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1. — Introduetion.

Recently, the statistical model of Fermi (*) has been applied to large-angle
elastic (%) and exchange (*) secattering with a rather unexpected success.
Roughly, the result can be stated as follows: if one caleulates with the (non-
invariant) statistical model the probabilities P; for all channels § of the reaction
P+Dp—«channel j» then one finds for c.m. energies from 2 to 8 GeV the
numerical formula

[E in GeV]

(1) ( = P) = exp[—3.30(E—2)]

[

(") E. FPErM1: Progr. Theor. Phys., 5, 570 (1950).

(?) G. Fast and R. HacEporN: Nuovo Cimento, 27, 208 (1963).

(®) G. Fasr, R. HaceporN and L. W. Jonms: Nuovo Cimento, 27, 856 (1963).
*) R.

HAGEDORN: Nuove Cimento, 35, 216 (1965).
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[our units are: # = ¢=1F (Boltzmann's constant) = 1] where P, denotes the
elastic channel. From this (do,/dw),,. was caleculated in ref. (=-4).

The natural question arose whether this numerical results could be under-
stood. A, number of authors considered the asymptotic behaviour of sums
over phase-spacs integrals (57) or treated the question by thermodynamical
methods (*9).

The analyiic treatment (57) resulted.always in
@ So~ Xl al]

i
where =1, %, $, 1 according to various assumptions about details.

I+ turned out that «= 1 is impossible under the usual assumpéion that
the particles are indistinguishable. If one omits, however, the factor 1/n!in
front of the phase-space integrals then o« =1 results. This was first pointed
out by AusmrsoN and Escousis (5) for the noninvariant, and later by VAN-
DERMEULEN (8) for the invariant phase space.

Omititing the factor 1/n! corresponds to consider the particles as being distin-
guishable. Thisis not altogether senseless, since in reality there are so many dif-
ferent interacting particles (henceforward: hadrons) involved in the high-enzrgy
processes that the average occupation number in the mumerical calculations
leading to (1) remains below =1 (where, of course, the different charge and
gpin states have to be counted separately). In this situation the particles
behave as if they were distinguishable. Responsible for this—and presumably
for the actual bebaviour of strong interactions at high energies—is the large
number of possible particle states. Indeed, the number of particles and reso-
nances seems to grow very fast as a funection of their mass (). Sinece only &

for E — oo,

() &. Aveerson and B. Escousis: Production of light bosoms by ceniral collisions
at very high energy, CERN preprint 9323/TH 460, 4 August 1964 (fo be published in
Nuovo Cimento, 1965).

(%) J. VANDERMBEULEN : Hlastic scattering in high-energy proton-proton central collisions,
preprint of Départment de Physique Mathématique, Université de Lige, July 1964
(to be published).

(?) H. Sarz: The high-energy limit of the stabistical model, August 1964 (Summer
Institute for Theoretical Physics, University of Wisconsin, Madison, Wise.; now at
DESY, Hamburg).

(8) A. Biazas and V. F. Wrisssorr: Statistical theory of elastic proton-proton
scattering af large angles, CERN preprint 9236/TH. 461, 5 August 1964 (to be published
in Nuovo Cimento, 1965).

(8) G. Coccowi: Nuovo Cimento, 33, 643 (1964). COCCONI says: «... corresponds to
the case of a system in which, for ¥ inecreasing, the number of possible kinds of particles
increases so as to keep the energy per particle, and hence the temperature, constant ».
Our whole theory is implicitly confained in this remarl.

() A. H. RosENFELD, A. BarBar0-GarTiEri, W. H. Barxas, P. L. BasTEx,
J. Kz and M. Roos: Rev. Mod. Phys., 36, 977 (1964) and UCRL 8030.
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few of them are stable against strong decay and in principle no criterion exists
to distinguish between a resonance (which decays strongly) and the so-called
fire-balls (which seem to be observed at very high energies) we shall assume
that the fire-balls and the Iow-lying resonances are basically one and the same
thing, namely, excited hadrons. Thus, we may speak of 2 mass spectrum of
hadrons, which has at low masses & few discrefe lines; between and above
these some rather sharp resonamces; for larger mass values more and more
resonances appear which become gradually broader until, finally, there are so
many that the width becomes comparable to their spacing and a conftinuous
spectrum of fire-balls results. Strietly speaking the fire-balls, which we presently
have in mind and which are counted by a mass spectrum, are not exactly the
same as those actually observed: the former ones are states with well-defined
guantum numbers {(except the mass itself) whereas the latter ones can be mixtures
of states within s mass interval Am.

A high-energy collision will then be visualized in this paper as follows:
in the first instant in a certain volume ¥, a thermodynamical « equilibrinm » (%)
is established which will be described by stabistical thermodynamics of an
unlimited and undetermined number of more or less excited hadrons, which
then leave the region of interaction and decay (strongly) through a number of
steps info «stable » forms X, «, N, ¥, ete.

The essential idea is now the following one: the thermodynamical system
copsisting of more or less excited hadrons is itself nothing else than a highly
excited hadron (because in the sense of our above statement we have no way
to distinguish between a resonance, @ fire-ball and our thermodynamical
sysbem—except that they differ in the degree of excitation). This leads then
to a seli-congistency problem.:

1) let p(m)dsm denote the mass spectrnm of hadrons, i.6., the number
of (more or less) excited hadrons with mass between m and m - dm

2) and let o(H)dE denote the number of states between F and F + dF
of our thermodynamical system. (¥ is always the total energy ineluding
the rest masses of the particles.)

Then, if there is no essential difference between excited hadrons and our
thermodynamical system, that is, if excited hadrons can-—for very. high
excitation (m—co)—be described themselves by the same formalism, then
the two functions g(#) and o(z) should asympotically approach each other
for z— oo,

This self-consistency condition (asymptotic bootstrap) may or may nob
be accepted as a statement about nature, it may or it may not be considered

(*) The word equilibrinm will turn out to have a meaning which is somewhat
different from the usual onme and which is befter expressed replacing ¢ equilibrium »
by « constant temperature ». See footnote on p. 163:
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150 R. HAGEDORN

intwitively obvious—we shall, in this paper, adopt it as a working hypothesis
and find out its comsequences.

It will be shown that the functions o(z) and o(z) must grow exponentially.
An immediate consequenece is thé existence of & highest possible temperature T,,
which then should govern practically all high-energy phenomena in which
hadrons take part. Once this temperature is (nearly) reached—in other words:
for collisions of sufficiently large total emergy and momentum transfer—the
reaction will be described by thermodynamical and conservation laws. Neither
the details of the inferaction nor the structure of the interacting hadrons will
manifest themselves amymore when both energy and momentum transfer
become large.

The existence of a highest temperature can be understood by observing
that the density o(#) of states of a system grows already very fast (almost
exponentially) if only one kind of particles is available. This growth expresses
the fact that by increasing the kinetic energies of the particles so many new
energy levels in the box V, become available. But if there is the possibility
to ereate ever new kinds of particles and if the density of particle states (other
than kinetic energy) grows very fast, then the system will answer an increase
of energy by increasing both the kinetic energy (~ temperature) and the number
of kinds of particles. I# then happens that for an exponential growth of g(m)
the system uses up the energy to increase the temperature and the number
of particles only up to some temperature s Ty; but when 7T is approached
it Decomes easier to create new particles than o increase the temperature;
o{m) offers more possibilities than the inerease of the number of momentum
states does (?). Example: for an ideal gas (with fixed particle number) the
temperature T grows proportionally to the energy F; for the Light quantum
gas, where particles can be created, the temperature increases only as T BE.
In our case, where the number of available types of particles itself increases
with the energy, 7 - constant.

It should be noted that we do not make the a priori assumption that the
particles be distinguishable; we shall start from the proper quantum statistics
where equal particles are indistinguishable. It turns out, however, that, after
imposing the self-consistency condition on g(m) and o(F), the system behaves
very similarly to a model system in which all particles are distinguishable.

In Sect. 2 we derive the basic statistical formula; Sect. 3 discusses the
self-consistency condition; Sect. 4 gives the physical interpretation and Sect. 5
sommarizes the results and contains some speculations and open problems.

2. — The partition funetion.

We deal with a system of particles enclosed in a volume ¥V, and kept at.
conslant temperature 7' (canonical ensemble). The number of particles of
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each kind is not limited. We label by o the possible momenta in the cubical
box V, and by p the kinds of particles.
Then the partition function becomes

1 — 3
(3) Z(V;HT):;ZGXP l:__—fzﬂ Euﬁvmﬁ]’“ly EaﬂE\/P;-f—mfa-

(2]

The sum (») goes over all sets (matrices) with matrixelementsy, ;= 0, 1, Z; ..oy OO
7, 18 the number of particles of the kind § having momentum p,. Thus, one
particular matrix v describes fully one quantum state of the system. The
contribution 1 of the ground state (no parbicle present: v,;=0) bas been sub-
tracted. Since the relevant physical quanftites are obtained from logarithmic
derivatives of Z(V,, T) this is of no other consequence than to engure thatb
Z(V,, T) can be written asthe Laplace transform of a positive function, namely
the density of states o(H), which then has no d-function behaviour ab H=0.

We write with z,,=exp [—&,/T]

148V, T) =3 T 2=t = (3 o) (3 @) - (”%mmﬁ”xﬁ) .

