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1 Introduction and Disclaimer

The main purpose of the lecture was to lead students and young postdocs to the
frontier of the hydrodynamic description of relativistic heavy-ion collisions (H.I.C.)
in order for them to understand talks and posters presented in the Quark Matter
2008 (QM08) conference in Jaipur, India [1]. So the most recent studies were not
addressed in this lecture as they would be presented during the QM08 conference
itself. Also, we try to give a very pedagogical lecture here. For the readers who may
want to study relativistic hydrodynamics and its application to H.I.C. as an advanced
course, we strongly recommend them to consult the references.

This lecture note is divided into three parts. In the first part we give a brief
introduction to relativistic hydrodynamics in the context of H.I.C. In the second
part we present the formalism and some fundamental aspects of relativistic ideal
and viscous hydrodynamics. In the third part, we start with some basic checks of
the fundamental observables followed by discussion of collective flow, in particular
elliptic flow, which is one of the most exciting phenomena in H.I.C. at relativistic
energies. Next we discuss how to formulate the hydrodynamic model to describe
dynamics of H.I.C. Finally, we conclude the third part of the lecture note by showing
some results from ideal hydrodynamic calculations and by comparing them with the
experimental data.

We use the natural units c = � = kB = 1 and the Minkowski metric gμν =
diag(1,−1,−1,−1) throughout the lecture note.
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2 Introduction to Hydrodynamics in Relativistic
Heavy-Ion Collisions

The excitement raised by the announcement of the discovery of the “perfect” liq-
uid at Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory
(BNL) [2] is based on an agreement between predictions from ideal hydrodynamic
models with the experimental data. While this agreement was certainly a large
boost for various groups around the world doing research in hydrodynamics (and
even in string theory!), there are also other reasons why the usage of hydrodynam-
ics is strongly needed in H.I.C. Needless to say, the main goals of the physics of
H.I.C. are to discover the deconfined nuclear matter under equilibrium, namely the
Quark–gluon plasma (QGP), and to understand its properties such as equation of
state (EoS), temperature and order of phase transition, transport coefficients, and so
on. However, the system produced in H.I.C. dynamically evolves within time dura-
tion of the order of 10–100 fm/c. Hence one has to describe space–time evolution
of thermodynamic variables to fill a large gap between the static aspects of QGP
properties and dynamical aspects of H.I.C. It is the hydrodynamics that plays an
important role in connecting them. Various stages of H.I.C. are depicted in Fig. 1.
Two energetic nuclei are coming along light cone and collide with each other to
create a multi-parton system. Through secondary collisions the system may reach
thermal equilibrium and the QGP can be formed. This is a transient state: After
further expansion and cooling the system hadronizes again. Eventually, expansion
leads to a free-streaming stage through freezeout and particle spectra at this moment
are seen by the detector. Hydrodynamics is applied to matter under local equilibrium
in the intermediate stage. Of course, it is nontrivial a priori whether one can always
apply hydrodynamics to the dynamics of H.I.C. Nevertheless it is not a bad idea to

t

z

QGP QGP

hadron gas

 1 fm/c≤0τ

freeze out

heavy−ions heavy−ions

Fig. 1 A schematic view of dynamics of a heavy-ion collision along the collision axis
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dare to apply it since we are eager to understand the matter under equilibrium in
terms of H.I.C.

There is also another good reason to apply hydrodynamics to H.I.C. A lot of
experimental data have been published so far at various collision energies. Ideally,
one may want to describe these data from the first principle, i.e., quantum chromo-
dynamics (QCD). The QCD Lagrangian density reads

L = ψ̄i

(
iγμDμi j − mδi j

)
ψ j − 1

4
FμναFμνα, (1)

where ψi is a quark field, i(= 1–3) is a color index for quarks, Dμ is a covariant
derivative, m is a quark mass, Fμνα is a field strength of gluons, and α(= 1, . . . , 8)
is a color index for gluons. However, in spite of its simple-looking Lagrangian, it
is very difficult to make any predictions directly from QCD in H.I.C. due to its
complexity which mainly arises from nonlinearity of interactions of gluons, strong
coupling, dynamical many body system, and color confinement. One promising
strategy to connect the first principle with phenomena is to introduce hydrodynamics
as a phenomenological theory. We call this strategy a bottom-up approach to H.I.C.
An input to this phenomenological theory comprises the equation of state,

P = P(e, n), (2)

which expresses the pressure P as a function of energy density e and baryon density
n. This can be obtained by exploiting lattice numerical simulations of QCD.1 In the
case of viscous hydrodynamics we need additionally the transport coefficients such
as shear viscosity η, bulk viscosity ζ , heat conductivity λ.2

Once hydrodynamics turns out to work quite well in the description of dynamics,
one can utilize its outputs such as local temperature or energy density for other
observables. In the current formalism of jet quenching, one needs an information
of parton density or energy density along a trajectory of an energetic parton [3,
4]. If one assumes J/ψ melts away above some temperature [5], one needs local
temperature at the position of J/ψ . In the case of electromagnetic probes [6, 7],
one convolutes emission rate (the number of produced particles per unit space–time
volume at temperature T ) of thermal photons and dileptons over the space–time
volume under equilibrium. Hydrodynamics provides us with the information of the
bulk matter. Therefore we can say that, in the context of H.I.C., hydrodynamics is
the heart of the dynamical modeling: It not only describes expansion and collective
flow of matter but also provides important information in the intermediate stage for
other phenomena.

1 From lattice calculations, pressure as a function of temperature rather than energy density is
obtained. Note also that, due to sign problem, thermodynamic variables are available only near the
region of vanishing chemical potential.
2 In principle, the information about these quantities can be obtained also from the lattice QCD
simulations although it is much harder than the EoS.
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3 Formalism of the Relativistic Ideal/Viscous Hydrodynamics

The second part of the lecture note is more formal with many equations, but we
try as much as possible to provide the intuitive picture behind the equations. The
following references might be very helpful to complement this section [8–24].

3.1 The Basic Equations

The basic hydrodynamical equations are energy–momentum conservation

∂μT μν = 0 , (3)

where T μν is the energy–momentum tensor and the current conservation

∂μNμ

i = 0 , (4)

where Nμ

i is the i th conserved current. In H.I.C., there are some conserved charges
such as baryon number, strangeness, electric charges, and so on. We mainly assume
the net baryon current Nμ

B as an example of Nμ

i in the following. In the first step we
decompose the energy–momentum tensor and the conserved current as follows:

T μν = euμuν − PΔμν + Wμuν + W νuμ + πμν , (5)

Nμ

i = ni u
μ + V μi . (6)

All the terms in the above expansion will be discussed one by one later. Now we
indicate that uμ is the time-like, normalized four-vector

uμuμ = 1 , (7)

while the tensor Δμν is defined in the following way:

Δμν = gμν − uμuν , (8)

where gμν is the Minkowski metric. We refer to uμ and Δμν as the “projection”
vector and tensor operators, respectively. In particular, uμ is the local flow four-
velocity, but a more precise meaning will be given later. uμ is perpendicular toΔμν ,
as can easily be seen from the definition of Δμν given in Eq. (8) and from the fact
that uμ is normalized,

uμΔ
μν = uμ(gμν − uμuν) = uν − 1 · uν = 0 . (9)
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Next we define the local rest frame (LRF) as the frame in which uμ has only the
time-like component nonvanishing and in which Δμν has only the space-like com-
ponents nonvanishing, i.e.,

uμLRF = (1, 0, 0, 0) , (10)

Δ
μν

LRF = diag(0,−1,−1,−1) . (11)

As is easily understood from the above equations, one can say that uμ(Δμν) picks
up the time-(space-)like component(s) when acting on some Lorentz vector/tensor.

We now discuss the physical meaning of each term in the expansion of the
energy–momentum tensor (5) and the conserved current (6).

