of strong charge separation generated by hot electrons expanding into vacuum
and reaching the rear side of target. A part of the laser radiation is transformed into kinetic
energy of relativistically hot (Th ≈ few MeV) collisionless electrons, which can recirculate
through the target and create a charge displacement. Thus a very intense electric field leads
to ion acceleration and is caused by the relativistic electrons on the rear side. The field is
mainly directed perpendicularly to target surface, so the ions are mainly accelerated in this
direction. Moreover the ion beam can be relatively collimated.
Parameters of the intense electric field depend on the parameters of the electron distribution
(temperature, divergence or amount of electrons) and on the parameters of the target surface
(density shape).
As we have already said in chapter 1.2.1, the efficiency of TNSA depends on the mass in a way
that ions with the largest charge-to-mass ratio are accelerated the most effectively. As already
discussed due to hydrogen impurities on the target surface TNSA acceleration is commonly
used for proton acceleration. Nevertheless, if impurities (H-ions) are removed before the inter-
action (e.g. by pre-heating the target) then several different sorts of ions may be accelerated
via TNSA.
The experimental evidence of TNSA acceleration is reported in Fig. 1.3

Figure 1.3: Proton probing of the expanding sheath at the target rear surface. The temporal
series of images are produced by the deflection of probe protons passing through the TNSA
field in a time-of-flight arrangement [14]

The following experimentally verified relation shows the maximum ion energy εmax, as a func-
tion of the laser intensity IL and laser pulse energy EL [22]:

εmax = Zmec
2

[(
1 +

ILλ
2

1, 38 · 1018

) 1
2

− 1

]
(4, 8 + 0, 8 ln[EL(J)− 1]) . (1.25)

There is also a possibility to get two accelerated proton beams in different directions. In fact
the ion beam direction is mainly perpendicular to the target normal but using wedge targets
it can be controlled, as reported in [14].
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In [22] 100 MeV protons in TNSA regime are predicted using laser pulse with the follow-
ing characteristics: τL = 25 fs (pulse duration), fL = 3 µm (focal spot), λ = 0, 8 µm (laser
wavelength), EL ≈ 5, 5 J (pulse energy) and ILλ2 ≈ 2 · 1021 (W/cm2)µm2 (pulse irradiance).
This gives great expectations in future applications and in particular for hadrontherapy as it
will be discussed later on.

1.4 Other acceleration regimes – Radiation Pressure Accelera-
tion (RPA)

Another acceleration mechanism is the Radiation Pressure Acceleration (also known as "Laser
piston regime") which occurs at the target front surface The RPA is based on the radiation
pressure which accelerates the whole foil as a plasma slab. The radiation pressure has its origin
in the electromagnetic waves which carry a momentum. This momentum can be transferred
to a non-transparent (reflecting/absorbing) suface which is hit by the waves.
This idea was first published by Maxwell in his theory of electromagnetism. The relation
for radiation pressure is given by:

Prad =
〈~S〉
c
, (1.26)

where 〈~S〉 is the time averaged energy flux density given by the Pointing vector ~S = ~E × ~H,
where ~H is magnetic field strength and ~E is electric field. Prad must be multiplied by a factor
of 2, if the wave is completely reflected [38].
The radiation pressure is related to the total steady ponderomotorive force on the medium.
The electrons of overdense plasma are pushed inwards by PF and leave the dielectric layer.
This creates an electrostatic field which finally leads to acceleration.
Simulations predict that the RPA regime can be very efficient and can provide higher ion
energies than TNSA [17]. However, the requirements for effective RPA such as circular po-
larization, ultrahigh intensity and high contrast of the laser pulse, currently do not make this
acceleration regime easily accessible [12].

1.5 Scaling laws for laser-accelerated proton beams

In this subchapter we will discuss some basic scaling laws for laser-accelerated proton beams.
In Fig. 1.4 we report two graphs from [26]. In the left one, the behaviour of electric field
ratio on z/λD ratio is shown, where λD is the Debye length and z is the ion trajectory
along the axis. The right one shows the ion kinetic energy dependence on time. Moreover,
we can see that to accelerate protons up to 100 MeV, it is necessary to hold the plasma
at the same temperature for approximately 650 fs. This was, and still is, one of the major
problems of generating such energetic protons [26]. For both graphs, the scaling lines assume
a constant field and an isothermal model.
A very interesting scaling law study is reported in [5], where experimental results obtained
with Al foils are discussed. The proton-beam maximum energy and energy-conversion effi-
ciency are measured with various targets and laser parameters. For these experiments, the rear
surface acceleration mechanism 1.2.1 was chosen.
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Figure 1.4: Left: E/E0 ratio dependence on z/λD ratio, where E and E0 is the actual and
the rest electric field, z is the trajectory along the z axis and λD is the Debye length; Right:
kinetic energy dependence on time scale; [26]

The maximum proton energy (under assumption of isothermal fluid model [5]) follows the equa-
tion:

Emax = 2Thot

[
ln(tp +

√
t2p + 1)

]2
, (1.27)

where tp = ωptacc/
√

2 exp(1) is the normalized acceleration time with plasma frequency de-
fined as ωp =

√
Zie2ne0/(miε0) (for clarity we note that e is the elementary charge, tacc is

acceleration time, ε0 is electric permittivity, mi is mass of particle and Zi is charge number;
for protons mi = mp and Zi = 1 ), ne0 is the density and Thot is the temperature of hot elec-
trons, discussed in 1.0.2, which are crucial for rear surface acceleration mechanism, discussed
in 1.2.1. Also, as we have already discussed, preplasma may be generated at the target front
side.
The first scaling law is reported in Fig. 1.5. When the target thickness decreases, the maxi-
mum proton energy and energy conversion efficiency grows. But if the target is too thin (8µm
for parameters of the exp. in Fig. 1.5) the proton energy drops down because of the rear
surface disruption. Further details are reported in [5].
The experimentally confirmed relation between the effective acceleration time tacc and laser
pulse duration τlaser is [5]:

tacc ∼ 1, 3 τlaser. (1.28)

A study of the proton beam energy characteristics against the laser energy (when laser pulse
duration τlaser is constant) is shown in Fig. 1.6. The proton beam energy characteristic de-
pendence on laser pulse duration, when the laser intensity stays constant is reported in Fig. 1.7.
Fig. 1.6(b) graph demonstrates that the energy conversion efficiency increases more with the laser
energy than the laser energy does with the constant laser pulse duration. The reason is
simple. With the laser energy growth, the proton spectrum reaches the higher energies
and also the number of particles grows. In other words, from the proton beam we get more
energy when we use one 10 J shot than ten ones at 1 J.
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Figure 1.5: Thinner solid targets improve the maximum energy of laser-accelerated protons
as well as the laser-proton energy conversion efficiency. (a): Maximum proton energy, and (b):
laser-proton energy conversion (calculated for protons with energy > 4 MeV) for similar laser
conditions (τlase = 320 fs and I ∼ 4·1019 W cm−2) and various Al foil thicknesses. Data points
represent experimental data and solid lines calculations using the fluid model with the same
laser parameters; [5].

Figure 1.6: The laser-accelerated proton maximum energy and conversion efficiency increase
with the pulse energy. (a): Maximum energy of proton beam and (b): laser-proton conversion
efficiency (for protons with energy > 4 MeV) as a function of the laser intensity (bottom
axis) and the laser energy in the focal spot (top axis). The laser pulse duration is constant
at 320 fs.The lines in (a) and (b) are calculations using the fluid model with the actual laser
parameters; [5].
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Figure 1.7: Longer pulses improve the laser-accelerated proton maximum as well as the energy
conversion efficiency. (a): Maximum energy of the proton beam and (b): laser-proton energy
conversion efficiency (for protons with energy> 4 MeV) as a function of the laser pulse duration
for three different laser intensities; the laser energy is increased with the laser pulse duration
to keep the laser intensity constant for each group of points. The lines are calculations for each
intensity using the fluid model; [5].
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Chapter 2

Behaviour of charged particle beams
in a solenoid magnetic field

2.1 Characteristics of a solenoid magnetic field

2.1.1 Introduction

We can separe the solenoid magnetic field into two components – longitudinal and radial.
The longitudinal magnetic field Bz reaches on axis from zero to its maximum value in the mid-
dle of the solenoid. By contrast, the radial component of the solenoid magnetic field Br has
its maximum amplitude at the two ends of the solenoid. To make it simple, the assumption
of uniform field inside the solenoid and zero field intensity outside is usually used [8]. This
behaviour is clearly shown in Fig. 2.1; [11]. A more detailed description of the magnetic field
is reported in 2.2.

2.1.2 Larmour radius and Larmour frequency

When a particle enters the solenoid magnetic field it begins to rotate. The movement of a charged
particle in a homogenous magnetic field is called the Larmuor rotation [37] and the particle
circumscribes a circle or helix path. Evidently, the force acting on an elementary particle
in a magnetic field ~B moving with the velocity ~v can be expresed by the Lorentz equation
~F = ~v× ~B. The particle velocity can be separated into two components according to the mag-
netic field direction – perpendicular v⊥ and parallel velocity v‖.
By using the Lorentz equation we will get two terms with different velocities ~v‖ and ~v⊥:
~F = e ~v⊥ × ~B + e~v‖ × ~B. Due to the cross product the second term is 0, because ~B and ~v‖
have the same direction. Thus, in the field’s direction there is no force. When ~v‖ = 0 particle
circumscribes a circle without forward movement. If ~v‖ 6= 0 the particle is moving with con-
stant speed forward on a helix. The first term causes a circular trajectory, because a component
of magnetic force Fm = eBv⊥ is perpendicular to the velocity, so it acts as a centrifugal force
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Figure 2.1: Axial (a) and radial (b) components of a magnetic field; ρ – different distances
from the solenoid axis; The vertical dashed lines indicate the region of highest field uniformity;
[11]

Fc, thus:

Fm = Fc, (2.1)

eBv⊥ =
mv2⊥
r

⇒ r =
mv⊥
eB

, (2.2)

Tc =
s

v⊥
=

2πr

v⊥
=

2πm

eB
⇒ ωc =

2π

Tc
=
eB

m
, (2.3)

where e is elementary charge, m is mass of the particle, s is trajectory length, r is radius
of the circle trajectory, Tc is time period and ωc is cyclotron frequency bounded with time
period by relation ωc = 2π/Tc. In the relativistic cases we have to add the relativistic gamma
factor to the mass:

ωc =
eB

γm
. (2.4)
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The relation for the Larmour frequency is [8]:

ωL =
1

2
ωc =

eB

2γm
. (2.5)

The difference between the Larmour and cyclotron frequency consists in the used geometry.
Particles rotate around the centre of their own trajectories with the cyclotron frequency (2.3)
but with the Larmour frequency (2.5) around the solenoid axis. This is simply ilustrated
in Fig. 2.2.