) af 11 Via

Lot us distinguish bosons (label §) and fermions (Iabel p). Then,=0,1,2, ...; o0
whereas y,, =0 or 1 only. Thus

T 1;;7[(1 + Tep) —1,

Z(Voi T ZH

af

log [1 4 Z(V,, T)] =— 3 log (1 —a,y) + 21og (1 + &) -
«f ap

We replace (without any. consequence for later conclusions)

@

m‘['/'u.4 ‘72 V.
Z—aj h:w [..]dp =z |»*[...]dp,
o

27
o

Z —{ pas(m)[...]dm ,
B.e

8

and obtain

log[14+2(Vs, T = 5.3 [2°d7 [ [emTeutm) 108 1+ ) — entmi o <1—wm)]] :

2m*
[ 0

28|
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Hxpanding the logarithms yields

V21,
tog {1+ 2%, T)] = 5 s 3 [ap am{Tea(m) — (Y es(m] o™ a5l

1

(5)

(no hadrons with m =10 exist).
For the combined mass distributions we write

o(m) for n odd,
(6) 0g(m) — (—)"gg(m) = o(m; n) =

Ao(m) for n even.
The integral over p can be solved (**)

@

2 {2 — T 3 d K() m® m
0 [ o[- pveEw] ——w g [0] <, v=T

[}

K. ,(y) are modified Hankel functions. Finally

©

V o
(8) log[l+ Z(V,, T)] = —2"?1: > ’,—t;fg(m; nym*K, (%) dm .
n=1

Indeed, for T—0 the r.h.s. vanishes, hence Z(V,, T'—0)—0.

3. — The self-consisteney condition.

3'1. Statement of the problem. — Now we impose the condifion (explained
in the Introduction) that in the limit m — oo the highly excited hadrons (fire~
balls) should be themselves deseribable by statistical thermodynamics, ¢.e.,
by eq. (8) and its consequences.

To fomulate this condition, we observe thatb

Vre1 f
©) 2% m=oxp [ 22 3 2 [atm met () am | -1

(%) For the following see, e.g., 1. M. RysHIx and 1. S. Grapstein: Tables of Series,
Products and Iniegrals, chap. 6.4 (Berlin, 1957) or any book on Bessel funetions.
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can be written in another form

i

10) 2% 1) = [olB) ex2 [——T—] am,

where ¢(E)dE counts the number of states between F and F -+ dE. That such
4 representation is possible follows from the physical meaning of our equations
[compare (3)]. It is, however, also a consequence of rgther general theorems
on Laplace transformations. As some of our following arguments will be based
on such theorems, we shall adapt our notation alittle by introducing the variable

1
(11) §$=7
without changing the function symbols. Then

-]

i‘ %ﬁ—fmgl(g(nsm) glm; n) dm] —1=|exp[—sH]c(E)dE.

o

1

(12) Z<s>=exp[§7;,-3~

We express our self-consistency condition in the rather weak form
(13) 1log o(®) —+log o(w) for & -—>co-

Wo shall be able to show that (13) can be achieved. From the physical point
of view (13) seems rather natural, as log o(E) is essentially the entropy of our
gystern. Since we are trying a thermodynamical deseription in which not only
the conservation laws but also the details of the interaction are disregarded,
we should perhaps not require more than the asymptetic equality of the-entropies.
We should, indeed, rather expect that o(z) and o(z) differ by some algebraic
factor in #. The reason is that o(E) counts all the states of the system enclosed
in the box V,, among them, for instance, also states of very large total angular
momentum (= collective motion) which we would not like to interpret to be
« fire-balls » and which therefore should not be counted in g(m), but which
cannot be excluded from Z unless we build in explicitly some restrietions (con-
servation laws, centrality eondition (*)). The «particles» counted by p(m)
should, however, be objects which are not simply n-particle states with a total
invariant mass m, but which still show some properties which are reminiscent
of what one calls a « compound system» in nuclear physics and « fire-balls »
in cosmic-ray physics. A gualilative way to classify such objects would be
{0 say thal they are those which could have been generated by a central col-
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Hsion of two appropriate « elementary » particles (low-lying states of our family
of hadrons). The total c.m. energy of such a generating collision should be just
equal to m, and if m is large then it comes mainly from the Kinetic energy of
the incoming particles. The condition that a collision produces & compound
system, i.e., has been central, can be stated in terms of a simple model (*) by
saying that the total angular momentum of such & compound system must
not exceed 1~ b to 7, independent of the primary energy, that is, independent
of its total mags. This can also be formulated by saying that of all the states
which can be reached from the initial one, only the fraction 1/y*~ 1/m® can
be considered to be of the compound type [see ref. (%), eq. (5); y= Lorentz
factor of the c.m.;for two equalinitial particles with mass m, one has y=m/2m].
We thus might expeet that p(x)—ecounting only such compound states—
could be smaller than ¢(z) by a factor of the order 1/p* —in any case, we should
tolerate factors of this kind. In the weak form (13) of our self-consistency
condition such factors are permitted (we anticipate that o and ¢ must grow
fagter than amy power).

3'9. Fadusion of nonesponential solutions. — We consider now the mathe-
matical problem given by eqgs. (12) and (13). In what follows we shall quote
theorems on Laplace transformations from DogTscE (*9); our notation is ex-
plained in Appendix 2.

The modified Hankel function K.(z) has the properties (*) [see (A4.10)]

[ ] 1\
Kz(ﬂv)“;;?.?]/%exl’[—m](l-l-;—i- O(E)); ‘9|<17

T

2
Ky(z) == P + 0(:1;ﬂ log é)
Thus the integrand in (12) becomes

2
plm; n)m>E,(nms) s alm; n) at m—0,

(15) 7 mt p(m; n)
o(m; n)m2Eo(nms) - > —917—_4@_57— exp [— mns] at m — oo.

(**) G. Domrscr: Handbuch der Laplace-Trensformation, Binde I, 11, IIT (Basel
1950/55). We quote as follows: Doetach, Satz 4, I 11.3 means the theorem n. 4 in
Vol. I, Chap. 11, Sect. 3.
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Mo problem arises at the lower limit of the integral. At the upper limit

(16) fmﬂKz(nms)g(m; n) dm < co for Res>s,
)

if
o(m; m) = O(exp [so m]) -
In particalar, all integrals (n=1,2,3, ... co) converge if the first (n=1)
does so. In Appendix 1 we show that '
1) if the integral with »m =1 converges, the sum in (12) converges;
an 2) if the integral with n =21 does not converge, but the one with

n =2 converges, then the sum from n =2 to co converges.

This will enable us later, when we discuss divergences for s —gf, to disregard
all terms of the sum except the first one.

Next we observe by going back to eq. (3)—replacing there 1/T by s—
that Z(s) is completely monotonic for >0, i.e.,

(18) (=) gsﬂ Z(s)>0 for s>0.

This property is not so obious in the form (12), since Ag(tn) might be negative.
According to Bernstein’s theorem (12) every completely monotonic funetion
can be represented by a Stieltjes-Laplace integral [the second line of eq. (12)1 (%)
with ¢(F)>0. This is physically obvious but mathematically provides a firm
basis to all our considerations—whatever g{m)>0 may be.

Assume now we start with some lmowledge of g(m), say with g(m)=
=3-d(m—m,_), and neglect the rest. In that case we find for s— 0+

const
£ |’

(19) Z(s) — exp [

a strongly diverging funection. One can caleulate the corregponding ¢(#) and
find it growing like exp [a-B¥]. The self-consistency condition implies then
that o(m) = 3d6(m—m_) is insufficient and that g(m) has also to grow like

() See e.g. D. V. WmopER -The Daplace Transform (Princeton, 1964)-
(") As o(B) and p(m) may confain d&-functions, the integrals are in faet of the
Stieltjes type.
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exp [a-m?]. With such a g(m), however, Z(s) would diverge even faster than
indieated by eq. (19); o(E) would in turn also grow faster than exp [a-F*] and
consequently o(m) too. All this originates in the strong exp [1/s*] divergence
of Z(s) already for the most modest g(m). It will be showrn thab continuing
a8 above we never would satisfy the self-consistency condition (Appendixz 3).

The situation is completely changed if we admil exponentially growing
o(z) and o(z) of the type ~ exp [, #] With s,> 0. Then, all integrals will con-
verge for Re s>s, where s, is necessarily the same in ¢ and g. In that case
the term corresponding to 1/s® in eq. {19) can, for s—s}, be replaced by 1s3
and the worst divergence disappears. Now, only the divergence for s —> s}
of the mass integral in the exponent of eq. (12) is relevant and this divergence
can be manipulated (even removed) such that the self-consistency requirement
is met with.

Again, the situation is completely changed if we admit p(m) and o(F) growing
faster than exponentially: all integrals diverge for all s<C co and no thermody-
namics is possible. Thus such functions are inadmissible.

Since exponential solutions will be shown to be possible, since furthermore
solutions growing faster than exponentially are excluded, and since fnally
for any assumed p{m) growing less than exponentially the resulting o(®) is
always tra,pped between g(m) and exponential growth:

(20) o(#) = o(o{x)) = olexp [az]) for all a> 0;

since this is, so we are forced into the exponential behaviour of g(m) and o(H)
as the only possible one. This implies the existence of zome s,> 0 or, in other
words, of a highest temperature T,=1[s,. We have made it sufficiently
plansible that a nenexponential solution cannob exist. The proof is found
in Appendix 3.