3.1.1 Decomposition of Tμν

The new quantities which appear on the RHS in the decomposition (5) are defined
in the following way:

e = uμT μνuν (energy density) , (12)

P = Ps +Π = −1

3
ΔμνT

μν (hydrostatic + bulk pressure) , (13)

Wμ = ΔμαT αβuβ (energy (or heat) current) , (14)

πμν = 〈T μν〉 (shear stress tensor) . (15)

Each term corresponds to projection of the energy–momentum tensor by one or two
projection operator(s), uμ and Δμν . The first two equalities imply that the energy
density e can be obtained from the time-like components of the energy–momentum
tensor, while the pressure P is obtained from the space-like components. Contract-
ing the energy–momentum tensor simultaneously with uμ andΔμν gives the energy
(heat) current Wμ. Finally, the angular brackets in the definition of the shear stress
tensor πμν stand for the following operation:

〈Aμν〉 =
[

1

2
(ΔμαΔ

ν
β +ΔμβΔνα) − 1

3
ΔμνΔαβ

]
Aαβ . (16)

This means that 〈Aμν〉 is a symmetric and traceless tensor which is transverse to uμ

and uν . More concretely, one can first decompose the energy–momentum tensor by
two projection tensors symmetrically

π̃μν = 1

2
(ΔμαT αβΔ ν

β +ΔναT αβΔ μ
β ) (17)
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and then decompose it once more into the shear stress tensor (traceless) and the
pressure (non-traceless)

π̃μν = πμν − PΔμν. (18)

3.1.2 Decomposition of Nμ

In the decomposition (6) we have introduced the following quantities:

ni = uμNμ

i (charge density) , (19)

V μi = Δμν N ν
i (charge current) . (20)

The physical meaning of ni and V μi is self-evident from the properties of projection
operators.

QUESTION 1: Count the number of unknowns in the above decompositions and
confirm that it is 10(T μν) + 4k(Nμ

i ). Here k is the number of independent currents.3

The various terms appearing in the decompositions (5) and (6) can be grouped
into two distinctive parts, which we call ideal and dissipative. In particular, for the
energy–momentum tensor we have

T μν = T μν0 + δT μν , (21)

T μν0 = euμuν − PsΔ
μν , (22)

δT μν = −ΠΔμν + Wμuν + W νuμ + πμν , (23)

while for one charge current we have,

Nμ = Nμ

0 + δNμ , (24)

Nμ

0 = nuμ , (25)

δNμ = V μ . (26)

In the above relations T μν0 (Nμ

0 ) denote the ideal part, while the δT μν(δNμ) denote
the dissipative part of the T μν(Nμ).

3.2 The Meaning of uμ

As we have already mentioned in Sect. 3.1, uμ is the four-velocity of “flow.” Now
we would like to clarify what kind of flow we have in mind in this description. In
literature two definitions of flow can be found

3 If you consider uμ as independent variables, you need additional constraint for them since these
are redundant ones. If you also consider Ps as an independent variable, you need the equation of
state Ps = Ps(e, n).
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1. flow of energy (Landau) [10]:

uμL = T μν uνL√
uαL T β

α Tβγ uγL

= 1

e
T μν uνL , (27)

2. flow of conserved charge (Eckart) [8]:

uμE = Nμ

√
NνN ν

(28)

(see Fig. 2).4 In the first definition, uμL also appears on the RHS of Eq. (27). So it
should be understood as an equation with respect to uμL . One may solve an eigen-
value problem for a given energy–momentum tensor T μν . uμL is a normalized time-
like eigenvector and the corresponding positive eigenvalue is energy density e. If the
dissipative currents are small enough, one can show the following relation between
these two definitions of flow:

uμL ≈ uμE + Wμ

e + Ps
, uμE ≈ uμL + V μ

n
. (29)

Equation (29) can be shown by assuming that both two definitions of flow can be
connected by infinitesimal proper Lorentz transformation

uμE = aμνu
ν
L (30)

≈ (δμν + εμν)uνL , (31)

where εμν is infinitesimal anti-symmetric tensor, and by neglecting the higher orders
of dissipative currents. Obviously, Wμ = 0 (V μ = 0) in the Landau (Eckart) frame.
In the case of vanishing dissipative currents, both definitions represent a common

uL
μ

Vμ

uE
μ

Wμ

Fig. 2 A sketch of Landau and Eckart definitions of flow. Two boxes are fluid elements. There is a
“leak” current Wμ or V μ according to the definition of flow

4 Other definitions can be made. The situation here is quite similar to the gauge fixing condition in
gauge theories to eliminate the redundant variables. An essential point is to choose some “gauge”
for later convenience.
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flow. In other words, flow is uniquely determined in the case of ideal hydrodynam-
ics. We should emphasize that Landau definition is more relevant in the context of
H.I.C. at ultrarelativistic energies since we expect that a small baryon number is
deposited near the midrapidity region.

3.3 Entropy

We start this subsection by briefly discussing the entropy conservation in “ideal
hydrodynamics.” By “ideal hydrodynamics” we mean the case when entropy is
not produced during the evolution.5 Neglecting the dissipative parts, the energy–
momentum conservation (3) and the current conservation (4) reduce to

∂μT μν0 = 0 , (32)

∂μNμ

0 = 0 , (33)

where T μν0 and Nμ

0 are the ideal parts introduced in Eqs. (22) and (25). Equations
(32) and (33) are the basic equations of “ideal hydrodynamics.”

By contracting Eq. (32) with uν it follows

0 = uν∂μT μν0

= . . .
= T (uμ∂μs + s∂μuμ) + μ(uμ∂μn + n∂μuμ) . (34)

We have introduced here the temperature T , entropy density s, and chemical poten-
tial μ through the first law of thermodynamics de = T ds +μdn. Here it is assumed
that thermalization is maintained locally. The second term on the RHS in Eq. (34)
vanishes due to Eq. (33). If we now introduce the entropy current as

Sμ = suμ , (35)

it follows from Eq. (34) that

∂μSμ = ∂μ(suμ) = uμ∂μs + s∂μuμ = 0 . (36)

Hence the entropy is conserved in ideal hydrodynamics.

QUESTION 2: Go through all steps in the above derivations.

Now we go back to viscous hydrodynamics. Hereafter we consider only the Landau
frame and omit the subscript L . For simplicity, we further assume that there is no
charge in the system although in the realistic case a small amount of charge might

5 Note that, if discontinuities exist in the solution, entropy is produced even in ideal hydrodynam-
ics.
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exist in the system. What we are constructing here is the so-called first-order theory
of viscous hydrodynamics. The main assumption is that the nonequilibrium entropy
current vector Sμ has linear dissipative term(s) constructed from V μ, Π , and πμν

and can be written as

Sμ = suμ + αV μ . (37)

The first term on the RHS is the ideal part and the second term is the correction
due to the dissipative part. It is impossible to construct a term which would form a
Lorentz vector from πμν on the RHS in the above equation because πμν is perpen-
dicular to uμ by definition.6 Since we have also assumed that there is no charge in
the system, i.e., Nμ = 0, it follows that αV μ vanishes.

We now calculate the product of the temperature T and the divergence of the
entropy current (37). It follows

T ∂μSμ = T (uμ∂μs + s∂μuμ)

= uν∂μT μν0

= −uν∂μδT
μν

= . . .
= πμν 〈∇μuν〉 −Π∂μuμ , (38)

where ∇μ = Δμν∂ν . In transferring from the second to third line in the above cal-
culation we have used the energy–momentum conservation, ∂μT μν = 0. It is very
important to note that due to the assumption that there is no charge in the system we
could neglect the dissipative part of entropy current (37), but the dissipative part of
energy–momentum tensor (23) does not vanish. The nonvanishing dissipative part
of energy–momentum tensor gives a contribution which yields a difference between
the equations characterizing the first-order theory of viscous hydrodynamics and the
equations of ideal hydrodynamics derived before.

QUESTION 3: Check the above calculation.

In order to solve the hydrodynamic equations we must first define the dissipative
current. We introduce the following two phenomenological definitions, so-called
constitutive equations, for the shear stress tensor πμν and the bulk pressure Π :

πμν = 2η 〈∇μuν〉 , (39)

Π = −ζ∂μuμ = −ζ∇μuμ . (40)

6 Also remember Wμ = 0 in the Landau definition. One may think thatΠuμ is a possible candidate
in the entropy current Sμ. However, the second law of thermodynamics is not ensured in this case.
See also discussion in [21].
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In Table 1 we outline the new variables and terminology used in the above equations.
Notice that, within our approximation Nμ = 0, there is no vector component of
thermodynamic force.