Figure 2.2: Geometric explanation of the relation between the Larmour and the cyclotron
frequency; O – point on the solenoid axis, O′ – centre of the individual circular trajectory,
A′ – location of the particle; [8]

With transverse velocity ~v⊥ the particle moves on a helix with a constant radius called the Lar-
mour radius RL (~v‖ = 0, so ~v⊥ is velocity of the particle ~v⊥ = ~v):

RL =
v⊥
ωL

=
γmv⊥
eB

. (2.6)

2.1.3 Axisymetric solenoid magnetic field relations

Magnetic field of a solenoid

Far from the ends of the solenoid the Ampere’s Law [31] can be used to calculate the field
strength, because ~B has a uniform value inside the solenoid and | ~B| = 0 outside (as men-
tioned in 2.1.1). For getting the enclosed current in loop from the Ampere’s Law we can use
the relation:

Ien = InL, (2.7)

where n is the number of coils per meter, L is the loop length and I is the current through the wi-
re. We obtain the final relation for the magnetic field intensity by using (2.7) and the Ampere’s
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Law: ∮
~Bd~l = µ0

∫∫
S

~Jd~S = µ0Ien, (2.8)∮
~Bd~l = BL ⇒ B =

1

L
µ0Ien, (2.9)

B = µ0nI. (2.10)

Magnetic field along the solenoid axis

Sometimes we need the relation for the magnetic field along the axis. In this case we cannot
use the Ampere’s Law as in section 2.1.3, because the field is not uniform anymore. Instead,
we will follow the principle of superposition in two steps. Firstly, we will consider little increase
of d ~B which equals one ring of a current and secondly, integrate over all coils to gain the total
~B.
If we use the Biot-Savart Law [33] and realize that the radial component of the magnetic field
will be cancelled, then the horizontal component dBz can be written as follows [25]:

d ~B =
µ0I

4π

d~l × r̂
r2

, (2.11)

dBz = d ~B sin θ =
µ0I

4π

ds
r2
R

r
=
µ0I

4π

dsR

(R2 +D2)3/2
, (2.12)

where r̂ is the unit vector of ~r, µ0 is the vacuum permeability constant and I is a steady current
in a loop which generates the magnetic field B. Meaning of other symbols are explained
in Fig. 2.3.

Figure 2.3: Geometry for deriving Bz from Biot-Savart Law; P – the point from which we cal-
culate the magnetic field, R – the radius of the coil, D – the distance from point P to the loop,
θ – the angle, r – the distance from P to the top of the loop

The reason why the radial components of the magnetic field are cancelled out is simple;
the coil wire of radius R carries the current I and creates the magnetic field in point P .
The magnetic field on the top of the loop points down (coordinate r) and right (coordinate
z), but at the bottom of the loop it points up and right.
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Now we will integrate dBz over all segments of the loop:

Bz =

∫
loop

dBz =
µ0I

4π

R

(D2 +R2)3/2

∫
loop

ds, (2.13)

Bz =
µ0I

2

R2

(D2 +R2)3/2
, (2.14)

but we have to keep in mind that this is only a z-magnetic field along the axis for one single
loop. Then we have to get the relation for all loops.
Firstly, we get a small part of length dx (as shown in Fig. 2.4) considering the current I and n
as the number of turns per unit length. The relation for the total current in this section is:

Itot = Indx = I
N

L
dx. (2.15)

Figure 2.4: The position of the solenoid due to the position of the measurement point P

When the section is located at a distance D + x from the point P , the relation (2.14) can be
rewritten this way:

Bz =
µ0Indx

2

R2

((D + x)2 +R2)3/2
. (2.16)

Moreover, the total value of the magnetic field we reach by integrating over the length
of the solenoid is:

Bztot =

∫
length

Bz =
µ0InR

2

2

∫ L

0

dx

((D + x)2 +R2)3/2
, (2.17)

after substitutions D + x = z and z = tanu we finally get the result:

Bztot =
µ0In

2

(
D + L√

(D + L)2 +R2
− D√

(D)2 +R2

)
, (2.18)

which can be rewritten as:

Bztot =
µ0In

2

(
x2√

x22 +R2
− x1√

x21 +R2

)
, (2.19)
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where x1 and x2 are distances (on axis) from the ends of the solenoid to the magnetic field
measurement point P .
In the case that the measurement point P is located (on axis) in the centre of the solenoid
(x1 = −x2):

Bzc =
µ0In

2

(
x2√

x22 +R2
+

x2√
x22 +R2

)
=

µ0nI√
1 +

(
R
x2

)2 . (2.20)

Because the measurement point P is located in the centre, the relation L = 2x2 is valid.
Finally, the relation for the on-axis magnetic field Bz measured in the centre of the solenoid
is given by:

Bzc =
µ0nI√

1 +
(
R
x2

)2 =
µ0NI√

L2 +
(
L R
x2

)2 , (2.21)

Bzc =
µ0NI√
L2 + 4R2

. (2.22)

2.2 Beam dynamics in a solenoid

Along this section we will assume the following [8]:

• warm beam – no Coulomb repulsion between charged particles

• cold beam – the initial transverse velocity of particle is zero

Figure 2.5: Directions of initial velocities for warm and cold beam

2.2.1 Magnetic field according to z coordinate

The spatial arrangement of the solenoid can be composed of three regions according to the z
coordinate. We will describe the characteristics of the field, the trajectory of particles etc.
for each region or for boundary between them in seperate paragraphs for better clarity. Com-
ponents of the magnetic field can be expressed by [8]:

Bz = B0 [u(z)− u(z − L)] , (2.23)

Br = −r
2
B0 [δ(z)− δ(z − L)] , (2.24)

where L is the length of the solenoid; u(z) = 1 for z > 0 and z = 0 otherwise and δ(z) is
a Dirac delta function. Consequently, the Bz = B0 for 0 < z < L and Bz = 0 otherwise.
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region 1 (z < 0)

• field-free region

• straight trajectory

• equations for velocity components:

vr = 0, (2.25)
vθ = 0, (2.26)

initial vz (2.27)

boundary between 1st region and 2nd region (z = 0)

We have to connect the trajectories of 1st and 2nd region together. Radial component
of the magnetic field (2.24) gives an azimuthal impulse with the Lorentz force F = −evzBr(z).
Because of the impulse we will notice an increase in azimuthal velocity vθ. This increment is
given by:

∆vθ = r0ωL, (2.28)

where ωL is the Larmour frequency (2.5) and r0 is the radial coordinate of the particle when it
enters 2nd region. The radial component of the velocity vr remains steady when enters from 1st

to 2nd region. So, vr = 0 in z = 0. The change in the third component of ~v, longitudinal
velocity vz, is neglected because of the paraxial approximation (for more details see [8]).

region 2 (0 < z < L)

• uniform magnetic field

• helical trajectory with the radius Rc:

Rc =
γmv⊥
eB0

=
r0
2
. (2.29)

This means that the non-axis particle rotates on the helix with a radius which corre-
sponds to half of its initial radial displacement from the solenoid axis.

• The velocity of motion on a helix can be decomposed into radial and azimuthal compo-
nents, the longitudinal component of particle’s velocity is caused by forward movement.
The equations for velocity components are:

vr = −rωL tan

(
ωLz

vz

)
, (2.30)

vθ = rωL, (2.31)
vz same as in 1st region (2.32)

and r is given by r = r0 cos
(
ωLz
vz

)
.

• the particle undergoes the periodic focusing (chapter 2.2.2)
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boundary between 2nd region and 3rd region (z = L)

For the radial component of the magnetic field the relation (2.24) is valid. The Lorentz
force, as in the boundary between 1st and 2nd region, gives an impulse in azimuthal direction.
Similarly the change in vθ is given by:

∆vθ = −r1ωL, (2.33)

where r1 is the radial coordinate of the particle when it exits 2nd region.

region 3 (z > L)

• field-free region

• straight trajectory

• equations for velocity components:

constant vr = −r1ωL tan

(
ωLL

vz

)
, (2.34)

vθ = 0, (2.35)

vz same as in 1st and 2nd region (2.36)

We can get relation 2.35 from relations 2.32 and 2.33.

• particle can be ideally focused to a point

2.2.2 Focusing of charged particle beams in a solenoid magnetic field

For the sake of explanation of focusing in the 2nd region, we will use a simple geometric picture
Fig. 2.6, which shows a cross-section (or trajectory projection – it depends if the particles
have forward motion) of the beam as it enters the second region.

We will assume that our beam (a solid circle in the picture) has four particles – A,B,C,D,
situated on the beam surface (or, if speaking about the cross-section, on the beam periphery).
Each particle moves on a circular trajectory in the x − y plane which is depicted by dotted
lines. Moreover each particle touches the solenoid axis just once and returns to its circular
trajectory. After some time and a certain distance the particles move on their trajectories
to new spots. The new positions of the particles are marked as A′, B′, C ′, D′. For better
understanding there is also a particle E which is not situated on the beam surface at the be-
ginning and its new position E′ is in the volume of the new focused beam shown as a dashed
circle. The radius of the original beam decreases from OA to OA′. This is the main process
of periodic focusing in the 2nd region with a uniform magnetic field.
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Figure 2.6: Focusing in the region with a uniform magnetic field; A,B,C,D,E – particles’
positions at the beginning, A′, B′, C ′, D′, E′ – particles’ positions after focusing, O – the centre
of the beam; [8]

2.3 Magnetic field transformation into cylindrical coordinates

In this section we will explain the cylindrical coordinate system transformation and show
how to transform equations of the motion of particles in solenoid and solenoid magnetic field
from cartesian coordinates.