Tn the following Section we shall show that the self-consistency condi-
tion can be fulfilled by functions of the exponential type.

3'3. The solution of the self-consistency condition. — We try the following

-ansatz for p and o (asymptotic form)

l mt o(m) — am®exp [sym] + O(exp[s,m])
(21)
| o(@) b8P expls, B+ 0(exp[s.5])
(where, if necessary, polynomials may replace the single powers). We suppose

that $<s,—e With ¢> 0 so that we really have an isolated singularity. In
fact, this i3 more general than it seems, because it includes also certain super-
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positions of such functions with various s<$, namely functions of the type
o0 —[f(m, 2) exp [am] s,
0

which can formally be integrated by changing variables

g(m) > exp[)l;fo”b] ff (m, 8o ———-%) exp [—— y] dy = exp [gum] Z(’”:';b_sl) N

Thus, we only have to require that f(m, s,) has an asymptotic expansion bounded
by & power of m; in that case, we are back to the ansatz (21). Of course, we
limit by the amsatz (21) seriously the class of funetions we admit for trial, but
presently we only want to show that there are solutions of the type (21) without
aiming to prove that there might not also be solutions of the exponential type
where s, is not an isolated singularity of Z(s). (We suppose, of course, that s,
is the singularity with the largest real part, so that Z(s) is holomorphic in the
half-plane Re s> s,.)

Ag s, is & singularity of Z(s), the value of s, must be the same in g and in o.
Our supposition (21) of the asymptotic form of ¢ and ¢ makes it possible to use
an ¢« Abelian theorem » [Doetsch, Satz 1, 1T 4.2] which we quote here in a form
adapted to our situation:

If F(z) has for z->co the asymptotic form

22a) F(x) = az? exp[s, #] + O(exp[s; a])

(with arbitrary reala, y, s,, s; such that s, <s,—e, >0 thenthe Laplace frans-
form f(s) of F(t) exists (trivially) and is holomorphic in the half-plane Re s> 5,
but it ecan be analytically continued into the half-plane Re s> s, except for a
singularity at s, with the leading part

al'ly+1)
(22b) (—.S‘_————SF for 'y:’é-—-l] -—-2, reey
(22¢) a(—1r, (s—so)**-log (s—3g) for y=—p=—1,—2, ...

(p—1)!

Ttis, of course, clear what we must do:for g we take such & power that in the ex-
ponent of eq. (12) we obtain ~log[1/(s —s;)] according to {(22¢)—which is the
onty possibility to get after exponentiation gomething which again is of the
form (22b-c)—and for o such a power that we obtain ~1/(s—s,). Then the two
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functions o(z) and o(z) differ asymptotically only by a power of z and thus
fulfil our self-consistency requirement. For details see Appendix 4.

Roughly then, it goes as follows: we first adopt the simpler notation intro-
duced in Appendix 3, (A3.1)-(A3.4), and write

v, 1 ; s
Z(s) = exp [(2n)*"s‘s'fm o(m)Q(sm) dm] —1,

Z(s) =fU(E) exp [—sEdE .

We here only need the asymptotic behaviour of @(sm) for fixed s> 0 and m — co

(24) Q(sm) —s¥ exp [—sm] for sm — oco.
This is sufficient, since for s->s; any ofher term of the sum oceuring in
the exponernt (compare Appendix 3, eqs. (A3.1) and (A3.2)) will bear a factor
exp[nsm] with #>2 and thus not lead to a singularity at s, bat at §/n<<s,.
Furthermore, we have proved in Appendix 1 that the rest of the sum converges.
Thus every contribution other than that coming from (24) will be holomorphie
at s, and need not be considered here, as it can be replaced by its value at s,
when s->s75.
Now, with (24) we write

)

(25) J"mﬁg(m) Q(sm) dm =fm*g(m) Q(sm) dm + st| m¥o(m) exp [—sm]dm ,

o

where M has to be ehosen sufficiently large. The first integral gives a function
halomorphic at s, and the second one can be evaluated for s — s} by the the-
orem (22a-¢) provided mfp(m) is of the form (21). As we show in Appendix 4,
% term of the form

(26) mEp(m) —>7ﬂn exp [sgm]

gives, indeed, the required logarithmic behaviour. We may then evaluate the
integral (25) to obtain

-]

o1 [mtetmQeman = Fis, 10+ ast [ S expl——sym

ar
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Here the first integral F(s, M) can be numerically calculated if the mass spectrum
1up to the mass M is known experimentally. Of course, the mass M is defined
to be so large that for m> M the asymptotic forms (24) and (26) hold.
In that case, the r.h.s. of (27) is in fact independent of M.

The second integral is the well-known exponential integral (**)

[ 1 @ (Y M (s — ;) [
(28) f% exp[— (s —8)m] =— 0+ log M('s—s‘,)'“,g( )[k!(.sk 50)] ’

(' = Fuler’s constant = 0.5772....

Tor s->s, we drop the sum. Inserting everything into (23) yelds

Vo [Flse, M) & 1 -
@9 B S exe [ﬁ‘ [—“‘Ss: +t€;;(1°g ———'m—sf“’)ﬂ -

_ ( 1 )m/(emn)”}_exp [ aVy [F(so, M) G—logMH ’

T \s—s8, (2ms,)? ast

where in the second form the argument of exp is constant. o(H) must then
have the asymptotic form

{30) D‘(.E)-—E—__;?Z?Em“1 expl[s, &, a2, 3, 4, oy

which will give [see (22a-c)]

(31) f o{B) exp [— sH,JdE —> (;)“ b-T'(e).

58 \8§—§
0

As (29) aad (31) should become asymptotically equal, we require

_ aV,
(32) @5’
Vo [F(se;, M)
BT (e) = [(2‘; oy [L‘;_Sﬁ_._ 0— log MH

What is the situation now? We have shown that a solution of the expe-
nential type is possible and that then mio(m)— (afm) exp [s, m]is the agympto-
tic behaviour of the mass spectrum. There are, however, several parameters
left open, namely:

s, =1/T, the inverse of the «highest temperature »;
a and b constants in the mass spectrum and o(H);
a the exponent in o(#);

Vo the volume of our box.
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There ig finally M ; but if our theory is correct and if M is chosen sufficiently
large, then nothing should depend on M [see (27)].

‘We thus have five parameters with two equations (32) which leaves us with
three free parameters deseribing the asympiotic behaviour of the mass spectrum
and of high-energy collisions. The function F(s,, M) being an integral over the
low-lying mass values up to I has no direct relation to the asymptotic behaviour
and will thus be considered to be a given information and not as a set of free
parameters. It is clear that this funetion which is equivalent to the mass
spectrum for m < M cannot be derived from the present theory. The actual
value of F(s,, M) is indeed not relevant, as it obiously drops out when one
caleulates physical quantities like &, N (the mean particle number) ete., from
the logarithmic derivative of Z(s).

In Sect. 4 we shall try to reduce the number of parameters and obtain
limitations on their possible values.

8'4. The highest temperature T,. The model of distinguwishable particles. —
Our result (29) is, if written with T=1/s,

(33) Z(T) prav ecmst-(TﬂiT)‘z

The expectation value of the energy becomes

d log Z(s) LT

(84) BT =—

(35) P 14F_

(of order one as we shall see). That is, when T—T;, the fluctuations be-
come ag large as the energy itself. This behaviour implies that we not only
can calculate & as a function of T as usual, but also can eonversely say that, if
a system of energy F is given, & temperature T'(E) belongs to it which becomes
better and better defined—and equal to T, —when F grows larger and larger.
This is easily understood by imagining the following « Gedankenexperiment ».
Somebody keeps for us a system (fire-ball) in a temperature bath 7' until equi-
librinm is established. Then he takes it out and isolates it. We are allowed
t0 meagsure its energy F. Knowing B, but not T, what can we say about what T’
might have been?

We may invert eq. (34) replacing E by the actual value E which we found
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and then say T(E) was most likely the temperature of the bath. Using the fach
that for — cothe temperature T — T and the relative fluctuations (35) =1/«
[the absolute fuctuations —E(T], we see that our guess will become safer
and safer the larger the actual B was. Indeed: if B was very large, then the
temperature T cannot have been much lower than 7,; because, if it would
have had, the probability for having found the actual large F would have
bsen practically zero because the most likely energy values lie roughly between
0-and 2E(T) according to (35).

Hence, to every given energy F one ean assign a temperature T'(F)—the
inverse fimection of H(T)—which with a certain « probability » is the one
whiel, in a hypothetical temperature bath, the system has had before. The « prob-
ability » (*) that the actual temperature was indeed T tends to one and the
temperature T' tends to Ty when the energy goes to infinity. We may then
forget about the canonical ensemble and temperature bath and simply state:

Tor the physical sysiems described by our present theory we may assign to any
given energy B a temperature T(H), which is not «sharp » bui which becomes sharp
and tends to Ty when B —oco. In this way we associate o well-defined tem-
perature T, to all sirong interactions at sufficiently high energy and momentum
transfer—independent of the actual number of particles (for this laiter number &
probability disiribugion can be caloulated) (**).