Table 1 New variables and terminology

Thermodynamic force Transport coefficient Current

Xμν = 〈∇μuν〉 η πμν
tensor shear viscosity
X = −∂μuμ ζ Π

scalar bulk viscosity

After inserting the definitions (39) and (40) in the last line of (38), we arrive at, for
positive transport coefficients,

T ∂μSμ = πμνπ
μν

2η
+ Π2

ζ

= 2η 〈∇μuν〉2 + ζ (−∂μuμ
)2 ≥ 0 . (41)

This ensures the second law of thermodynamics

∂μSμ ≥ 0 . (42)

In the case of viscous hydrodynamics, entropy is not decreasing.

3.4 The Equations of Motion

In order to derive the equations of motion, we use again energy–momentum conser-
vation (3). After contracting Eq. (3) with uν we have

uν∂μT μν = 0 , (43)

from which one can obtain the first equation of motion,

ė = −(e + Ps +Π )θ + πμν 〈∇μuν〉 . (44)

On the other hand, after contracting Eq. (3) with Δμα it follows

Δμα∂βT αβ = 0 , (45)

from which one can obtain the second equation of motion,

(e + Ps +Π )u̇μ = ∇μ(Ps +Π ) −Δμα∇βπαβ + πμα u̇α . (46)
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This is exactly the relativistic extension of the Navier–Stokes equation. In writing
the above equations we have introduced

θ = ∂μuμ expansion scalar (divergence of flow), (47)

“dot” = D = uμ∂
μ substantial time derivative . (48)

QUESTION 4: Starting from the energy–momentum conservation (3) derive Eqs.
(44) and (46).

To get some intuitive interpretation of the first equation of motion, we insert expres-
sions (39) and (40) for the shear stress tensor and bulk pressure into Eq. (44):

ė = −eθ − Psθ + Π2

ζ
+ πμνπ

μν

2η

= −eθ − Psθ + ζ (−θ )2 + 2η 〈∇μuν〉2
. (49)

The above equation determines the time evolution of energy density e in the co-
moving system. The first term on the RHS describes dilution/compression of energy
density due to the change of volume because θ can be expressed in terms of volume
of a fluid element V as

θ ≈ V̇

V
. (50)

In ideal hydrodynamics, this relation holds exactly. If the system expands (θ > 0),
the energy density is diluted. So the effect of expansion appears as negative source
term −eθ in Eq. (49). If we move along with a fluid element, the internal energy
in the fluid element is not conserved due to the work done by pressure, which is
described by the second term on the RHS in (49). Finally, the last two positive
definite terms in (49) represent the production of entropy which heats up the system.

Now we comment on the second equation of motion (46). But before doing that,
we recall the nonrelativistic Navier–Stokes equation,

Dv = − 1

ρ
∇Ps + η

ρ
∇2v . (51)

Here ρ is the mass density, η is shear viscosity, and D = ∂
∂t + v · ∇ is the non-

relativistic version of substantial time derivative. The above version of the nonrel-
ativistic Navier–Stokes equation applies to the case of incompressible fluids such
that ∇ · v = 0 is valid. On the LHS we have the time derivative of velocity, which
is nothing but acceleration. The first term on the RHS is the source of the flow
and it is solely due to the pressure gradient ∇Ps , while the second term represents
the diffusion of the flow. The final flow velocity comes from the interplay between
these two terms: The first term generates the flow while the second term dilutes
it. The ratio η/ρ is called kinetic viscosity and plays a role of diffusion constant
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in the Navier–Stokes equation (51). The diffusion term in Eq. (51) requires more
detailed treatment. For an illustrative purpose, consider first the heat equation in
(N+1)-dimensional space–time

∂T (t, {xi })
∂t

= κ
N∑
i

∂2

∂x2
i

T (t, {xi }) , (52)

where T is temperature and constant κ is heat conductivity in some unit. One can
discretize the heat equation (52) in (2 + 1)-dimensional space–time as follows:

T n+1
i, j = T n

i, j + 4κΔt

(Δx)2

[
T n

i−1, j + T n
i, j−1 + T n

i+1, j + T n
i, j+1

4
− T n

i, j

]

= T n
i, j + 4κΔt

(Δx)2

(
T̄ n

i, j − T n
i, j

)
, (53)

where i and j are indices of the site and n is the time step. The first term in
the brackets in Eq. (53), T̄i, j , indicates an average of temperature around the cell
under consideration. If temperature at (i , j) is smaller (larger) than the averaged
one T̄i, j > Ti, j (T̄i, j < Ti, j ), the second term in Eq. (53) becomes positive (neg-
ative) and, consequently, temperature increases (decreases) in the next time step.
Repeating this procedure, temperature becomes flat even if starting from a bumpy
initial condition. Thus, generally speaking, the second derivative with respect to
coordinates describes averaging/smoothening/diffusion of given distributions and a
coefficient in front of it describes how quick the distribution diffuses. Now going
back to the Navier–Stokes equation (51), it is obvious from the above discussion
that the second term describes diffusion of flow and that kinetic viscosity η/ρ plays
a role of a diffusion constant. The relativistic version of the Navier–Stokes equation
(46) has a similar form to Eq. (51) if one plugs in constitutive equations (39) and
(40) and assumes the fluid is incompressible, θ = 0.

3.4.1 Bjorken’s Equation in the First-Order Theory

Now we rewrite again the first equation of motion by making use of Bjorken’s
ansatz [16]

uμBj = x̃μ

τ
= t

τ

(
1, 0, 0,

z

t

)
, (54)

where τ = √
t2 − z2 is the proper time. This is a boost-invariant Bjorken’s solution

which is also called one-dimensional Hubble flow since velocity in the z-direction,
vz , is proportional to z, which is an analogy to three-dimensional Hubble flow of the
universe. After inserting this solution into the constitutive equations (39) and (40)
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πμν = 2η

τ

(
Δ̃μν − 1

3
Δμν

)
, (55)

Δ̃μν = g̃μν − uμBju
ν
Bj , g̃μν = diag(1, 0, 0,−1) , (56)

Π = −ζ
τ
, (57)

we arrive at the following equation of motion:

de

dτ
= −e + Ps

τ

(
1 − 4

3τT

η

s
− 1

τT

ζ

s

)
. (58)

This equation determines the time evolution of energy density in the first-order the-
ory in one-dimensional expansion.

QUESTION 5: Derive Eq. (58).

On the RHS of (58) we have three terms in the bracket. If we neglect the last two
terms this equation reduces to the famous Bjorken equation [16] which states that
in ideal hydrodynamics the energy density evolution is determined by the sum of
energy density e and the hydrostatic pressure Ps , divided by the proper time τ .
The last two terms on the RHS in (58) represent the viscous correction to ideal
hydrodynamics. The first one is the viscous correction originating from the shear
viscosity in compressible fluids while the second one comes from the bulk viscosity.
We remark that both terms are proportional to 1/τ which is due to the fact that the
expansion scalar θ in the Bjorken scaling solution can be written as

θ = 1

τ
. (59)

Two transport coefficients in the viscous correction, η/s and ζ/s, turn out to be
very important. They are the dimensionless quantities in natural units and reflect the
intrinsic properties of the fluids.7

Recently progress has been made in obtaining the values of the transport coef-
ficients from microscopic theories. Here we summarize the most important results
and conclusions as follows:

• η/s = 1/4π and ζ/s = 0 are obtained from N = 4 SUSY Yang–Mills the-
ory [25]. The latter one is automatically obtained from the conformal nature of
the theory;

• η/s = O(0.1 − 1) for gluonic matter is obtained from the lattice calculations of
pure SU(3) gauge theory [26];

7 We stress that in the context of H.I.C. the statement which is often used, “viscosity is small,”
is not precise. From the equations we have derived, we see that the correct statement should be
“viscous coefficients are small in comparison with entropy density.”
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• bulk viscosity has a prominent peak around Tc resulting from trace anomaly of
QCD [27, 28] (see also a phenomenological approach in [29]).