2.3.1 Cylindrical coordinate system, velocity, acceleration

The cylindrical coordinate system has three dimensions and in contrast with the cartesian one,
the description contains an angle. The main transformation relation between the cartesian
coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) is given by:

~r =

 x
y
z

 =

 r cos θ
r sin θ
z

 . (2.37)

From Fig. 2.7 it is clear that r, θ, z can by expressed by x, y, z:

r =
√
x2 + y2, θ = arctan(y/x), z = z. (2.38)
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Figure 2.7: Geometry of cylindrical and cartesian coordinate systems; [7]

Any vector can be made into a unit vector by dividing it by its length. With the hat we will
denote these unit vectors and a unit angle [7]:

~̂r =

d~r
dr∣∣∣d~rdr ∣∣∣ =


d(r cos θ)

dr
d(r sin θ)

dr
dz
dr

 =

 cos θ
sin θ

0

 , (2.39)

θ̂ =
d~r
dθ

=


d(r cos θ)

dθ
d(r sin θ)

dθ
dz
dr

 =

 − sin θ
cos θ

0

 , (2.40)

~̂z =

d~r
dz∣∣∣d~rdz ∣∣∣ =


d(r cos θ)

dz
d(r sin θ)

dz
dz
dz

 =

 0
0
1

 . (2.41)

Now we have everything to derive velocity and acceleration in the cylindrical coordinates:

ṙ =
d~r
dt

=
d
dt

 r cos θ
r sin θ
z

 = ṙ~̂r + rθ̇θ0 + ż~̂z, (2.42)

r̈ =
dṙ
dt

= (r̈ − rθ̇2)~̂r + (2ṙθ̇ + rθ̈)θ̂ + z̈~̂z. (2.43)

2.3.2 Cylindrical magnetic field ~B in a solenoid

The solenoid magnetic field has three components ~B = (Br, Bθ, Bz). The field is axially
symetric, which means that there is no angle dependence. For that reason we can consider:

Bθ = 0. (2.44)
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For derivating Bz we will use the Taylor series for (1 + x)r [41]. So, if r ∈ R and x ∈ (−1; 1):

(1 + x)r = 1 +

(
r

1

)
x+

(
r

2

)
x2 +

(
r

3

)
x3 + . . . =

∞∑
n=0

(
r

n

)
xn. (2.45)

Then, we can derivate Bz using (2.44), premise Br � Bz (so Br
Bz

= x ∈ (−1; 1)) and (2.45):

B =
√
B2
r +B2

z +B2
θ , (2.46)

B =
√
B2
r +B2

z = Bz

√
1 +

(
Br
Bz

)2

' Bz

[
1 +

1

2

(
Br
Bz

)2

+ ...

]
' Bz +

1

2

B2
r

Bz
, (2.47)

Bz ' B ≡ B0, (2.48)
Bz = B0, (2.49)

where the original magnetic field has been marked as B0.
For deriving the Br we use Gauss’s Law for magnetism and the relation for nabla in cylindrical
coordinates [35]:

∇ · ~B = 0, (2.50)

∇ · ~B =
1

r

∂(rBr)

∂r
+

1

r

∂Bθ
∂θ

+
∂Bz
z
, (2.51)

∂rBr
∂r

= −r∂Bz
∂z

, (2.52)

rBr = −
∫
r
∂Bz
∂z

dr = −r
2

2

∂Bz
∂z

, (2.53)

Br = −r
2

∂Bz
∂z

. (2.54)

Then, the final relation for the solenoid magnetic field:

~B = (Br, Bθ, Br) = (−r
2
B′0, 0, B0), (2.55)

where B0 is the value of the original magnetic field and comma means derivative with respect
to z.

2.3.3 Derivation of equations of motion in cylindrical coordinates

The Lorentz force is acting on a particle located in a magnetic field. For deriving cylindrical
equations of motion the force transformation is needed [7]:

~F = m~a = m~̈r = e~v × ~B = e~̇r × ~B = e

∣∣∣∣∣∣
~̂r θ̂ ~̂z

ṙ rθ̇ ż
Br Bθ Bz

∣∣∣∣∣∣ . (2.56)
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Then, if we use (2.43):

m
(

(r̈ − rθ̇2)~̂r + (2ṙθ̇ + rθ̈)θ̂ + z̈~̂z
)

= e
(

(rθ̇Bz − żBz)~̂r + (rżBr − ṙBz)θ̂ + (ṙBθ − rθ̇Br)~̂z
)
.

(2.57)

The equations of motion in cylindrical coordinates are finally acquired by comparing coeffi-
cients of unit vectors ~̂r, θ̂ and unit angle ~̂z in (2.57):

m(r̈ − rθ̇2) = erθ̇Bz focusing, (2.58)

m(2ṙθ̇ + rθ̈) = e(żBr − ṙBz) rotation, (2.59)

mz̈ = −erθ̇Br acceleration. (2.60)

2.4 Emittance

Each particle at any point along the beam transport line is characterized by a point in six-
dimensional phase space described by coordinates (x, px, y, py, σ, E), where for transverse mo-
menta the relations px ≈ p0x

′ and py ≈ p0y
′ are valid, cp0 = βE0, E0 is the ideal particle

energy, E is the particle energy and σ is the coordinate along the trajectory. The coupling
between vertical and horizontal plane can be repaired in two ways – ignoring coupling in linear
beam dynamics or treating it as a perturbation. Then it is possible to split the six-dimensional
phase space into three independent two-dimensional planes [30] and derive the equations of mo-
tion in each plane separately, as will be done in 2.4.2.
For this reason we can speak about three independent beam emittances with two dimen-
sions. The emittance is a parameter of the beam which characterizes its size. Examples
of beam emittance are shown in Fig. 2.8. In the left picture there are particles appearing
from a disk (having radius w) and straight trajectories under an angle of ±90◦, where this
angle is measured from the disk’s surface. As depicted in the picture, the particles have a large
distribution of transverse momenta. In the right picture the limitations by an aperture are
shown. For a simpler explanation, the aperture has the same radius as the source and is lo-
cated at distance d from the source. A certain amount of particles will be absorbed at the iris.
Those which will pass through will occupy the phase space area shaded on the right picture
noted as "phase space representation".
We use the emittance for describing the beam, since it is invariant in absence of dissipative
or cooling forces. This means that the beam occupies a constant volume in the phase space
or a certain region in phase plane, respectively. This is actually what Liouville’s theorem
claims. Moreover we can prove that in the phase space the particle density does not change
along the beam transport line. Due to this fact, the forces acting on a particle can be derived
from macroscopic electric and magnetic fields. Furthermore, from knowledge of an occupied
area in phase space we are able to reach the location and distribution of the beam at any place
along the transport line, thus knowledge of the trajectories of every individual particle is not
necessary. In other words, it is possible to describe the collective behaviour of the beam
by the properties of a single particle.
The invariant (emittance) can be expressed as:

ε = γx2 + 2αxx′ + βx′2, (2.61)

where α, β, γ are Twiss parameters (discused in 2.4.1).
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Figure 2.8: Beam from a diffuse source in coordinate space and in the phase space (left).
Reduction of phase space (shaded area) due to beam restriction by an iris aperture (right);
[30]

The equation (2.61) is an expression of an ellipse called phase or emittance ellipse (see
Fig. 2.10), which surrounds all the particles of the beam in the phase space (Twiss param-
eters determine its shape and orientation). The area enclosed by this ellipse is called beam
emittance also expressed as: ∫

ellipse
dxdx′ = πε, (2.62)

which means, that the numerical value of the emittance multiplied by π is equal to the phase
space region of the beam. All particles travel along their individual ellipses in the phase space
(further details in [30]).
We can also take a look at focusing from the emittance point of view. The phase el-
lipse in the drift space can be pushed to the right without changing the angular envelope
i.e. A = x′max =

√
εγ stays constant. Naturally, if the drift space is long enough it is possible

that a convergent beam can change into a divergent one as we can see in Fig. 2.9.
The beam behaviour can be characterized by the form and orientation of the beam ellipse.
A convergent beam can be recognized by the rotated phase ellipse in position from 2nd (left
upper) to 4th (right lower) quadrant and divergent beam as the ellipse from 1st (right up-
per) to 3rd (left lower) quadrant. The upright position (symmetric) means location of waist
or symmetry point (more in [30]).
The cause of the finite emittance is the nonzero ion temperature. Finally, we only mention
some other factors that affect the beam emittance [44]:

• the intrinsic energy distribution of particles in the ion source,

• the spatial and angular distribution of particles in the ion source,

• the aberration of beam transport and acceleration components,
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Figure 2.9: Transformation of a phase space ellipse at different locations along a drift section;
[30]

• the space charge force (mutual electrostatic repulsion),

• the beam quality degraders (foil stripper, charge exchange cell...),

• bad vacuum.