Tt is remarkable that a very similar behaviouris found when one constructs &
model of distinguishable particles. The partition function has there a simple
pole (no branch point) at the point T,. Indeed, if &, &, «»ry &1y - BLE the energy
levels then, with occupation NUDIDETS 7y, My ey My ores there will be

N!

LR R 73

states of energy H= Y m.&;, N=3mn.
In this cage, if particles can Dbe freely created

(36) Z= i > _ M exp [-—}T—z niai] = i lz exp [——%”N

¥eo Em:.zv’"'l!”z!u- Foo )i

Neglecting masses and replacing >, by
i

@

47V, v, Tr®
o=

h(& A

o

(*) This is what one frequently calls an cinverse probability ».

(**) Preliminary calcalations show that the mumber of particles is distributed
approximately aceording to 2 Poisson law with ¥ proportional to log B. N is however
not the number of final particles; it is the nwmber of « fire-balls » leaving ¥V, and decay-
ing later. H-is the total emergy only in a central collision, otherwise B < Hom -
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gives
_ 1 _ 1 I o
T I Jexp[—&/T] 1—TI¥w T

(37) zZ

which for T'— T; becomes

const
T,—T

(38) Z(Ty —

We see that our theory would give the same behaviour if in (33)

eV T} . _ ‘/%
(39) o= o 1 and a= 7

Taking the «natural interaction volume »

3

3 \m,

we arrive at T, =185 MeV and aws 4-10° MeV?,

We shall see in the next Section that, indeed, a; « and T, will have values
very near to these.

That our theory shows a behaviour so similar to thab of a model in which
all particles are distingnishable (that they have zero mass is irrelevant) is not
surpriging, becanse with the exponentially increasing mass spectrom there
are for B—>co so many particle states available that it almost never happens
that two equal ones are present at the same time. Thus, all those which
are aschually present can be distingmished from each other.

4, — Physieal interpretation.

4'1. The highest temiperature T,. — Our self-consistency requirement has
forced us Tather unexpectedly into an exponentially growing mass spectrum
and 2 highest temperature T',: The question is now: does nature indeed behave
like this? If so, can we find reasonable values for the parameters which we
could not yet determine from conditions inside our theory? It will be shown
that both are very likely to be true.

The first important result is the highest temperature. Are there experimental
indications of its existence? Assume that there isindeed such a temperatre T.
Then in all collisions of hadrons with sufficiently large total energy and mo-
mentum transfer, the temperature T, will be reached but, for B —co, never
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overpassed. Without going into any details of & theory whieh still has to be
developed, one would expect that this teraperature must govern the transverse
momentum distribution of the outgoing particles; that it must be the iransverse
momentum distribution is clear, because thiz distribution will not be affected
by any kinematical effect camsed by fast, and from collision to ecollision enor-
mously varying, relative motions of different parts of the heated volume (*):
any Lorentz transformation in the direction of the collision axis will leave p,
and its distribution invariamt.

Because of this invariance we may calculate for T'~ T, the fransverse
momentum distribution for the simple case of an ideal equilibrium in & volume
at rest (in that case the amount of energy transformed into heat would be
maximal, but the temperatare would be 7, and that is all what counts for
the momentum distribution). From the usual formulae of statistical mechanies
and with @, = exp[—e&,,/T] our partition function

=9,1,2, ..., co for bosons,
= e k={" .
Z=3 1o, & { p=0,1 for fermions,

W zk
(here the ground state v, =0 is not subtracted) leads to the average occu-
pation numbers

1
exp [(1/T)Vpi+ mi] —1

for bosons,

0
’I.;uk = LBxp 'é$— 10gZ=
o for fermions.

1
exp [(1/T)Vpi+mi] +1

Tf we are interested in a definite (stable) mass, then by integrating over the d-
funetion corresponding to this mass in the mass speetrum and multiplying
by the density

¥
2t dp,dp,dp,

of states, we immediately obtain the momentum distribution; this may then

(*) As actually it will turn out that T, ~ m, is rather ¢lows, T, will rapidly be
approached in collisions long before thermodynamical equilibrium in the nsnal sense
is Teached. We thus may have an almost constant temperature T, all over the volume
¥V, without necessarily having a constant energy density and withoul having transformed
all kinetic energy in V, imto heat motion. Remaining collective motions of whole
parts of 7, will then be strongly correlated to the former motion of the imeoming
colliding particles. In the longitudinal directions this collective motion will in general
suppress the isotropic but small heat motion (except in very central collisions).
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be integrated over the p_ component in order to obtain the transverse momentum
distribution

<]

1
40 Wrgage dp, = const-p, d: -fd = —
{40) ?em(ip_l_) T p,.0D, ) D exp [(llT)\/Pi'{—,uz]:Fl y

ut=pi+m

Now Tx< T,: Let us anticipate the result (43), namely that T~ my, in order
to see that for g=Vp? +m*> m, (a few times m, suffices) the 41 in the
denominator of the integrand is irrelevant. Thisis certainly true for nucleons
and not bad for all other particles with m<C m,, except for pions; for pions if
will De valid once p, is larger than about (2--3) pion masses. Leb us assume
this; then the integral becomes—for boson as well as fermions—for T — T

r 1
(41)  w(p,) ~ const-p, - f dw exp [_E_ T #2] _
0

0
1/ 2 3
= const-p, - Vpi+m* K (%) .
o

With the asymptotic formula for K, [the same as (14)], which may be used
on account of our previous assumptions, we obtain

e 1
) wip) ~ constp,VIVPL T exp|— 7 VELF | > oopd exp %]
]

g

(the latter for p,>> T, and >m). In words: except for pions, where this holds
only for p, larger than 3 few fimes m,_, the transversal momentum distri-
bution will of the Boltzmann type (42).

This formula must apply even to elastic scattering (except in the diffraction
region) for the following reasons:

1) treating elastic scattering by our formalism does nof mean that we
apply statistical mechanies to a two-body system (which would indeed be
nonsense); it means in fact the following: our thermodynamical system is
able to choose not only the momenta, but also the number and kinds of par-
ticles according to its convenience, that is: according to statistical distribution
laws impHed by the pariition function. One possible choiceis: two final particles.

2) w(p,)dp, as given by (42) is the probability that a particle chosen
ot random will have a transversal momentum between p, and p,-dp,, no
mabter how many other particles there are and whab they do.
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3) we have seen that for sufficiently large energy and momentum transfer
the temperafure becomes sharp and tends to T,. Therefore, a given fixed
temperature (implying a Boltzmann distribution of p,) and rigorous energy-
momentum conservation (being most stringentin elastic scattering) are compait-
ible.

4) the differential elastic cross-section (as a function of p,) will then
contain three types of factors:

1) w(p,) from (42),
ii) the probability that the number of particles is N =2,

iii) kinematical and geometrical factors (algebraic in p,, H).

According to preliminary caleulations N(E) obeys a Poisson distribution
with N~log B, so that W(¥ =2)~(1/F)(log B)* is a factor which varies
extremely slowly as compared to the exponential in (42), where p, ~F for
elagbic scattering. The same holds for the comparison of the facbors of type iii)
to w(p,). The small elasbic cross-sections outside the diffraction region therefore
do not come from a small probability for two-body final states (the two final
particles may be anything between the initial particles and two heavy fire-
balls) but from the Boltzmann factor (42). All two-body final states would
have such small weights, but there are very mamny of them [e.g., p-+p—Dp+D,
PN, N*AN*, 4-d, efe.; all these should follow the Boltzmann law].

) the elastic scattering is therefore ome particular process of the many
competing ones; its probability is ealeulated from the partition funetion and
is mainly given by (42). For 90° scattering angle (42) becomes equivalent
t0 eq. (1). Thus the large-angle elastic cross-section, as described by the usual
statistical theory, is only one very particular case of the class of states described
by our thermodynamical theory.

Our conclusion is then that in all high-energy events with sufficient total energy
and momentum transfer—ithese gvents ranging from elastic scatiering to jets with
hundreds of secondaries—ihe transversal momentum distribution should be of the
Bolizmann type (42) with one and, the same temperature T, which is independent
of the primary energy, of the colliding particles (hadrons), and of the multiplicity (*).
[Tu jets a slow apparent increase of T, with the primary energy could be toler-

(") In collisions of unlike particles (e.g. w=-+p) our formalism does not allow for a
forward-backward asymmetry, which has to do with the collective motion (footnote
p. 163) surviving the struggle against thermodynamic equilibrium. To explain this
and to choose a more suitable variable than p, is one of the remaining nontrivial
problems.

11 - Supplemenio al Nuove Cimenio.
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aied: it would be the effect of smearing out the spectrum by successive decays
of the emitted fire-balls into smaller and smaller ones until finally the observed
pions remain, having a transversal spectrum with an effective temperature

1
Ty = Tol.
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Fig. 1.

This conclusion seems %o be in good agreement with the observed facts.
A review with further references was recently presented by OrmAR (*%). The
elastic scattering which shows no apparent broadening due to decay is Dbest
suited for determining T,. There, eq. (42) fits indeed very well the experiment
over a region where w(p,) varies by nine orders of magnitude! [Fig. 1]. The
eléctromagnetic form factors of the proton seem to behave accordingly, this
was pointed out by Wu and Yawne (). All this, and up to jets with 10° GeV

() J. OrEAR: Phys. Lett., 18, 190 (1964) and private communication.