3.5 The Second-Order Theory and Its Application to Bjorken’s
Equation

There is an important issue in the first-order theory which is the violation of causal-
ity. We can trace back the origin of the violation of causality to our phenomeno-
logical definitions (39) and (40) for the shear stress tensor and the bulk pressure,
respectively, and to the fact that the Navier–Stokes equation is a parabolic equation,
namely the time derivative is of first order while the space derivative is of second
order. The same arguments hold also for the violation of causality in relativistic
hydrodynamics: It is known that, under linear perturbations on the moving back-
ground equilibrium state, the solutions are unstable and acausal [30] (for a more
detailed discussion, see also a recent study in [31]). For an illustrative purpose,
we continue this discussion by analyzing the heat equation as an example of the
parabolic equation in three-dimensional space,8

∂T

∂t
= κ

3∑
i

∂2

∂x2
i

T . (60)

The heat equation can be easily derived by combining the balance equation,

∂T

∂t
= −∂qi

∂xi
, (61)

together with the constitutive equation,

qi = −κ ∂T

∂xi
Fourier’s law. (62)

In the above equations T is the temperature, qi is the heat current, and κ is the
heat conductivity. The above constitutive equation is purely phenomenological.
Although here we are considering the nonrelativistic equations, the general argu-
ments and conclusions we write down are valid in the relativistic case as well. The
heat equation (60) violates causality. It can be easily confirmed that Green’s function
of the heat equation (60), sometimes called heat kernel, is Gaussian

G(xi , t ; xi
0, t0) = 1

[4πκ(t − t0)]
3
2

exp

[
− (xi − xi

0)2

4κ(t − t0)

]
(63)

8 Again, we choose some units to simplify the following equations:
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and the “long tail” of this Gauss function causes the violation of causality in the
heat equation. This issue was heuristically resolved by Cattaneo in 1948 [9] after
an additional term on the LHS of the constitutive equation (62) was introduced “by
hand,”

τr
∂qi

∂t
+ qi = −κ ∂T

∂xi
. (64)

In the modified constitutive equation we have a new constant τr which is often called
the “relaxation time.” Correspondingly, the heat equation (60) is also modified,

τr
∂2T

∂t2
+ ∂T

∂t
= κ ∂

2T

∂x2
i

, cs =
√
κ/τr . (65)

In the literature the above equation is known as a telegraph equation. While the orig-
inal heat equation can be classified as a parabolic equation, the telegraph equation
belongs to the family of hyperbolic equations. Causality is not violated in Eq. (65)
simply because we can now, by choosing the relaxation time τr to be large, reduce
the signal velocity cs to values smaller than the speed of light c.

In relativistic hydrodynamics the relaxation terms introduced above can be
obtained by modifying the entropy current in the following way:

Sμ = suμ + O(δT μν) + O (
(δT μν)2

)
. (66)

By including the quadratic dissipative terms we are starting to work within the
framework of second-order theory. The nonequilibrium entropy current vector Sμ in
the second-order theory has linear + quadratic dissipative term(s) constructed from
(V μ,Π, πμν). Again, we demand the second law of thermodynamics, ∂μSμ > 0.
Thus, quadratic dissipative terms modify the constitutive equations which now read
as

τπΔ
μαΔνβπ̇αβ + πμν = 2η 〈∇μuν〉 + · · · , (67)

τΠΠ̇ +Π = −ζ∂μuμ + · · · . (68)

When compared to the constitutive equations of the first-order theory, (39) and (40),
we see that in the second-order theory in each constitutive equation a relaxation
term appears. Relaxation terms include τπ and τΠ , which are the relaxation times.
It is important to note that in the second-order theory the constitutive equations
are no longer algebraic equations. As a consequence, dissipative currents become
dynamical quantities like thermodynamic variables. The constitutive equations with
relaxation terms have been employed in recent viscous fluid simulations [32–45].9

9 Some of the references here do not employ the same equations as mentioned here. There are still
some hot debates how to formulate the correct relativistic equation of viscous fluids or which terms
in the constitutive equations of the second-order theory should be kept in the simulations.
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Finally, we outline Bjorken’s equation in the second-order theory,

de

dτ
= −e + Ps

τ

(
1 − π

sT
+ Π

sT

)
, (69)

τπ
dπ

dτ
+ π = 4η

3τ
− πτπ

2τ
− πηT

2

d

dτ

τπ

ηT
, (70)

τΠ
dΠ

dτ
+Π = −ζ

τ
− ΠτΠ

τ
− ΠζT

2

d

dτ

τΠ

ζT
, (71)

where

π = π00 − π zz . (72)

It is easy to show that the above formulas reduce to the ones in the first-order theory
if one takes τπ → 0 and τΠ → 0. We remark here that, contrary to the first-order
theory, one needs to specify initial conditions for dissipative currents in the second-
order theory.

3.6 Summary

Let us summarize the main points so far as follows:

• hydrodynamics is a framework to describe the space–time evolution of matter
under local thermal equilibrium;

• a naı̈ve extension of the Navier–Stokes equation to its relativistic version, which
is called the first-order theory, has problems on instabilities and causality;

• relaxation terms are needed in the constitutive equations to resolve the above
issues;

• these terms naturally arise in the constitutive equations when the second-order
corrections of dissipative currents are considered in the entropy current.

4 Applications

In this section we apply the formalism of hydrodynamics to heavy-ion collisions. As
already noted in Sect. 1, we do not argue recent analyses in terms of viscous hydro-
dynamics. We show only results from ideal hydrodynamic models. One can also
consult recent other reviews of hydrodynamic models at RHIC which complement
the present lecture note [46–53]. We start by discussing some basic tests of whether
the system produced in H.I.C. can be described by thermodynamic quantities. Then
we discuss collective flow and introduce ideal hydrodynamic models to describe the
flow phenomena in H.I.C. Finally we show results from ideal hydrodynamic models
and compare them with experimental data.
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4.1 Basic Checks of Observables at RHIC

Recent lattice QCD results show [54] that the energy density as a function of the
temperature suddenly increases by ∼ 1 GeV/fm3 at the (pseudo-)critical tempera-
ture Tc ∼ 190 MeV.10 Above this temperature, the system is supposed to be in the
deconfined QGP. The first check is whether the energy density produced in H.I.C. is
sufficient to form a QGP. Phenomenologically, the energy density in H.I.C. can be
estimated through Bjorken’s formula [16]11

εBj(τ ) = 〈mT 〉
τπR2

d N

dy
. (73)

Here 〈mT 〉 is the mean transverse mass, y = 1
2 ln E+pz

E−pz
is the rapidity, d N

dy is the

number of particles per unit rapidity, τ = √
t2 − z2 is the proper time, and R is

an effective transverse radius. The energy density obtained above depends on the
proper time since the system is supposed to expand in the longitudinal direction
with the expansion scalar θ = 1/τ . One can compare Bjorken’s energy density
to the energy density from lattice QCD simulations to see whether it is sufficient
energy density to form a QGP. Figure 3 shows the PHENIX data on εBjτ versus
the number of participants at three collision energies [57, 58]. If τ is taken to be
1 fm/c, Bjorken’s energy densities at

√
sN N = 130 and 200 GeV are well above the

energy density at the transition region ∼ 1 GeV/fm3. Therefore, sufficient energy
is deposited in the central rapidity region in H.I.C. at RHIC. However, attention
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∈
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jτ 
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2 /
c]

Fig. 3 εBjτ versus the number of participants at three collision energies [57, 58]

10 Energy density increases with temperature rapidly but smoothly. So this is not a phase transition
but a crossover in a thermodynamically strict sense. This is the reason why we call it pseudo-critical
temperature here.
11 This formula neglects the effect of pdV work. If the system is kinetically equilibrated, the
energy density should be larger than the value obtained by this formula [55, 56].
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should be paid to the interpretation. The above formula just counts the total mea-
sured energy divided by the volume of a cylinder. So the system is not necessarily
thermalized. In this sense, this is a necessary condition, not a sufficient condition,
to form a QGP.