2.4.1 Twiss parameters

A single particle position x can be described as a function of longitudinal location s:

x(s) = A
√
β(s) cos(ψ(s)), (2.63)

where A is the amplitude dependence on the initial conditions,
√
β(s) describes the amplitude

dependence on the machine lattice called Twiss parameter. Every particle has a different value
of the amplitude of motion A, but this value stays constant everywhere in the machine lattice.
β(s) cos(ψ(s)) varies around the machine, but keeps the same for every particle in the beam.
There are three Twiss parameters which describe the emittance ellipse (Fig. 2.10) – α, β and γ.
The relations between them are the following:

α(s) = −1

2

dβ(s)

ds
, (2.64)

γ(s) =
(1 + α(s))2

β(s)
. (2.65)

A random Gaussian distribution of particles forms a straight ellipse, which can be trans-
formed into a circle if we chose the proper coordinates. The emittance ellipse is expressed
by the equation:

γx2 + 2αxx′ + βx′2 = A2, (2.66)

which obviously corresponds to (2.61).
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Figure 2.10: Emittance ellipse; ε – emittance, β, γ – Twiss parameters, σx =
√
εβ

and σ′x =
√
εγ (2.77) ; [4]

2.4.2 Statistical definition of emittance

Often it is more practical to derive an emittance expression according to the distribution
of particles in the phase space. The reason is simple: firstly, we usually get the angle
and both positions from the beam measurement and secondly, the simulations become sim-
plier. In the derivation of emittance equations we will mainly follow the article [1].
The coordinates of the 2D phase space are w for the position and w′ for the angle. If we
chose coordinate axis w and w′, then the origin is situated in the barycentre. Consequently
the expected values 〈w〉 and 〈w′〉 are zero. Moreover the second order moments of distribution
in w-w′ plane for total range of N particles are given by the relations:

σw =

√√√√ 1

N

N∑
i=1

w2
i , σw′ =

√√√√ 1

N

N∑
i=1

(w′i)
2. (2.67)

The area of the emittance can be written as characteristic width in the w axis multiplied
by the characteristic width in the w′ axis:

ε = σwσw′ . (2.68)

The expected values 〈w〉 and 〈w′〉 are not zero in the case that the distribution is rotated
so a correlation between the position and the angle exists.
The measured (or simulated) coordinates of particles are denoted as x and x′ and the original
w, w′ axes form an angle θ with x, x′ axes, as depicted in Fig. 2.11.
From Fig. 2.11 we can write the relations for di (w coordinate of ith particle) and d′i (w

′ co-
ordinate of ith particle):

d′i = |x′i cos θ − xi sin θ| =
√

(x′i cos θ − xi sin θ)2, (2.69)

di = |x′i sin θ + xi cos θ| =
√

(x′i sin θ + xi cos θ)2. (2.70)
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Figure 2.11: Rotation of phase space axes by angle θ, [1]

In [1], by using (2.69) and (2.70), the equations for (σw′)2 and (σw)2 are derived. Here we
only mention the following relations:

σ2w′ =
1

N

N∑
i=1

(d′i)
2 =

1

2

(
〈x2〉+ 〈(x′)2〉 −

√
(〈x2〉 − 〈(x′)2〉)2 + (2〈xx′〉)2

)
, (2.71)

σ2w =
1

N

N∑
i=1

(di)
2 =

1

2

(
〈x2〉+ 〈(x′)2〉+

√
(〈x2〉 − 〈(x′)2〉)2 + (2〈xx′〉)2

)
. (2.72)

Then emittance (also called RMS emittance discussed in 2.4.2):

ε =
√
σ2wσ

2
w′ =

√
〈x2〉〈(x′)2〉 − 〈xx′〉2, (2.73)

where

σ2x = 〈x2〉 =
1

N

N∑
i=1

(xi − 〈x〉)2, (2.74)

σ2x′ = 〈(x′)2〉 =
1

N

N∑
i=1

(x′i − 〈x′〉)2, (2.75)

σxσx′ = 〈xx′〉 =
1

N

N∑
i=1

(xi − 〈x〉)(x′i − 〈x′〉). (2.76)

There is also a possibility to write the previous equations for emittance via determinant.
This method is very effective for 6D phase space, as reported in [1].
The statistically measurable parameters σx and σ′x can be rewritten by the emittance ε
and Twiss parameters α, β and γ:

σx =
√
εβ, σ′x =

√
εγ, rσxσ

′
x = −αε, (2.77)

where r is the radius of a circle in the phase space [1].
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Normalized emittance

Normalized emittance ε′ can be described by the relation:

ε′ = βγε, (2.78)

where β and γ are relativistic parameters and ε is the not-normalized emittance.
We introduce this term, because it is often very useful to consider the normalized emittance
than the not-normalized one due to a so-called adiabatic damping. The basis of this effect
is that emittance is inversely proportional to beam momentum [32], which, finally, reduces
the physical size of the beam. Thus one of the greatest advantages of the normalized emittance
consist in not changing with the energy, so the beam degradation can be observed.

Root mean square (RMS) emittance

When we consider not only a single particle but a distribution of them, it is useful to use
the root mean square emittance. From a statistical point of view, the RMS emittance is
defined as the root mean square [39] of this quantity and is described via (2.73). It is usually
used for a Gaussian beam. In addition the term is also needed in real measurements of beam
emittance. In fact, it is hard to get the full width of the beam, but it is easier to measure
the RMS width [32].
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Chapter 3

Setting up a program for ion beam
transport in magnetic solenoid

3.1 The main idea of the program

The main goal of my work was to write a matlab program which can compute the trajectory
coordinates of a charged particle beam in a solenoid with given starting conditions for the po-
sition and the velocity coordinates r0, θ0, z0 and vr0 , vθ0 , vz0 . The charged particle motion
through the solenoidal field is written in a cylindrical coordinate system. A transformation
into Cartesian coordinates is used only for plotting. The solution (by numerical mode, using
matlab subroutines) of a system of differential equations which we will discuss in chapter 3.2,
along to obtain the coordinates of movement moreover a file for generating the particle beam
emittance is also generated. By changing parameters we can study the behaviour of charged
particles (or a single particle) in the solenoidal field – for example a fringing field effect.

3.2 The program itself, explanation of the matlab code

In this section we will explain the codes one by one referring to the knowledge that we have al-
ready discussed, especially in part of the second chapter 2 (Behaviour of charged particle beams
in a solenoid magnetic field). The matlab syntax is taken from [6]. All the sub-programs,
functions and plotting files are located in Appendix 4.3.2 with brief comments.
In the whole code we will use y as a vector with the following cylindrical components:
y = (r, vr, θ, vθ, z, vz).

3.2.1 Main code

The first part of the main code consists of setting parameters and constants. Firstly, I have
set wire current i [A], number of wire turns N [-], the solenoid’s position on z axis: zini [m]
means position of the left end of the solenoid and zfin [m] of the right end of the solenoid,
so the length of the solenoid l can be expressed as l = zfin − zini [m], r [m] is radius
of the solenoid and b0 is the original magnetic field in the solenoid centre (along z-axis) com-
puted due to the relation (2.22) and just for clarity – the number 1.26E-6, used in the relation
for b0, is the value of permeability vacuum in Hm−1. Finally, clf command on the top is
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only for getting our start "clean", because it clears the current figure window.

clf
time=cputime;
i = 1800;
N = 1200;
zini = 0.1;
zfin = 0.25;
r = 0.025;
bo=(1.26E-6*i*N)/sqrt((zfin-zini)^2+4*r^2)

The following part sets the beam parameters – kinetic energy [eV], proton rest energy E0 [eV],
relativistic factors γ, β and velmod – total velocity of the charged particle (or of the beam
in the case of more particles). The relation γ = 1 + energy/E0 is a simple adaptation
of the total energy E:

E = E0 + Ek, (3.1)

mc2 = m0c
2 + Ek, (3.2)

E0γ = E0 + Ek, (3.3)

γ = 1 +
Ek
E0
, (3.4)

where kinetic energy Ek ≡ energy in the matlab code.

energy= 30e6;
Eo=938e6;
gamma=1+energy/Eo;
beta=sqrt(1-1/gamma^2);
velmod=beta*(2.998e+8);

The program continues with time setting of ordinary differential equations. From maximum
length of total path Ltot we will get the final time for the particle motion tmax0 [s]. Naturally,
we are starting from tmin0 = 0 s. In addition, time points which define the integration interval
of ODEs are specified by tspan0 vector. The integration starts in tmin0 and ends in tmax0
and the solution is evaluated in tmax/1000 steps.

Ltot=1;
tmin0=0;
tmax0=Ltot/velmod;
tspan0=[tmin0:tmax0/1000:tmax0];

Now we have to transform the three-dimensional Cartesian coordinates stored in x, y and z
to the cylindrical ones stored in r, θ, z. This is done by cart2pol matlab syntax. Velr is velocity
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in radial direction and can be expressed as follows:

velr =
√
v2x + v2y , (3.5)

vx =
dx
dt

=
dx
ds

ds
dt

= x′velmod, (3.6)

vy =
dy
dt

=
dy
ds

ds
dt

= y′velmod, (3.7)

velr =
√

(x′velmod)2 + (y′velmod)2, (3.8)

where s is the longitudinal direction and x′, y′ are divergences in x, y directions. Another
nedeed step is to set the right units. The output from beam emittance file 3.2.3 has a cer-
tain unit, which depends on the value that is set from the emittance eps0 – in this case
[π ·mm ·mrad]. Therefore the dividing factor 1/1000 is necassary to obtain position posx
in [m] and divergence pospx in [rad]. So it can look like this:

[ttheta,rr,zz]=cart2pol(posx(:,1)/1000,posx(:,2)/1000,0);
r0=[rr,ttheta];
velr=sqrt((posxp(:,1)*velmod/1000).^2+(posxp(:,2)*velmod/1000).^2);
k=1;

If we want a more realistic approach, it is better to set the dividing factors of pospx to 1/100
(hundreds mrad) and of posx to 1/10000 (posx ) because of the laser spot size. Generally
the spot diameter which the laser generates by the interaction is 50 microns or more. For now,
for clarity, we take the factor of 1/1000. This "unit setting" can also be done by changing
the Twiss parameters which, however, means running again the beam emittance file 3.2.3,
so using the dividing factors seem to be a better solution.
Then, the program solves the differential equations from 3.2.2 with the initial vector y0 (with its
coordinates y0 = (r0, vr0 , θ0, vθ0 , z, vz0), which consists of six elements – three initial conditions
for position and three for velocity. As we can see in the code vθ0 = 0 (straight trajectory), z = 0
(we start from zero point, it is just a question of choice of coordinate system) and vz can be
expressed as vz =

√
v2 − v2r , where v is total velocity velmod. Moreover there is a possibility to

introduce the starting conditions by a data file. The line row=1:1:Np means that we are solving
ODEs for each of Np particles Reltol (relative tolerance) was used as an error control property.
This error must be less than or equal to the acceptable error 10−7. We have to set the Reltol,
because the accuracy of our result is influenced by the tolerances, which are used for limiting
the local discretization error. When the difference between the high-accuracy and the low-
accuracy step is higher than our tolerance, the step size is reduced. Of course, each tolerance
must fit in its own program, because setting a too low or a too high tolerance is not good. In
order to solve the function of ODEs I used ode45 (which originally has value of Reltot 10−3)
and the needed subprogram with differential equations reported in 3.2.2. The odeset function
adjusts various parameters, which we have already discussed. The information from ODEs
solving is saved in cylcoord for each (k-th) particle. Because of this we have to set a counter
of particle number from k to k + 1 in the for loop.