(*) T. T. Wu and C. N. Yane: Jome speculations concerning high-energy large mo-
mentum transfer processes, Brookhaven National Laboratory, preprint, September 1964.
(submibted to Phys. Rev.).
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primary energy, with T, values which vary only liftle from experiment to
experiment and always lie around 160 MeV. Also our numerical phase-space
caleulations yielded such a value, namely 150 MeV [compare eq. (1)]. We shall
take the most reliable experimental value coming from elastic scatitering (*4)

(43) T, =158 +3[MeV].

On the basis of the experimental evidence presented by OxEA® and by Wu and
Yane we believe that the question: «is there z highest temperature T, in
nature? » can be answered by ¢yes» and that the value of T, is rather well

fixed by eq. (43).

4’9, The other parameters. The mass spectrum. — Having fixed T, we remain
with three other parameters of which b, the constant factor in o(H), is rather
uninteresting. The important ones are any two of 4, V, and « [related
by (32)]. We can estimate a priori the approximate values of « and of V,.
Let us start with ¥V,. We have determined T, from processes in which actually
the interacting system has been enclosed in @ volume of the order of 2 nucleon
volume and this is, indeed, the only volume which we ever could expect to be
relevant in high-energy collisions, since the interaction ceases to exist for larger

distances. Thus
4 (1\?
n=5 )

where u should not be very different from m, . As T, itself is also of the order
of m,,, we see that we actually come very near to what distinguishable particles
of m=0 would give: (37).

Next consider «. The density of states is according to (30)

(44) o(B) —bB*" exp[BT,]

whereas g(m) is given by (26)

a

(45) o{m) — pou L8 [m/T,] .
Hence, for B, m—co

o) & as
(46) e e

Recalling the discussion following the self-consistency condition (13) we would
expect that 1 —x—3 ~—2 oF x~v}; if somehow it would turn out that o
is between % and 1 we would still be satisfied.
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We shall now proceed as follows: we take the experimental mass spectrum
and see whether it can be fitted by o(m) —am™* exp [m/T,] with T, = 158 MeV;
and if so, with which value of a. Having determined this value, we see whether
the relation (32)

97
4 [ s & = 1/2° g = 3. 3
(47) aT% = (271) 7 5 3.75au

can be sabisfied with values of « and V, corresponding to what we found a
priori reasonable: o ~ §; u ~ m,-

That our asympietic o(m) should, in fact, fit the mass spectrum in the
region up to ~ 1200 MeV (where it seems to be pretty well known experi-
mentally)is not obvious and must be considered a lucky accident if it happens.
It is, on the other hand, not unreasonable to expect this, because with T, being
as it is (158 MeV), the exponential factor exp [m/T,] should pratically govern
the mass spectrum once m is several times larger than T,, i.e., already at
~ 1000 MeV (unless the complete unknown factor f(m) in front of the expo-
pential would be very gqueer).

We have taken the mass spectrum as published by the Berkeley group (*°)
and smoothed it out, in order to obtain 2 function which can be compared to
our asymptotic g(m). Without smoothing

.
(48) Oy () = 2, ,0(m—m,)

4=l
would be the spectrum for stable parficles and sharp resonances. The sum
goes over Bose and Fermi particles; as we have seen, only the sum of g, + g,
enters into the partition function when 7 — T, , hence our p(m) in (45) is,
in fact, g, + g,. Furthermore, our g(m)is in so far unconventional as it counts
every state [see (4)]; consequently, each mass occurring in (48) has to be counted
as often as it has .states
. 1 if particle # antiparticle,
49 ;= (2J; ; -2%4 with 1=
(49) %= (24 1) (2L + 1)-2% with L 0 if particle = antiparticle.
Here J and T are spin and isospin, respectively, of the particle. In order to
obtain a smooth function, we have replaced in the above sum (48) the J-func-
tions by normalized Gauss functions. In Fig. 2 we plot for m = 0, 200, 400, ..,
2000 MeV the following function

7 =200 MeV,

1 = o \E
(50) ) = 2= S x|,

where the sum goes from the pion mass to the highest known resonances. Above
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1200 MeV there is every reason to believe that our experimental knowledge is
still very incomplete—in particular regarding bosons. TUp to 1200 MzV the

function seems fio increase exponentially—with fuctuations, of course. The slope
is well fitted by 7,=158 MeV. Also we have

drawn our asymptotic o(m) with the value our asymptatic
1 L [ e
(1)  @==6.45-10° MeV? (see Fig. 2). g !
In comparing our curve with the experimen- ~— [ / I
tal values one should keep in mind that our 2 0 /el
. - [ F / {smoothed)
o(m) is an asymptotic formula for m—co ' [/
which becomes wrong when the factor m®% 5 |
begins to govern the behaviour (daghed line). 107k
Thus, a comparison is possible only in a §
narrow range around 1000 MeV-—just enough i
to guess the value of a. As the figure shows, Wl
our p{m) seems to have a good chance to be 0 800 1600 2400
the correct extrapolation to higher mass val- m [Mev]

uas (*). If so, then one should expect a great Fig. 2.
number of new resonances to be diseovered
above 1200 MaV. Somewhere, not far above 2000 MeV the resonances will
probably become so dense that an experimental resolution seems hopeless
and a true conmtinuum starts. Here we should remark that there seems to be
no obvious way to disentangle the number of resonances between m, m-+dm
from the number of states counted by our g(m); namely, our theory does
not say how the density of resonmances and the multiplicify per resonance
v=(2J +1)(21 + 1)-2* [see (49)] separately increase with m (our p(m) counbs
the product of these two). It may be that on the first factor, (2J + 1), the
Regge poles, and on the second (21 4-1), the higher symmetries will have to
say something. In view of what we called a fire-ball [discussion below eq. (13a}]
'we should, however, expect that J<<10 (or even lower), whatever m is.

‘We now insert our values for & and 7, into (47) and obtain

aT?=12.8-108 (MeV?3),
so that
op® = 3.42-108 (MeV?).

(") It would be easy to find a o(m)=7F(m)-exp [m/168] which practically coincides
with our asymptotic form above 1000 MeV and follows the experimental values very
well down to m=0; such a g(m) would look very impressive in Fig. 2, but is physically

not significant.
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With «=% we obtain x=190 MeV=13Tm, and with a=1 we find
#=151MeV=11m_. As we have anticipated on page 162 all parameters
T,, «, V, have turned out to be very near those for the model of massless dis-
tingmishable particles (accidéntally?). In any case, the values are reagonable
and all lie in the rather narrow range which is given by the condition (47)
and the a priori argument that g ~m_ and «~%. With this a priori imi-
tation of two parameters the value of ¢ was almost fixed and we have, indeed,
only T, at our free disposal. With the one value T, =158 MeV we could ft
the transversal momentum distribution and a rather convineing extrapolation

of the mass spectrum.

5. — Conclusions; open questions; speculations.

We have developed a thermodynamical theory of strong interactions which
could be based on three postulates:

i) strong inferactions are so strong that they produce an infinity of
resonances (which for m — co are called fire-balls);

ii) fire-balls can be deseribed by stabistical thermodynamics;

iii) fire-balls consist of fire-balls.

These three postulates fix completely the structure of the theory; some
numerical yalues of parameters remain, however. undermined. Except for
one of them, the highest temperature T, a priori limitations have been given
which fix them almost completely. The simple model of a gas of distingnishable
particles, which shares many features with our present theory (but should
not be taken seriously), leads to a determination of T, which agrees rather
well with the experimental value. This seems to indicate that by only slightly
narrowing the above postulates one might be able to calculate T, also in the
framework of the present theory. It could be that this narrowing consists
in replacing the first of the above postulates by another one, which may be
formulated (fentatively):

i') strong interactions are as strong as they possibly can be without
violating postulate ii).

Similar conjectures have been pronunced already by several authors and in
several versions () without reference to thermodymamics, however. In our

(1%) See e.g., G. F. CrEw and 8. C. Fraursca:r: Phys. Rev. Leit., 5, 580 (1960);
Phys. Rev., 123, 1478 (1961). More implicitly the « maximum strength » is contained
in results by M. Frorssart, A. Marrin, N. N, MemanN~, which should be seen together:
A. MaRTIN (private communication) showed in a manner similar to that used by N. N,
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case the point is this:

we have met here an example of extreme behaviour, namely: the mass
spectrum grows exponentially. As we have seen this is the maximum toler-
ated—otherwise postulate ii) would have been violated. This maximal
growth was enforced by postulate iii); but this postulate has been guessed
from experience. There was no a priori reason to expect it to hold (and we
know other interactions where it does not). After our analysis it is clear that
this postulate—or the experimental behaviour on which it was based—is
equivalént to the extremal qualities of the mass spectrum. The rate of increase
of the mass spectrum has certainly to do with the strength of the underlying
interaction (zmd with its structure). Itis conceivable that with greater strength
of the interaction the mass spectrum could have grown faster than exponentially
and thermodynamies would have broken down. This alone is probably not
a sufficient reason to convince nature that it should renounce such a strong
interaction. Tt is interesting, however, to observe that thermodynamics, here
on the borderline of its domain of existence, implies another extremal behaviour:
that of the elashic-scattering amplitude. As we have seen, the transversal
momentum distribution even in elastic scattering is asymptotically a Boltzmann
distribution with 7, as temperature. Thus, we conclude for the elastic-scat-
tering amplitude that in the physical region (s-channel; seattering of two equal
particles)
1ogA(s,t=—as)m—£\/a(1—a), 0<a<l.
Tt has been shown (") that no faster than exponential decrease is permitted
(supposing reasonable analytical properties of A s, t)) unless the amplitude
becomes identically zero. This behaviour also is the limiting one which just
allows to solve uniquely partial-wave dispersion relations if the discostinuity
along the left-hand cut is given (*).