The next basic check is whether the matter in H.I.C. reaches chemical equi-
librium. Assuming thermal and chemical equilibria, we can calculate the number
density of a certain particle species

ni (T, μ) = g

2π2

∫ ∞

0

p2dp

exp [(Ei − μi )/T ] ± 1
. (74)

ni gives the number density of particle species i as a function of the temperature T
and chemical potential μi . g is the degeneracy of the particle, p is the momentum,
and E is the energy. We further assume that the measured particle number is fixed
at a certain temperature and chemical potential, which is called chemical freezeout.
Then the average number of particles, 〈Ni 〉, can be estimated by summing contribu-
tion from particles directly emitted from the system with volume V and contribution
from resonance decays

〈Ni 〉 = V

[
nth

i (T, μ) +
∑

R

ΓR→i nR(T, μ)

]
. (75)

Here nth
i and nR are the number density of directly emitted particle i and resonance

R, respectively. ΓR→i is the branching ratio of the resonance R decaying into species
i . When one looks at ratios of two particle numbers, the volume V is canceled out.
Thus the particle ratios depend only on two parameters: the temperature T and the
baryonic chemical potential μB . In Fig. 4, various combinations of the particle ratio
observed at RHIC are fitted by two parameters [59]. We find a remarkably good fit

Fig. 4 Ratios of particle numbers produced at RHIC [59]
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to data with only these two parameters.12 At
√

sN N = 130 GeV, the temperature
is fitted to be 176 MeV which is close to the critical temperature from lattice QCD
calculations. At the temperature, which we call chemical freezeout temperature T ch,
the system ceases to be in chemical equilibrium. So we expect that the system
reaches chemical equilibrium above T ch. Again, one has to keep in mind that this is
a necessary condition since even in e+e− or pp collisions observed particle ratios are
fitted reasonably well by using statistical models [60, 61]. See also discussions in,
e.g., [62, 63]. The last basic check is whether the matter reaches kinetic equilibrium.
If we suppose a system in H.I.C. is in kinetic equilibrium, the pressure is built inside
the system. The matter is surrounded by vacuum, so pressure gradient in outward
directions generates collective flow and, in turn, the system expands radially. The
momentum distribution in kinetically equilibrated matter is isotropic. On the other
hand, when the matter is moving at a finite velocity the momentum distribution is
Lorentz boosted. This is illustrated in Fig. 5. If this kind of distortion in momentum
distribution can be observed experimentally, one can obtain some information about
kinetic equilibrium. Assuming each fluid element expands radially at radial flow
velocity vT , the pT spectra for pions and protons can be calculated by convoluting
these distorted momentum distributions over azimuthal direction (blast wave model
[64, 65]). Here pT is the transverse momentum which is perpendicular to the colli-
sion axis. The green curves are results with T = 100 MeV and radial flow velocity
vT = 0.5. On the other hand, the red curves are results with T = 160 MeV and
vanishing flow vT = 0. For light particles like pions, there is almost no sensitivity to

px

py

uμ

px

py

(a) Isotropic case (b) Lorentz boosted in positive x direction

Fig. 5 Fluid elements at rest and at a finite velocity in x-direction. Momentum distribution in the
latter case is distorted by Lorentz boost along x-axis

12 There are some additional parameters in the recent statistical models such as excluded volume
correction, strangeness suppression factor, and so on for a better description of the data.
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Fig. 6 pT spectra for pions and protons from a thermal plus boost picture. See text for details

distinguish the two cases: Reduction of temperature is almost compensated by radial
flow. However, in the case of heavier particles like protons, a clear difference can
be seen between these two cases: There is a shoulder structure at low pT resulting
from radial flow. This kind of spectral change is observed in H.I.C., as can be seen
in Fig. 7. It shows the proton pT spectra for p+p (black), d+Au (pink), and Au+Au
(red) collisions obtained by STAR Collaboration [66]. For p+p and d+Au collisions
the spectra have just a power law shape. However, in Au+Au collisions, one sees
a shoulder structure at low pT (< 1 GeV/c). This is consistent with a thermal plus
boost picture and suggests that a large pressure could be built up in Au+Au colli-
sions. One can fit the pT spectrum using a blast wave parametrization [64, 65] and
obtains decoupling temperature T dec and the mean collective flow velocity as a func-
tion of the centrality. Even for pp collisions these parameters are finite (see Fig. 8)
[67], which indicates that a more sophisticated model would be needed to inter-
pret the data. This kind of spectral change can also be seen in results from kinetic
theories in which kinetic equilibrium is not fully achieved. Therefore it is indis-
pensable to perform a systematic study based on a more sophisticated dynamical
framework.

We have obtained the necessary conditions for studying the QGP: (1) The energy
density can be well above the critical value which is predicted from lattice QCD
simulations; (2) A chemical freezeout temperature extracted from particle ratios is
close to pseudo-critical temperature which is again from lattice QCD simulations;
(3) High pressure can be built up in H.I.C., which suggests the system reaches
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Fig. 7 Proton spectrum for pp (black), dAu (pink), and Au+Au (red) collisions. Adopted from a
presentation file by O. Barannikova at Quark Matter 2005, Budapest, Hungary [66]

Fig. 8 Fitted parameters in blast wave model calculations [67]
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kinetic equilibrium. If one of them was not confirmed through these basic checks,
one would not need to go to the next steps toward detailed studies of the QGP in
H.I.C.

4.2 Elliptic Flow

Before going to a detailed discussion on the hydrodynamic models, we discuss
collective flow, in particular, anisotropic transverse flow. Here “collective flow” is
meant by the correlation between position of matter and direction of flow, which is
not necessary to be hydrodynamically evolving matter. A good example has already
appeared in the previous subsection. In the case of radial flow, velocity of expanding
matter has a component parallel to the radial coordinate. Figure 9 shows a heavy-ion
collision in the reaction plane (left) and transverse plane (right). In such a collision
a region of the locally equilibrated state can be created. In the transverse plane the
overlap region has an almond-like shape, so the region is anisotropic with respect to
the azimuthal angle. The azimuthal momentum distribution can be expanded into a
Fourier series13

d N

dφ
= N

2π
[1 + 2v1 cos(φ) + 2v2 cos(2φ) + · · · ] , (76)

vn =
∫

dφ cos(nφ) d N
dφ∫

dφ d N
dφ

= 〈cos(nφ)〉 , (77)

where φ is the azimuthal angle of momentum and vn are the Fourier coefficients of
nth harmonics [68]. Because of the symmetry around the y-axis the sine terms van-
ish. The first and second harmonics, v1 and v2, are called directed and elliptic flow
parameters, respectively. The first harmonic, v1, is illustrated in Fig. 10a. Particles
are emitted preferably, e.g., in the direction of the large arrows in the reaction plane.

z

x

(a) In the reaction plane

x

y

φ

(b) In the transverse plane

Fig. 9 Illustration of a H.I.C.

13 Here we suppose azimuthal angle is measured from reaction plane. Of course, in the experimen-
tal situations, the reaction plane is not known a priori. We will not go into details of how to find
reaction plane experimentally.
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x

z

(a) First harmonic v1

x

y

(b) Second harmonic v2

Fig. 10 Anisotropic transverse flow

Directed flow is significantly seen near the beam rapidity region but vanishes near
midrapidity due to symmetry of the collision geometry. The second harmonic, v2, is
much more relevant for studying matter around midrapidity in H.I.C. at relativistic
energies since spectators already fly away [69], therefore a lot of efforts to measure
v2 have been made at RHIC so far. One of the first observables was actually v2

measured by STAR Collaboration [70]. It is illustrated in Fig. 10b.
Elliptic flow is how the system responds to the initial spatial anisotropy [69,

71–73]. Suppose two extreme situations illustrated in Fig. 11. In the first case (see
Fig. 11a) the mean free path among the produced particles is much larger than the
typical size of the system. In this case the azimuthal distribution of particles does
not depend on azimuthal angle on average due to the symmetry of the production
process. The other extreme case is when the mean free path is very small compared
to the typical system size (see Fig. 11b). In this case hydrodynamics can be applied
to describe the space–time evolution of the system. The pressure gradient along the
horizontal axis is much larger than that along the vertical axis due to the geometry.

dN
/d

 φ

dN
/d

 φ

φ0 2π

(a) Large mean free path

φ0 2π

2v2

(b) Small mean free path

Fig. 11 Normalized azimuthal distribution d N/dφ of a noncentral H.I.C.
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So the collective flow is enhanced along the horizontal axis rather than along the
vertical axis and, in turn, the azimuthal distribution gets oscillated. The amplitude of
this oscillation in the normalized azimuthal distribution describes exactly the elliptic
flow parameter. In this way, the elliptic flow is generated by the spatial anisotropy
of the almond shape due to multiple interactions among the produced particles. We
have good opportunities to extract some information about the mean free path from
the elliptic flow analysis.