for row=1:1:Np;
y0=[r0(row,1),velr(row),r0(row,2),0,0,sqrt(velmod^2-velr(row)^2)];
options=odeset(’reltol’,1e-7);
[t0,y]=ode45(’solutionODEcylind3D’,tspan0,y0,options,i,N,zini,zfin,r);
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cylcoord(:,:,k)=y;
k=k+1;
end

The following part is only a simple transformation of all the information from cylindrical
coordinate system to the Cartesian one, because of the matlab plot which expects Carte-
sian coordinates. This is done in three steps: firstly, cylcoords are transformed to Cartesian
xx, yy, zz; then this transformation is done for each particle and finally, all three coordinates
are saved into new Cartesian coord.

for kk=1:1:(k-1)
[xx,yy,zz]=pol2cart(cylcoord(:,3,kk),cylcoord(:,1,kk),cylcoord(:,5,kk));
end
for kk=1:1:(k-1)
[xx(:,kk),yy(:,kk),zz(:,kk)]=pol2cart(cylcoord(:,3,kk),cylcoord(:,1,kk),
cylcoord(:,5,kk));
end
for kk=1:1:(k-1)
coord(:,:,kk)=[xx(:,kk),yy(:,kk),zz(:,kk)];
end

The last part of the main code plots the trajectories of charged particle beam in z-y, z-x
and y-x plane. The simple 3D graph is also included and total computing time is evaluated.

or k=1:1:Np
hold on
subplot(2,2,1);
plot(coord(:,3,k),coord(:,2,k)); %zy plane
hold off
hold on
subplot(2,2,2);
plot(coord(:,3,k),coord(:,1,k)); %zx plane
hold off
hold on
subplot(2,2,3);
plot(coord(:,2,k),coord(:,1,k)); %yx plane
hold off
hold on
subplot(2,2,4);
plot3(coord(:,3,k),coord(:,2,k),coord(:,1,k)); % 3D
hold off
end
e=cputime-time
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Figure 3.1: Spatial views of a charged particle beam trajectory; a) z-y plane, b) z-x plane,
c) y-x plane, d) 3D graph; bo = 17, 21293 T; e = 12, 3085 s

3.2.2 Solution of cylindrical ODEs

For solving differential equations of motion in solenoidal magnetic field the main code 3.2.1
uses the following sub-program. For better clarity we will separate it into three parts where
the cylindrical coordinates are used.
The first part sets parameters – atomic mass unit amu [kg], elementary charge e [C], mass
number of proton Ap, charge state Q, permeability constant mu_0 [H/m], length of solenoid
L [m] (where zfin is position of the right end of the solenoid on z-axis and zini is the left
one), z1 and z2 are distances, on the axis, from the ends of the solenoid to the magnetic
field measurement point = position of the particle, as it is shown on Fig. 2.4. Mass number
of proton is the mass of proton divided by 1u, where u is the atomic mass unit.

function [dydt]=f(t,y,nothing,i,N,zini,zfin,r)
amu=1.66053886e-27;
charge = 1.60217653e-19;
Ap=1.00727647;
Q = 1;
mu_0=1.26E-6;
L = (zfin - zini);
z2 = y(5) - zini;
z1 = y(5) - zfin;
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Secondly, the elements of the magnetic field are computed. For evaluating Bz we use the re-
lation (2.20), Bθ = 0 because there is no angle-dependence (see chapter 2.3.2) and Br is com-
puted due to the relation (2.54). The simple derivation of the radial component of the magnetic
field is shown here:

Br = −r
2

∂Bz
∂z

, Bz =
µ0IN

2L

(
z2√
z22 + r2

− z1√
z21 + r2

)
(3.9)

Br = −r
2

µ0IN

2L

(
1√

z22 + r2
− z22√

z22 + r2
− 1√

z21 + r2
+

z21√
z21 + r2

)
(3.10)

bz=(mu_0*i*N)/(2*L)*(z2/sqrt(z2*z2+r*r)-z1/sqrt(z1*z1+r*r));
btheta=0;
br=-0.5*y(1)*(mu_0*i*N)/(2*L)*(1/sqrt(z2*z2+r*r)-1/sqrt(z1*z1+r*r)
-z2*z2/(z2*z2+r*r)^(1.5)+z1*z1/(z1*z1+r*r)^(1.5));

Finally, the 3 differential equations for focusing (2.58), rotation (2.59) and acceleration (2.60)
are following in the syntax of solving function [6]. For clarity I have also defined the ratio_QA:

ratio_QA =
Q

Ap

e

u
= Q

u

mp

e

u
=
eQ

mp
, (3.11)

where, as we have already mentioned, Q is charge state, e is elementary charge, Ap is mass
number of proton, u atomic mass constant andmp mass of proton. It is also possible to set gen-
eral A and general ratio ratio_QAgen = eQ/(uA) and in the case A = 1 (proton) the relation
ratio_QA = ratio_QAgen is valid. This allows us to consider a wide range of particles.

ratio_QA=Q/Ap*charge/amu;
dydt=[y(2)

ratio_QA*y(1)*y(4)*bz+y(1)*y(4)^2
y(4)

(ratio_QA*(y(6)*br-y(2)*bz)-2*y(2)*y(4))/y(1)
y(6)

-ratio_QA*y(1)*y(4)*br];

3.2.3 Beam emittance

The program generates the starting conditions (x, x′ and y, y′) of particles with initial emit-
tance eps0. The output files are posx (where coordinates are stored) and posxp (where diver-
gences are stored). By plot emittance file 3.2.5 we can see in the phase space the x-x′ and y-y′

emittances of particles. We have already discussed the theory which we will need in matlab
sub-program computing emittance in chapter 2.11.
Again we will start with cleaning our working environment (clear all) and setting the variable
for computing time. Then, the parameters are set – Twiss parameters α, β, γ (chapter 2.4.1),
initial RMS emittance [π mm rad] (chapter 2.4.2), number of particles Np and the statistically
measurable parameters (in terms of Twiss parameters and emittance) xrms=σx [mm] (defined
by relation (2.74)) and xprms=σx′ [mrad] (defined by relation (2.75)).
We have to pay attention to the designation of Twiss parameters, because two of three Greek
letters have already been used for the relativistic factors. The Twiss parameters γ and α are
set as constants and the parameter β satisfies the relation (2.65).
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clear all;
time=cputime;
gamma=15
alpha=-2
beta=(1+alpha^2)/gamma
eps0=5.;
Np=100;
xrms=sqrt(eps0*beta)
xprms=sqrt(eps0*gamma)

The following lines are used for allocating memory array for x, y and x′, y′ planes. The count is
a counter which is needed for the later while-cycle. The syntax zeros(Np,2) returns an Np-by-2
array of zeros where the number of particles Np naturally indicates the variable dimension.
Posx is a storage for coordinates of particles and posxp for divergences.

count=0;
posx=zeros(Np,2);
posxp=zeros(Np,2);
emittance=zeros(Np,2);

The main while-cycle of the beam emittance file is repeating until the posx, posxp and emittance
will not be computed for all the particles (Np). Firstly, the random 1-by-2 array x with Gaus-
sian distribution (σx = xrms(x, y), µ=0) and random 1-by-2 array xp also with Gaussian
distribution (σx′ = xprms(x′, y′) and µ=0) are generated. The emittance eps on x-y plane is
computed on the basis of relation (2.66).
As we see in the code it is required that the initial emittance eps0 is 9 times larger than emit-
tance eps and xrms is 3 times larger than

√
x2(1, 1) + x2(1, 2) which is the length of the vector

connecting the particles position in the phase space with the centre of the emittance ellipse
(Fig. 2.10). Why 9 or 3 times? Because the particles are distributed in a phase space which is
3 times the size (xrms) we set. That allows to take into account of the beam halo of the hypo-
thetical normal distribution of the real beam. Since the emittance is proportional to the square
of the size of the beam (2.68), the real emittance also must be 9 times eps0.
For each particle of the total Np particles, in posx the coordinates of the particles are stored
(x-y plane), in posxp the divergences are stored (x′-y′ plane) and in the emittance the emit-
tance eps is located.
With help of counter count we can include all the particles in a while-cycle. Finally, the pic-
ture of the situation in x-x′ plane is generated and the time needed for the beam emittance
sub-program is evaluated.

while count<Np
x=normrnd(0,xrms,1,2);
xp=normrnd(0,xprms,1,2);
eps= gamma*x.^2+2*alpha*x.*xp+beta*xp.^2;

if eps<9*eps0 & sqrt(x(1,1)^2+x(1,2)^2)<3*xrms;
count=count+1;
posx(count,:)=x;
posxp(count,:)=xp;
emittance(count,:)=eps;
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end
end
plot(posx(:,1),posxp(:,1),’.’);
axis equal;
e_time=cputime-time

Figure 3.2: Plotted emittance in x-x′ plane with parameters γ = 15 rad/m; α = −2[−];
β = 0, 3333 m/rad; xrms = 1, 2910 mm; xprms = 8, 6603 mrad; e_time = 0, 1560 s

3.2.4 Energy calculation

The program allows us calculating kinetic energy from velocity for each of the Np parti-
cles. The kinetic energy is computed on the basis of equation (3.4). Moreover, the velocity
for each particle is computed with consideration to the equation:

v =
√
v2x + v2y + v2z . (3.12)

For completeness, the well-known relations for relativistic parameters γ and β are used:

β =
v

c
, (3.13)

γ =
1√

1− β2
, (3.14)

where c is speed of light, numerically c = 2, 9998 · 108 m·s−1.
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clear velocity;
kkk=1
for kk=1:1:Np
velocity(:,:,kk)=sqrt(coord(kkk,2,kk)^2+coord(kkk,4,kk)^2+coord(kkk,6,kk)^2);
kkk=kkk+1;
end
beta1=velocity/(2.9998e+8);
gamma1=1/sqrt(1-beta1.^2);
Ekin1=(gamma1-1)*Eo;