MEMANN (see below) that the squared coupling constant is smaller than some integral
over forward elastic wJ° cross-sections; which is (almost) a statement about f* being
smaller than some integral over the total cross-sections: increasing f* means increasing

G- Now, M. Froissarr and later A. Mawrmv (with weaker assumptions) proved

Gyo(8— 00) < const (log s)2; experimentally, it seems to stay constant which is only little
jess than the maximum possible increase. For details see: A. Marrmv: An absolute
bound on the pion-pion scattering amplitude, ITP-134 Stanford University, July 1964
(unpublished); M. Froissarr: Phys. Rev., 128, 1063 (1961); A. MarTin: Phys. Eev.,
129, 1432 (1963); N. N. Meneanx: Zurn. Bksp. Teor. Fiz., 44, 1228 (1963) (franslated
Sov. Phys. JEPT, 17, 830 (1963).

(") A. Marrrw: Minimal interactions at very high tramsfer, and further references
given there; CERN preprint 9887/TH. 490, 30 November 1964.

(*%) A. P. BaracHanpraN: Oonsequences of the strong asymptotic decrese of the fized-
angle scaitering amplitude, Universily of Chicago, preprint’ EFINS 64-4G, July 1964.
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I cannot believe that all this is a purely accidental coincidence; meeting
with extremal proparties in so different respects seems to indicate that strong
interactions are indeed governed by some extremal prineiple whieh is not yet
understood. Accspting this point of view, it seems possible to guess also the
numerical value of T, without recurrence o the experiment. The argument
would be: among several fypes of functions the exponential growth of the
mass spactrum is maximal. Onee the exponential type is chosen, namely

log o(m) —m|my,

we again take the mazimal increase which we could obtain by relating the
free parameter m, to any of the fundamental mass values ocowrring in strong
interactions. With this argument we find m,=m, = T,. That the experi-
mental value is somewhat (by a factor 1.14) larger could be understood as
the influence of the less strong interactions relatsd to strange particles, whose
smallest mass is my.

We do not pretend that the above remarks give an explanation to any of
the more fundamental guestions about strong interactions; we believe, however,
that thermodynamies adds another indication and offers a new view. On the
other hand, one has to face the possibility that not much more than thermo-
dynamies can be done at high energies and that even the analytical properties
of scabtering amplifudes are determined by thermodynamies, unibarity -and
crossing relations.

Tf our present theory is eorrect, then it might be of not much use to go in
individual scattering experiments to much higher energies than a few GeV,
because above that only the number and longitudinal momentum of the secon-
daries produced would increase, whereas the details of interaction would be
hidden under the Boltzmanu distribution; even the mass distribution of secon-
daries follows a probability distribution and would not reveal any of the secrets
we are after—except for one possibiliby: the basic friplets making up the
nucleons. Their possible existence has presumably no implications on the
present; theory; they would just add one line somewhere in our contimious
ma88 spectrum.

Our belief that thermodynamics with a highest temperature T, ~vm,
indeed governs strong interactions at sufficiently high energy and momentum
transfer is supported also by the observation of Wu and Yawg (*5) that the
electromagnetic form factors of the proton might and, in fact, seem to depend
on 4/¢%, such that

Ve
AT,

log F(¢®)

namely, as the 4th root of the elaghic pp cross-section. Our present thermo-
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dynamics would, indeed, provide
« the mechanism independent of the method of excitabion»

which Wu and YAne postulate in order to conjecture the above behaviour of
the form factors as well as of various cross-sections.

It is likely that pure electromagnetic and weak interactions do not show
the thermedynamic behaviour described in this paper—at least not as long
as no real hadrons are produced. It cannot, however, be exluded that even
below the threshold for hadron production some thermodynamical features
creep in via virtual hadrons. In that case T, would somehow appear in electron-
electron scattering (and other such interactions) at sufficiently high energy and
momentum transfer. Unfortunately, the centre-of-mass energy of such a col-
lision should be in the GeV region (which in the next future seems out of
question).

Our theory might also have consequences in astropysics, where the model
of the «meutron star» (*) would perhaps be improved by including all pos-
sible hadrons—.e., by adoption of the present Athermodyna,mics. A first step
in this direetion has already been made by AWBARTSUMIAN and SAAXYAW (%)

Tt remains to mention a few open problems inside our theery:

i) We have not explained why resonances and fire-balls take part in
the ¢equilibrium » ag if they were stable particles.

ii) We have only calculated the transversal momentum distribution.
In doing so we assumed a rather peculiar thermodynamical « equilibrium »
whers still large collective relative motions in the direction of the collision
axis remained and where the word equilibrium merely meant constant temper-
ature a T, butnot constant energy density. No attempt was made to describe
this state of affairs in detadl.

iii) Related to the foregoing point is the still Iacking theory of jets. It
will certainly not be a two-fire-ball theory. Somse kinematical model will be
unavoidable, because thermodynamics alone ecan never explain a forward-
backward asymmetry in collisions of unlike particles; it may be that intro-
ducing the impact parameter will already suffice to ecaleculate mulbiplicities
and longitudinal momentum distribution. Such a theory would also provide
a better justification for the application of thermodynamics to elastie scat-
tering.

(*) For a review and further references see e.g. Cu1v (). I am gratefnl o Prof. G.
Coccont for having drawn my attention to this possible applieation.

(**y H. Y. Cmro: Ann. Phys., 26, 364 (1964).

(™) V. A, Avmarrsumian and G. S. Saaxvaw: Sov. Astr. Journ., 5, 601 (1962).
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iv) The relation between thermodynamics and analytical properties of
the scattering amplitude is still obscure. The bridge between these two is
unitarity, where a sum over the mass spectrum is implied.

L

I am grateful to many of my colleagues at CERN for discussions and cri-

tieism, in particular to G. Coccont, T. ERICSON, A. MarTiy and L. VAN Hovs.
Mr. W. Kreiy did some pumerical calculations.

APPENDIX I

Convergence of the sum in eq. (12).

Congider the integral
(A1.1) fg(m; n)m2K,(nsm)dm = I(n, s) .

0
For all 0< 2< co we have (11)

©

—fem [— cosh £] cosh 2¢di < | exp[—w cosh £] cosh tdt—Kng*( )y

Eoy(z) —exp[—w]]/» (l—l— +m~)

Using the fact that g(m)=0 for m<m,, we find with p(m;n)<g(m) and
using (A1.2)

7 Sm 3
I{n,s) <fg(m) |/2nsm exp [—nsm] (m2+ n—s oy ) dm<
0

f l/——exp [—sm] ('m.“ — —{—é) dm = F(s) .

(A1.2)

A

Henece I(n,s)<? F(s) where F(s) is independent of n. Therefore, in eq. (12)

=)

(A1.3) Z;bl—af(%: )<< F(s) ii—u=ﬁ7(3)'§(2):

a=1

that is, if the first integral (n=1) converges, then the sum converges.
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Assume now that the first integral (m=1) does not converge but that the
others (n>>2) do. Since the exponential factor in the asymptotic form of K,(z)
does not depend on p and is always exp[— ], it follows that as long as g(m)
grows less than exponentially all integrals I(n, s) are finite for s >0 and diverge
for s — 0+. Hence at =0 it is not possible to have the first integral =co
and the others finite. This is possible, however, at s=¢>0. In order to
have a divergent integral for s — s§, p(m) must grow exponentially

(Al.4) o(m) = f(m) exp[sgm], fim) = o(explam]) for every ¢>0.
In that case
(AL5)  I(n,5) < f Vo ftm) (2 22 4 25) exp[—mina— s

Now we can have at s=2g, a divergent integral for n=1 but convergent
integrals for n>2 (of course, f(m) can be such that even for n =1 the integral
converges at s=gs,). Then for n>2 and s>,

[~+] 3’ o
I(n, 5)< f = fim (m +3m z;) exp [— msy)dm = B(s,) -
1]

Therefore in (12) for s>s,

Z - I(m, 8)<<I(1, §) - G(sp£(2)—1].

ﬂ=0

Now for s — st the first term I(1, s) may diverge, but not the rest of the sum.

ArpENDIX II

Notations used for comparing funcﬁous;

1) Tt [f(z)|<E-g(w) for & -z, we write flz)= 0(g(z)) for & =ay;
« f(z) is at most of the order of g(r)»

2) If f(z)/g(z) = A for & — =z, we write f(z)— Ag(w) for & —2y;
« f(zr) tends asymptotically to Ag(z)»

3) 1 f(w)/g(w.) ~0 for ¢ —x, we write f(z)=o(g(z)) for & —=x;
« flz) is of smaller order than g(z)»

4) In the particular case that the funetion f(z) is compared to an expo-
nential function we say:
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a) « f(z) grows faster than expomentially »,

it f(x) exp[— az] — oo for.every >0 when & — oo.
b) «f(z) grows exponentially »,

if an @,> 0 exists such that

-10 for a>>

- e .
f(z) expl M]\oo for a<< a, when @ - oo

It remains to be stated, in individuval cases, what happens for
a= ay.