The eccentricity is a very important quantity to interpret elliptic flow phenomena.
To quantify the initial almond shape, the following formula can be used:

ε =
〈
y2 − x2

〉
〈
y2 + x2

〉 . (78)

The brackets denote an average over the transverse plane with the number density
of participants as a weighting function

〈· · · 〉 =
∫

dxdy · · · npart(x, y) . (79)

This is sometimes called the standard eccentricity. If the system is elongated along
the y-axis, the eccentricity is positive. In more realistic situations, the eccentricity
fluctuates from event to event. This fluctuation of the initial eccentricity [74–79]
is important to understand the elliptic flow in the small system such as Cu+Cu
collisions or peripheral Au+Au collisions. Figure 12 shows a sample event pro-
jected into the transverse plane from a Monte Carlo Glauber model. Participants
are shown in magenta and spectators are in yellow and orange. In this case one
could misidentify the tilted line as the reaction plane, while the true reaction plane
is the horizontal axis (dashed line). The angle of the tilted plane with respect to
the true reaction plane fluctuates event by event. Of course we cannot observe the
true reaction plane from experimental data. On the other hand, an apparent reaction

Fig. 12 An example of participants (magenta) and spectators (yellow and orange) in a H.I.C. from
a Monte Carlo Glauber model. Adopted from a presentation file by D. Hofman at Quark Matter
2006, Shanghai, China
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plane (tilted line in Fig. 12) is determined also by elliptic flow signal itself. Another
definition, called the participant eccentricity, is much more relevant for quantifying
the almond shape in the event-by-event basis

εpart =
√

(σ 2
y − σ 2

x )2 + 4σ 2
xy

σ 2
x + σ 2

y

, (80)

σ 2
x = {

x2} − {x}2 , (81)

σ 2
y = {

y2
} − {y}2 , (82)

σxy = {xy} − {x} {y} . (83)

Now the average {· · · } is taken over in a single event generated by a Monte Carlo
Glauber model.

In the following, the important properties of elliptic flow are demonstrated
through hydrodynamic/transport simulations of H.I.C. In hydrodynamic simula-
tions, the eccentricity is usually defined by weighting local energy density e(x, y) or
local entropy density s(x, y) in the transverse plane rather than the number density
of participants npart(x, y). Figure 13 shows the eccentricity εx and the momentum
eccentricity

εp =
∫

dxdy(T xx
0 − T yy

0 )∫
dxdy(T xx

0 + T yy
0 )

(84)

as a function of the proper time from a hydrodynamic simulation assuming Bjorken
scaling solution in the longitudinal direction and two different sets of the EoS [46].
Details of hydrodynamic models will be discussed later. The spatial eccentricity εx

decreases as the system expands and the momentum anisotropy rapidly increases at
the same time. So the spatial anisotropy turns into the momentum anisotropy. The
momentum anisotropy εp is created and saturates in the first several femtometers,
so the observed v2 is expected to be sensitive to the initial stage of the collision.
Figure 14 shows the impact parameter dependence of the ratio of output (v2) to input

Fig. 13 The spatial eccentricity εx and the momentum eccentricity εp as a function of the proper
time τ in Au+Au collisions at b = 7 fm [46]. Solid and dashed curves correspond to two different
sets of the EoS
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Fig. 14 v2/εx as a function of impact parameter b [80]

(εx ) [80] which can be understood as a response of the system. Ideal hydrodynamics
predicts that v2 is roughly proportional to the eccentricity

v2 ≈ 0.2ε . (85)

Figure 15 shows a result from a kinetic approach based on the Boltzmann equa-
tion for gluons undergoing elastic scattering only [81].14 Starting with a uniform
distribution in an almond shape in coordinate space and thermal distribution in

0 1 2 3 4 5 6 7

t (fm/c)

−0.05

0

0.05

0.1

0.15

0.2

v 2

σ = 10 mb

3 mb

1 mb

free streaming

Fig. 15 v2 as a function of proper time from Boltzmann calculations for different gluon cross
sections [81]. Curves are guide to eyes

14 Inelastic scattering (gg ↔ ggg) is implemented in a kinetic approach only recently. Although
this is a higher-order process in perturbative expansion, it turns out to affect elliptic flow signifi-
cantly. See [82–84]
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momentum space, the multi-gluon system expands according to the Boltzmann
equation with various transport cross sections.15 From this figure we can understand
several important features of the elliptic flow:

1. v2 is not generated in the free-streaming case, so elliptic flow is generated indeed
through secondary collisions;

2. elliptic flow is generated in the early stage of the collision and saturates after the
first 2 to 3 fm/c;

3. the saturated value of v2 is sensitive to the cross section among the particles

σtr ∝ 1

λ
∝ 1

η
, (86)

where λ is the mean free path and η is the shear viscosity calculated in the kinetic
theory of gases;

4. in the limit of large transport cross sections (strongly interacting limit), the sys-
tem is expected to reach the ideal hydrodynamic result16 since η → 0.

Through measurement of v2 and its analysis in terms of hydrodynamic/transport
models, one can extract the transport properties of the matter produced in H.I.C. In
the next subsection, we discuss hydrodynamic modeling of H.I.C.

4.3 Ideal Hydrodynamic Model

Hydrodynamics introduced in Sect. 3 is a general framework to describe the space–
time evolution of locally thermalized matter for a given equation of state (EoS). This
framework has been applied to the intermediate stage in H.I.C. In this section, we
neglect the effects of dissipation and concentrate on discussion about ideal hydro-
dynamic models. The main ingredient in ideal hydrodynamic models in H.I.C. is the
EoS of hot and dense matter governed by QCD. In addition, one also needs to assign
initial conditions to the hydrodynamic equations. Hydrodynamics can be applied to
a system in which local thermalization is maintained. However, in the final state of
H.I.C. the particles are freely streaming toward the detectors and their mean free
path is almost infinite. This is obviously beyond the applicability of hydrodynam-
ics. Hence we also need a description to decouple the particles from the rest of
the system. To summarize, the hydrodynamic modeling of H.I.C. needs an EoS,
initial conditions, and a decoupling prescription. Modeling of these ingredients in
hydrodynamic simulations has been sophisticated for these years and tested against
a vast body of RHIC data.