3.2.5 Plotting emittances

The plot emittance file id depicted by dots the x-x′ and y-y′ emittance of all particles in the phase
space.

subplot(2,1,1);
plot(posx(:,1),posxp(:,1),’.’);
axis square;
subplot(2,1,2);
plot(posx(:,2),posxp(:,2),’.’);
axis square;

Figure 3.3: Plotted emittances in x-x′ and y-y′ plane with parameters γ = 15 rad/m;
α = −2[−] ; β = 0, 3333 m/rad; xrms = 1, 2910 mm; xprms = 8, 6603 mrad;
e_time = 0, 1560 s
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3.3 Fringing field effect

The fringing field is the magnetic field region surrounding a magnet and depends on the type
of this magnet (solenoidal) and field strength, meaning that higher field strength corresponds
to a larger fringe field.
Generally in the first order, in particle beam optic it is used to neglect the effect of the stray
field on the dynamic calculation: this model is called the "hard edge". In reality, however,
since nature does not allow sudden changes of physical quantities the hard edge model is
only an approximation, although for practical purposes a rather good one. In a real magnet
the field strength does not change suddenly from zero to full value but rather follows a smooth
transition from zero to the maximum field. Sometimes, the effects due to this smooth transi-
tion or fringe field are important and we will derive the appropriate corrections in this section.
If we change the radial field to zero value (Br = 0 T), then we get a uniform field where
the fringing field is absent. Now, if we compare Fig. 3.1 with Fig. 3.4 or more precisely
their third pictures with changes in beam trajectories projection (in x-y plane), we can see
that the charged particles in the first graph move on "circular" trajectories (we are still
speaking projection of trajectories) with cyclotron frequency (2.3) which causes focusing (see
Fig. 2.6). We will try to explain why the trajectory projection of charged particle beam
with Br = 0 has straight lines as it is shown in the third graph on Fig. 3.4. The compo-
nents of the solenoid magnetic field derived in chapter 2.3.2 are described by relations (2.54)
and (2.55). Then for z-coordinate of the magnetic field we obtain:

Br = −1

2
r
∂Bz
∂z

, (3.15)

Bz = −2Br
r

∫
dz = −2Br

r
z. (3.16)

When we use result (3.16) and substitute it into (2.2) and do the limit for Br → 0, then,
for the trajectory radius r it can be written:

r =
P⊥
eBz

=
P⊥r

−2eBrz
, (3.17)

lim
Br→0

r = lim
Br→0

P⊥r

−2eBrz
=∞. (3.18)

Since we can imagine a straight line like a circle with an infinite radius, this is the connection
and explanation of the differences between c) graphs on Fig. 3.1 and Fig. 3.4. The com-
parison between the other three graphs is very hard to be seen – they look very similar,
because the main difference between fringing and non-fringing field is the increment in veloc-
ity vθ. From the chapter 2.2 we know that the increment in azimuthal velocity on boundary
between 1st and 2nd region (same notation) is given by the relation (2.28): ∆vθ = r0ωL, re-
spectively (2.33) for boundary between 2nd and 3rd region. The increment with consideration
of non-fringing field will be derived in a simple way. We use relations (2.54) and (2.5):

Br =
−1

2
r
∂Bz
∂z

⇔ Bz =
−2Br
r

z, (3.19)

ωL =
eB0

2γm
= 0, (3.20)

∆vθ = r0ωL = 0. (3.21)
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Thus the increment in azimuthal velocity vθ is zero in the case of the non-fringing field and
non zero in the case of the fringing field.

Figure 3.4: Spatial views of a charged particle beam trajectory with a non-fringing field
(Br = 0 T); a) z-y plane, b) z-x plane, c) y-x plane, d) 3D graph; bo = 17, 21293 T;
e = 12, 3085 s
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Chapter 4

Application of laser-accelerated
protons in hadrontherapy

4.1 Hadrontherapy

One of the applications of accelerated ion beams with great impact on society is hadrontherapy.
Hadrontherapy is a radiological technique which deals with treatment of cancerous tumours
by using strongly interacting particles – protons (better dose distributions), neutrons (better
tumour killing), pions or ions (α, C, Ne) [10].

Figure 4.1: A gantry in the Northeast Proton Therapy Center, [21]

Although several hadron therapy facilities based on conventional acceleration machines are
operational worldwide, laser-driven hadron therapy centers are still not present since they do
not fit within the strict radiological requirements (energy, dose ...) yet. On the other hand
several projects are active worldwide based on the idea of treating cancer by laser driven ion
beams. In fact these methods can potentially drastically reduce the size and as a consequence
the cost of future hadron therapy centers. Studies on the biological effect of laser-driven ions
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on living cells are already abundantly performed. In fact it is crucial to better understand
the biological consequence of short ion bunches associated with the ultra short laser beams.

4.1.1 Physical rationale

The enormous advantage of using protons or ions for cancer treatment is their energy deposi-
tion property. In contrast with X-rays (photons), protons show an increasing energy deposition
with the increase of the penetration distance. The energy deposition for some time remains
steady and, near the end of the particle trajectory, is followed by a sharp increase leading
to the maximum of energy deposit – the Bragg peak. This dependence is shown in Fig. 4.2 a).

Figure 4.2: a) Dependence of typical dose deposition on penetration depth for a proton beam;
[21], b) a proton beam can be precisely shaped (in three dimensions) to fit to the area of tu-
mour. Making the area of maximum relative dose in required depth wider consists of putting
together more energy deposition curves with different space-position of their Bragg peak; [10].

This characteristic allows minimization of the effect on the surrounding healthy tissue, while
only the tumour is being treated. In fact, protons are losing their energy in atomic or nu-
clear interactions and they slow down faster than photons, because of their non-zero mass.
The comparison between proton therapy and photon therapy is reported in chapter 4.1.2.
The decreasing energy of protons avoids greater interactions with orbit electrons which, fi-
nally, causes the increasing energy. Obviously the maximum interaction with electrons ap-
pears at the end of the range noted as Bragg peak. In other words, the protons deposit
more energy when they are slowing down and this energy is culminated in the Bragg peak
[28]. A possibility as to how to cover the whole tumour volume is presented in the Fig.
4.2 b). Proton beam can be precisely shaped in three dimensions to fit to the area of tu-
mour. The idea consists of putting together more energy deposition curves with different
space-possition of their Bragg peak to create this peak much wider.

4.1.2 Clinical rationale

Proton therapy can be used for irradiating tumours which are located close to places where
a small local overdose can cause fatal complications. This includes tumours close to the spinal
cord, paediatric optic, esophageal cancer, prostate cancer etc.
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Proton therapy has already been applied for the treatment of paranasal sinus tumours, chor-
doma, chondrosarcoma, meningioma, prostate and lung tumours [21] (data from year 2005).
The typical proton energy range for clinical interest is 60−250 MeV, depending on the location
of the tumour. The typical dose for one treatment is 1−5 Gy (one Gy=gray is the absorption
of one joule of energy per kilogram [36]) with typical currents 10 nA and 1, 2 nA for protons
and carbon ions. The biggest advantage of carbon ions is their higher biological effectiveness,
thus they are used mainly for treating radio resistant and hypoxic tumours. On the other hand,
magnetic steering systems (=gantries) are huge and heavy – for carbon ions they can weight
approximately 500 tons, but proton gantries weigh "only" 100 tons. Laser-driven accelerators
(chapter 4.2.1) could be a solution since they can avoid the use of gantries. The limitation is
the fact that proton energy obtained from a laser accelerator is quite low, so potentially they
can treat only patients with tumours a few centimetres under the skin – eye tumours, thyroid,
larynx, nasal or paranasal cavity, breast, superficial lymph node, skin and subcutaneous tissue
[19].
A summary of the obtained results with hadrontherapy is reported in Tab. 4.3 situated in Ap-
pendix 4.3.2.

Figure 4.3: Proton therapy for an eye tumour – the treatment of choice for choroidal
melanomas; [3]

Why prioritize proton therapy before X-ray radiation?

The crucial problem with using X-rays for treatment is their problematic controlling as an en-
ergy source. Most body tissue cannot absorb and stop X-rays, so they pass through and irra-
diate not only the treated tumour but also the healthy tissue. The tissue damage as a result
of X-rays can cause serious health problems, especially when the sensitive or life-crucial areas
like brain, lungs (Fig. 4.4) or eyes are treated [9].
On the other hand, proton therapy has no "exit dose" of radiation like X-ray therapy has.
A proton beam releases increasing energy when it starts to slow down, and the most energy
(the Bragg peak) when it stops. After that there is a very little amount of residual energy.
A small dose, compared to another treating methods, causes better retention of organ functions
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and decreases the likelihood of secondary tumors in the future [24].

Figure 4.4: Differences of radiation amount between protons and X-rays/Intensity-Modulated
Radiation Therapy illustrated on examples of brain and lung tumour; [24]

4.2 Classic proton accelerators and their comparison with laser
accelerators

In many cases the particle beams are accelerated by conventional accelerators like synchrotrons
or cyclotrons. However, the laser acceleration of charged particles may be taken as an alter-
native technology for hadrontherapy. Moreover, there are also some undeniable advantages
which we will discuss later. Sadly, they are followed by limitations in proton energy (several
tens of MeVs), which we are able to reach at present.
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Some experiments and simulations [19] show that, although the basic acceleration mechanisms
are well described and known, the medical applications require new mechanism of acceleration.