6) ¢ f(z) grows less than exponential!y »
if f(#) exp[—ax] — 0 for every a> 0 when 7 — co.

5} If we wish fo distingmish between z approaching 4, from helow and
from above, we write

z—>xy if z approaches z, from below,

z —x7 if @ approaches z, from above.

APPENDIX 0T

Nonexistence of nonexponential solutions.

‘We show here that our egs. (12), (13) do not possess a solution {o(2), o(@)}
which grows less than exponentially for #— co.
‘We first simplify the notation a little by writing for the exponent in eq. (12)

f (m; n) Ky(nsm) dm = ( 21;)* ;13 f mio(m)Q(sm) dm

0

(A3.1)

19

S]}-&

-1
TP

Lo

by which we have introduced the funetion

1 n odd,

I Q(sm) EV 2\/_2 r(m; n) Ky(nms), r(m, n)ElAQ/Q w even

(A3.2)
l elm) = gu(m) + os(m),  Ag(m) = on(m) — gs(m) [see (%)].

We shall need the asymptotic behaviour of Q(sm) for large and small
arguments.



STATISTICAT, THERMODYNAMICS OF STRONG INTERACTIONS AT HIGH ENERGIES 177

From (14) we find
2 r(m, n)

V’z‘.zz

AV -3 L
/ amEY N
Q(sm)\

gt axp[— sm)

for sm —0,

(A3.3)
for sm — co.

With these notations eq. (12) becomes

V‘; @

206) =050 [ Jmsatm @tom) am| 1,

]

(A3.4) -
Z(s) =fa(E) exp[—sE]dE.

The self-consistency condition requires that we find a pair of positive fune-
tions fulfilling (A3.4) and Having the property log o(z) —log p(z) for @ —oco.
This can also be written

(A3.5) o@) = o(z)-f(z) ~where logf{z)= o(log a(z)) .

As we wish to prove that this is impossible unless ¢ and o grow exponen-
{ially, we shall restrict ourselves to functions which grow less than exponen-
tially and show that the agsumption, that among them a pair obeying (A3.4)
and (A3.5) could exist, will lead to a contradiction. We, of course, exclude
the trivial solution p=o0=20.

Tet us start with a pg(m) which deseribes just the pions, 4.e., g{m)=
=38(m—m;). We obtain from (A3.4)

V.
Z(s) = exp [(Tn) S%-mi@(smn)] —1,

and ‘with s —0 the asymptotic behaviour

(A3.6) Z(s) —exp [3 Zﬁ(f)] (for pions only),

where (A3.3) has been used together with r{m., n)=1 for all n. The result
ig the well-known partition function for a gas of mass-zero bosons with 3 degrees
of freedom. We invert this Z(s) and caleulate the corresponding o(&):

x4-ie0

(43.7) o) =5y [ Blat in) exp L+ ) BIAGA), 2>0.

T—im

This integral is independent of z and indeed represents o(#), since we know
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t_ha,_t Z(s) can be written as a Laplace transform and the conditions for the
validity of (A3.7) are fulfilled [Doetsch, Satz 3, I, 4.4]. As the integrand is
holomorphic in the half-plane #>0 and—with our present Z(s)--has one

single minimum on the real axis at some point s,(#), we may take the path.

of integration —ico to --ico through this s,(¥) where it will have a maximuwm
(saddle point method). We shall write

(A3:8) Z(s) = exp[h(s)],

and obtain asymptotically for F -+ co [replacing the integrand by a suitable
Gaugs funetion—Doetseh I, Chapter 3, § 5]

o) 2 Z(5s) 05D (B 5t

s(B) given by h'(s,) =—H.

(A3.9)

Equation (A3.6) then gives

Iz 4
o(B) 52> '8(—;’%5/—4'6_11) [g (30)114,E3/4] ,

(43.10) 3%,(4)

Al

c=

As it should, the exponent equals the entropy for a massless Bose gas with

3 degrees of freedom.
We now obgerve that o(#) grows almost exponentially, namely, ~ exp (B,
although we started from a o(m) whieh was just a J-function. (learly, any

o(m) which goes to a constant for m —0 and for which Ig(m) dm exists, will
lead to

fm%g(m)Q(sm) dm = f(s) = const for s —0 [see (A3.3)],

and will give the same o(F) as above, except for another value of ¢in eq. (A3.10).
Tn other words: no such p(z) can be a solution. Indeed, sinee g{z) should be
somewhere =0, it follows at once that it must grow at least as exp [m*] in
order to have a chance to be a solution. We therefore restrict our further
considerations to functions with the asymptotie behaviour

(A3.11) exp [#*] = o(p(2)) = o(exp [ax]) for every a> 0.

ES
<«

We have chosen z* in the Lh.s. because z* would have excluded, e.g., m2e™.



STATISTICAT THERMODYNAMICS OF STRONG INTERACTIONS AT HIGH ENERGIES 179

We must now evaluate the integral in the exponent of {A3.4) for such o(m}
(A3.12) fm*g(m)Q(sm) dm = F(s).
o

So far, when [g(m)dm< oo, this F(s) - const for s — 0. Indeed, F(s) ~ [o(m)dim,
because in the integrand all contributions coming from m> M (M some suit~
able constant) are negligible and therefore, when s — 0, the upper line of
eq. (A3.3) becomes valid for the whole integration. Now, with functions of
the type described by (A3.11), it is the lower line of (A3.3) which will deter-
mine the behaviour of the integral, because the main contributions to the
integral come from & region around m msm,, where the integrand has a max-
imum; for the functions comsidered, not only m, -> co, bub even sm, — co
when s — 0*. Hence, the asymptotic form of Q(ms) for large argument is valid.
We choose—for s fixed—a very large mass M and write

@

(A3.13) fm%g(m) Q(sm) dm Efm’lg(m)Q(sm) dm —f-fm’-’f@(m)g(sm) dm -
+ s*|mig(m) exp[—sm]dm ,
‘where B

(A3.14). q(sm) = Q(sm) —s* exp [— sm] = o(st exp [— sm])

[in fact g(sm)~ (1/sm)stexp[—sm]; see (14)]. Now, the first integral, for
$— 0%, becomes a constant; the second and third will diverge, but the second
integral wil! have divergence of a lower order

f(second) = o[f(third)]

and will, together with -the first one, be neglected:
(A3.15) fm*—-‘g (m)Q(sm) dm ——=> st j mip(m) exp[— sm]dm = s*Z(s) ,
0 1]

where reintroducing the lower limit 0 has no effect on the asymptotic behaviour.
Equation (A3.15) defines the abbreviation Z(s). '

In this integral the integrand has a maximum at some place my(s), which
moves to co when s — 0+, whereas the value and second derivative at the
maximum value both diverge for s —0+ (of course, if p(m) is of the type
(A3.11)). In that case a formula similar to (A3.9) gives the asymptotic behaviour
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of the integral; we write
(A3.16) mio(m) = exp [g(m]]

and obtain [replacing the integrand by a suitable Gauss function—
Doetsch IT, ehapter 3, § 5]

_ —2n
(A3.9") Z(s) =7 exp [g(mu(s)) — sma(s)] Vg_’,,(mo) 1
my(s) given by g'(mg) =s -

[Tt is reassuring that for the type of functions g, o counsidered here, a twofold
application of formulae like (A3.9) and (A3.9') leads from Z(s) over ol F) b.ack
to Z(s) in the asymptotic limit s —0.] Now comes the main conclusion.
Suppose a solution of the type (A3.11) exists. Then g(x)= f(s)o(z) with
log f(z) = o(log o(z)). We have defined (A3.16)

ato(x) = exp[g(x)],

(A3.17) hence
o(z) = explg(z) —3%logz—logflx)].

For funcfions of the type (A3.11) we have
(A3.11") #* = o{g(x)) = o(az)

so that logx is also to be neglected asymptotically. We have by definition

@

Z(3) = | o(x) exp [—sz]da .

o

With (A3.17) and the procedure corresponding to eq. (A3.9') we obtain

— 27
Z(s) o7 exp [g(mo(s)) —_% log @, —log f(m) —smo]- V—-— ,
(AS.]_S) ' to be neglected for s->0+ g (%)

%y(s) is given by g'(wo(s)) =s for s -0+
Now, to calculate the mass integral (A3.15) we use (A3.9') and find

7 ]V—_‘?’TE
Z(S) _s——a-ﬂ_"’) exp [g(mu) — 8T, !]"(-’L'o) H
Ty(s) a8 in (A3.18).

(A3.19)

According to (A3.15), the mass integral equals s2Z(s). Inserting this into
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eq. (A3.4) (where the —1 can be neglected) we obtain

¥, 1
(A3.20) Z(8) 57> exp [@;{)—%;}

-Z(s) + terms of smaller order} .
Taking two times the logarithm of (A3.20) we find

log log Z(s) =5 log Z(s) + o{log Z(s)) =z log Z(s) .
From eqs. (A3.18) and (A3.19) we see that

log Z(s) <= log Z(s) ,
hence
(A3.21) log log Z(s) —log Z(s) for s -0+,

which is impossible. Thus no solution g(z)= o(exp[az]) can exist.