15 In kinetic theories, momentum exchanges among particles are responsible for equilibration.
However, forward scattering with very small scattering angle is insufficient for the system to equi-
librate. So the effective (transport) cross section can be defined as σtr = ∫

dθcm sin2 θcm
dσ

dθcm
, where

θcm is scattering angle in the center of mass system between two scattering particles.
16 The Boltzmann equation is applied to dilute gases where two-particle correlation can be ignored.
So one should keep in mind the applicability condition of the kinetic theory in this case.
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We first look at the EoS in more detail. The EoS is in principle calculated from
lattice QCD simulations. The realistic results with (almost) physical quark masses
are obtained recently [54]. However, if one wants to utilize the EoS from lattice
simulations, one needs to interpret the EoS in terms of a hadron picture [85] since
one calculates momentum distributions of hadrons in the final decoupling stage. For
this purpose, the lattice EoS is compared with the resonance gas model below Tc. If
there exists a deviation between them, it prevents one from utilizing the lattice EoS
directly in hydrodynamic simulations. Instead, in hydrodynamic simulations, the
models of EoS depicted in Fig. 16 are conventionally used [46]. The most simple
EoS (EOS I) is P = e/3 for an ideal gas of relativistic massless particles.17 A more
realistic EoS (EOS Q) includes the effect of hadron masses and phase transition
between hadronic matter and the QGP. At low energy density the EoS is described
by a hadron resonance gas model (EOS H). This particular model includes almost all
the hadrons in the Particle Data Table [86], while some models include only ground
states of hadron multiplets or several low mass resonances. At high energy density,
the EoS can be described by a bag model

P = 1

3
(e − 4B) . (87)

The bag constant B is tuned to match pressure of the QGP phase to that of
a hadron resonance gas at critical temperature Tc: PQGP(Tc) = Phadron(Tc). As
discussed in Sect. 4.1, a hadron gas in H.I.C. is not in chemical equilibrium below
the chemical freezeout temperature. T ch is closed to Tc, so the hadron phase may
not be chemically equilibrated in H.I.C. A chemically frozen hadron resonance gas
can be described by introducing the chemical potential for each hadron [87–93].
The numbers Ñi including all decay contributions from higher-lying resonances,
Ñi = Ni + ∑

R bR→i X NR , are conserved during the evolution in co-moving frame

Fig. 16 Some typical EoS in hydrodynamic models [46]

17 This EoS is always obtained in relativistic conformal field theories in which the trace of energy–
momentum tensor is vanishing T μμ = e − 3P = 0. So the particles are not necessarily “free.”
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of fluid elements. Here Ni is the number of the i th hadronic species in a fluid ele-
ment and bR→i X is the effective branching ratio (a product of branching ratio and
degeneracy) of a decay process R → i+X . One can calculate the chemical potential
as a function of temperature from the following conditions:

ñi (T, μi )

s(T, {μi }) = ñi (Tc, μi = 0)

s(Tc, {μi } = 0)
. (88)

Instead of solving continuity equations for each hadron, the effect of hadron number
conservation can be embedded in the EoS of resonance gas through μi (T ) obtained
above. For a decoupling prescription, the Cooper–Frye formula [94] is almost a
unique choice to convert the hydrodynamic picture to the particle picture

E
d N

d3 p
=

∫
Σ

f (x, p, t)p · dσ (x) (89)

= d

(2π )3

∫
Σ

p · dσ (x)

exp [(p · u(x) − μ(x))/T (x)] ± 1
, (90)

where E is the energy, f is the phase space distribution, d the degeneracy of the
particle under consideration (e.g., d = 3 for pions), p is the momentum, dσ is the
normal vector to the freezeout surface element, u is the four-velocity, μ is the chem-
ical potential, and T is the decoupling temperature assuming isothermal freezeout
hypersurface Σ . Contribution from resonance decays should be taken into account
by applying some decay kinematics to the outcome of the Cooper–Frye formula.
The decoupling temperature T dec is fixed through simultaneous fitting of pT spec-
tra for various hadrons in the low pT region. In the blast wave model, decoupling
temperature and radial flow velocity are independent parameters to fit pT spectra.
On the other hand, there is a negative correlation between T dec and average radial
flow velocity in the hydrodynamic model: the lower decoupling temperature, the
larger average radial flow velocity. This formula ensures the energy–momentum
conservation on freezeout hypersurface Σ as long as the EoS is calculated using
the same distribution function. If one puts resonances up to the mass of 2 GeV
in the resonance gas model, one should calculate all the contribution of hadrons
in the EoS. Otherwise, neglect of the contribution leads to violation of the energy
momentum conservation.18 It should be noted that p · dσ term in Eq. (90) can be
negative. This means the incoming particles through Σ are counted as a negative
number. Although this seems peculiar, this negative contribution is needed for global
energy–momentum conservation.

The prescription to calculate the momentum distribution as above is sometimes
called the sudden freezeout model since the mean free path of the particles changes
from zero (ideal fluid) to infinity (free streaming) within a thin layer Σ . Although
this model is too simple, it has been used in hydrodynamic calculations for a long

18 If the lattice EoS below Tc cannot be described by a resonance gas model, the Cooper–Frye
formula violates the energy–momentum conservation on Σ . This is the reason why there are only
few serious attempts of lattice EoS to hydrodynamic simulations.
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Fig. 17 Two freezeout pictures in H.I.C.

time. It is illustrated in Fig. 17a. Recently one utilizes hadronic cascade models to
describe the gradual freezeout [95–99]. As will be shown, this hadronic afterburner
is mandatory in understanding v2 data. Phase space distributions for hadrons are
initialized below Tc by using the Cooper–Frye formula. The hadronic cascade mod-
els describe the space–time evolution of the hadron gas. This model is illustrated in
Fig. 17b. This kind of hybrid approaches in which the QGP fluids are followed by
hadronic cascade models automatically describes both the chemical and the thermal
freezeout and is much more realistic especially for the late stage.

Initial conditions in hydrodynamic simulations are so chosen as to reproduce the
centrality and rapidity dependences of multiplicity d Nch/dη. Initial conditions here
mean energy density distribution e(x, y, ηs) and flow velocity uμ(x, y, ηs) at the
initial time τ0. Again baryon density is neglected since, at midrapidity at RHIC, the
net baryon density is quite small. The pressure distribution can be obtained from the
energy density distribution through the EoS. Space–time rapidity ηs , independent
initial energy density distribution e(x, y, ηs) = e(x, y), and Bjorken scaling solution
uμBj are assumed in (2 + 1)-dimensional hydrodynamic simulations. In this case, one
discuss as the observables only at midrapidity. At ηs = 0, one can parametrize [100]
the initial entropy density based on the Glauber model

s(x, y) = d S

τ0dηsd2x⊥
∝ αnpart(x, y; b) + (1−α)ncoll(x, y; b). (91)

The soft/hard fraction α is adjusted to reproduce the measured centrality depen-
dence [101] of the charged hadron multiplicity at midrapidity. By using the EoS,
one can calculate the initial energy density distribution from Eq. (91). For fully
three-dimensional initial conditions, see [87, 97, 102]. A novel initial condition is
based on the color glass condensate (CGC) picture [103]. One can calculate the
local energy density of produced gluons within the CGC framework [104–106]
and utilize it as an initial condition of hydrodynamic simulations. In Fig. 18, an
example of the CGC initial energy density distribution for a noncentral H.I.C. in a
full (3 + 1)-dimensional hydrodynamic simulation [107] is shown in the transverse
plane (left) and in the reaction plane (right). In the right side panel the horizon-
tal axis corresponds to the impact parameter direction and the vertical axis to the
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Fig. 18 Energy density distribution in a noncentral H.I.C. within a CGC initial condition in the
transverse plane (left panel) and in the reaction plane (right panel). The two horizontal thick black
lines in the right panel are the Lorentz contracted nuclei. The color gradation in the right side of
each panel indicates the energy density scale in unit of GeV/fm3

space–time rapidity ηs . Figures 19 and 20 show charged particle multiplicity from
hydrodynamic simulations that are compared with the PHOBOS data [101, 108].
Figure 19 shows d Nch/dη as a function of the number of participants (Npart) [101].
These data are fitted by using two kinds of initial conditions: from Glauber model
calculations and from color glass condensate (CGC) model calculations [97]. Both
models reproduce the centrality dependence of the data. Figure 20 shows the rapidity
distribution of d Nch/dη for each centrality [108]. The fitting of multiplicity is the
starting point of further analysis based on hydrodynamic simulations.
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Fig. 19 Centrality dependence of multiplicity from PHOBOS [108] are fitted by hydrodynamic
calculations with two different initial conditions [97, 107]
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Fig. 20 Pseudorapidity dependence of multiplicity from PHOBOS [108] is fitted by hydrodynamic
calculations with two different initial conditions [97, 107]

In the hydrodynamic models, various combinations of initial conditions, EoS and
decoupling prescriptions, are available to analyze the experimental data in H.I.C. Of
course, final results largely depend on modeling of each ingredient. So it is quite
important to constrain each model and its inherent parameters through systematic
analyses of the data toward a comprehensive understanding of the QGP.

4.4 Application of the Ideal Hydrodynamic Model to H.I.C.

In this subsection we analyze H.I.C. at RHIC in terms of ideal hydrodynamic models
discussed in the previous subsection.