4.2.1 Laser accelerators

The expectations from laser ion accelerators are to be compact, simple and low cost.
Due to the last thing on this list, it will also be more possible to set hadrontherapy based on laser
acceleration to hospitals and make treatment more achievable. Furthermore, the gantries are
small with no large magnets and radiation shielding is only local, so the acceleration mech-
anism can take place in a gantry or the patient’s room, not in a distant place like conven-
tional accelerators have to. Another advantage, as we have already mentioned, is the absence
of huge magnets or ion injectors. Conventional accelerators need a large number of magnets
because of the protons (e.g. 200 MeV), which have to be bent by 135 degrees. In contrast,
laser accelerators have a much lower bending angle because protons are generated much closer
to the patient. The trajectory of protons or ions is shaped by magnets and laser light redirected
in transport by mirrors. The last mirror focuses the laser onto a target which is an accelerator
itself of the size 0, 1− 1m (Rear and Front surface acceleration 1.2) [19].
The irradiation multi-terawatt system of a laser ion accelerator contains a final laser pulse
compressor, an ion beam generation chamber, a separation magnet system and a patient po-
sitioning system. Nowadays multi-terawatt lasers, which easily fit into a common hospital
room, are available for practical usage. This makes a proton therapy device size-comparable
with the X-ray linac machines in many typical hospitals. As we discuss in 4.1.2 the tissue sur-
rounding tumour will be less irradiated by using hadrontherapy treatment than by the X-ray
one. From a financial point of view, the most expensive part of a laser accelerator is the laser
itself. However laser technology is developing very quickly and high power laser system will
become cheaper.
From simulations we know [19] that to generate ions over 100 MeVs, the intensities
of 1020−21 Wcm−2 are necessary, thus laser peak power higher than 100 TW on target will be
needed (we consider focusing onto an area of 10−6 cm2 or smaller). Usually, only a small frac-
tion of the laser pulse energy has therapeutic relevance. In fact, experiments usually deliver
approximately 1−10% of laser pulse energy to protons [19]. Thus new acceleration geometries
aimed at increasing the conversion efficiency of the laser energy into accelerated protons are
being proposed [16].

4.2.2 Conventional accelerators

Conventional accelerators are based on radio-frequency. In this paper we consider two types
of them – cyclotron and synchrotron.

Cyclotron

A cyclotron is a type of particle accelerator. A static magnetic field (magnetic component
of the Lorentz force) acts on moving charged particles and bends their trajectory into a semi-
circular path between acceleration by an applied rapidly varying (radio frequency) electric
field. This electric field accelerates the charged particles just at the time when they finish
their half circle path. Thus, the acceleration happens in the gap between dees (D-shaped
electrodes) [20]. After several times of repeating this process, the accelerated particles exit
the port with very high velocity. A simplified schema of a cyclotron is shown in Fig. 4.5.
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Figure 4.5: Cyclotron – particle accelerator; [20]

Synchrotron

A synchrotron is a type of particle accelerator, whose design is based on the concept of a cy-
clotron with the difference being that the magnetic field (which bends the trajectory of the par-
ticles) is time-dependent and synchronized to a particle beam of increasing kinetic energy.
The synchrotron is good for constructing large facilities, because bending, beam focusing
and acceleration can be separated into different components [40].

4.2.3 Requirements on accelerators and comparison between laser and con-
ventional accelerators

There are four main requirements on accelerators [19] to achieve precise irradiation of irregu-
larly shaped tumours:

• beam size control,

• intensity control,

• fast beam cut-off,

• time-structure control.

The comparison between conventional hadron therapy centers and potential laser-driven hadron
therapy facilities is reported in Tab. 4.1:
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Parameter Conventional accelerators Laser driven accelerators
(synchrotron, cyclotron)

Beam transport – large magnetic system – laser beam can be transported
required to bend charged particles and bended by mirrors (small
– radiation shielding required device)
around the bending corner – radiation shielding not required

around the bending corner
Beam size ∼ 10 mm < 1 mm (at source)
Accelerator – large magnetic system – only target part should be

required to accelerate charged particles irradiated
– total system is large and overall – compactification of the system
radiation shielding required possible

Irradiation system – three to five meter magnetic – future possibilities to avoid
system required to bend charged bending magnets by using
particles 90− 135 degrees optical mirrors
with gantry

Gantry – large size (100− 250 tons) – small size (1− 10 tons)
– diagnostic system cannot be set – diagnostic system can be
near patient combined with gantry

Scanning – mainly long pulse injection – short pulses superimposed
– recently started – main method

Energy – up to 230 MeV (HIBMC) – several tens of MeVs currently
Change of energy – much time – easy and rapid
Technology – mature (started since 1930s) – nascent (started since 1990s)

– many elements to be developed
Cost – expensive (23 billion yen (HIBMC)) – relatively inexpensive
Others – protective goggle required
Clinical – solid tumour in the body – small sized tumours in the eye,
applications thyroid, larynx, nasal

or paranasal cavity, breast,
superficial lymph node, skin,
subcutaneous

Range – 32 cm (whole body) – several cm (superficial tumuor)

Table 4.1: Characteristics of a laser driven particle therapy machine and comparison be-
tween a conventional particle accelerator and a laser proton accelerator (at present); HIBMC
is an acronym for Hyogo Ion Beam Medical Center in Japan; partial info taken from [19]
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4.3 ELIMED and ELI Beamlines

4.3.1 ELI Beamlines

The aim of project Extreme Light Infrastructure (ELI) is to build a European net of research
facilities with the latest laser equipment in the world. ELI will cover many research programs
with need of high intensities, being 10 times higher than current achievable values. Moreover,
the project will provide ultra-short laser pulses of a few tens femtoseconds duration and laser
power up to 10 PW [2]. Because of these new techniques for medical image-display and diag-
nostics, radiotherapy, hadrontherapy, tools for new materials developing and testing, the latest
in X-ray optics, etc. will be developed. In addition ELI will be a great education and work
opportunity for scientists, engineers and students.
ELI will consist of three laser centers combined under one heading. These centers will be
located in three European countries:

• The Czech Republic – ELI Beamlines is being built in Dolní Břežany as a facility
for the generation of new secondary sources for interdisciplinary applications in physics,
medicine, biology and the material sciences

• Hungary – ELI Attosecond will be a center for physics of ultra short optical pulses
in attosecond order

• Romania – ELI Nuclear Physics will be focused on photonuclear physics

A place for another infrastructure is still under discussion. In addition to the funding coun-
tries, the major partners of the project preparatory phase, such as Germany, Great Britain,
Italy and France, are also involved in the project.
The building of ELI Beamlines are designed by a British company Boggle Architects. An artis-
tic view of the future ELI Beamlines building is shown in Fig. 4.6 and the location of experi-
mental halls is shown in Fig. 4.7.

Figure 4.6: Aerial view of ELI Beamlines; [2]
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Figure 4.7: Plan of experimental halls in ELI Beamlines; [27]

4.3.2 ELIMED – a new hadron therapy concept based on laser-driven ion
beams

ELIMED is one of the ELI’s projects and its acronym means ELI -BeamlinesMED ical and mul-
tidisciplinary applications.
The main areas of investigation which ELIMED will cover and general users’ requirements are
listed in Tab. 4.2 [27].

Investigation Requirements
irradiation of biological and other samples wide energy and fluency range;

possibility of in-air irradiation
radiation damage on different components homogeneous lateral beam distribution
demonstration of new irradiation modalities stability in terms of energy and fluency
for radiotherapy distributions
detector characterization variable beam spot size (from 2 mm

up to 40 mm); different ion species
pump probe investigation beam control (diagnostics and dosimetry)

with < 5% errors

Table 4.2: ELIMED’s areas of investigation and user requirements; [27]

Laser driven ion beams, which will be generated at ELIMED, have great potential for demon-
strating, improving and studying laser driven hadrontherapy, but will not be immediately
suitable for medical applications. In fact, medical applications require better parameters
in terms of beam characteristics and performance, especially those in delivery system, diag-
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nostic tools or efficiency of beam transport, which will need time to be optimized.
A simplified layout of ELIMED beamline is shown in Fig. 4.8. Firstly, the ion beam is acceler-
ated (discussed in chapter 1), then it enters the area for capturing and selection (theoretically
discussed in chapter 2) which is the part I have been focusing on. Moreover, this is the part
I was working on. As reported in chapter 3 I have written a program which can compute
the particles trajectories in a solenoid magnetic field. Focusing and transport section, realized
by the quadrupoles, follows and finally, the energy selection system ends the beamline.

Figure 4.8: A simplified layout of ELIMED beamline

Two possible layouts for the beam transport section are shown in Fig. 4.9. Case A maximizes
the transmission efficiency (> 50%), but its disadvantage is the high energy spread (> 50%).
Case B maximizes the energy spread of the pre-section beams (< 40%), but its disadvantage
is the low transmission efficiency (< 30%).

Figure 4.9: Possible layouts of collecting and transport section; cases A and B are discussed
in text; [27]

The first challenge that lays ahead is to reach the following parameters: 60 MeV proton energy
(eye tumour range), 1010 proton per laser pulse with 1 PW laser power and 30 fs duration
of the laser pulse. In a graphic table in Fig. 4.10, the best and worst scenario for the first
phase of the ELIMED beamline is reported.
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Figure 4.10: The best and worst case of our expectation; [27]
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Summary and Conclusions

The original part of this thesis work consists of developing a software for ion beam transport
in magnetic solenoid fields aimed at decreasing the divergence of laser driven ion beams. A gen-
eral description of the framework in which this work is developed is reported as well as the iden-
tification of the basic tools needed for the implementation of the software.
The aim of the first chapter is to describe basic concepts of the processes involved in laser driven
ion beam acceleration (high intensity laser interaction with matter, absorption mechanisms,
laser driven acceleration mechanisms). The second chapter deals with describing the classic
behaviour of charged particle beams propagating in a solenoid magnetic field. The particle
beam emittance is also defined and explained from a statistical point of view. The last chapter
looks into laser-driven medical applications, both from a clinical and a physical point of view,
and in particular to a future use of such non-conventional beams in hadrontherapy. Moreover
the comparison to X-ray therapy, as well as the comparison between conventional and laser
accelerators, is reported.
The software which has been developed is written in MATLAB. It can compute trajectory
coordinates of a charged particle beam in a solenoid with given starting conditions for posi-
tion and velocity coordinates. The software also takes the ion beam emittance into account.
A possibility of investigating interesting effects of charged beams propagating in solenoid mag-
netic fields is demonstrated simply by changing few parameters, e.g. the fringing field effects.
Moreover the software provides a plot of the particle trajectories giving a snapshot of the ion
beam propagation.
The work can be potentially extended and completed in the upcoming future. In fact, different
solutions for the optimization of the "capturing and selection" sector of the ELIMED beamline
can be investigated. For instance, the geometry with two solenoids can be studied in order
to minimize the energy spread of the "pre-selected" ion beams (< 40%). However the dis-
advantage of this geometry is the low transmission efficiency (< 30%). Therefore different
geometries aimed at maximizing the transmission efficiency could be studied. Finally, after
the optimization of the solenoid sector, the work could proceed with the design of a quadrupole
system aimed at focusing the ion beam for a better transport. Moreover, numerical simula-
tions will be needed for a better understanding of the physical picture.
Big challenges in research lay ahead of us, especially for medical applications of such beams,
e.g. hadrontherapy. In fact, although several facilities based on conventional acceleration ma-
chines are operational worldwide, laser-driven hadrontherapy centers are still not present since
they do not fit with the strict radiological requirements (energy, dose, etc.) yet. Beside tech-
nical aspects, the biological consequence of short ion bunches associated with ultrashort laser
pulses have to be better investigated and understood. Furthermore, there are other poten-
tial applications of laser driven ion beams, e.g. triggering and control of nuclear reactions,
production and probing of warm dense matter, and many others.
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Appendix