APPENDIX IV

Existence of exponeniial solutions.
We start from eq. (23)
Vo 1 2
(Ad.1) Z(s) = exp (2—77:)5‘? mio(m)Q(sm)dm | — 1.
o

Considering the asymptoti¢ behaviour of Q(sm)—stexp[—sm]. and that of
o(m)m? — f(m) exp[s,m], we see that Z(s) will, for s—s, — 0+, take the agymp-
totic form

Vo [1\%
(A4.2) Z(z) w=5=" exp [ (97:)5} (s—) (A== or Be?log z)] -1,
= 0,

where 2==5—s5,>0; A2* or Bz?log #z comes from the leading powers of f(m)
for m —co. This is what theorem (22a-¢) says. In fact, p takes only the
values 1, 2, 3, ..., whereas these are excluded for «. On the obher hand, writing
o(E) = g(F) exp[s,E] we obtain by the same theorem

(A4.3) Z (2} = const (4’7" or B'zr'logz].

‘We may of course have several terms of that sort in both formulase, but for
z -0+ a._dfat.“lmte one of them will be the leading term. We can at once discard
the possibility that this is 4z with a<< 0, because then (A4.2) would diverge

12 - Supplemento al Nuove Cimento,
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as explec/e]f, >0, and there is no such term in- (A4.3). Thus certainly
x>0 but 51,2, ...

It is, of course, the term Be?logz which attracts our aftention—in paz-
ticular when p= 0, since then {A4.2) gives

1 conat
exp [consfwlog %J = (:) y

which has a counterpart in (A4.3). We shall exploit this possibility soon.
Let us, however, consider presently the case where p>1 or where no such
term is present at all. In that case 2= would be the leading power (i.e., the
less vanishing one):

(Ad.4) Z(z) == exp [F(s,) — 4=~], a>0.

Clearly 4 >0, because for 2=0 we have F(s,) in the exponent and when #
grows, the exponent must decrease as it comes from an integral of the type
[h(m) exp[—em]dm with h>0. We obtain immediately a limitation on o by
caleulating # and the specific heat of our system by

= d
B = —% log Z(z) = Aaz=,
(A4.5)

—g(proportiona.l to specific heat) = —do(a—1)z52

Of course, we do not accept a negative specific heat, hence a<C 1 is necessary
(A4.8) 0<eo<Cl (if 42* is the «leading » term)

In that case Z(z) is finite for 2 — 0+, but F(z) and the specific heat diverge
for 2 —0+. In so far the behaviour is quite similar to the one with the loga-
rithmic term piesent (which shall be discussed later), it is, on the other hand,
not so convineingly simple, because

(A4.7) Z(#z) -z const-exp [— d&%] Efg(E) exp[—=zH]d¥

would require a g(F) which is not a polynomial. Of course, for z — 0+ we
‘may expand
Z(2) =7 const-[1— A==+ L 4% .. ],

and with o(#) — E—=1exp[s,F] we could produce the first and with similar
further powers the following terms in the square bracket. But as == for
0<oe<C1 rises from 0 with infinite slope, the expansion in powers of z* is not
very good. This argnment is not sufficient to reject the possibility of a solu-
tion where Az* is the leading term in the exponential; but the one which we
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] discuss in the following is so much more convincing that we presently
sh q Az 88 leading term.
discar urn to the case that m? fo(m) is such that in (A4.2) terms Byzrlog 2
we b gnd that in particular B,s=0. (In that case further terms of the form
appeal ? 0, are of course admitted but negligible for = —0+.)
p 7 7g hack to (Ad.1) we see that what we obtain is not quite (A4.2) but,

" accﬂl'attEIYJ

1 1 1 ‘:nm;i:/:f'-l
) e resy oot tog | = (1)

L e=%T% this is not a pure power of 2. In order to show that we ean
smeé ° "1 s difficulty and obtain a «pures power of 1/¢ (not exactly, bub

rem}f‘;eny desired precision) we must go back to the original form (12):

=
=]

Z(s) = exp [ Yo > = 1 fm o(m; n) EK,(nsm) dm]~1

27s T m?
0

% (snM) we use an integral representation (1) which is valid in the whole
plane cut from — co to 0:

@

o) Klnom) = |/ exp [—nom)- [exp(—1) (1+

o

GIRYIE;
2nsm/ I'(3)°
(m, #) = f(m, n) exp [sym] one has

n) exp[som] Kq(nsm) dim =f+f.—_

plns ) +f 1(m, m) texpl= (i —s)m dmfexp [—1] ( s >} at .

3 V2nsm "’nsm

n) is such that for s ~s7 the integral (r=1) does not converge (and
. supposed mow) then also the other (n=2,3,...) integrals have sin-
ies, however, at the points s,=(s,/n) which lie below s, and cannot
it ug; thus, p(nsM) and all other integrals (n>2) are holomorphic at
gularitiy s= s, of the # =1 integral. Therefore, n>1 will be disregarded
0w on.

b leading terms in the exponent for z — 0+ will then come from the
egral, where g(m, 1) = o(m)

A
Py mio(m) K,(sm)dm ,

K, (smm} = 1/2—_7:1-714 exp[— sm]-G(sm) ,

184 R. HAGEDORN

where G(sm) is the integral over i in (A4.10) with n=1. X4 is holomorphie
in the sm plane cut from — co to 0 and has an asymptotic expansion (semi-
convergent)

& 5 7|I
(A4.12) G(sm) m;;zn (ij) ]—G-'I(,I—(-*_—L) + Ey(sm) .

With (A4.11) we find

(A4.13) ¥y (ng(m) Ko{sm)dm = % (%)%fm%g(m) exp[— sm]|G(sm)dm

[=-3 rie o
We again split the integral [= f —f—J and suppose M large enough so that with

(Ad.14) mip(m) = f(m) exp [sym]

the asymptotic form of f(m)

(A4.15) =3 7{}

can be used in the second integral. The first integral f contributes a function

u
which is holomorphie in the s-plane cut from — co to 0 a.nd which does not
interest us presently (it is essentially identical with F(s, M), eq. (27)).
Denoting again s—s;=12, we obtain

(A4.16) Z(2) =5 exp [F(z -+ - fG exp [—=m] dm]

In what follows we write

. 1
Glsm)~ 3. %;g-ﬁ [gx given by (A4.12)],
(A4.17) -

fa
flm) 1;21 e’
where ~ and the open upper limit of the sum indieate that these are (or may be)
semi-convergent series. We obtain then

1

5&24’1

Hl

s§ TE5 A T
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which defines the abbreviation g¢.(s). This gives affer integration [the-
orem (22a-0)]

-] 1 A
(A4.19) fg(iﬂgﬂ—m)- exp[—ezm]dm~ [grgl o8) (fr—(——_)lﬁ z’“l] log 2 = h{z)-logz,

which defines the abbreviation h(z) =[...]. We wish to make A(z) constant in
order to obtain a pure logarithm in the exponent. Now with s = 2} s, we have

1 % ) 3—1 —1

2+ 8 o &

Inserting g, from (A4.18) and expanding the powers of 1/(z4-s,) yields

E—1] % o - g
— h'(z)zz(éi) [Z (r<—)1)!zf“g’“"‘sg—%'( T;r—nr )]

k=1 [} r=1 n=1

We have to make the square bracket equal to a constant==0 for =1 and
equal to 0 otherwise. As one sees, our freedom to choose the coefficients f.
is sufficient to achieve our aim up to any finite k (not up to k=co, a8 the
series (A4.18) need not converge). Indeed, in each of the ensuing eguations

?

Y S

1
2

l

A L f—rtn—3% const k=
waan 3 S (F) <0

the Izbel # reaches the value & as its highest value. Thus f, occurs in the
k-th equation but not in any earlier one, This f. can be chosen to fulfil the
equation. Hence,

r 1 1
(A4.22) f G—}(—S"—EZ—LM exp [—zm]dm = const-log ;4— h(z) log =,
a1

where in h{z) we can, by a proper choice of the coefficients f,, push the expo-
nent k, of its first nonvanishing power arbitrarily high up: h(z) = ag*o+....
In other words, by a proper choice of the f. we can achieve thab

1

— cansh
(A4.23) Z(2) D=5 exp [F(z) - const-log %] — F(0) (;)

is valid for z—> 0+ with any desired precizion, although never exactly. We
eannot, for instance, by choosing const—integer, make the cut in the z-plane,
which goes from z =0 to —oo, disappear; we can, however, make the dis-
continuity across this cub arbitrarily small in the neighbourhood of 2= 0.
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Baut this is sufficient to guarantee that

can be written
2t5) ~ [9(8) exp[—em)az,

where ¢(F) behaves as a power for A — co.
What we have done in the main text [eqs. (26)—(32)] is simply this: we
have taken the first terms of f(m) and of G(sm)

s 1)

7
s% 8

?

fm)~re (=a),

and neglected all the rest. Then a pure logarithm results. Our aim in this
Appendix was to justify this by showing that the pure logarithm can be
approximated as well as we wish by adding suitable terms to f(m).