Before we start our main discussion on elliptic flow parameter v2, we mention
here that the transverse momentum distributions for pions, kaons, and protons are
also important since these reflect dominant transverse flow, namely radial flow. Cur-
rently, among hydrodynamic models, yields and slopes of pT spectra are repro-
duced in pure hydrodynamic calculations with early chemical freezeout or in grad-
ual freezeout approaches. It should be noted here that simultaneous reproduction
of the yields and the slopes is important. Sometimes, one only compares the slope
of the pT spectra by scaling the yields “by hand” within hydrodynamic approaches.
However, chemical composition of hadronic matter does affect the transverse expan-
sion [87]. Therefore, it does not make any sense if one compares only the slopes by
keeping chemical equilibrium of hadrons.

As discussed in Sect. 4.2, v2/ε can be interpreted as a response of the system
to initial spatial eccentricity. Figure 21 shows v2/ε as a function of the transverse
multiplicity density (1/S)d Nch/dy from AGS to RHIC energies. Hydrodynamic
results in Fig. 14 are shown symbolically as horizontal lines. The experimental data
monotonically increase with particle density, while ideal hydrodynamic response is
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Fig. 21 v2/ε as a function of transverse multiplicity density compiled by NA49 Collaboration
[109]

Fig. 22 Differential v2 for pions, kaons, protons, and lambdas [67]

almost flat [80]. Ideal hydrodynamics is expected to generate the maximum response
among the transport models.19 The experimental data reach this limit for the first
time at RHIC. Figure 22 shows the differential elliptic flow v2 as a function of trans-
verse momentum for pions, kaons, protons, and lambdas. A mass ordering pattern
is seen in v2 data, which was predicted by ideal hydrodynamic calculations [110].20

The pseudorapidity dependence of v2 observed by PHOBOS [111] has a triangular

19 It should be emphasized again that the hydrodynamic results above are obtained by a particular
combination of modeling, i.e., Glauber-type initial conditions, EOS Q with chemical equilibrium
in the hadron phase and sudden freezeout at fixed decoupling temperature.
20 There is a caveat to interpret the agreement since this particular hydrodynamic calculation
does not reproduce particle ratios due to a lack of early chemical freezeout. The importance of
hadronic viscosity and chemical freezeout in hydrodynamic calculations is recognized [112] after
the announcement of the discovery of perfect fluid QGP [2].



172 T. Hirano et al.

η
–6 –4 –2 0 2 4 6

v 2

0

0.02

0.04

0.06

0.08

0.1

0.12
hydro+JAM

=100MeVthT
=169MeVthT

PHOBOS 25-50%

b=8.5fm

Fig. 23 Pseudorapidity dependence of v2. PHOBOS data [111] compared to different model cal-
culations [97]

shape as is seen in Fig. 23. In the pure ideal hydrodynamic result, hydrodynamic
equations are initialized by the Glauber model and are solved all the way down to
T dec = 100 MeV. The pure hydrodynamic model gives a comparable result with the
data only at midrapidity. However, at forward and backward rapidities, it overshoots
the data significantly. If we replace the hadron fluid with a hadron gas utilizing a
hadron cascade, v2 is significantly reduced in the forward and backward regions.
In this hybrid model the hadrons have a finite mean free path, which results in
an effective shear viscosity in the hadron phase. So dissipative hadronic “corona”
effects turn out to be important in understanding the v2 data. The model also repro-
duces a mass ordering pattern of v2 for identified hadrons as a function of pT near
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Fig. 24 Differential v2. STAR data [67] compared to model calculations [98]
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midrapidity in Fig. 24. Figure 25 shows the centrality dependence of v2. The solid
line is the result from ideal hydrodynamic calculations while the dotted line is from
the hybrid model. It is clear that for peripheral collisions, where the multiplicity is
small, the hadronic viscosity plays an important role. One may notice that the result
from the hybrid model is systematically and slightly smaller than the data. However,
there could exist the effect of initial eccentricity fluctuations which is absent in this
hydrodynamic calculations. The deviation between the results and the data can be
interpreted quantitatively by this effect. Figure 26 shows v2(pT ) for pions, kaons,
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Fig. 26 Differential v2 for pions, kaons, and protons for η = 0 (left), η = 1 (middle), and η = 3
(right) [113]
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Fig. 27 Differential v2 with and without hadronic rescattering [98]

and protons in 10–50% centrality at η = 0 (left), η = 1 (middle), and η = 3 (right)
observed by BRAHMS [113]. Also here the hybrid model reproduces the pT slope
of these differential elliptic flow parameters.

We would like to point out here that the mass ordering, clearly visible in Fig. 24,
is there in the final result. If one would look at the result just after the QGP phase
transition, the difference between the pions and the protons would be quite small.
So it turns out that the splitting patterns are caused by hadronic rescattering. This is
illustrated in Fig. 27. One can conclude that the large magnitude of the integrated
v2 and the strong mass ordering of the differential v2(pT ) observed at RHIC result
from a subtle interplay between perfect fluid dynamics of the early QGP stage and
dissipative dynamics of the late hadronic stage: The large magnitude of v2 is due
to the large overall momentum anisotropy, generated predominantly in the early
QGP stage, whereas the strong mass splitting behavior at low pT reflects the redis-
tribution of this momentum anisotropy among the different hadron species, driven
by the continuing radial acceleration and cooling of the matter during the hadronic
rescattering phase.

We have seen so far that the hydrodynamic model which includes Glauber-type
initial conditions followed by a perfect fluid QGP and a dissipative hadronic gas
evolution is the most successful combination for describing the RHIC data. We now
go to the discussion on the initialization dependence of v2. Two types of initial con-
ditions, namely the Glauber-type initial conditions and the CGC initial conditions,
are discussed in the previous subsection. v2 as a function of centrality is shown
again for these two initial conditions in Fig. 28. In the case of the Glauber initial
conditions we can conclude early thermalization and the discovery for the perfect
fluid QGP. In the case of the CGC initial conditions, we cannot, however, claim
the discovery since the model initialized by CGC overshoots the data in almost the
whole range. Since the hydrodynamic model calculations depend on the initial con-
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Fig. 28 v2 as a function of centrality. PHOBOS data [111] are compared to hydrodynamic results
with two different sets of initial conditions [97]

ditions, it is very important to understand them before making final conclusions. In
the case of CGC initial conditions viscosity might be needed even in the QGP phase
to get the model down to the data points. The effect of viscosity could therefore be
quite important. The high v2 values from the CGC initial conditions are traced back
to the initial eccentricity. In Fig. 29a the energy density distribution in the impact
parameter direction is plotted for different conditions. If the energy density profile
has a sharp edge (no diffuseness), an integral in Eq. (78) is relatively weighted in
the edge region and, consequently, eccentricity becomes maximum at a given impact
parameter. If one compares the energy density profile of the CGC with the one of the
Glauber model, one sees that the CGC profile has a sharper edge than the Glauber
model does. The resultant eccentricity as a function of impact parameter is shown
in Fig. 29b. Eccentricity from the CGC is about 20–30% larger than that from the
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Glauber model. This is the reason why hydro + hadronic cascade approach which
even includes hadronic viscosity overshoots the v2 data.21

4.5 Summary

Hydrodynamics is a framework to describe the space–time evolution of matter under
local equilibrium. It is applied to the intermediate stage in H.I.C. to extract the
transport properties of the QGP from RHIC data. Hydrodynamic modeling includes
initial conditions, EoS, and decoupling prescriptions. Final results certainly depend
on combination of each modeling. So much attention should be paid to these ingre-
dients before drawing robust conclusions from hydrodynamic analyses. Elliptic
flow has played a major role in understanding the transport properties of the QGP.
Glauber initial conditions, ideal hydrodynamics in the QGP phase, and dissipative
gas for the hadron phase are three pillars for agreement between the model and
the elliptic flow data. Whereas, if CGC initial conditions are employed, the initial
eccentricity gets increased by 20–30%. If the nature chooses this kind of initial
condition, viscosity might be needed even in the QGP phase.
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