Institution Where First Tr. Last Tr. # of patients Date of Total
Berkeley 184 CA, USA 1954 1957 30
Uppsala Sweden 1957 1976 73
Harvard MA, USA 1961 2002 9116
Dubna Russia 1967 1996 124
ITEP, Moscow Russia 1969 3748 June-04
St. Petersburg Russia 1975 1145 April-04
Chiba Japan 1979 145 April-02
PMRC, Tsukuba Japan 1983 2000 700
PSI (72 MeV) Switzerland 1984 4066 June-04
Dubna Russia 1999 191 Nov-03
Uppsala Sweden 1989 418 Jan-04
Clatterbridge England 1989 1287 Dec-03
Loma Linda CA, USA 1990 9282 July-04
Louvain-la-Neuve Belgium 1991 1993 21
Nice France 1991 2555 April-04
Orsay France 1991 2805 Dec-03
iThemba LABS South Africa 1993 446 Dec-03
MPRI IN, USA 1993 1999 34
UCSF - CNL CA, USA 1994 632 June-04
TRIUMF Canada 1995 89 Dec-03
PSI (200 MeV) Switzerland 1996 166 Dec-03
H. M. I, Berlin Germany 1998 437 Dec-03
NCC, Kashiwa Japan 1998 270 June-04
HIBMC, Hyogo Japan 2001 359 June-04
PMRC, Tsukuba Japan 2001 492 July-04
NPTC, MGH MA, USA 2001 800 July-04
INFN-LNS,Catania Italy 2002 77 June-04
WERC Japan 2002 14 Dec-03
Shizuoka Japan 2003 69 July-04
MPRI IN, USA 2004 21 July-04

Table 4.3: World wide proton therapy experience as of July 2004; [21]
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%   MAIN CODE   %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clf
time=cputime;
%
% set solenoid parameters
%
i = 1800;             % wire current [A]
N = 1200;             % number of wire turns
zini = 0.1;           % z position of the left end of the solenoid [m]
zfin = 0.25;          % z position of the right end of the solenoid [m]
r  = 0.025;           % solenoid radius [m]
bo=(1.26E-6*i*N)/sqrt((zfin-zini)^2+4*r^2) % mag. field in the sol. centre
%
% set beam parameters
%
energy= 30e6;            % kinetic energy [eV]
Eo=938e6;                % proton rest energy [eV]
gamma=1+energy/Eo;       % gamma relativistic factor
beta=sqrt(1-1/gamma^2);  % beta velocity
velmod=beta*(2.998e+8);  % total velocity
%
% ODE time set
%
Ltot=1;         % maximum length of total path, from this calculation we
                % can get the total time tmax for the particle motion
tmin0=0;
tmax0=Ltot/velmod; % [s]
tspan0=[tmin0:tmax0/1000:tmax0];
%
% convert Cartesian coordinates (generated from the beam_emittance
% function) to cylindrical ones
%
[ttheta,rr,zz]=cart2pol(posx(:,1)/1000,posx(:,2)/1000,0); %transformation
% from Cartesian to cylindrical coordinates (ttheta,rr,zz)
r0=[rr,ttheta];
velr=sqrt((posxp(:,1)*velmod/1000).^2+(posxp(:,2)*velmod/1000).^2);
% realistic approach also possible:
%[ttheta,rr,zz]=cart2pol(posx(:,1)/10000,posx(:,2)/10000,0);
%r0=[rr,ttheta];
%velr=sqrt((posxp(:,1)*velmod/100).^2+(posxp(:,2)*velmod/100).^2);
k=1;
%
% differential equations (solving)
%
for row=1:1:Np;     % for Np particles with 1-particle step
y0=[r0(row,1),velr(row),r0(row,2),0,0,sqrt(velmod^2-velr(row)^2)];
% velmod is total velocity, v_theta is 0
options=odeset('reltol',1e-7);
[t0,y]=ode45('solutionODEcylind3D',tspan0,y0,options,i,N,zini,zfin,r);
cylcoord(:,:,k)=y;  % saving information form ODEs for each k-th particle
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k=k+1;

end
%
%  convert cylindrical coordinates to Cartesian ones because of plotting
%
for kk=1:1:(k-1)
[xx,yy,zz]=pol2cart(cylcoord(:,3,kk),cylcoord(:,1,kk),cylcoord(:,5,kk));
end
for kk=1:1:(k-1)
[xx(:,kk),yy(:,kk),zz(:,kk)]=pol2cart(cylcoord(:,3,kk),cylcoord(:,1,kk),
cylcoord(:,5,kk));
end
for kk=1:1:(k-1)
coord(:,:,kk)=[xx(:,kk),yy(:,kk),zz(:,kk)]; % saving in coord
end
%
%  plot trajectories
%
for k=1:1:Np % for each of Np particles
    hold on
    subplot(2,2,1);
    plot(coord(:,3,k),coord(:,2,k)); %zy plane
    hold off
    hold on
    subplot(2,2,2);
    plot(coord(:,3,k),coord(:,1,k)); %zx plane
    hold off
    hold on
    subplot(2,2,3);
    plot(coord(:,2,k),coord(:,1,k)); %yx plane
    hold off
    hold on
    subplot(2,2,4);
    plot3(coord(:,3,k),coord(:,2,k),coord(:,1,k)); %simple 3D
    hold off

end

e=cputime-time

Published with MATLAB® 7.13

60



1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%   SOLUTION OF CYLINDRICAL ODEs   %%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dydt]=f(t,y,nothing,i,N,zini,zfin,r)
amu=1.66053886e-27;            % atomic mass unit [kg]
charge = 1.60217653e-19;       % elementary charge [C]
Ap=1.00727647;                 % mass number proton (= mass of proton
                               % divided by 1u (atomic mass unit)
Q = 1;                         % charge state
mu_0=1.26E-6;                  % permeability constant [H/m]
L = (zfin - zini);             % length of solenoid [m]
z2 = y(5) - zini;
z1 = y(5) - zfin;
bz=(mu_0*i*N)/(2*L)*(z2/sqrt(z2*z2+r*r)-z1/sqrt(z1*z1+r*r)); %[T]
btheta=0;
br=-0.5*y(1)*(mu_0*i*N)/(2*L)*(1/sqrt(z2*z2+r*r)-1/sqrt(z1*z1+r*r)-
        -z2*z2/(z2*z2+r*r)^(1.5)+z1*z1/(z1*z1+r*r)^(1.5));
ratio_QA=Q/Ap*charge/amu;
   dydt=[y(2)
        ratio_QA*y(1)*y(4)*bz+y(1)*y(4)^2                  % focusing
      y(4)
        (ratio_QA*(y(6)*br-y(2)*bz)-2*y(2)*y(4))/y(1)      % rotation
      y(6)
        -ratio_QA*y(1)*y(4)*br];                           % acceleration
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%  BEAM EMITTANCE  %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
time=cputime;
% twiss parameters
gamma=15
alpha=-2   % beta*gamma-alpha^2=1
beta=(1+alpha^2)/gamma
%
eps0=5;                    % RMS emittance [pi*mm*mrad]
Np=100;                    % particles number
xrms=sqrt(eps0*beta)       % [mm]
xprms=sqrt(eps0*gamma)     % [mrad]
count=0;                   % a counter
posx=zeros(Np,2);          % allocate memory array for x and y plane;
                           % Np-by-2 array of zeros
                           % a storage for coordinates
posxp=zeros(Np,2);         % allocate memory array for x' and y' plane
                           % a storage for divergences
emittance=zeros(Np,2);     % allocate memory array
while count<Np
    x=normrnd(0,xrms,1,2);   % Gaussian distribution with sigma=xrms(x,y),
                             % mu=0; generates an 1-by-2-by random array
    xp=normrnd(0,xprms,1,2); % Gaussian distribution with sigma=xprms(x',y')
    eps= gamma*x.^2+2*alpha*x.*xp+beta*xp.^2; % calculate the emittance
                                              % considering twiss par.

    if eps<9*eps0 & sqrt(x(1,1)^2+x(1,2)^2)<3*xrms;
        count=count+1;
        posx(count,:)=x; % here coordinates are stored,
                         % posx(count,1) and posx(count,2)
        posxp(count,:)=xp; % here divergences are stored
        emittance(count,:)=eps;
    end % from this we have x, x', y, y', x=(x,y), xp=(x',y') and emittance
end
plot(posx(:,1),posxp(:,1),'.'); axis equal; %x-x' plane
e_time=cputime-time
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%   ENERGY CALCULATION   %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear velocity;
kkk=1
for kk=1:1:Np
velocity(:,:,kk)=sqrt(coord(kkk,2,kk)^2+coord(kkk,4,kk)^2+coord(kkk,6,kk)^2);
% velocity for each particle
kkk=kkk+1;
end
beta1=velocity/(2.998e+8); % relativistic factors beta, gamma
gamma1=1/sqrt(1-beta1.^2);
Ekin1=(gamma1-1)*Eo;

Published with MATLAB® 7.13
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%   PLOTTING EMITTANCES   %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(2,1,1);
plot(posx(:,1),posxp(:,1),'.');  %emittance x-x';
axis square;
subplot(2,1,2);
plot(posx(:,2),posxp(:,2),'.');  %emittance y-y'
axis square;
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